LCOV - code coverage report
Current view: top level - src/aobasis - ai_overlap.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:4dc10b3) Lines: 670 1006 66.6 %
Date: 2024-11-21 06:45:46 Functions: 6 9 66.7 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2024 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief Calculation of the overlap integrals over Cartesian Gaussian-type
      10             : !>      functions.
      11             : !> \par Literature
      12             : !>      S. Obara and A. Saika, J. Chem. Phys. 84, 3963 (1986)
      13             : !> \par History
      14             : !>      - Derivatives added (02.05.2002,MK)
      15             : !>      - New OS routine with simpler logic (11.07.2014, JGH)
      16             : !> \author Matthias Krack (08.10.1999)
      17             : ! **************************************************************************************************
      18             : MODULE ai_overlap
      19             :    USE ai_os_rr,                        ONLY: os_rr_ovlp
      20             :    USE kinds,                           ONLY: dp
      21             :    USE mathconstants,                   ONLY: pi,&
      22             :                                               twopi
      23             :    USE orbital_pointers,                ONLY: coset,&
      24             :                                               nco,&
      25             :                                               ncoset,&
      26             :                                               nso
      27             :    USE orbital_transformation_matrices, ONLY: orbtramat
      28             : #include "../base/base_uses.f90"
      29             : 
      30             :    IMPLICIT NONE
      31             : 
      32             :    PRIVATE
      33             : 
      34             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'ai_overlap'
      35             : 
      36             : ! *** Public subroutines ***
      37             :    PUBLIC :: overlap, overlap_ab, overlap_aab, overlap_ab_s, overlap_ab_sp, &
      38             :              overlap_abb
      39             : 
      40             : CONTAINS
      41             : 
      42             : ! **************************************************************************************************
      43             : !> \brief   Purpose: Calculation of the two-center overlap integrals [a|b] over
      44             : !>          Cartesian Gaussian-type functions.
      45             : !> \param la_max_set Max L on center A
      46             : !> \param la_min_set Min L on center A
      47             : !> \param npgfa      Number of primitives on center A
      48             : !> \param rpgfa      Range of functions on A, used for screening
      49             : !> \param zeta       Exponents on center A
      50             : !> \param lb_max_set Max L on center B
      51             : !> \param lb_min_set Min L on center B
      52             : !> \param npgfb      Number of primitives on center B
      53             : !> \param rpgfb      Range of functions on B, used for screening
      54             : !> \param zetb       Exponents on center B
      55             : !> \param rab        Distance vector A-B
      56             : !> \param dab        Distance A-B
      57             : !> \param sab        Final Integrals, basic and derivatives
      58             : !> \param da_max_set Some additional derivative information
      59             : !> \param return_derivatives   Return integral derivatives
      60             : !> \param s          Work space
      61             : !> \param lds        Leading dimension of s
      62             : !> \param sdab       Return additional derivative integrals
      63             : !> \param pab        Density matrix block, used to calculate forces
      64             : !> \param force_a    Force vector [da/dR|b]
      65             : !> \date    19.09.2000
      66             : !> \author  MK
      67             : !> \version 1.0
      68             : ! **************************************************************************************************
      69     1396780 :    SUBROUTINE overlap(la_max_set, la_min_set, npgfa, rpgfa, zeta, &
      70     2793560 :                       lb_max_set, lb_min_set, npgfb, rpgfb, zetb, &
      71     1396780 :                       rab, dab, sab, da_max_set, return_derivatives, s, lds, &
      72     1396780 :                       sdab, pab, force_a)
      73             :       INTEGER, INTENT(IN)                                :: la_max_set, la_min_set, npgfa
      74             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: rpgfa, zeta
      75             :       INTEGER, INTENT(IN)                                :: lb_max_set, lb_min_set, npgfb
      76             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: rpgfb, zetb
      77             :       REAL(KIND=dp), DIMENSION(3), INTENT(IN)            :: rab
      78             :       REAL(KIND=dp), INTENT(IN)                          :: dab
      79             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(INOUT)      :: sab
      80             :       INTEGER, INTENT(IN)                                :: da_max_set
      81             :       LOGICAL, INTENT(IN)                                :: return_derivatives
      82             :       INTEGER, INTENT(IN)                                :: lds
      83             :       REAL(KIND=dp), DIMENSION(lds, lds, *), &
      84             :          INTENT(INOUT)                                   :: s
      85             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(INOUT), &
      86             :          OPTIONAL                                        :: sdab
      87             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(IN), &
      88             :          OPTIONAL                                        :: pab
      89             :       REAL(KIND=dp), DIMENSION(3), INTENT(OUT), OPTIONAL :: force_a
      90             : 
      91             :       INTEGER :: ax, ay, az, bx, by, bz, cda, cdax, cday, cdaz, coa, coamx, coamy, coamz, coapx, &
      92             :          coapy, coapz, cob, cobm2x, cobm2y, cobm2z, cobmx, cobmy, cobmz, da, da_max, dax, day, &
      93             :          daz, i, ipgf, j, jk, jpgf, jstart, k, la, la_max, la_min, la_start, lb, lb_max, lb_min, &
      94             :          lb_start, na, nb, nda
      95             :       LOGICAL                                            :: calculate_force_a
      96             :       REAL(KIND=dp)                                      :: f0, f1, f2, f3, f4, fax, fay, faz, ftz, &
      97             :                                                             zetp
      98             :       REAL(KIND=dp), DIMENSION(3)                        :: rap, rbp
      99             : 
     100     1396780 :       IF (PRESENT(pab) .AND. PRESENT(force_a)) THEN
     101           0 :          calculate_force_a = .TRUE.
     102           0 :          force_a(:) = 0.0_dp
     103             :       ELSE
     104             :          calculate_force_a = .FALSE.
     105             :       END IF
     106             : 
     107     1396780 :       IF (PRESENT(sdab) .OR. calculate_force_a) THEN
     108           0 :          IF (da_max_set == 0) THEN
     109           0 :             da_max = 1
     110           0 :             la_max = la_max_set + 1
     111           0 :             la_min = MAX(0, la_min_set - 1)
     112             :          ELSE
     113           0 :             da_max = da_max_set
     114           0 :             la_max = la_max_set + da_max_set + 1
     115           0 :             la_min = MAX(0, la_min_set - da_max_set - 1)
     116             :          END IF
     117             :       ELSE
     118     1396780 :          da_max = da_max_set
     119     1396780 :          la_max = la_max_set + da_max_set
     120     1396780 :          la_min = MAX(0, la_min_set - da_max_set)
     121             :       END IF
     122             : 
     123     1396780 :       lb_max = lb_max_set
     124     1396780 :       lb_min = lb_min_set
     125             : 
     126             : !   *** Loop over all pairs of primitive Gaussian-type functions ***
     127             : 
     128     1396780 :       na = 0
     129     1396780 :       nda = 0
     130             : 
     131     6693319 :       DO ipgf = 1, npgfa
     132             : 
     133     5296539 :          nb = 0
     134             : 
     135    11990888 :          DO jpgf = 1, npgfb
     136             : 
     137             : !       *** Screening ***
     138             : 
     139     6694349 :             IF (rpgfa(ipgf) + rpgfb(jpgf) < dab) THEN
     140    23453424 :                DO j = nb + 1, nb + ncoset(lb_max_set)
     141   143294694 :                   DO i = na + 1, na + ncoset(la_max_set)
     142   139467852 :                      sab(i, j) = 0.0_dp
     143             :                   END DO
     144             :                END DO
     145     3826842 :                IF (return_derivatives) THEN
     146     7379248 :                   DO k = 2, ncoset(da_max_set)
     147     3564252 :                      jstart = (k - 1)*SIZE(sab, 1)
     148    22640014 :                      DO j = jstart + nb + 1, jstart + nb + ncoset(lb_max_set)
     149   112631082 :                         DO i = na + 1, na + ncoset(la_max_set)
     150   109066830 :                            sab(i, j) = 0.0_dp
     151             :                         END DO
     152             :                      END DO
     153             :                   END DO
     154             :                END IF
     155     3826842 :                nb = nb + ncoset(lb_max_set)
     156     3826842 :                CYCLE
     157             :             END IF
     158             : 
     159             : !       *** Calculate some prefactors ***
