
CP2K Developers
Meeting

2025/02/24

Topics
Part 1 CP2K Developers Meeting
– Best practices for development and contributions
– New and Ongoing Developments
– Current Issues with CP2K
– Next CP2K Release
– Planned Events in the Context of CP2K

Part 2 GPU-Development with CP2K
– Portable-CUDA Concept
– Other GPU Programming Topics
– ...

Part 1: CP2K Developers Meeting

Part 1: CP2K Developers Meeting
Best practices for development and contributions (HansP, MathieuT, OleS)

• Mandatory reviews
• Currently, core developers are dispensed

PROs: speed and ease of contribution;
"no burden for real science"

CONs: Dashboard may break;
(mandatory tests are fine)

• More mandatory tests
PROs: ... More tests are better
CONs: Higher cost (cloud)

Notes

– Opinions/thoughts?
– Ole: common practise, but cost effort; not enough manpower to review every request
– Hans/Ole: not really a shortage of reviews right now
– Rocco: possibility to request reviews would be helpful
– Ole: maybe for developers groups can be used
– Ole: three tests automatically run (code formatting, sdbg) and are mandatory
– Hans/Ole: reviewers/core developers can launch additional tests like parallel
– Hans: maybe randomization
– Ole: Google Cloud cost in the green again
– Robert: maybe run tests on HPC
– Ole: one CSCS test is up and running
– Ole: github actions with HPC systems
– Policy: always add new tests for new functionalities/algorithms or major changes

Migration from Makefile to CMake

What‘s left to do:
• libgrpp (PR 3966)
• Debug builds
• GPU builds
• Other architectures: ARM, macOS, (might drop i386)
• Exotic builds (coverage, conventions, sanitizers)

Roadmap:
• 2025.2 release: Declare Makefile as deprecated
• After 2025.2 release:

• Remove Makefile from master branch
• Remove DBCSR submodule
• Simplify Toolchain

• 2026.1 release: Only ships with CMake

https://github.com/cp2k/cp2k/pull/3966

Migration from DBCSR to DBM

What‘s done:
• Dropped single precision matrices
• Dropped complex matrices
• Moved high level routines to cp_dbcsr_contrib.F

What‘s left to do:
• Maybe refactor cp_blacs_env to use Cartesian MPI Communicators.
• Maybe merge mp_cart_type with mp_comm_type.
• Implement symmetric matrices.
• Implement replication.
• Refactor arnoldi so we can drop dbcsr_get_data_p()
• Refactor hfx_energy_potential.F so we can drop dbcsr_dot_threadsafe().
• Implement reading/writting CSR files.
• Implement reading/writting our custom binary files.

https://github.com/cp2k/cp2k/blob/master/src/dbx/cp_dbcsr_contrib.F
https://github.com/cp2k/cp2k/blob/master/src/dbx/cp_dbcsr_contrib.F
https://github.com/cp2k/cp2k/blob/master/src/fm/cp_blacs_env.F
https://github.com/cp2k/cp2k/tree/master/src/arnoldi
https://github.com/cp2k/cp2k/commit/a98087189c8435c8eb11d3b423854e81fbff3884#diff-aa147d3999946a1da918be6b6a093f00af97025edde7e286bfb19b860a675c3f

New and Ongoing Developments in CP2K

Developments@CASUS
• Finite-Temperature Random Phase Approximation (Frederick)

• testing/fixing in progress
• Migrate Multigrid code to C/GPU

• Application for OpenHackathon@Jülich in April (Frederick, Johann, Jiři)
• needs to write a new FFT backend (GPL vs BSD license)

• Tblite interface to the GFN2-xTB method (Johann)
• OpenPMD as alternative IO method for reading/writing cube
files in CP2K (Franz)

www.casus.science

Integrating openPMD

output/input into CP2K

Current effort at adding openPMD-based data handling
for natively-parallel binary output based on HDF5/ADIOS2

according to a F.A.I.R. scientific data standard

What is particle-mesh data?

Mesh

n-dimensional space,
divided into discrete cells
● e.g. temperature:

store a scalar number per cell
● e.g. electrical fields:

store a 3D vector per cell

Particles

A list of discrete objects,
located on the mesh
● for each particle: list its position
● optionally: list charge, weight, …

openPMD hierarchy

● Structure for series & snapshots
encoded as either:

● files (one file per iteration)
● groups (reuse files)
● variables (reuse files & variables

 in ADIOS2)

● Records for physical observables
constants, mixed precision, complex numbers

● Attributes: unit conversion,
description, relations, mesh
geometry, authors, env. info, …

4

Example dataset: HDF5 backend

Sample data
created with PIConGPU

5

openPMD-api – open stack for scientific I/O

● MPI support at all levels

● Implemented in C++17

● Bindings in C++17, Python and
(dev version only) Julia

● Specify backend at runtime:
I/O library, transport, compression,
streaming, aggregation, …

