User Tools

Site Tools


howto:tddft

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
howto:tddft [2022/07/19 08:28] ahehnhowto:tddft [2022/07/19 11:55] ahehn
Line 12: Line 12:
 \begin{aligned} \begin{aligned}
       \mathbf{A} \mathbf{X}^p &= \Omega^p \mathbf{X}^p \, , \\       \mathbf{A} \mathbf{X}^p &= \Omega^p \mathbf{X}^p \, , \\
-      \sum_{\kappa k} [ F_{\mu \kappa \sigma} \delta_{ik} - F_{ik \sigma} S_{\mu \kappa} ] X^p_{\kappa k \sigma} + \sum_{\lambda} K_{\mu \lambda \sigma} [\mathbf{X}^p] C_{\lambda i \sigma} & \sum_{\kappa} \Omega^p S_{\mu \kappa} X^p_{\kappa i \sigma} \, . +      \sum_{\kappa k} [ F_{\mu \kappa \sigma} \delta_{ik} - F_{ik \sigma} S_{\mu \kappa} ] X^p_{\kappa k \sigma} + \sum_{\lambda} K_{\mu \lambda \sigma} [\mathbf{D}^{{\rm{\tiny{X}}}p}] C_{\lambda i \sigma} & \sum_{\kappa} \Omega^p S_{\mu \kappa} X^p_{\kappa i \sigma} \, . 
     \end{aligned}     \end{aligned}
 \end{equation} \end{equation}
Line 21: Line 21:
 \begin{aligned} \begin{aligned}
 F_{\mu \nu \sigma} [\mathbf{D}] &= h_{\mu \nu} + J_{\mu \nu \sigma} [\mathbf{D}] - a_{\rm{\tiny{EX}}}K^{\rm{\tiny{EX}}}_{\mu \nu \sigma} [\mathbf{D}] + V_{\mu \nu \sigma}^{\rm{\tiny{XC}}} \, , \\ F_{\mu \nu \sigma} [\mathbf{D}] &= h_{\mu \nu} + J_{\mu \nu \sigma} [\mathbf{D}] - a_{\rm{\tiny{EX}}}K^{\rm{\tiny{EX}}}_{\mu \nu \sigma} [\mathbf{D}] + V_{\mu \nu \sigma}^{\rm{\tiny{XC}}} \, , \\
-K_{\mu \nu \sigma} [\mathbf{D}^{\rm{\tiny{X}}}] & J_{\mu \nu \sigma} [\mathbf{D}^{\rm{\tiny{X}}}] - a_{\rm{\tiny{EX}}} K^{\rm{\tiny{EX}}}_{\mu \nu \sigma}[\mathbf{D}^{\rm{\tiny{X}}}] + \sum_{\kappa \lambda \sigma'} f^{\rm{\tiny{XC}}}_{\mu \nu \sigma,\kappa \lambda \sigma'} D_{\kappa \lambda \sigma'}^{\rm{\tiny{X}}} \, .+K_{\mu \nu \sigma} [\mathbf{D}^{{\rm{\tiny{X}}}p}] & J_{\mu \nu \sigma} [\mathbf{D}^{{\rm{\tiny{X}}}p}] - a_{\rm{\tiny{EX}}} K^{\rm{\tiny{EX}}}_{\mu \nu \sigma}[\mathbf{D}^{{\rm{\tiny{X}}}p}] + \sum_{\kappa \lambda \sigma'} f^{\rm{\tiny{XC}}}_{\mu \nu \sigma,\kappa \lambda \sigma'} D_{\kappa \lambda \sigma'}^{{\rm{\tiny{X}}}p} \, .
 \end{aligned} \end{aligned}
 \end{equation} \end{equation}
Line 30: Line 30:
 \begin{aligned} \begin{aligned}
 D_{\mu \nu \sigma} &= \sum_k C_{\mu k \sigma} C_{\nu k \sigma}^{\rm{T}} \, , \\ D_{\mu \nu \sigma} &= \sum_k C_{\mu k \sigma} C_{\nu k \sigma}^{\rm{T}} \, , \\
-D_{\mu \nu \sigma}^{\rm{\tiny{X}}} &= \frac{1}{2} \sum_{k} ( X^p_{\mu k \sigma} C_{\nu k \sigma}^{\rm{T}} + C_{\mu k \sigma} (X^p_{\nu k \sigma})^{\rm{T}} ) \, .+D_{\mu \nu \sigma}^{{\rm{\tiny{X}}}p} &= \frac{1}{2} \sum_{k} ( X^p_{\mu k \sigma} C_{\nu k \sigma}^{\rm{T}} + C_{\mu k \sigma} (X^p_{\nu k \sigma})^{\rm{T}} ) \, .
 \end{aligned} \end{aligned}
 \end{equation} \end{equation}
Line 49: Line 49:
 Within the current implementation, oscillator strengths can be calculated for molecular systems in the length form and for periodic systems using the velocity form (see Ref.[1]). Within the current implementation, oscillator strengths can be calculated for molecular systems in the length form and for periodic systems using the velocity form (see Ref.[1]).
  
-Based on Eq.\ (\ref{tda_equation}), excited-state gradients can be formulated based on a variational Lagrangian for each excited state $p$,+Based on the TDA eigenvalue problem, excited-state gradients can be formulated based on a variational Lagrangian for each excited state $p$,
  
 \begin{equation} \begin{equation}
Line 358: Line 358:
 The most important keywords of the subsection ''sTDA'' are: The most important keywords of the subsection ''sTDA'' are:
   * ''FRACTION'': fraction of exact exchange $a_{\rm{\tiny{EX}}}$   * ''FRACTION'': fraction of exact exchange $a_{\rm{\tiny{EX}}}$
-  * ''MATAGA_NISHIMOTO_CEXP'': keyword to modify the parameter $\alpha$ of $\gamma_{\rm{\tiny{J}}$ +  * ''MATAGA_NISHIMOTO_CEXP'': keyword to modify the parameter $\alpha$ of $\gamma^{\rm{\tiny{J}}}$ 
-  * ''MATAGA_NISHIMOTO_XEXP'': keyword to modify the parameter $\beta$ of $\gamma_{\rm{\tiny{EX}}}$+  * ''MATAGA_NISHIMOTO_XEXP'': keyword to modify the parameter $\beta$ of $\gamma^{\rm{\tiny{K}}}$
   * ''DO_EWALD'': keyword to switch on Ewald summation for the Coulomb contributions, required when treating periodic systems. (Exact exchange is treated within the minimum image convention and does not require any adjustment.)   * ''DO_EWALD'': keyword to switch on Ewald summation for the Coulomb contributions, required when treating periodic systems. (Exact exchange is treated within the minimum image convention and does not require any adjustment.)
  
howto/tddft.txt · Last modified: 2024/02/24 10:01 by oschuett