     160             : 
     161     2867507 :             zetp = 1.0_dp/(zeta(ipgf) + zetb(jpgf))
     162             : 
     163     2867507 :             f0 = SQRT((pi*zetp)**3)
     164     2867507 :             f1 = zetb(jpgf)*zetp
     165     2867507 :             f2 = 0.5_dp*zetp
     166             : 
     167             : !       *** Calculate the basic two-center overlap integral [s|s] ***
     168             : 
     169     2867507 :             s(1, 1, 1) = f0*EXP(-zeta(ipgf)*f1*dab*dab)
     170             : 
     171             : !       *** Recurrence steps: [s|s] -> [a|b] ***
     172             : 
     173     2867507 :             IF (la_max > 0) THEN
     174             : 
     175             : !         *** Vertical recurrence steps: [s|s] -> [a|s] ***
     176             : 
     177     9404588 :                rap(:) = f1*rab(:)
     178             : 
     179             : !         *** [p|s] = (Pi - Ai)*[s|s]  (i = x,y,z) ***
     180             : 
     181     2351147 :                s(2, 1, 1) = rap(1)*s(1, 1, 1) ! [px|s]
     182     2351147 :                s(3, 1, 1) = rap(2)*s(1, 1, 1) ! [py|s]
     183     2351147 :                s(4, 1, 1) = rap(3)*s(1, 1, 1) ! [pz|s]
     184             : 
     185     2351147 :                IF (la_max > 1) THEN
     186             : 
     187             : !           *** [d|s] ***
     188             : 
     189      987418 :                   f3 = f2*s(1, 1, 1)
     190             : 
     191      987418 :                   s(5, 1, 1) = rap(1)*s(2, 1, 1) + f3 ! [dx2|s]
     192      987418 :                   s(6, 1, 1) = rap(1)*s(3, 1, 1) ! [dxy|s]
     193      987418 :                   s(7, 1, 1) = rap(1)*s(4, 1, 1) ! [dxz|s]
     194      987418 :                   s(8, 1, 1) = rap(2)*s(3, 1, 1) + f3 ! [dy2|s]
     195      987418 :                   s(9, 1, 1) = rap(2)*s(4, 1, 1) ! [dyz|s]
     196      987418 :                   s(10, 1, 1) = rap(3)*s(4, 1, 1) + f3 ! [dz2|s]
     197             : 
     198      987418 :                   IF (la_max > 2) THEN
     199             : 
     200             : !             *** [f|s] ***
     201             : 
     202      244041 :                      f3 = 2.0_dp*f2
     203             : 
     204      244041 :                      s(11, 1, 1) = rap(1)*s(5, 1, 1) + f3*s(2, 1, 1) ! [fx3 |s]
     205      244041 :                      s(12, 1, 1) = rap(1)*s(6, 1, 1) + f2*s(3, 1, 1) ! [fx2y|s]
     206      244041 :                      s(13, 1, 1) = rap(1)*s(7, 1, 1) + f2*s(4, 1, 1) ! [fx2z|s]
     207      244041 :                      s(14, 1, 1) = rap(1)*s(8, 1, 1) ! [fxy2|s]
     208      244041 :                      s(15, 1, 1) = rap(1)*s(9, 1, 1) ! [fxyz|s]
     209      244041 :                      s(16, 1, 1) = rap(1)*s(10, 1, 1) ! [fxz2|s]
     210      244041 :                      s(17, 1, 1) = rap(2)*s(8, 1, 1) + f3*s(3, 1, 1) ! [fy3 |s]
     211      244041 :                      s(18, 1, 1) = rap(2)*s(9, 1, 1) + f2*s(4, 1, 1) ! [fy2z|s]
     212      244041 :                      s(19, 1, 1) = rap(2)*s(10, 1, 1) ! [fyz2|s]
     213      244041 :                      s(20, 1, 1) = rap(3)*s(10, 1, 1) + f3*s(4, 1, 1) ! [fz3 |s]
     214             : 
     215      244041 :                      IF (la_max > 3) THEN
     216             : 
     217             : !               *** [g|s] ***
     218             : 
     219       53997 :                         f4 = 3.0_dp*f2
     220             : 
     221       53997 :                         s(21, 1, 1) = rap(1)*s(11, 1, 1) + f4*s(5, 1, 1) ! [gx4  |s]
     222       53997 :                         s(22, 1, 1) = rap(1)*s(12, 1, 1) + f3*s(6, 1, 1) ! [gx3y |s]
     223       53997 :                         s(23, 1, 1) = rap(1)*s(13, 1, 1) + f3*s(7, 1, 1) ! [gx3z |s]
     224       53997 :                         s(24, 1, 1) = rap(1)*s(14, 1, 1) + f2*s(8, 1, 1) ! [gx2y2|s]
     225       53997 :                         s(25, 1, 1) = rap(1)*s(15, 1, 1) + f2*s(9, 1, 1) ! [gx2yz|s]
     226       53997 :                         s(26, 1, 1) = rap(1)*s(16, 1, 1) + f2*s(10, 1, 1) ! [gx2z2|s]
     227       53997 :                         s(27, 1, 1) = rap(1)*s(17, 1, 1) ! [gxy3 |s]
     228       53997 :                         s(28, 1, 1) = rap(1)*s(18, 1, 1) ! [gxy2z|s]
     229       53997 :                         s(29, 1, 1) = rap(1)*s(19, 1, 1) ! [gxyz2|s]
     230       53997 :                         s(30, 1, 1) = rap(1)*s(20, 1, 1) ! [gxz3 |s]
     231       53997 :                         s(31, 1, 1) = rap(2)*s(17, 1, 1) + f4*s(8, 1, 1) ! [gy4  |s]
     232       53997 :                         s(32, 1, 1) = rap(2)*s(18, 1, 1) + f3*s(9, 1, 1) ! [gy3z |s]
     233       53997 :                         s(33, 1, 1) = rap(2)*s(19, 1, 1) + f2*s(10, 1, 1) ! [gy2z2|s]
     234       53997 :                         s(34, 1, 1) = rap(2)*s(20, 1, 1) ! [gyz3 |s]
     235       53997 :                         s(35, 1, 1) = rap(3)*s(20, 1, 1) + f4*s(10, 1, 1) ! [gz4  |s]
     236             : 
     237             : !               *** [a|s] = (Pi - Ai)*[a-1i|s] + f2*Ni(a-1i)*[a-2i|s] ***
     238             : 
     239       54100 :                         DO la = 5, la_max
     240             : 
     241             : !                 *** Increase the angular momentum component z of a ***
     242             : 
     243             :                            s(coset(0, 0, la), 1, 1) = &
     244             :                               rap(3)*s(coset(0, 0, la - 1), 1, 1) + &
     245         103 :                               f2*REAL(la - 1, dp)*s(coset(0, 0, la - 2), 1, 1)
     246             : 
     247             : !                 *** Increase the angular momentum component y of a ***
     248             : 
     249         103 :                            az = la - 1
     250         103 :                            s(coset(0, 1, az), 1, 1) = rap(2)*s(coset(0, 0, az), 1, 1)
     251         519 :                            DO ay = 2, la
     252         416 :                               az = la - ay
     253             :                               s(coset(0, ay, az), 1, 1) = &
     254             :                                  rap(2)*s(coset(0, ay - 1, az), 1, 1) + &
     255         519 :                                  f2*REAL(ay - 1, dp)*s(coset(0, ay - 2, az), 1, 1)
     256             :                            END DO
     257             : 
     258             : !                 *** Increase the angular momentum component x of a ***
     259             : 
     260         622 :                            DO ay = 0, la - 1
     261         519 :                               az = la - 1 - ay
     262         622 :                               s(coset(1, ay, az), 1, 1) = rap(1)*s(coset(0, ay, az), 1, 1)
     263             :                            END DO
     264       54516 :                            DO ax = 2, la
     265         416 :                               f3 = f2*REAL(ax - 1, dp)
     266        1569 :                               DO ay = 0, la - ax
     267        1050 :                                  az = la - ax - ay
     268             :                                  s(coset(ax, ay, az), 1, 1) = &
     269             :                                     rap(1)*s(coset(ax - 1, ay, az), 1, 1) + &
     270        1466 :                                     f3*s(coset(ax - 2, ay, az), 1, 1)
     271             :                               END DO
     272             :                            END DO
     273             : 
     274             :                         END DO
     275             : 
     276             :                      END IF
     277             : 
     278             :                   END IF
     279             : 
     280             :                END IF
     281             : 
     282             : !         *** Recurrence steps: [a|s] -> [a|b] ***
     283             : 
     284     2351147 :                IF (lb_max > 0) THEN
     285             : 
     286    12101954 :                   DO j = 2, ncoset(lb_max)
     287    30483520 :                      DO i = 1, ncoset(la_min)
     288    29025467 :                         s(i, j, 1) = 0.0_dp
     289             :                      END DO
     290             :                   END DO
     291             : 
     292             : !           *** Horizontal recurrence steps ***
     293             : 
     294     5832212 :                   rbp(:) = rap(:) - rab(:)
     295             : 
     296             : !           *** [a|p] = [a+1i|s] - (Bi - Ai)*[a|s] ***
     297             : 
     298     1458053 :                   IF (lb_max == 1) THEN
     299             :                      la_start = la_min
     300             :                   ELSE
     301      683319 :                      la_start = MAX(0, la_min - 1)
     302             :                   END IF
     303             : 
     304     3449607 :                   DO la = la_start, la_max - 1
     305     6518989 :                      DO ax = 0, la
     306     9555988 :                         DO ay = 0, la - ax
     307     4495052 :                            az = la - ax - ay
     308     4495052 :                            coa = coset(ax, ay, az)
     309     4495052 :                            coapx = coset(ax + 1, ay, az)
     310     4495052 :                            coapy = coset(ax, ay + 1, az)
     311     4495052 :                            coapz = coset(ax, ay, az + 1)
     312     4495052 :                            s(coa, 2, 1) = s(coapx, 1, 1) - rab(1)*s(coa, 1, 1)
     313     4495052 :                            s(coa, 3, 1) = s(coapy, 1, 1) - rab(2)*s(coa, 1, 1)
     314     7564434 :                            s(coa, 4, 1) = s(coapz, 1, 1) - rab(3)*s(coa, 1, 1)
     315             :                         END DO
     316             :                      END DO
     317             :                   END DO
     318             : 
