~~NOTOC~~
===== Charge Transfer to Solvent =====
{{::ctts.png?800|}}
Jinggang Lan, Majed Chergui, Alfredo Pasquarello;
Dynamics of the charge transfer to solvent process in aqueous iodide
[[doi>10.1038/s41467-024-46772-0|Nature Communications 2024]]
===== Core-hole Clock Spectroscopy =====
{{:science:core-hole-clock.png?900|}}
[[ doi>10.1039/d3cp04303g| PCCP 2024]].
===== HCOOH-Saturated TiO$_2$ =====
{{:science:hcooh_abstract_2023.png?900|}}
Fernanda Brandalise Nunes, Nicolò Comini, J. Trey Diulus, Thomas Huthwelker, Marcella Iannuzzi, Jürg Osterwalder, and Zbynek Novotny; Dynamic Equilibrium at the HCOOH-Saturated TiO2(110)−Water Interface [[ doi>10.1021/acs.jpclett.2c03788| JPCL 2023]].
===== Nanoconfined Water =====
{{::nature_gr_water.png?800|}}
Venkat Kapil, Christoph Schran, Andrea Zen, Ji Chen, Chris J. Pickard & Angelos Michaelides;
The first-principles phase diagram of monolayer nanoconfined water [[doi>10.1038/s41586-022-05036-x| Nature 2022]].
===== Solvated Electron =====
{{:angew.png?800|}}
Jinggang Lan, Vladimir V. Rybkin and Alfredo Pasquarello;
Temperature Dependent Propertiesof the Aqueous Electron [[doi>10.1002/anie.202209398 | Angewandte Chemie 2022]].
===== Electrochemical Interfaces =====
{{:pnas.png?800|}}
Feng Shao, Jun Kit Wong, Qi Hang Low, Marcella Iannuzzi, Jingguo Li, & Jinggang Lan; 2022;
In situ spectroelectrochemical probing of CO redox landscape [[doi>10.1073/pnas.2118166119 | PNAS 2022]].
===== Single Atom Electrocatalyst =====
{{:sac.png?800|}}
Jie-Wei Chen, Zisheng Zhang, Hui-Min Yan, Guang-Jie Xia, Hao Cao & Yang-Gang Wang; 2022;
Pseudo-adsorption and long-range redox coupling during oxygen reduction reaction on single atom electrocatalyst [[doi>10.1038/s41467-022-29357-7|Nature Communications 2022]]
===== Solvated Electron in Methanol =====
{{:chem_sci_methanol.png?800|}}
Jinggang Lan, Yo-ichi Yamamoto, Toshinori Suzuki and Vladimir V. Rybkin; 2022;
Shallow and deep trap states of solvated electrons in methanol and their formation, electronic excitation, and relaxation dynamics [[doi>10.1039/d1sc06666h|Chemical Science 2022]]
===== Osmotic Transport in Nanofluidics =====
{{:science:acs_nano_osm_paper.png?800|}}
Laurent Joly, Robert H. Meissner, Marcella Iannuzzi, Gabriele Tocci; 2021; Osmotic Transport at the Aqueous Graphene and hBN Interfaces: Scaling Laws from a Unified, First-Principles Description
[[ doi>10.1021/acsnano.1c05931 | ACS Nano 2021]]
===== Solvated Electrons =====
{{::wx20210428-192213.png?800|}}
Jinggang Lan, Venkat Kapil, Piero Gasparotto, Michele Ceriotti, Marcella Iannuzzi, and Vladimir V. Rybkin; 2021; Simulating the ghost: quantum dynamics of the solvated electron.
[[ doi>10.1038/s41467-021-20914-0 | Nature Comm. 2021, 12, 766]]
===== Nuclear Quantum Efffects at Metal Interfaces =====
{{::jpcl_nqe_int.png|}}
Jinggang Lan, Vladimir V. Rybkin, and Marcella Iannuzzi; 2020; Ionization of water as an effect of quantum delocalization at aqueous electrode interfaces.