6

Reference Implementation in C++ & Bindings: Python and Julia

python3 -m pip install
 openpmd-api

brew tap openpmd/openpmd
brew install openpmd-api

spack install
 openpmd-api

conda install
-c conda-forge
openpmd-api

module load openpmd-api

cmake -S . -B build
cmake --build build

--target install

Open-Source Development & Tests:
github.com/openPMD/openPMD-api

Online Documentation:
openpmd-api.readthedocs.io

Rapid and easy installation on any platform:

A Huebl, F Poeschel, F Koller, J Gu, et al.
"openPMD-api: C++ & Python API for Scientific I/O with openPMD" (2018) DOI:10.14278/rodare.27

https://doi.org/10.14278/rodare.27

7

openPMD powered Projects and Users

Documents:
● openPMD standard (1.0.0, 1.0.1, 1.1.0)

the underlying file markup and definition
A Huebl et al., doi: 10.5281/zenodo.33624

Scientific Simulations:
● PIConGPU (HZDR)

electro-dynamic particle-in-cell code
maintainers: R Widera, S Bastrakov, A Debus et al.

● WarpX (LBNL, LLNL)
electro-dynamic/static particle-in-cell code
maintainers: JL Vay, D Grote, R Lehe, A Huebl et al.

● FBPIC (LBNL, DESY)
spectral, fourier-bessel particle-in-cell code
maintainers: R Lehe, M Kirchen et al.

● SimEx Platform (EUCALL, European XFEL)
simulation of advanced photon experiments
maintainer: C Fortmann-Grote

Language Binding:
● openPMD-api (HZDR, CASUS, LBNL)

reference API for openPMD data handling
maintainers: A Huebl, J Gu, F Poeschel et al.

see also: https://github.com/openPMD/openPMD-projects

PIConGPU+ISAAC on Summit
2nd prize Helmholtz Imaging
Best Scientific Image Contest 2022
Image credit: Felix Meyer/HZDR

WarpX
PI: Jean-Luc Vay/LBNL

8

openPMD powered Projects and Users

Documents:
● openPMD standard (1.0.0, 1.0.1, 1.1.0)

the underlying file markup and definition
A Huebl et al., doi: 10.5281/zenodo.33624

Language Binding:
● openPMD-api (HZDR, CASUS, LBNL)

reference API for openPMD data handling
maintainers: A Huebl, J Gu, F Poeschel et al.

● Wake-T (DESY)
fast particle-tracking code for plasma-based accelerators
maintainer: A Ferran Pousa

● HiPACE++ (DESY, LBNL)
3D GPU-capable quasi-static PIC code for plasma accel.
maintainers: M Thevenet, S Diederichs, A Huebl

● Bmad (Cornell)
library for charged-particle dynamics simulations
maintainers: D Sagan et al.

● MALA (CASUS, SNL)
ML models that replace DFT calculations in materials science
maintainers: Attila Cangi & Sivasankaran Rajamanickam

● and more…
see also: https://github.com/openPMD/openPMD-projects

Credit: M. Thévenet, A.
Ferran Pousa

HiPACE++ → VisualPIC
Credit: M.Thévenet

& A. Ferran Pousa (DESY)

MALA → ParaView
Credit: A. Cangi (CASUS)

9

Analysis and Visualization

openPMD/openPMD-viewer

Standardization of data
 integration into modern scientific compute workflows→

Current status and Todo

Done:

● Added a Fortran module openPMD.F to bind to the
C++ API via C

● Modified cp_output_handling.F module to support
creation of openPMD files instead of Cube

● Challenges:

– openPMD has an internal structure, hence one
openPMD file corresponds to multiple Cube
files

 Need to distinguish callsites→

– Streaming support requires a workflow where
IO handles stay open in the background

– Representation for nested Iterations

To do:

● Actually write n-dimensional output
(in realspace_grid_cube.F)

● Parallel output (best-case scenario: trivial)

● Input reading from openPMD

● Runtime configuration via input files

● Conditional compilation
(openPMD as an optional dependency)

● Add openPMD output to modules other than
src/qs_scf_post_gpw.F
Should be simple once the main logic stands.

● Testing, tooling (e.g. conversion Cube openPMD)←→

Thomas Kühne/CASUS
• Sigma-RPA (Görling) implementation nearly done, benchmark tests currently ongoing
• MACE-potential meeting -> periodic RPA calculations (CP2K) needed to train
networks

• HPC events:
• NVIDIA GPU-event
• Jülich recently

• (cusolvermp generalized eigenvalue solver)
• Caution for ELPA: make sure that you use

• CPU: 2-stage solvers
• GPU:1-stage solvers
• see also https://manual.cp2k.org/trunk/CP2K_INPUT/FORCE_EVAL/PW_DFT/CONTROL.html and benchmark for
your case!