     319             : !           *** Vertical recurrence step ***
     320             : 
     321             : !           *** [a|p] = (Pi - Bi)*[a|s] + f2*Ni(a)*[a-1i|s] ***
     322             : 
     323     5219793 :                   DO ax = 0, la_max
     324     3761740 :                      fax = f2*REAL(ax, dp)
     325    12425345 :                      DO ay = 0, la_max - ax
     326     7205552 :                         fay = f2*REAL(ay, dp)
     327     7205552 :                         az = la_max - ax - ay
     328     7205552 :                         faz = f2*REAL(az, dp)
     329     7205552 :                         coa = coset(ax, ay, az)
     330     7205552 :                         coamx = coset(ax - 1, ay, az)
     331     7205552 :                         coamy = coset(ax, ay - 1, az)
     332     7205552 :                         coamz = coset(ax, ay, az - 1)
     333     7205552 :                         s(coa, 2, 1) = rbp(1)*s(coa, 1, 1) + fax*s(coamx, 1, 1)
     334     7205552 :                         s(coa, 3, 1) = rbp(2)*s(coa, 1, 1) + fay*s(coamy, 1, 1)
     335    10967292 :                         s(coa, 4, 1) = rbp(3)*s(coa, 1, 1) + faz*s(coamz, 1, 1)
     336             :                      END DO
     337             :                   END DO
     338             : 
     339             : !           *** Recurrence steps: [a|p] -> [a|b] ***
     340             : 
     341     2327642 :                   DO lb = 2, lb_max
     342             : 
     343             : !             *** Horizontal recurrence steps ***
     344             : 
     345             : !             *** [a|b] = [a+1i|b-1i] - (Bi - Ai)*[a|b-1i] ***
     346             : 
     347      869589 :                      IF (lb == lb_max) THEN
     348             :                         la_start = la_min
     349             :                      ELSE
     350      186270 :                         la_start = MAX(0, la_min - 1)
     351             :                      END IF
     352             : 
     353     2511040 :                      DO la = la_start, la_max - 1
     354     5486678 :                         DO ax = 0, la
     355     9511372 :                            DO ay = 0, la - ax
     356     4894283 :                               az = la - ax - ay
     357     4894283 :                               coa = coset(ax, ay, az)
     358     4894283 :                               coapx = coset(ax + 1, ay, az)
     359     4894283 :                               coapy = coset(ax, ay + 1, az)
     360     4894283 :                               coapz = coset(ax, ay, az + 1)
     361             : 
     362             : !                   *** Shift of angular momentum component z from a to b ***
     363             : 
     364     4894283 :                               cob = coset(0, 0, lb)
     365     4894283 :                               cobmz = coset(0, 0, lb - 1)
     366     4894283 :                               s(coa, cob, 1) = s(coapz, cobmz, 1) - rab(3)*s(coa, cobmz, 1)
     367             : 
     368             : !                   *** Shift of angular momentum component y from a to b ***
     369             : 
     370    17272492 :                               DO by = 1, lb
     371    12378209 :                                  bz = lb - by
     372    12378209 :                                  cob = coset(0, by, bz)
     373    12378209 :                                  cobmy = coset(0, by - 1, bz)
     374    17272492 :                                  s(coa, cob, 1) = s(coapy, cobmy, 1) - rab(2)*s(coa, cobmy, 1)
     375             :                               END DO
     376             : 
     377             : !                   *** Shift of angular momentum component x from a to b ***
     378             : 
     379    20248130 :                               DO bx = 1, lb
     380    40373399 :                                  DO by = 0, lb - bx
     381    23100907 :                                     bz = lb - bx - by
     382    23100907 :                                     cob = coset(bx, by, bz)
     383    23100907 :                                     cobmx = coset(bx - 1, by, bz)
     384    35479116 :                                     s(coa, cob, 1) = s(coapx, cobmx, 1) - rab(1)*s(coa, cobmx, 1)
     385             :                                  END DO
     386             :                               END DO
     387             : 
     388             :                            END DO
     389             :                         END DO
     390             :                      END DO
     391             : 
     392             : !             *** Vertical recurrence step ***
     393             : 
     394             : !             *** [a|b] = (Pi - Bi)*[a|b-1i] + f2*Ni(a)*[a-1i|b-1i] + ***
     395             : !             ***         f2*Ni(b-1i)*[a|b-2i]                        ***
     396             : 
     397     4964937 :                      DO ax = 0, la_max
     398     2637295 :                         fax = f2*REAL(ax, dp)
     399     9288494 :                         DO ay = 0, la_max - ax
     400     5781610 :                            fay = f2*REAL(ay, dp)
     401     5781610 :                            az = la_max - ax - ay
     402     5781610 :                            faz = f2*REAL(az, dp)
     403     5781610 :                            coa = coset(ax, ay, az)
     404     5781610 :                            coamx = coset(ax - 1, ay, az)
     405     5781610 :                            coamy = coset(ax, ay - 1, az)
     406     5781610 :                            coamz = coset(ax, ay, az - 1)
     407             : 
     408             : !                 *** Increase the angular momentum component z of b ***
     409             : 
     410     5781610 :                            f3 = f2*REAL(lb - 1, dp)
     411     5781610 :                            cob = coset(0, 0, lb)
     412     5781610 :                            cobmz = coset(0, 0, lb - 1)
     413     5781610 :                            cobm2z = coset(0, 0, lb - 2)
     414             :                            s(coa, cob, 1) = rbp(3)*s(coa, cobmz, 1) + &
     415             :                                             faz*s(coamz, cobmz, 1) + &
     416     5781610 :                                             f3*s(coa, cobm2z, 1)
     417             : 
     418             : !                 *** Increase the angular momentum component y of b ***
     419             : 
     420     5781610 :                            bz = lb - 1
     421     5781610 :                            cob = coset(0, 1, bz)
     422     5781610 :                            cobmy = coset(0, 0, bz)
     423             :                            s(coa, cob, 1) = rbp(2)*s(coa, cobmy, 1) + &
     424     5781610 :                                             fay*s(coamy, cobmy, 1)
     425    13989716 :                            DO by = 2, lb
     426     8208106 :                               bz = lb - by
     427     8208106 :                               f3 = f2*REAL(by - 1, dp)
     428     8208106 :                               cob = coset(0, by, bz)
     429     8208106 :                               cobmy = coset(0, by - 1, bz)
     430     8208106 :                               cobm2y = coset(0, by - 2, bz)
     431             :                               s(coa, cob, 1) = rbp(2)*s(coa, cobmy, 1) + &
     432             :                                                fay*s(coamy, cobmy, 1) + &
     433    13989716 :                                                f3*s(coa, cobm2y, 1)
     434             :                            END DO
     435             : 
     436             : !                 *** Increase the angular momentum component x of b ***
     437             : 
     438    19771326 :                            DO by = 0, lb - 1
     439    13989716 :                               bz = lb - 1 - by
     440    13989716 :                               cob = coset(1, by, bz)
     441    13989716 :                               cobmx = coset(0, by, bz)
     442             :                               s(coa, cob, 1) = rbp(1)*s(coa, cobmx, 1) + &
     443    19771326 :                                                fax*s(coamx, cobmx, 1)
     444             :                            END DO
     445    16627011 :                            DO bx = 2, lb
     446     8208106 :                               f3 = f2*REAL(bx - 1, dp)
     447    25232001 :                               DO by = 0, lb - bx
     448    11242285 :                                  bz = lb - bx - by
     449    11242285 :                                  cob = coset(bx, by, bz)
     450    11242285 :                                  cobmx = coset(bx - 1, by, bz)
     451    11242285 :                                  cobm2x = coset(bx - 2, by, bz)
     452             :                                  s(coa, cob, 1) = rbp(1)*s(coa, cobmx, 1) + &
     453             :                                                   fax*s(coamx, cobmx, 1) + &
     454    19450391 :                                                   f3*s(coa, cobm2x, 1)
     455             :                               END DO
     456             :                            END DO
     457             : 
     458             :                         END DO
     459             :                      END DO
     460             : 
     461             :                   END DO
     462             : 
     463             :                END IF
     464             : 
     465             :             ELSE
     466             : 
     467      516360 :                IF (lb_max > 0) THEN
     468             : 
     469             : !           *** Vertical recurrence steps: [s|s] -> [s|b] ***
     470             : 
     471      988104 :                   rbp(:) = (f1 - 1.0_dp)*rab(:)
     472             : 
     473             : !           *** [s|p] = (Pi - Bi)*[s|s] ***