[[ doi>10.1021/acs.jpclett.0c01025 | J. Phys. Chem. Lett. 2020, 11, 9, 3724-3730 ]]
===== C.U.R.A.T.E.D. COFs =====
{{ ::acs_centsci_curated_cofs.png |}}
Daniele Ongari, Aliaksandr V. Yakutovich, Leopold Talirz & Berend Smit; 2019; Building a Consistent and Reproducible Database for Adsorption Evaluation in Covalent-Organic Frameworks
[[doi>10.1021/acscentsci.9b00619 | ACS Cent. Sci. 2019, 5, 10, 1663-1675]]
===== Graphene Crown Ethers =====
{{ ::sci_adv_graph_crown.png |}}
{{ ::f1.large.jpg |}}
Subin Sahu, Justin Elenewski, Christoph Rohmann & Michael Zwolak; 2019; Optimal transport and colossal ionic mechano-conductance in graphene crown ethers
[[doi>10.1126/sciadv.aaw5478 | Science Advances 5, eaaw5478 (2019)]]
===== Fischer–Tropsch Chain Growth =====
{{ ::fishertropsch_acscat19.png |}}
Lucas Foppa, Marcella Iannuzzi, Christophe Copéret & Aleix Comas-Vives; 2019; Facile Fischer–Tropsch Chain Growth from CH2 Monomers Enabled by the Dynamic CO Adlayer
[[doi>10.1021/acscatal.9b00239 | ACS Catalysis 9, 6571-6582 (2019)]]
===== Ethene dimerization =====
{{ ::acs_cat_ethene.png |}}
{{ ::acscat_ethene_2.png |}}
Rasmus Yding Brogaard, Mustafa Kømurcu, Michael Martin Dyballa, Alexandru Botan, Veronique Van Speybroeck, Unni Olsbye & Kristof De Wispelaere; 2019; Ethene Dimerization on Zeolite-Hosted Ni Ions: Reversible Mobilization of the Active Site
[[doi>10.1021/acscatal.9b00721 | ACS Catalysis 9, 5645–5650 (2019)]]
===== Acid-base equilibrium =====
{{ :pnas_acid_base.png |}}
{{ :pnas_acid_base_mol.png?400 |}}
Emanuele Grifoni, GiovanniMaria Piccini, & Michele Parrinello; 2019; Microscopic description of acid–base equilibrium [[doi>10.1073/pnas.1819771116 | PNAS 116, 4054–4057 (2019)]]
===== Zeolytes dealumination =====
{{ :acs_cat_zsm_header.png |}}
{{ :acs_cat_zsm.gif |}}
Katarina Stanciakova, Bernd Ensing, Florian Göltl, Rosa E. Bulo & Bert Weckhuysen; 2019; Cooperative Role of Water Molecules during the Initial Stage of Water-Induced Zeolite Dealumination [[doi>10.1021/acscatal.9b00307 | ACS Catalysis 9, 5119–5135 (2019)]]
===== Hydrated electrons =====
{{:hydrated.png?1000|}}
Jan Wilhelm, Joost VandeVondele & Vladimir V. Rybkin; 2019; Dynamics of the Bulk Hydrated Electron from Many-Body Wave-Function Theory [[doi>10.1002/anie.201814053 | Angewandte Chemie International Edition 58, 3890-3893 (2019)]]
===== Micrometre-long covalent organic fibres =====
{{science:doi_10_1038_watkins_natchem.jpg}}
Franck Para, Franck Bocquet, Laurent Nony, Christian Loppacher, Michel Féron, Fréderic Cherioux, David Z. Gao, Filippo Federici Canova & Matthew B. Watkins; 2018; Micrometre-long covalent organic fibres by photoinitiated chain-growth radical polymerization on an alkali-halide surface[[doi>10.1038/s41557-018-0120-x | Nature Chemistry 10, 1112–1117 (2018) ]]
===== Supersaturated calcium carbonate solutions =====
{{:cp2k_science_ca.png|}}
Katja Henzler, Evgenii O. Fetisov, Mirza Galib, Marcel D. Baer, Benjamin A. Legg, Camelia Borca, Jacinta M. Xto, Sonia Pin, John L. Fulton, Gregory K. Shenter, Niranjan Govind, J. Ilja Siepmann, Christopher J. Mundy, Thomas Huthwelker, James. J. De Yoreo; 2018; Supersaturated calcium carbonate solutions are classical [[doi>10.1126/sciadv.aao6283|Science Advances 4,eaao6283(2018)]]
===== Crystal nucleation by ab initio material designs =====
{{ :science.aao3212-1.png?800 |}}
Feng Rao, Keyuan Ding, Yuxing Zhou, Yonghui Zheng, Mengjiao Xia, Shilong Lv, Zhitang Song, Songlin Feng, Ider Ronneberger, Riccardo Mazzarello, Wei Zhang, Evan Ma; 2017 ;Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing [[ doi>10.1126/science.aao3212 | Science 385,1423(2017) ]]
===== Catalyst support effects on hydrogen spillover =====
{{ :nat_title.png?600 |}}
{{ :{{ :nat.png?400 |}}
Waiz Karim, Clelia Spreafico, Armin Kleibert, Jens Gobrecht, Joost VandeVondele, Yasin Ekinci, and Jeroen A. van Bokhoven [[ doi>10.1038/nature20782 | Nature 541.7635 (2017): 68-71 ]]
===== Nuclear Quantum Effects on Redox Properties =====
{{ :jpcl_me5.png |}}
Vladimir Rybkin and Joost VandeVondele
[[ doi>10.1021/acs.jpclett.7b00386]]
===== AIMD on radioactive Technetium in glass waste form =====
{{ :science:doi_10_1038_ncomms_12067_pub.png?direct&800 | Impeding 99Tc(IV) mobility in novel waste forms}}