• Announcement:
• PostDoc position open in Stefan Grimme‘s group

https://manual.cp2k.org/trunk/CP2K_INPUT/FORCE_EVAL/PW_DFT/CONTROL.html

Thomas Kühne
CASUS

Ongoing developments in Kiel
- Non-adiabatic molecular dynamics relying on semi-empirical or fast
numerical time derivative couplings or local diabatization

- Smeared occupation for time-dependent density functional theory ansätze to
capture static correlation (based on different distribution functions)

- Simplified Bethe-Salpeter equation and multipole expansions for GFN1-xTB (CRC proposal)

Current Issues in CP2K

• PR #4000: significant perf. overhead if F2K8+ compliant
behaviour like copy/assignment (re-)allocation
• Issue appeared with IFX but after fix, GNU had significant benefit too
• Related to structures with allocatable components

• OpenMP workshare incorrect in almost all compiler
(https://github.com/cp2k/dbcsr/issues/857#issuecomment-
2511098676)

Next CP2K Release

• Schedule: Summer 2025
• Makefile deprecation
• CMake support

Planned Events in the Context of CP2K

• International Summer School on CP2K-GROMACS for
Multiscale Atomistic Simulation
• tentative date: 4 days in KW 40 (29.9. - 2.10.) at Uni-Paderborn (depends on
availability of room)

• tentative programs: lectures + hands-on exercises + posters from participants
• tentative schedule:

• day 1: GROMACS and MD Simulation
• day 2: CP2K, Intro to QM/MM, CP2K/GROMACS QM/MM Simulation
• day 3: IC-QM/MM and Post-DFT in CP2K
• day 4: GROMACS on GPUs and MiMiC

Planned Events in the Context of CP2K

• next LUMI hackathon (Oslo):
https://lumi-supercomputer.eu/events/lumi-hackathon-
spring2025/

• next-to-next hackathon (CSCS): November
• Juelich Mimic Summer school: 1st week of June, CECAM+Psi-k
https://www.cecam.org/workshop-details/multiscale-molecular-
dynamics-with-mimic-optimizing-the-performance-on-modern-
supercomputers-1397

https://lumi-supercomputer.eu/events/lumi-hackathon-spring2025/
https://lumi-supercomputer.eu/events/lumi-hackathon-spring2025/
https://www.cecam.org/workshop-details/multiscale-molecular-dynamics-with-mimic-optimizing-the-performance-on-modern-supercomputers-1397
https://www.cecam.org/workshop-details/multiscale-molecular-dynamics-with-mimic-optimizing-the-performance-on-modern-supercomputers-1397
https://www.cecam.org/workshop-details/multiscale-molecular-dynamics-with-mimic-optimizing-the-performance-on-modern-supercomputers-1397

Part 2: GPU Development in CP2K

1. Portable CUDA Concept (Ole Schütt)
2. Other GPU Programming Topics

Portable CUDA Concept (Ole Schütt)

• Use the subset of CUDA that's also supported by HIP.
• Use our offload API to switch between runtimes.
• Full code sharing between Nvidia and AMD.
• Partial code sharing with OpenCL / Intel.
• Partial code sharing with CPU.
• Simple, robust, and future proof.
• Successfully in use for grid, DBM, and pw.

Why doesn't anyone else advertise this? (speculations)
• It's boring. CUDA has been around since 2006.
• GPU manufacturers prefer solutions with vendor lock-in.
• Computing centers don't like to admit that GPUs require large rewrites.

https://github.com/cp2k/cp2k/tree/master/src/offload
https://github.com/cp2k/cp2k/tree/master/src/pw/gpu
https://github.com/cp2k/cp2k/blob/master/src/dbm/dbm_multiply_gpu_kernel.cu
https://github.com/cp2k/cp2k/tree/master/src/grid/gpu

Comments

• https://x-dev.pages.jsc.fz-juelich.de/models/
• Hipfly (header based translation) approach where one can keep
their CUDA code and translate to HIP at compile time:
https://github.com/amd/HPCTrainingExamples/tree/main/hipifly/
vector_add

• Do concurrent: depends a lot on the compiler support

https://x-dev.pages.jsc.fz-juelich.de/models/
https://github.com/amd/HPCTrainingExamples/tree/main/hipifly/vector_add
https://github.com/amd/HPCTrainingExamples/tree/main/hipifly/vector_add

Other GPU Programming Topics (HansP)

• __OFFLOAD_UNIFIED_MEMORY
PROs
• Enables more GPU usage (finer granularity)?
CONs
• Less explicit/general compared to assuming descrete memory spaces
• Unclear performance status wrt level of hardware support

Optional
• Asks to fold host and device pointers (code and data structures affected)
• Currently, H2D and D2H are no-ops, only “host“-pointers are allocated

• How about GPU-CPU hybrid computations?
• For example, DBM could use both CPU and GPU...

Comments

• Ongoing work for MI300A, grid code already ported to unified
memory

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10