     474             : 
     475      247026 :                   s(1, 2, 1) = rbp(1)*s(1, 1, 1) ! [s|px]
     476      247026 :                   s(1, 3, 1) = rbp(2)*s(1, 1, 1) ! [s|py]
     477      247026 :                   s(1, 4, 1) = rbp(3)*s(1, 1, 1) ! [s|pz]
     478             : 
     479      247026 :                   IF (lb_max > 1) THEN
     480             : 
     481             : !             *** [s|d] ***
     482             : 
     483       42846 :                      f3 = f2*s(1, 1, 1)
     484             : 
     485       42846 :                      s(1, 5, 1) = rbp(1)*s(1, 2, 1) + f3 ! [s|dx2]
     486       42846 :                      s(1, 6, 1) = rbp(1)*s(1, 3, 1) ! [s|dxy]
     487       42846 :                      s(1, 7, 1) = rbp(1)*s(1, 4, 1) ! [s|dxz]
     488       42846 :                      s(1, 8, 1) = rbp(2)*s(1, 3, 1) + f3 ! [s|dy2]
     489       42846 :                      s(1, 9, 1) = rbp(2)*s(1, 4, 1) ! [s|dyz]
     490       42846 :                      s(1, 10, 1) = rbp(3)*s(1, 4, 1) + f3 ! [s|dz2]
     491             : 
     492             : !             *** [s|b] = (Pi - Bi)*[s|b-1i] + f2*Ni(b-1i)*[s|b-2i] ***
     493             : 
     494       45574 :                      DO lb = 3, lb_max
     495             : 
     496             : !               *** Increase the angular momentum component z of b ***
     497             : 
     498             :                         s(1, coset(0, 0, lb), 1) = &
     499             :                            rbp(3)*s(1, coset(0, 0, lb - 1), 1) + &
     500        2728 :                            f2*REAL(lb - 1, dp)*s(1, coset(0, 0, lb - 2), 1)
     501             : 
     502             : !               *** Increase the angular momentum component y of b ***
     503             : 
     504        2728 :                         bz = lb - 1
     505        2728 :                         s(1, coset(0, 1, bz), 1) = rbp(2)*s(1, coset(0, 0, bz), 1)
     506        9012 :                         DO by = 2, lb
     507        6284 :                            bz = lb - by
     508             :                            s(1, coset(0, by, bz), 1) = &
     509             :                               rbp(2)*s(1, coset(0, by - 1, bz), 1) + &
     510        9012 :                               f2*REAL(by - 1, dp)*s(1, coset(0, by - 2, bz), 1)
     511             :                         END DO
     512             : 
     513             : !               *** Increase the angular momentum component x of b ***
     514             : 
     515       11740 :                         DO by = 0, lb - 1
     516        9012 :                            bz = lb - 1 - by
     517       11740 :                            s(1, coset(1, by, bz), 1) = rbp(1)*s(1, coset(0, by, bz), 1)
     518             :                         END DO
     519       51858 :                         DO bx = 2, lb
     520        6284 :                            f3 = f2*REAL(bx - 1, dp)
     521       19680 :                            DO by = 0, lb - bx
     522       10668 :                               bz = lb - bx - by
     523             :                               s(1, coset(bx, by, bz), 1) = &
     524             :                                  rbp(1)*s(1, coset(bx - 1, by, bz), 1) + &
     525       16952 :                                  f3*s(1, coset(bx - 2, by, bz), 1)
     526             :                            END DO
     527             :                         END DO
     528             : 
     529             :                      END DO
     530             : 
     531             :                   END IF
     532             : 
     533             :                END IF
     534             : 
     535             :             END IF
     536             : 
     537             : !       *** Store the primitive overlap integrals ***
     538             : 
     539    17408489 :             DO j = 1, ncoset(lb_max_set)
     540   126531760 :                DO i = 1, ncoset(la_max_set)
     541   123664253 :                   sab(na + i, nb + j) = s(i, j, 1)
     542             :                END DO
     543             :             END DO
     544             : 
     545             : !       *** Calculate the requested derivatives with respect  ***
     546             : !       *** to the nuclear coordinates of the atomic center a ***
     547             : 
     548     2867507 :             IF (PRESENT(sdab) .OR. return_derivatives) THEN
     549             :                la_start = 0
     550             :                lb_start = 0
     551             :             ELSE
     552       49847 :                la_start = la_min_set
     553       49847 :                lb_start = lb_min_set
     554             :             END IF
     555             : 
     556     3730610 :             DO da = 0, da_max - 1
     557      863103 :                ftz = 2.0_dp*zeta(ipgf)
     558     4593713 :                DO dax = 0, da
     559     2589309 :                   DO day = 0, da - dax
     560      863103 :                      daz = da - dax - day
     561      863103 :                      cda = coset(dax, day, daz)
     562      863103 :                      cdax = coset(dax + 1, day, daz)
     563      863103 :                      cday = coset(dax, day + 1, daz)
     564      863103 :                      cdaz = coset(dax, day, daz + 1)
     565             : 
     566             : !             *** [da/dAi|b] = 2*zeta*[a+1i|b] - Ni(a)[a-1i|b] ***
     567             : 
     568     3422271 :                      DO la = la_start, la_max - da - 1
     569     5373706 :                         DO ax = 0, la
     570     2814538 :                            fax = REAL(ax, dp)
     571     8782741 :                            DO ay = 0, la - ax
     572     4272138 :                               fay = REAL(ay, dp)
     573     4272138 :                               az = la - ax - ay
     574     4272138 :                               faz = REAL(az, dp)
     575     4272138 :                               coa = coset(ax, ay, az)
     576     4272138 :                               coamx = coset(ax - 1, ay, az)
     577     4272138 :                               coamy = coset(ax, ay - 1, az)
     578     4272138 :                               coamz = coset(ax, ay, az - 1)
     579     4272138 :                               coapx = coset(ax + 1, ay, az)
     580     4272138 :                               coapy = coset(ax, ay + 1, az)
     581     4272138 :                               coapz = coset(ax, ay, az + 1)
     582    16836364 :                               DO lb = lb_start, lb_max_set
     583    33528614 :                                  DO bx = 0, lb
     584    64626844 :                                     DO by = 0, lb - bx
     585    35370368 :                                        bz = lb - bx - by
     586    35370368 :                                        cob = coset(bx, by, bz)
     587             :                                        s(coa, cob, cdax) = ftz*s(coapx, cob, cda) - &
     588    35370368 :                                                            fax*s(coamx, cob, cda)
     589             :                                        s(coa, cob, cday) = ftz*s(coapy, cob, cda) - &
     590    35370368 :                                                            fay*s(coamy, cob, cda)
     591             :                                        s(coa, cob, cdaz) = ftz*s(coapz, cob, cda) - &
     592    54877156 :                                                            faz*s(coamz, cob, cda)
     593             :                                     END DO
     594             :                                  END DO
     595             :                               END DO
     596             :                            END DO
     597             :                         END DO
     598             :                      END DO
     599             : 
     600             :                   END DO
     601             :                END DO
     602             :             END DO
     603             : 
     604             : !       *** Return all the calculated derivatives of the ***
     605             : !       *** primitive overlap integrals, if requested    ***
     606             : 
     607     2867507 :             IF (return_derivatives) THEN
     608     5406969 :                DO k = 2, ncoset(da_max_set)
     609     2589309 :                   jstart = (k - 1)*SIZE(sab, 1)
     610    17281488 :                   DO j = 1, ncoset(lb_max_set)
     611    11874519 :                      jk = jstart + j
     612   120574932 :                      DO i = 1, ncoset(la_max_set)
     613   117985623 :                         sab(na + i, nb + jk) = s(i, j, k)
     614             :                      END DO
     615             :                   END DO
     616             :                END DO
     617             :             END IF
     618             : 
     619             : !       *** Calculate the force contribution for the atomic center a ***
     620             : 
     621     2867507 :             IF (calculate_force_a) THEN
     622           0 :                DO k = 1, 3
     623           0 :                   DO j = ncoset(lb_min_set - 1) + 1, ncoset(lb_max_set)
     624           0 :                      DO i = ncoset(la_min_set - 1) + 1, ncoset(la_max_set)
     625           0 :                         force_a(k) = force_a(k) + pab(na + i, nb + j)*s(i, j, k + 1)
     626             :                      END DO
     627             :                   END DO
     628             :                END DO
     629             :             END IF
     630             : 
     631             : !       *** Store the first derivatives of the primitive overlap integrals ***
     632             : !       *** which are used as auxiliary integrals for the calculation of   ***