Mal-Soon Lee, Wooyong Um, Guohui Wang, Albert A. Kruger, Wayne W. Lukens, Roger Rousseau & Vassiliki-Alexandra Glezakou;
2016;
Impeding 99Tc(IV) mobility in novel waste forms
[[ doi>10.1038/ncomms12067 | Nat. Commun. 7: 12067, 1-6 ]]
----
===== Structure of amorphous silicon monoxide =====
{{ :science:doi_10_1038_ncomms_11591_pub.png?direct&800 | Atomic-scale disproportionation in amorphous silicon monoxide}}
Akihiko Hirata, Shinji Kohara, Toshihiro Asada, Masazumi Arao, Chihiro Yogi, Hideto Imai, Yongwen Tan, Takeshi Fujita & Mingwei Chen;
2016;
Atomic-scale disproportionation in amorphous silicon monoxide
[[ doi>10.1038/ncomms11591 | Nat. Commun. 7: 11591, 1-7 ]]
----
===== Surface-assisted synthesis of zigzag-edge graphene nanoribbons =====
{{ :science:doi_10_1038_nature_17151_pub.png?direct&800 | On-surface synthesis of graphene nanoribbons with zigzag edge topology}}
Pascal Ruffieux, Shiyong Wang, Bo Yang, Carlos Sánchez-Sánchez, Jia Liu, Thomas Dienel,
Leopold Talirz, Prashant Shinde, Carlo A. Pignedoli, Daniele Passerone, Tim Dumslaff,
Xinliang Feng, Klaus Müllen & Roman Fasel; 2016;
On-surface synthesis of graphene nanoribbons with zigzag edge topology
[[ doi>10.1038/nature17151 | NATURE 531: 489-492 ]]
----
===== Simulating STM images of molecular wires =====
{{ :science:doi_10_1021_acsnano_5b07683_pub.png?direct&800 | Tunable Band Alignment with Unperturbed Carrier Mobility of On-Surface Synthesized Organic Semiconducting Wires}}
Andrea Basagni, Guillaume Vasseur, Carlo A. Pignedoli, Manuel Vilas-Varela, Diego Peña, Louis Nicolas, Lucia Vitali, Jorge Lobo-Checa, Dimas G. de Oteyza, Francesco Sedona, Maurizio Casarin, J. Enrique Ortega & Mauro Sambi; 2016;
Tunable Band Alignment with Unperturbed Carrier Mobility of On-Surface Synthesized Organic Semiconducting Wires
[[ doi>10.1021/acsnano.5b07683 | ACS Nano 10(2): 2644-2651 ]]
----
===== Strong electron-phonon coupling and fast multi-phonon transition rates =====
{{ :science:doi_10_1038_nature_16977_pub.png?direct&800 | Soft surfaces of nanomaterials enable strong phonon interactions}}
Deniz Bozyigit, Nuri Yazdani, Maksym Yarema, Olesya Yarema, Weyde Matteo Mario Lin, Sebastian Volk,
Kantawong Vuttivorakulchai, Mathieu Luisier, Fanni Juranyi & Vanessa Wood; 2016;
Soft surfaces of nanomaterials enable strong phonon interactions
[[ doi>10.1038/nature16977 | Nature (2016), doi:10.1038/nature16977 ]]
----
===== Calculated water band positions and redox potentials using RPA and MD =====
{{ :science:doi_10_1103_PhysRevLett_116_086402_pub.png?direct&800 | Calculation of Electrochemical Energy Levels in Water Using the Random Phase Approximation and a Double Hybrid Functional }}
Jun Cheng & Joost VandeVondele; 2016;
Calculation of Electrochemical Energy Levels in Water Using the Random Phase Approximation and a Double Hybrid Functional
[[ doi>10.1103/PhysRevLett.116.086402 | Phys. Rev. Lett. 116, 086402 ]]
----
===== Modeling the interaction between fullerene molecules =====
{{ :science:doi_10_1038_ncomms_10621_pub.png?direct&800 | Visualizing the orientational dependence of an intermolecular potential}}
Adam Sweetman, Mohammad A. Rashid, Samuel P. Jarvis, Janette L. Dunn, Philipp Rahe & Philip Moriarty; 2016;
Visualizing the orientational dependence of an intermolecular potential
[[ doi>10.1038/ncomms10621 | Nat. Commun. 7:10621, 1-7 ]]
----
===== Investigation and design of a novel biomimetic water oxidation catalyst =====
{{ :science:doi_10_1021_acscatal_5b02507_pub.png?direct&800 | Bioinspired Molecular Cobalt Cubane}}
Florian H. Hodel & Sandra Luber; 2016;
What Influences the Water Oxidation Activity of a Bioinspired Molecular CoII4O4 Cubane? An In-Depth Exploration of Catalytic Pathways
[[ doi>10.1021/acscatal.5b02507 | ACS Catal. 6(3): 1505-1517 ]]
----
===== Rhodium-pentane σ-alkane complex =====
{{ :science:doi_10_1002_anie_201511269.png?direct&800 | A Rhodium-Pentane Sigma-Alkane Complex: Characterization in the Solid State by Experimental and Computational Techniques }}
F. Mark Chadwick, Nicholas H. Rees, Andrew S. Weller, Tobias Krämer, Marcella Iannuzzi & Stuart A. Macgregor; 2016;
A Rhodium-Pentane Sigma-Alkane Complex: Characterization in the Solid State by Experimental and Computational Techniques
[[ doi>10.1002/anie.201511269 | Angew. Chem. Int. Ed. 2016, 55, 3677-3681 DOI: 10.1002/anie.201511269 ]]
----
===== Carbon dioxide solvation in molten carbonates =====
{{ :science:corradini_nchem_2016.png?direct&800 | Carbon dioxide transport in molten calcium carbonate occurs through an oxo-Grotthuss mechanism via a pyrocarbonate anion }}
Dario Corradini, François-Xavier Coudert & Rodolphe Vuilleumier; 2016;
Carbon dioxide transport in molten calcium carbonate occurs through an oxo-Grotthuss mechanism via a pyrocarbonate anion
[[ doi>10.1038/nchem.2450 | Nature Chem. 2016, DOI: 10.1038/nchem.2450 ]]
----
===== AIMD structure elucidation of novel nature-inspired water oxidation catalysts =====
{{ :science:doi_10_1021_jacs_5b05831_pub.png?direct&800 | Cubanes as Bio-Inspired Water Oxidation Catalysts}}
Fabio Evangelisti, René Moré, Florian Hodel, Sandra Luber & Greta Ricarda Patzke; 2015;
3d–4f {CoII3Ln(OR)4} Cubanes as Bio-Inspired Water Oxidation Catalysts
[[ doi>10.1021/jacs.5b05831 | J. Am. Chem. Soc. 137 (34): 11076−11084 ]]
----
===== Modeling Spin Excitations for Single-molecule magnets =====
{{ :science:doi_10_1038_ncomms_9216_pub.png?direct&800 | Magnetic fingerprint of individual Fe4 molecular magnets under compression by a scanning tunnelling microscope }}
Jacob A.J. Burgess, Luigi Malavolti, Valeria Lanzilotto, Matteo Mannini, Shichao Yan, Silviya Ninova,
Federico Totti, Steffen Rolf-Pissarczyk, Andrea Cornia, Roberta Sessoli & Sebastian Loth; 2015;
Magnetic fingerprint of individual Fe4 molecular magnets under compression by a scanning tunnelling microscope
[[ doi>10.1038/ncomms9216 | Nat. Commun. 6:8286, 1-7 ]]
----
===== Phase-change materials for optical and electronic memory devices =====
{{ :science:doi_10_1002_adfm_201500849_pub.png?direct&800 | Crystallization Properties of the Ge2Sb2Te5 Phase-Change Compound from Advanced Simulations}}
Ider Ronneberger, Wei Zhang, Hagai Eshet & Riccardo Mazzarello; 2015;
Crystallization Properties of the Ge2Sb2Te5 Phase-Change Compound from Advanced Simulations
[[ doi>10.1002/adfm.201500849 | Adv. Funct. Mater. 2015, 25 6407-6413 ]]
----
===== Modeling Infrared-absorbing solar cells =====
{{ :science:doi_10_1021_acsnano_5b02164_pub.png?direct&800 | Infrared Colloidal
Quantum Dot Photovoltaics via Coupling Enhancement and Agglomeration Suppression}}
Alexander H. Ip, Amirreza Kiani, Illan J. Kramer, Oleksandr Voznyy,
Hamidreza F. Movahed, Larissa Levina, Michael M. Adachi, Sjoerd Hoogland & Edward H. Sargent; 2015;
Infrared Colloidal Quantum Dot Photovoltaics via Coupling Enhancement and Agglomeration Suppression
[[ doi>10.1021/acsnano.5b02164 | ACS Nano 9(9): 8833-8842 ]]
----
===== AIMD simulations on water nanofilm containing Na$^{+}$/K$^{+}$ ions =====
{{ :science:doi_10_1073_pnas_1513718112_pub.png?direct&800 | Unraveling the mechanism
of selective ion transport in hydrophobic subnanometer channels }}
Hui Li, Joseph S. Francisco & Xiao Cheng Zeng; 2015;
Unraveling the mechanism of selective ion transport in hydrophobic subnanometer channels
[[ doi>10.1073/pnas.1513718112 | PNAS 112(35): 10851-10856 ]]
----
===== AIMD simulations on solvated Lithium Polysulfide =====
{{ :science:doi_10_1002_aenm_201500285_pub.png?direct&800 |
Characterization of Polysulfide Radicals Present in an Ether-Based
Electrolyte of a Lithium–Sulfur Battery During Initial Discharge
Using In Situ X-Ray Absorption Spectroscopy Experiments and
First-Principles Calculations }}
Kevin H. Wujcik, Tod A. Pascal, C. D. Pemmaraju, Didier Devaux,
Wayne C. Stolte, Nitash P. Balsara & David Prendergast; 2015;
Characterization of Polysulfide Radicals Present in an Ether-Based
Electrolyte of a Lithium–Sulfur Battery During Initial Discharge
Using In Situ X-Ray Absorption Spectroscopy Experiments and
First-Principles Calculations
[[ doi>10.1002/aenm.201500285 | Adv. Energy Mater. 5: 1500285 ]]
----
===== Modeling Chloride complexed CdSe bulk surfaces =====
{{ :science:doi_10_1021_acsnano_5b03636_pub.png?direct&800 | Pyramid-Shaped Wurtzite
CdSe Nanocrystals with Inverted Polarity }}
Sandeep Ghosh, Roberto Gaspari, Giovanni Bertoni, Maria Chiara Spadaro, Mirko Prato,
Stuart Turner, Andrea Cavalli, Liberato Manna & Rosaria Brescia; 2015;
Pyramid-Shaped Wurtzite CdSe Nanocrystals with Inverted Polarity