     633             : !       *** the kinetic energy integrals if requested                      ***
     634             : 
     635     2867507 :             IF (PRESENT(sdab)) THEN
     636           0 :                sdab(nda + 1, nb + 1, 1) = s(1, 1, 1)
     637           0 :                DO k = 2, 4
     638           0 :                   DO j = 1, ncoset(lb_max_set)
     639           0 :                      DO i = 1, ncoset(la_max - 1)
     640           0 :                         sdab(nda + i, nb + j, k) = s(i, j, k)
     641             :                      END DO
     642             :                   END DO
     643             :                END DO
     644             :             END IF
     645             : 
     646     8164046 :             nb = nb + ncoset(lb_max_set)
     647             : 
     648             :          END DO
     649             : 
     650     5296539 :          na = na + ncoset(la_max_set)
     651     6693319 :          nda = nda + ncoset(la_max - 1)
     652             : 
     653             :       END DO
     654             : 
     655     1396780 :    END SUBROUTINE overlap
     656             : 
     657             : ! **************************************************************************************************
     658             : !> \brief   Calculation of the two-center overlap integrals [a|b] over
     659             : !>          Cartesian Gaussian-type functions. First and second derivatives
     660             : !> \param la_max     Max L on center A
     661             : !> \param la_min     Min L on center A
     662             : !> \param npgfa      Number of primitives on center A
     663             : !> \param rpgfa      Range of functions on A, used for screening
     664             : !> \param zeta       Exponents on center A
     665             : !> \param lb_max     Max L on center B
     666             : !> \param lb_min     Min L on center B
     667             : !> \param npgfb      Number of primitives on center B
     668             : !> \param rpgfb      Range of functions on B, used for screening
     669             : !> \param zetb       Exponents on center B
     670             : !> \param rab        Distance vector A-B
     671             : !> \param sab        Final overlap integrals
     672             : !> \param dab        First derivative overlap integrals
     673             : !> \param ddab       Second derivative overlap integrals
     674             : !> \date    01.07.2014
     675             : !> \author  JGH
     676             : ! **************************************************************************************************
     677    11339951 :    SUBROUTINE overlap_ab(la_max, la_min, npgfa, rpgfa, zeta, &
     678    11339951 :                          lb_max, lb_min, npgfb, rpgfb, zetb, &
     679    11339951 :                          rab, sab, dab, ddab)
     680             :       INTEGER, INTENT(IN)                                :: la_max, la_min, npgfa
     681             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: rpgfa, zeta
     682             :       INTEGER, INTENT(IN)                                :: lb_max, lb_min, npgfb
     683             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: rpgfb, zetb
     684             :       REAL(KIND=dp), DIMENSION(3), INTENT(IN)            :: rab
     685             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(INOUT), &
     686             :          OPTIONAL                                        :: sab
     687             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(INOUT), &
     688             :          OPTIONAL                                        :: dab, ddab
     689             : 
     690             :       INTEGER                                            :: ax, ay, az, bx, by, bz, coa, cob, ia, &
     691             :                                                             ib, ipgf, jpgf, la, lb, ldrr, lma, &
     692             :                                                             lmb, ma, mb, na, nb, ofa, ofb
     693             :       REAL(KIND=dp)                                      :: a, ambm, ambp, apbm, apbp, b, dumx, &
     694             :                                                             dumy, dumz, f0, rab2, tab, xhi, zet
     695    11339951 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :)     :: rr
     696             :       REAL(KIND=dp), DIMENSION(3)                        :: rap, rbp
     697             : 
     698             :       ! Distance of the centers a and b
     699             : 
     700    11339951 :       rab2 = rab(1)*rab(1) + rab(2)*rab(2) + rab(3)*rab(3)
     701    11339951 :       tab = SQRT(rab2)
     702             : 
     703             :       ! Maximum l for auxiliary integrals
     704    11339951 :       IF (PRESENT(sab)) THEN
     705    11204921 :          lma = la_max
     706    11204921 :          lmb = lb_max
     707             :       END IF
     708    11339951 :       IF (PRESENT(dab)) THEN
     709     2915369 :          lma = la_max + 1
     710     2915369 :          lmb = lb_max
     711             :       END IF
     712    11339951 :       IF (PRESENT(ddab)) THEN
     713       13795 :          lma = la_max + 1
     714       13795 :          lmb = lb_max + 1
     715             :       END IF
     716    11339951 :       ldrr = MAX(lma, lmb) + 1
     717             : 
     718             :       ! Allocate space for auxiliary integrals
     719    56699755 :       ALLOCATE (rr(0:ldrr - 1, 0:ldrr - 1, 3))
     720             : 
     721             :       ! Number of integrals, check size of arrays
     722    11339951 :       ofa = ncoset(la_min - 1)
     723    11339951 :       ofb = ncoset(lb_min - 1)
     724    11339951 :       na = ncoset(la_max) - ofa
     725    11339951 :       nb = ncoset(lb_max) - ofb
     726    11339951 :       IF (PRESENT(sab)) THEN
     727    11204921 :          CPASSERT((SIZE(sab, 1) >= na*npgfa))
     728    11204921 :          CPASSERT((SIZE(sab, 2) >= nb*npgfb))
     729             :       END IF
     730    11339951 :       IF (PRESENT(dab)) THEN
     731     2915369 :          CPASSERT((SIZE(dab, 1) >= na*npgfa))
     732     2915369 :          CPASSERT((SIZE(dab, 2) >= nb*npgfb))
     733     2915369 :          CPASSERT((SIZE(dab, 3) >= 3))
     734             :       END IF
     735    11339951 :       IF (PRESENT(ddab)) THEN
     736       13795 :          CPASSERT((SIZE(ddab, 1) >= na*npgfa))
     737       13795 :          CPASSERT((SIZE(ddab, 2) >= nb*npgfb))
     738       13795 :          CPASSERT((SIZE(ddab, 3) >= 6))
     739             :       END IF
     740             : 
     741             :       ! Loops over all pairs of primitive Gaussian-type functions
     742    11339951 :       ma = 0
     743    70279147 :       DO ipgf = 1, npgfa
     744    58939196 :          mb = 0
     745   422583035 :          DO jpgf = 1, npgfb
     746             :             ! Distance Screening
     747   363643839 :             IF (rpgfa(ipgf) + rpgfb(jpgf) < tab) THEN
     748  2718013570 :                IF (PRESENT(sab)) sab(ma + 1:ma + na, mb + 1:mb + nb) = 0.0_dp
     749  1942968208 :                IF (PRESENT(dab)) dab(ma + 1:ma + na, mb + 1:mb + nb, 1:3) = 0.0_dp
     750   286862497 :                IF (PRESENT(ddab)) ddab(ma + 1:ma + na, mb + 1:mb + nb, 1:6) = 0.0_dp
     751   280215265 :                mb = mb + nb
     752   280215265 :                CYCLE
     753             :             END IF
     754             : 
     755             :             ! Calculate some prefactors
     756    83428574 :             a = zeta(ipgf)
     757    83428574 :             b = zetb(jpgf)
     758    83428574 :             zet = a + b
     759    83428574 :             xhi = a*b/zet
     760   333714296 :             rap = b*rab/zet
     761   333714296 :             rbp = -a*rab/zet
     762             : 
     763             :             ! [s|s] integral
     764    83428574 :             f0 = (pi/zet)**(1.5_dp)*EXP(-xhi*rab2)
     765             : 
     766             :             ! Calculate the recurrence relation
     767    83428574 :             CALL os_rr_ovlp(rap, lma, rbp, lmb, zet, ldrr, rr)
     768             : 
     769   174045660 :             DO lb = lb_min, lb_max
     770   311335884 :             DO bx = 0, lb
     771   422821535 :             DO by = 0, lb - bx
     772   194914225 :                bz = lb - bx - by
     773   194914225 :                cob = coset(bx, by, bz) - ofb
     774   194914225 :                ib = mb + cob
     775   565379384 :                DO la = la_min, la_max
     776   823474773 :                DO ax = 0, la
     777  1233571653 :                DO ay = 0, la - ax
     778   605011105 :                   az = la - ax - ay
     779   605011105 :                   coa = coset(ax, ay, az) - ofa
     780   605011105 :                   ia = ma + coa
     781             :                   ! integrals
     782   605011105 :                   IF (PRESENT(sab)) THEN
     783   604146719 :                      sab(ia, ib) = f0*rr(ax, bx, 1)*rr(ay, by, 2)*rr(az, bz, 3)
     784             :                   END IF
     785             :                   ! first derivatives
     786   605011105 :                   IF (PRESENT(dab)) THEN
     787             :                      ! (da|b) = 2*a*(a+1|b) - N(a)*(a-1|b)
     788             :                      ! dx
     789   121696377 :                      dumx = 2.0_dp*a*rr(ax + 1, bx, 1)
     790   121696377 :                      IF (ax > 0) dumx = dumx - REAL(ax, dp)*rr(ax - 1, bx, 1)
     791   121696377 :                      dab(ia, ib, 1) = f0*dumx*rr(ay, by, 2)*rr(az, bz, 3)
     792             :                      ! dy
     793   121696377 :                      dumy = 2.0_dp*a*rr(ay + 1, by, 2)
     794   121696377 :                      IF (ay > 0) dumy = dumy - REAL(ay, dp)*rr(ay - 1, by, 2)
     795   121696377 :                      dab(ia, ib, 2) = f0*rr(ax, bx, 1)*dumy*rr(az, bz, 3)
     796             :                      ! dz
     797   121696377 :                      dumz = 2.0_dp*a*rr(az + 1, bz, 3)
     798   121696377 :                      IF (az > 0) dumz = dumz - REAL(az, dp)*rr(az - 1, bz, 3)
     799   121696377 :                      dab(ia, ib, 3) = f0*rr(ax, bx, 1)*rr(ay, by, 2)*dumz
     800             :                   END IF
     801             :                   ! 2nd derivatives
     802  1000396718 :                   IF (PRESENT(ddab)) THEN
     803             :                      ! (dda|b) = -4*a*b*(a+1|b+1) + 2*a*N(b)*(a+1|b-1)
     804             :                      !           + 2*b*N(a)*(a-1|b+1) - N(a)*N(b)*(a-1|b-1)
     805             :                      ! dx dx
     806      247811 :                      apbp = f0*rr(ax + 1, bx + 1, 1)*rr(ay, by, 2)*rr(az, bz, 3)
     807      247811 :                      IF (bx > 0) THEN
     808       62209 :                         apbm = f0*rr(ax + 1, bx - 1, 1)*rr(ay, by, 2)*rr(az, bz, 3)
     809             :                      ELSE
     810             :                         apbm = 0.0_dp
     811             :                      END IF
     812      247811 :                      IF (ax > 0) THEN
     813       62187 :                         ambp = f0*rr(ax - 1, bx + 1, 1)*rr(ay, by, 2)*rr(az, bz, 3)
     814             :                      ELSE
     815             :                         ambp = 0.0_dp
     816             :                      END IF
     817      247811 :                      IF (ax > 0 .AND. bx > 0) THEN
     818       17497 :                         ambm = f0*rr(ax - 1, bx - 1, 1)*rr(ay, by, 2)*rr(az, bz, 3)
     819             :                      ELSE
     820             :                         ambm = 0.0_dp
     821             :                      END IF
     822             :                      ddab(ia, ib, 1) = -4.0_dp*a*b*apbm + 2.0_dp*a*REAL(bx, dp)*apbm &
     823      247811 :                                        + 2.0_dp*b*REAL(ax, dp)*ambp - REAL(ax, dp)*REAL(bx, dp)*ambm
     824             :                      ! dx dy
     825      247811 :                      apbp = f0*rr(ax + 1, bx, 1)*rr(ay, by + 1, 2)*rr(az, bz, 3)
     826      247811 :                      IF (by > 0) THEN
     827       62209 :                         apbm = f0*rr(ax + 1, bx, 1)*rr(ay, by - 1, 2)*rr(az, bz, 3)
     828             :                      ELSE
     829             :                         apbm = 0.0_dp
     830             :                      END IF
     831      247811 :                      IF (ax > 0) THEN
     832       62187 :                         ambp = f0*rr(ax - 1, bx, 1)*rr(ay, by + 1, 2)*rr(az, bz, 3)
     833             :                      ELSE
     834             :                         ambp = 0.0_dp
     835             :                      END IF
     836      247811 :                      IF (ax > 0 .AND. by > 0) THEN
     837       17497 :                         ambm = f0*rr(ax - 1, bx, 1)*rr(ay, by - 1, 2)*rr(az, bz, 3)
     838             :                      ELSE
     839             :                         ambm = 0.0_dp
     840             :                      END IF
     841             :                      ddab(ia, ib, 2) = -4.0_dp*a*b*apbm + 2.0_dp*a*REAL(by, dp)*apbm &
     842      247811 :                                        + 2.0_dp*b*REAL(ax, dp)*ambp - REAL(ax, dp)*REAL(by, dp)*ambm
     843             :                      ! dx dz
     844      247811 :                      apbp = f0*rr(ax + 1, bx, 1)*rr(ay, by, 2)*rr(az, bz + 1, 3)
     845      247811 :                      IF (bz > 0) THEN
     846       62209 :                         apbm = f0*rr(ax + 1, bx, 1)*rr(ay, by, 2)*rr(az, bz - 1, 3)
     847             :                      ELSE
     848             :                         apbm = 0.0_dp
     849             :                      END IF
     850      247811 :                      IF (ax > 0) THEN
     851       62187 :                         ambp = f0*rr(ax - 1, bx, 1)*rr(ay, by, 2)*rr(az, bz + 1, 3)
     852             :                      ELSE
     853             :                         ambp = 0.0_dp
     854             :                      END IF
     855      247811 :                      IF (ax > 0 .AND. bz > 0) THEN
     856       17497 :                         ambm = f0*rr(ax - 1, bx, 1)*rr(ay, by, 2)*rr(az, bz - 1, 3)
     857             :                      ELSE
     858             :                         ambm = 0.0_dp
     859             :                      END IF
     860             :                      ddab(ia, ib, 3) = -4.0_dp*a*b*apbm + 2.0_dp*a*REAL(bz, dp)*apbm &
     861      247811 :                                        + 2.0_dp*b*REAL(ax, dp)*ambp - REAL(ax, dp)*REAL(bz, dp)*ambm
     862             :                      ! dy dy
     863      247811 :                      apbp = f0*rr(ax, bx, 1)*rr(ay + 1, by + 1, 2)*rr(az, bz, 3)
     864      247811 :                      IF (by > 0) THEN
     865       62209 :                         apbm = f0*rr(ax, bx, 1)*rr(ay + 1, by - 1, 2)*rr(az, bz, 3)
     866             :                      ELSE
     867             :                         apbm = 0.0_dp
     868             :                      END IF
     869      247811 :                      IF (ay > 0) THEN
     870       62187 :                         ambp = f0*rr(ax, bx, 1)*rr(ay - 1, by + 1, 2)*rr(az, bz, 3)
     871             :                      ELSE
     872             :                         ambp = 0.0_dp
     873             :                      END IF
     874      247811 :                      IF (ay > 0 .AND. by > 0) THEN
     875       17497 :                         ambm = f0*rr(ax, bx, 1)*rr(ay - 1, by - 1, 2)*rr(az, bz, 3)
     876             :                      ELSE
     877             :                         ambm = 0.0_dp
     878             :                      END IF
     879             :                      ddab(ia, ib, 4) = -4.0_dp*a*b*apbm + 2.0_dp*a*REAL(by, dp)*apbm &
     880      247811 :                                        + 2.0_dp*b*REAL(ay, dp)*ambp - REAL(ay, dp)*REAL(by, dp)*ambm
     881             :                      ! dy dz
     882      247811 :                      apbp = f0*rr(ax, bx, 1)*rr(ay + 1, by, 2)*rr(az, bz + 1, 3)
     883      247811 :                      IF (bz > 0) THEN
     884       62209 :                         apbm = f0*rr(ax, bx, 1)*rr(ay + 1, by, 2)*rr(az, bz - 1, 3)
     885             :                      ELSE
     886             :                         apbm = 0.0_dp
     887             :                      END IF
     888      247811 :                      IF (ay > 0) THEN
     889       62187 :                         ambp = f0*rr(ax, bx, 1)*rr(ay - 1, by, 2)*rr(az, bz + 1, 3)
     890             :                      ELSE
     891             :                         ambp = 0.0_dp
     892             :                      END IF
     893      247811 :                      IF (ay > 0 .AND. bz > 0) THEN
     894       17497 :                         ambm = f0*rr(ax, bx, 1)*rr(ay - 1, by, 2)*rr(az, bz - 1, 3)
     895             :                      ELSE
     896             :                         ambm = 0.0_dp
     897             :                      END IF
     898             :                      ddab(ia, ib, 5) = -4.0_dp*a*b*apbm + 2.0_dp*a*REAL(bz, dp)*apbm &
     899      247811 :                                        + 2.0_dp*b*REAL(ay, dp)*ambp - REAL(ay, dp)*REAL(bz, dp)*ambm
     900             :                      ! dz dz
     901      247811 :                      apbp = f0*rr(ax, bx, 1)*rr(ay, by, 2)*rr(az + 1, bz + 1, 3)
     902      247811 :                      IF (bz > 0) THEN
     903       62209 :                         apbm = f0*rr(ax, bx, 1)*rr(ay, by, 2)*rr(az + 1, bz - 1, 3)
     904             :                      ELSE
     905             :                         apbm = 0.0_dp
     906             :                      END IF
     907      247811 :                      IF (az > 0) THEN
     908       62187 :                         ambp = f0*rr(ax, bx, 1)*rr(ay, by, 2)*rr(az - 1, bz + 1, 3)
     909             :                      ELSE
     910             :                         ambp = 0.0_dp
     911             :                      END IF
     912      247811 :                      IF (az > 0 .AND. bz > 0) THEN
     913       17497 :                         ambm = f0*rr(ax, bx, 1)*rr(ay, by, 2)*rr(az - 1, bz - 1, 3)
     914             :                      ELSE
     915             :                         ambm = 0.0_dp
     916             :                      END IF
     917             :                      ddab(ia, ib, 6) = -4.0_dp*a*b*apbm + 2.0_dp*a*REAL(bz, dp)*apbm &
     918      247811 :                                        + 2.0_dp*b*REAL(az, dp)*ambp - REAL(az, dp)*REAL(bz, dp)*ambm
     919             :                   END IF
     920             :                   !
     921             :                END DO
     922             :                END DO
     923             :                END DO !la
     924             :             END DO
     925             :             END DO
     926             :             END DO !lb
     927             : 
     928   142367770 :             mb = mb + nb
     929             :          END DO
     930    70279147 :          ma = ma + na
     931             :       END DO
     932             : 
     933    11339951 :       DEALLOCATE (rr)
     934             : 
     935    11339951 :    END SUBROUTINE overlap_ab
     936             : 
     937             : ! **************************************************************************************************
     938             : !> \brief   Calculation of the two-center overlap integrals [aa|b] over
     939             : !>          Cartesian Gaussian-type functions.