[[ doi>10.1021/acsnano.5b03636 | ACS Nano 9(8): 8537-8546 ]]
----
===== Interlayer interactions in Phosphorene =====
{{ :science:doi_10_1021_acsnano_5b02683_pub.png?direct&800 |Liquid-Phase Exfoliation
of Phosphorene: Design Rules from Molecular Dynamics Simulations }}
Vishnu Sresht,Agılio A. H. Padua & Daniel Blankschtein; 2015; Liquid-Phase Exfoliation
of Phosphorene: Design Rules from Molecular Dynamics Simulations
[[ doi>10.1021/acsnano.5b02683 | ACS Nano 9(8): 8255-8268 ]]
----
===== Designing a MOF catalyst for CO$_{2}$ hydrogenation =====
{{ :science:doi_10_1021_acscatal_5b00396_pub.png?direct&800 | Design of Lewis Pair-Functionalized Metal
Organic Frameworks for CO_2 Hydrogenation}}
Jingyun Ye & J. Karl Johnson; 2015; Design of Lewis Pair-Functionalized Metal
Organic Frameworks for CO2 Hydrogenation
[[ doi>10.1021/acscatal.5b00396 | ACS Catal. 5: 2921−2928 ]]
----
===== Prediction of bonding mechanisms in amorphous phase =====
{{ :science:doi_10_1038_ncomms_8467_pub.png?direct&800 | Aging mechanisms in amorphous phase-change materials}}
Jean Yves Raty , Wei Zhang, Jennifer Luckas, Chao Chen, Riccardo Mazzarello,
Christophe Bichara & Matthias Wuttig; 2015; Aging mechanisms in amorphous phase-change materials
[[ doi>10.1038/ncomms8467 | Nat. Commun. 6:7467, 1-8 ]]
----
===== Structure of new Borosherenes =====
{{ :science:doi_10_1002_anie_201501588_pub.png?direct&800 | Cage-Like B_41^+ and B_42^2+: New Chiral Members of the Borospherene Family }}
Qiang Chen, Su-Yan Zhang, Hui Bai, Wen-Juan Tian, Ting Gao, Hai-Ru Li, Chang-Qing Miao,
Yue-Wen Mu, Hai-Gang Lu, Hua-Jin Zhai & Si-Dian Li; 2015; Cage-Like B41+ and B422+: New Chiral Members of the Borospherene Family
[[ doi>10.1002/anie.201501588 | Angew. Chem. Int. Ed., 54(28): 8160-8164 ]]
----
===== Structure of quantum dots =====
{{ :science:doi_10_1038_nature_14563_pub.png?direct&800 | Quantum-dot-in-perovskite solids}}
Zhijun Ning, Xiwen Gong, Riccardo Comin, Grant Walters, Fengjia Fan, Oleksandr Voznyy, Emre Yassitepe,
Andrei Buin, Sjoerd Hoogland & Edward H. Sargent; 2015; Quantum-dot-in-perovskite solids
[[ doi>10.1038/nature14563 | NATURE 523: 324-328 ]]
----
===== AIMD on ceria-supported Au catalysts for CO oxidation =====
{{ :science:doi_10_1038_ncomms7511_pub.png?direct&800 | Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles}}
Yang-Gang Wang, Donghai Mei, Vassiliki-Alexandra Glezakou, Jun Li & Roger Rousseau
; 2015; Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles
[[ doi>10.1038/ncomms7511 | Nat Commun 6:6511, 1-8 ]]
----
===== Hydrogen-induced defects in silicon dioxide networks =====
{{ :science:doi_10_1103_PhysRevLett_114_115503.png?direct&800 | Hydrogen-Induced Rupture of Strained Si-O Bonds in Amorphous Silicon Dioxide}}
Al-Moatasem El-Sayed, Matthew B. Watkins, Tibor Grasser, Valery V. Afanas’ev & Alexander L. Shluger
; 2015; Hydrogen-Induced Rupture of Strained Si-O Bonds in Amorphous Silicon Dioxide
[[ doi>10.1103/PhysRevLett.114.115503 | Phys. Rev. Lett. 114, 115503 ]]
----
===== AIMD on alkali metal reaction =====
{{ :science:doi_10_1038_nchem2161_pub.png?direct&800 | Coulomb explosion during the early stages of the reaction of alkali metals with water}}
Philip E. Mason, Frank Uhlig, Václav Vaněk, Tillmann Buttersack, Sigurd Bauerecker & Pavel Jungwirth
; 2015; Coulomb explosion during the early stages of the reaction of alkali metals with water
[[ doi>10.1038/NCHEM.2161 | Nature Chemistry 7:250-254 ]]
----
===== Structure of high-temperature liquid =====
{{ :science:doi_10_1038_ncomms6892_pub.png?direct&800 | Atomic and electronic structures of an extremely fragile liquid}}
Shinji Kohara, Jaakko Akola, Leonid Patrikeev, Matti Ropo, Koji Ohara, Masayoshi Itou,
Akihiko Fujiwara, Jumpei Yahiro, Junpei T. Okada, Takehiko Ishikawa, Akitoshi Mizuno,
Atsunobu Masuno, Yasuhiro Watanabe & Takeshi Usuki; 2014; Atomic and electronic structures of an extremely fragile liquid
[[ doi>10.1038/ncomms6892 | Nat Commun 5:5892, 1-8 ]]
----
===== Simulations of proton transport =====
{{ :science:nature14015_pub.png?direct&800 | Proton transport through one-atom-thick crystals}}
S. Hu, M. Lozada-Hidalgo, F. C. Wang, A. Mishchenko, F. Schedin, R. R. Nair, E. W. Hill, D. W. Boukhvalov, M. I. Katsnelson, R. A. W. Dryfe, I. V. Grigorieva, H. A. Wu & A. K. Geim; 2014; Proton transport through one-atom-thick crystals
[[ doi>10.1038/nature14015 | NATURE 516: 227-230 ]]
----
===== Friction of water on surfaces =====
{{ :science:nl-2014-02837d_pub.png?direct&800 | Friction of Water on Graphene and Hexagonal Boron Nitride from Ab Initio Methods: Very Different Slippage Despite Very Similar Interface Structures}}
Gabriele Tocci, Laurent Joly, and Angelos Michaelides; 2014; Friction of Water on Graphene and Hexagonal Boron Nitride from Ab Initio Methods: Very Different Slippage Despite Very Similar Interface Structures
[[ doi>10.1021/nl502837d | Nano Lett. 14(12): 6872–6877 ]]
----
===== Proton-coupled electron transfer =====
{{ :science:doi_10_1002_anie_201405648_pub.png?direct&800 | Aligning Electronic and Protonic Energy Levels of Proton-Coupled Electron Transfer in Water Oxidation on Aqueous TiO2}}
Dr. Jun Cheng, Dr. Xiandong Liu, Dr. John A. Kattirtzi, Dr. Joost VandeVondele, and Prof. Dr. Michiel Sprik; 2014; Aligning Electronic and Protonic Energy Levels of Proton-Coupled Electron Transfer in Water Oxidation on Aqueous TiO2
[[ doi>10.1002/anie.201405648 | Angew. Chem. Int. Ed., 53(45): 12046–12050 ]]
----
===== Structural motifs in amorphous GeTe =====
{{ :science:doi_10.1002_anie.201404223_pub.png?direct&800 | Bonding Nature of Local Structural Motifs in Amorphous GeTe}}
Volker L. Deringer, Wei Zhang, Marck Lumeij, Stefan Maintz, Matthias Wuttig, Riccardo Mazzarello, and Richard Dronskowski; 2014; Bonding Nature of Local Structural Motifs in Amorphous GeTe
[[ doi>10.1002/anie.201404223 | Angew. Chem. Int. Ed., 53(40): 10817–10820 ]]
----
===== Liquid-metal surface wetting =====
{{ :science:doi_10.1038_ncomms5578_pub.png?direct&800 | Liquid-metal electrode to enable ultra-low temperature sodium-beta alumina batteries for renewable energy storage}}
Xiaochuan Lu, Guosheng Li, Jin Y. Kim, Donghai Mei, John P. Lemmon, Vincent L. Sprenkle & Jun Liu; 2014; Liquid-metal electrode to enable ultra-low temperature sodium-beta alumina batteries for renewable energy storage
[[ doi>10.1038/ncomms5578 | Nat Commun 5:4578, 1-8 ]]
----
===== Hydrogenation on Pt and Ni catalysts =====
{{ :science:doi_10_1021_ja501592y_pub.png?direct&800 | First-Principles Study of Phenol Hydrogenation on Pt and Ni Catalysts in Aqueous Phase}}
Yeohoon Yoon, Roger Rousseau, Robert S. Weber, Donghai Mei, and Johannes A. Lercher; 2014; First-Principles Study of Phenol Hydrogenation on Pt and Ni Catalysts in Aqueous Phase
[[ doi>10.1021/ja501592y | J. Am. Chem. Soc. 136(29): 10287–10298 ]]
----
===== Colloidal quantum dot solids =====
{{ :science:doi_10_1038_nmat4007_pub.png?direct&800 | Air-stable n-type colloidal quantum dot solids}}
Zhijun Ning, Oleksandr Voznyy, Jun Pan, Sjoerd Hoogland, Valerio Adinolfi, Jixian Xu, Min Li, Ahmad R. Kirmani, Jon-Paul Sun, James Minor, Kyle W. Kemp, Haopeng Dong, Lisa Rollny, André Labelle, Graham Carey, Brandon Sutherland, Ian Hill, Aram Amassian, Huan Liu, Jiang Tang, Osman M. Bakr & Edward H. Sargent; 2014; Air-stable n-type colloidal quantum dot solids
[[ doi>10.1038/nmat4007 | Nat. Mater. 13: 822–828 ]]
----
===== Can-opener effect in h-BN single layers =====
{{ :science:doi_10_1021_nn502645w_pub.png?direct&800 | Two-Nanometer Voids in Single-Layer Hexagonal Boron Nitride: Formation via the “Can-Opener” Effect and Annihilation by Self-Healing}}
Huanyao Cun, Marcella Iannuzzi, Adrian Hemmi, Jürg Osterwalder, and Thomas Greber; 2014; Two-Nanometer Voids in Single-Layer Hexagonal Boron Nitride: Formation via the “Can-Opener” Effect and Annihilation by Self-Healing
[[ doi>10.1021/nn502645w | ACS Nano 8(7): 7423-7431 ]]
----
===== Force field of a H-bonded assembly =====
{{ :science:doi_10_1038_ncomms4931_pub.png?direct&800 | Mapping the force field of a hydrogen-bonded assembly}}
A. M. Sweetman, S. P. Jarvis, Hongqian Sang, I. Lekkas, P. Rahe, Yu Wang, Jianbo Wang, N. R. Champness, L. Kantorovich & P. Moriarty; 2014; Mapping the force field of a hydrogen-bonded assembly
[[ doi>10.1038/ncomms4931 | Nat. Comm. 5: 3931 ]]
----
===== NC-AFM tip functionalization and surface characterization =====
{{ :science:doi_10_1021_nn501785q_pub.png?direct&800 | Using Metallic Noncontact Atomic Force Microscope Tips for Imaging Insulators and Polar Molecules: Tip Characterization and Imaging Mechanisms}}