     940             : !> \param la1_max    Max L on center A (basis 1)
     941             : !> \param la1_min    Min L on center A (basis 1)
     942             : !> \param npgfa1     Number of primitives on center A (basis 1)
     943             : !> \param rpgfa1     Range of functions on A, used for screening (basis 1)
     944             : !> \param zeta1      Exponents on center A (basis 1)
     945             : !> \param la2_max    Max L on center A (basis 2)
     946             : !> \param la2_min    Min L on center A (basis 2)
     947             : !> \param npgfa2     Number of primitives on center A (basis 2)
     948             : !> \param rpgfa2     Range of functions on A, used for screening (basis 2)
     949             : !> \param zeta2      Exponents on center A (basis 2)
     950             : !> \param lb_max     Max L on center B
     951             : !> \param lb_min     Min L on center B
     952             : !> \param npgfb      Number of primitives on center B
     953             : !> \param rpgfb      Range of functions on B, used for screening
     954             : !> \param zetb       Exponents on center B
     955             : !> \param rab        Distance vector A-B
     956             : !> \param saab       Final overlap integrals
     957             : !> \param daab       First derivative overlap integrals
     958             : !> \param saba       Final overlap integrals; different order
     959             : !> \param daba       First derivative overlap integrals; different order
     960             : !> \date    01.07.2014
     961             : !> \author  JGH
     962             : ! **************************************************************************************************
     963       11331 :    SUBROUTINE overlap_aab(la1_max, la1_min, npgfa1, rpgfa1, zeta1, &
     964       22662 :                           la2_max, la2_min, npgfa2, rpgfa2, zeta2, &
     965       22662 :                           lb_max, lb_min, npgfb, rpgfb, zetb, &
     966       11331 :                           rab, saab, daab, saba, daba)
     967             :       INTEGER, INTENT(IN)                                :: la1_max, la1_min, npgfa1
     968             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: rpgfa1, zeta1
     969             :       INTEGER, INTENT(IN)                                :: la2_max, la2_min, npgfa2
     970             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: rpgfa2, zeta2
     971             :       INTEGER, INTENT(IN)                                :: lb_max, lb_min, npgfb
     972             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: rpgfb, zetb
     973             :       REAL(KIND=dp), DIMENSION(3), INTENT(IN)            :: rab
     974             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(INOUT), &
     975             :          OPTIONAL                                        :: saab
     976             :       REAL(KIND=dp), DIMENSION(:, :, :, :), &
     977             :          INTENT(INOUT), OPTIONAL                         :: daab
     978             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(INOUT), &
     979             :          OPTIONAL                                        :: saba
     980             :       REAL(KIND=dp), DIMENSION(:, :, :, :), &
     981             :          INTENT(INOUT), OPTIONAL                         :: daba
     982             : 
     983             :       INTEGER :: ax, ax1, ax2, ay, ay1, ay2, az, az1, az2, bx, by, bz, coa1, coa2, cob, i1pgf, &
     984             :          i2pgf, ia1, ia2, ib, jpgf, la1, la2, lb, ldrr, lma, lmb, ma1, ma2, mb, na1, na2, nb, &
     985             :          ofa1, ofa2, ofb
     986             :       REAL(KIND=dp)                                      :: a, b, dumx, dumy, dumz, f0, rab2, rpgfa, &
     987             :                                                             tab, xhi, zet
     988       11331 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :)     :: rr
     989             :       REAL(KIND=dp), DIMENSION(3)                        :: rap, rbp
     990             : 
     991             :       ! Distance of the centers a and b
     992             : 
     993       11331 :       rab2 = rab(1)*rab(1) + rab(2)*rab(2) + rab(3)*rab(3)
     994       11331 :       tab = SQRT(rab2)
     995             : 
     996             :       ! Maximum l for auxiliary integrals
     997       11331 :       IF (PRESENT(saab) .OR. PRESENT(saba)) THEN
     998       11203 :          lma = la1_max + la2_max
     999       11203 :          lmb = lb_max
    1000             :       END IF
    1001       11331 :       IF (PRESENT(daab) .OR. PRESENT(daba)) THEN
    1002        3525 :          lma = la1_max + la2_max + 1
    1003        3525 :          lmb = lb_max
    1004             :       END IF
    1005       11331 :       ldrr = MAX(lma, lmb) + 1
    1006             : 
    1007             :       ! Allocate space for auxiliary integrals
    1008       56655 :       ALLOCATE (rr(0:ldrr - 1, 0:ldrr - 1, 3))
    1009             : 
    1010             :       ! Number of integrals, check size of arrays
    1011       11331 :       ofa1 = ncoset(la1_min - 1)
    1012       11331 :       ofa2 = ncoset(la2_min - 1)
    1013       11331 :       ofb = ncoset(lb_min - 1)
    1014       11331 :       na1 = ncoset(la1_max) - ofa1
    1015       11331 :       na2 = ncoset(la2_max) - ofa2
    1016       11331 :       nb = ncoset(lb_max) - ofb
    1017       11331 :       IF (PRESENT(saab)) THEN
    1018        3206 :          CPASSERT((SIZE(saab, 1) >= na1*npgfa1))
    1019        3206 :          CPASSERT((SIZE(saab, 2) >= na2*npgfa2))
    1020        3206 :          CPASSERT((SIZE(saab, 3) >= nb*npgfb))
    1021             :       END IF
    1022       11331 :       IF (PRESENT(daab)) THEN
    1023         128 :          CPASSERT((SIZE(daab, 1) >= na1*npgfa1))
    1024         128 :          CPASSERT((SIZE(daab, 2) >= na2*npgfa2))
    1025         128 :          CPASSERT((SIZE(daab, 3) >= nb*npgfb))
    1026         128 :          CPASSERT((SIZE(daab, 4) >= 3))
    1027             :       END IF
    1028       11331 :       IF (PRESENT(saba)) THEN
    1029        7997 :          CPASSERT((SIZE(saba, 1) >= na1*npgfa1))
    1030        7997 :          CPASSERT((SIZE(saba, 2) >= nb*npgfb))
    1031        7997 :          CPASSERT((SIZE(saba, 3) >= na2*npgfa2))
    1032             :       END IF
    1033       11331 :       IF (PRESENT(daba)) THEN
    1034        3397 :          CPASSERT((SIZE(daba, 1) >= na1*npgfa1))
    1035        3397 :          CPASSERT((SIZE(daba, 2) >= nb*npgfb))
    1036        3397 :          CPASSERT((SIZE(daba, 3) >= na2*npgfa2))
    1037        3397 :          CPASSERT((SIZE(daba, 4) >= 3))
    1038             :       END IF
    1039             : 
    1040             :       ! Loops over all primitive Gaussian-type functions
    1041       11331 :       ma1 = 0
    1042       82142 :       DO i1pgf = 1, npgfa1
    1043       70811 :          ma2 = 0
    1044      351866 :          DO i2pgf = 1, npgfa2
    1045      281055 :             rpgfa = MIN(rpgfa1(i1pgf), rpgfa2(i2pgf))
    1046      281055 :             mb = 0
    1047     1444764 :             DO jpgf = 1, npgfb
    1048             :                ! Distance Screening
    1049     1163709 :                IF (rpgfa + rpgfb(jpgf) < tab) THEN
    1050      251494 :                   IF (PRESENT(saab)) saab(ma1 + 1:ma1 + na1, ma2 + 1:ma2 + na2, mb + 1:mb + nb) = 0.0_dp
    1051      251494 :                   IF (PRESENT(daab)) daab(ma1 + 1:ma1 + na1, ma2 + 1:ma2 + na2, mb + 1:mb + nb, 1:3) = 0.0_dp
    1052    12150124 :                   IF (PRESENT(saba)) saba(ma1 + 1:ma1 + na1, mb + 1:mb + nb, ma2 + 1:ma2 + na2) = 0.0_dp
    1053    15308095 :                   IF (PRESENT(daba)) daba(ma1 + 1:ma1 + na1, mb + 1:mb + nb, ma2 + 1:ma2 + na2, 1:3) = 0.0_dp
    1054      251494 :                   mb = mb + nb
    1055      251494 :                   CYCLE
    1056             :                END IF
    1057             : 
    1058             :                ! Calculate some prefactors
    1059      912215 :                a = zeta1(i1pgf) + zeta2(i2pgf)
    1060      912215 :                b = zetb(jpgf)
    1061      912215 :                zet = a + b
    1062      912215 :                xhi = a*b/zet
    1063     3648860 :                rap = b*rab/zet
    1064     3648860 :                rbp = -a*rab/zet
    1065             : 
    1066             :                ! [ss|s] integral
    1067      912215 :                f0 = (pi/zet)**(1.5_dp)*EXP(-xhi*rab2)
    1068             : 
    1069             :                ! Calculate the recurrence relation
    1070      912215 :                CALL os_rr_ovlp(rap, lma, rbp, lmb, zet, ldrr, rr)
    1071             : 
    1072     1874255 :                DO lb = lb_min, lb_max
    1073     3399677 :                DO bx = 0, lb
    1074     4817409 :                DO by = 0, lb - bx
    1075     2329947 :                   bz = lb - bx - by
    1076     2329947 :                   cob = coset(bx, by, bz) - ofb
    1077     2329947 :                   ib = mb + cob
    1078     6743495 :                   DO la2 = la2_min, la2_max
    1079    11694698 :                   DO ax2 = 0, la2
    1080    22200024 :                   DO ay2 = 0, la2 - ax2
    1081    12835273 :                      az2 = la2 - ax2 - ay2
    1082    12835273 :                      coa2 = coset(ax2, ay2, az2) - ofa2
    1083    12835273 :                      ia2 = ma2 + coa2
    1084    36018542 :                      DO la1 = la1_min, la1_max
    1085    55660182 :                      DO ax1 = 0, la1
    1086    80322185 :                      DO ay1 = 0, la1 - ax1
    1087    37497276 :                         az1 = la1 - ax1 - ay1
    1088    37497276 :                         coa1 = coset(ax1, ay1, az1) - ofa1
    1089    37497276 :                         ia1 = ma1 + coa1