David Zhe Gao, Josef Grenz, Matthew Benjamin Watkins, Filippo Federici Canova, Alexander Schwarz, Roland Wiesendanger, and Alexander L. Shluger; 2014; Using Metallic Noncontact Atomic Force Microscope Tips for Imaging Insulators and Polar Molecules: Tip Characterization and Imaging Mechanisms
[[ doi>10.1021/nn501785q | ACS Nano 8(5): 5339-5351 ]]
----
===== Far-IR prediction by BOMD =====
{{ :science:doi_10_1002_anie_201311189_pub.png?direct&800 | Gas-Phase Peptide Structures Unraveled by Far-IR Spectroscopy: Combining IR-UV Ion-Dip Experiments with Born–Oppenheimer Molecular Dynamics Simulations}}
Sander Jaeqx, Prof. Dr. Jos Oomens, Dr. Alvaro Cimas, Prof. Dr. Marie-Pierre Gaigeot, and Dr. Anouk M. Rijs; 2014; Gas-Phase Peptide Structures Unraveled by Far-IR Spectroscopy: Combining IR-UV Ion-Dip Experiments with Born–Oppenheimer Molecular Dynamics Simulations
[[ doi>10.1002/anie.201311189 | Angew. Chem. Int. Ed. 53(14): 3662-3666 ]]
----
===== Improving the stability of surface vacancies =====
{{ :science:doi_10.1103_PhysRevLett_112_157401_pub.png?direct&800 | Atomistic Model of Fluorescence Intermittency of Colloidal Quantum Dots}}
O. Voznyy and E. H. Sargent; 2014; Atomistic Model of Fluorescence Intermittency of Colloidal Quantum Dots
[[ doi>10.1103/PhysRevLett.112.157401 | Phys. Rev. Lett. 112, 157401 ]]
----
===== Covalent monolayer sheets =====
{{ :science:doi_10_1002_adma_201304705_pub.png?direct&800 | Synthesis of a Covalent Monolayer Sheet by Photochemical Anthracene Dimerization at the Air/Water Interface and its Mechanical Characterization by AFM Indentation}}
Payam Payamyar, Khaled Kaja, Carlos Ruiz-Vargas, Andreas Stemmer, Daniel J. Murray, Carey J. Johnson, Benjamin T. King, Florian Schiffmann, Joost VandeVondele, Alois Renn, Stephan Götzinger, Paola Ceroni, Andri Schütz, Lay-Theng Lee, Zhikun Zheng, Junji Sakamoto, A. Dieter Schlüter; 2013; Synthesis of a Covalent Monolayer Sheet by Photochemical Anthracene Dimerization at the Air/Water Interface and its Mechanical Characterization by AFM Indentation
[[ doi>10.1002/adma.201304705 | Adv. Mater. 26(13): 2052-2058 ]]
----
===== Anomalous water diffusion =====
{{ :science:doi_10_1073_pnas_1400675111_pub.png?direct&800 | Anomalous water diffusion in salt solutions}}
Yun Ding, Ali A. Hassanal, and Michele Parrinello; 2014; Anomalous water diffusion in salt solutions
[[ doi>10.1073/pnas.1400675111 | PNAS 111(9): 3310-3315 ]]
----
===== Nanoparticles and catalysis =====
{{ :science:li_natcomm_2013.png?direcct&800 | Stable platinum nanoparticles on specific MgAl2O4 spinel facets at high temperatures in oxidizing atmospheres}}
Wei-Zhen Li, Libor Kovarik, Donghai Mei, Jun Liu, Yong Wang & Charles H. F. Peden; 2013;
Stable platinum nanoparticles on specific MgAl2O4 spinel facets at high temperatures in oxidizing atmospheres
[[ doi>10.1038/ncomms3481 | Nat Commun 4: 1 ]]
----
===== Phase-change materials =====
{{ :science:zhang_naturemat.png?direct&800 | Role of vacancies in metal–insulator transitions of crystalline phase-change materials}}
W. Zhang, A. Thiess, P. Zalden, R. Zeller, P. H. Dederichs, J-Y. Raty, M. Wuttig, S. Blügel & R. Mazzarello; 2012;
Role of vacancies in metal–insulator transitions of crystalline phase-change materials
[[ doi>10.1038/nmat3456 | Nat. Mater. 11(11): 952-956 ]]
----
===== Self-assembling nano pores =====
{{ :science:zhou_natcomm.png?direct&800 | Self-assembling subnanometer pores with unusual mass-transport properties}}
Xibin Zhou, Guande Liu,Kazuhiro Yamato, Yi Shen, Ruixian Cheng, Xiaoxi Wei, Wanli Bai, Yi Gao, Hui Li, Yi Liu, Futao Liu, Daniel M. Czajkowsky, Jingfang Wang, Michael J. Dabney, Zhonghou Cai, Jun Hu, Frank V. Bright, Lan He, Xiao Cheng Zeng, Zhifeng Shao & Bing Gong; 2012; Self-assembling subnanometer pores with unusual mass-transport properties
[[ doi>10.1038/ncomms1949 | Nature Comm 3: 949 ]]
----
===== Surfaces of disordered materials =====
{{ :science:ice_surface.png?direct&800 | Large variation of vacancy formation energies in the surface of crystalline ice}}
Watkins M; Pan D; Wang EG; Michaelides A; VandeVondele J; Slater B; 2011;
Large variation in vacancy formation energies in the surface of crystalline ice.
[[ doi>10.1038/nmat3096 | Nat. Mater. 10: 794-798 ]]
----
===== Nanographene =====
{{ :science:treier_natchem.png?direct&800 |Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes }}
Matthias Treier, Carlo Antonio Pignedoli, Teodoro Laino, Ralph Rieger, Klaus Müllen, Daniele Passerone & Roman Fasel; 2011;
Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes
[[ doi>10.1038/nchem.891 | Nature Chemistry 3(1), 61-67 ]]
----
===== Crystal structure prediction =====
{{ :science:mc.png?direct&800 | Modular and predictable assembly of porous organic molecular crystals}}
James T. A. Jones,Tom Hasell, Xiaofeng Wu, John Bacsa, Kim E. Jelfs, Marc Schmidtmann, Samantha Y. Chong, Dave J. Adams, Abbie Trewin, Florian Schiffmann, Furio Cora, Ben Slater, Alexander Steiner, Graeme M. Day & Andrew I. Cooper; 2011;
Modular and predictable assembly of porous organic molecular crystals
[[doi>10.1038/nature10125|Nature 474, 367–371]]
----
===== Chemistry in Shocks =====
{{ :science:Goldman_NatChem.png?direct&800 | Synthesis of glycine-containing complexes in impacts of comets on early Earth}}
Nir Goldman, Evan J. Reed, Laurence E. Fried, I.-F. William Kuo & Amitesh Maiti; 2010;
Synthesis of glycine-containing complexes in impacts of comets on early Earth
[[ doi>10.1038/nchem.827 | Nature Chemistry 2(11), 949-954 ]]
----
===== Nanomeshes =====
{{ :science:Brugger_anie.png?direct&800 | Nanotexture Switching of Single-Layer Hexagonal Boron Nitride on Rhodium by Intercalation of Hydrogen Atoms }}
Thomas Brugger, Haifeng Ma, Marcella Iannuzzi, Simon Berner, Adolf Winkler, Jürg Hutter, Jürg Osterwalder, Thomas Greber; 2010;
Nanotexture Switching of Single-Layer Hexagonal Boron Nitride on Rhodium by Intercalation of Hydrogen Atoms
[[ doi>10.1002/anie.201001064 | Angewandte Chemie International Edition 49(35): 6120-6124 ]]
----
===== Single-molecule magnets =====
{{ :science:mannini_nature.png | Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets }}
M. Mannini,F. Pineider, C. Danieli, F. Totti, L. Sorace, Ph. Sainctavit, M.-A. Arrio, E. Otero, L. Joly, J. C. Cezar, A. Cornia & R. Sessoli; 2010;
Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets.
[[doi>10.1038/nature09478 | NATURE 468(7322): 417-421]]
----
===== Functionalized interfaces =====
{{ :science:dssc.png?direct&800 | An atomistic picture of the regeneration process in dye sensitized solar cells}}
Schiffmann, F; VandeVondele, J; Hutter, J; Urakawa, A; Wirz, R; Baiker, A; 2010;
An atomistic picture of the regeneration process in dye sensitized solar cells.
[[doi>10.1073/pnas.0913277107 |PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 107(11): 4830-4833]]
----
===== UHV Surface chemistry =====
{{ :science:du_prl.png?direct&800 | Two Pathways for Water Interaction with Oxygen Adatoms on TiO2}}
Y. Du, N. A. Deskins, Z. Zhang, Z. Dohnálek, M. Dupuis and I. Lyubinetsk; 2009;
Two Pathways for Water Interaction with Oxygen Adatoms on TiO2(110)
[[doi>10.1103/PhysRevLett.102.096102 | Physical Review Letters 102(9): 096102]]
----