    1090             :                         ! integrals
    1091    37497276 :                         IF (PRESENT(saab)) THEN
    1092     1475300 :                            saab(ia1, ia2, ib) = f0*rr(ax1 + ax2, bx, 1)*rr(ay1 + ay2, by, 2)*rr(az1 + az2, bz, 3)
    1093             :                         END IF
    1094    37497276 :                         IF (PRESENT(saba)) THEN
    1095    35990684 :                            saba(ia1, ib, ia2) = f0*rr(ax1 + ax2, bx, 1)*rr(ay1 + ay2, by, 2)*rr(az1 + az2, bz, 3)
    1096             :                         END IF
    1097             :                         ! first derivatives
    1098    37497276 :                         IF (PRESENT(daab)) THEN
    1099       31292 :                            ax = ax1 + ax2
    1100       31292 :                            ay = ay1 + ay2
    1101       31292 :                            az = az1 + az2
    1102             :                            ! (da|b) = 2*a*(a+1|b) - N(a)*(a-1|b)
    1103             :                            ! dx
    1104       31292 :                            dumx = 2.0_dp*a*rr(ax + 1, bx, 1)
    1105       31292 :                            IF (ax > 0) dumx = dumx - REAL(ax, dp)*rr(ax - 1, bx, 1)
    1106       31292 :                            daab(ia1, ia2, ib, 1) = f0*dumx*rr(ay, by, 2)*rr(az, bz, 3)
    1107             :                            ! dy
    1108       31292 :                            dumy = 2.0_dp*a*rr(ay + 1, by, 2)
    1109       31292 :                            IF (ay > 0) dumy = dumy - REAL(ay, dp)*rr(ay - 1, by, 2)
    1110       31292 :                            daab(ia1, ia2, ib, 2) = f0*rr(ax, bx, 1)*dumy*rr(az, bz, 3)
    1111             :                            ! dz
    1112       31292 :                            dumz = 2.0_dp*a*rr(az + 1, bz, 3)
    1113       31292 :                            IF (az > 0) dumz = dumz - REAL(az, dp)*rr(az - 1, bz, 3)
    1114       31292 :                            daab(ia1, ia2, ib, 3) = f0*rr(ax, bx, 1)*rr(ay, by, 2)*dumz
    1115             :                         END IF
    1116    63615541 :                         IF (PRESENT(daba)) THEN
    1117    19832693 :                            ax = ax1 + ax2
    1118    19832693 :                            ay = ay1 + ay2
    1119    19832693 :                            az = az1 + az2
    1120             :                            ! (da|b) = 2*a*(a+1|b) - N(a)*(a-1|b)
    1121             :                            ! dx
    1122    19832693 :                            dumx = 2.0_dp*a*rr(ax + 1, bx, 1)
    1123    19832693 :                            IF (ax > 0) dumx = dumx - REAL(ax, dp)*rr(ax - 1, bx, 1)
    1124    19832693 :                            daba(ia1, ib, ia2, 1) = f0*dumx*rr(ay, by, 2)*rr(az, bz, 3)
    1125             :                            ! dy
    1126    19832693 :                            dumy = 2.0_dp*a*rr(ay + 1, by, 2)
    1127    19832693 :                            IF (ay > 0) dumy = dumy - REAL(ay, dp)*rr(ay - 1, by, 2)
    1128    19832693 :                            daba(ia1, ib, ia2, 2) = f0*rr(ax, bx, 1)*dumy*rr(az, bz, 3)
    1129             :                            ! dz
    1130    19832693 :                            dumz = 2.0_dp*a*rr(az + 1, bz, 3)
    1131    19832693 :                            IF (az > 0) dumz = dumz - REAL(az, dp)*rr(az - 1, bz, 3)
    1132    19832693 :                            daba(ia1, ib, ia2, 3) = f0*rr(ax, bx, 1)*rr(ay, by, 2)*dumz
    1133             :                         END IF
    1134             :                         !
    1135             :                      END DO
    1136             :                      END DO
    1137             :                      END DO !la1
    1138             :                   END DO
    1139             :                   END DO
    1140             :                   END DO !la2
    1141             :                END DO
    1142             :                END DO
    1143             :                END DO !lb
    1144             : 
    1145     1193270 :                mb = mb + nb
    1146             :             END DO
    1147      351866 :             ma2 = ma2 + na2
    1148             :          END DO
    1149       82142 :          ma1 = ma1 + na1
    1150             :       END DO
    1151             : 
    1152       11331 :       DEALLOCATE (rr)
    1153             : 
    1154       11331 :    END SUBROUTINE overlap_aab
    1155             : 
    1156             : ! **************************************************************************************************
    1157             : !> \brief   Calculation of the two-center overlap integrals [a|bb] over
    1158             : !>          Cartesian Gaussian-type functions.
    1159             : !> \param la_max     Max L on center A
    1160             : !> \param la_min     Min L on center A
    1161             : !> \param npgfa      Number of primitives on center A
    1162             : !> \param rpgfa      Range of functions on A, used for screening
    1163             : !> \param zeta       Exponents on center A
    1164             : !> \param lb1_max    Max L on center B (basis 1)
    1165             : !> \param lb1_min    Min L on center B (basis 1)
    1166             : !> \param npgfb1     Number of primitives on center B (basis 1)
    1167             : !> \param rpgfb1     Range of functions on B, used for screening (basis 1)
    1168             : !> \param zetb1      Exponents on center B (basis 1)
    1169             : !> \param lb2_max    Max L on center B (basis 2)
    1170             : !> \param lb2_min    Min L on center B (basis 2)
    1171             : !> \param npgfb2     Number of primitives on center B (basis 2)
    1172             : !> \param rpgfb2     Range of functions on B, used for screening (basis 2)
    1173             : !> \param zetb2      Exponents on center B (basis 2)
    1174             : !> \param rab        Distance vector A-B
    1175             : !> \param sabb       Final overlap integrals
    1176             : !> \param dabb       First derivative overlap integrals
    1177             : !> \date    01.07.2014
    1178             : !> \author  JGH
    1179             : ! **************************************************************************************************
    1180        7997 :    SUBROUTINE overlap_abb(la_max, la_min, npgfa, rpgfa, zeta, &
    1181       15994 :                           lb1_max, lb1_min, npgfb1, rpgfb1, zetb1, &
    1182       15994 :                           lb2_max, lb2_min, npgfb2, rpgfb2, zetb2, &
    1183        7997 :                           rab, sabb, dabb)
    1184             :       INTEGER, INTENT(IN)                                :: la_max, la_min, npgfa
    1185             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: rpgfa, zeta
    1186             :       INTEGER, INTENT(IN)                                :: lb1_max, lb1_min, npgfb1
    1187             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: rpgfb1, zetb1
    1188             :       INTEGER, INTENT(IN)                                :: lb2_max, lb2_min, npgfb2
    1189             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: rpgfb2, zetb2
    1190             :       REAL(KIND=dp), DIMENSION(3), INTENT(IN)            :: rab
    1191             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(INOUT), &
    1192             :          OPTIONAL                                        :: sabb
    1193             :       REAL(KIND=dp), DIMENSION(:, :, :, :), &
    1194             :          INTENT(INOUT), OPTIONAL                         :: dabb
    1195             : 
    1196             :       INTEGER :: ax, ay, az, bx, bx1, bx2, by, by1, by2, bz, bz1, bz2, coa, cob1, cob2, ia, ib1, &
    1197             :          ib2, ipgf, j1pgf, j2pgf, la, lb1, lb2, ldrr, lma, lmb, ma, mb1, mb2, na, nb1, nb2, ofa, &
    1198             :          ofb1, ofb2
    1199             :       REAL(KIND=dp)                                      :: a, b, dumx, dumy, dumz, f0, rab2, rpgfb, &
    1200             :                                                             tab, xhi, zet
    1201        7997 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :)     :: rr
    1202             :       REAL(KIND=dp), DIMENSION(3)                        :: rap, rbp
    1203             : 
    1204             :       ! Distance of the centers a and b
    1205             : 
    1206        7997 :       rab2 = rab(1)*rab(1) + rab(2)*rab(2) + rab(3)*rab(3)
    1207        7997 :       tab = SQRT(rab2)
    1208             : 
    1209             :       ! Maximum l for auxiliary integrals
    1210        7997 :       IF (PRESENT(sabb)) THEN
    1211        7997 :          lma = la_max
    1212        7997 :          lmb = lb1_max + lb2_max
    1213             :       END IF
    1214        7997 :       IF (PRESENT(dabb)) THEN
    1215        3397 :          lma = la_max + 1
    1216        3397 :          lmb = lb1_max + lb2_max
    1217             :       END IF
    1218        7997 :       ldrr = MAX(lma, lmb) + 1
    1219             : 
    1220             :       ! Allocate space for auxiliary integrals
    1221       39985 :       ALLOCATE (rr(0:ldrr - 1, 0:ldrr - 1, 3))
    1222             : 
    1223             :       ! Number of integrals, check size of arrays
    1224        7997 :       ofa = ncoset(la_min - 1)
    1225        7997 :       ofb1 = ncoset(lb1_min - 1)
    1226        7997 :       ofb2 = ncoset(lb2_min - 1)
    1227        7997 :       na = ncoset(la_max) - ofa
    1228        7997 :       nb1 = ncoset(lb1_max) - ofb1
    1229        7997 :       nb2 = ncoset(lb2_max) - ofb2
    1230        7997 :       IF (PRESENT(sabb)) THEN
    1231        7997 :          CPASSERT((SIZE(sabb, 1) >= na*npgfa))
    1232        7997 :          CPASSERT((SIZE(sabb, 2) >= nb1*npgfb1))
    1233        7997 :          CPASSERT((SIZE(sabb, 3) >= nb2*npgfb2))
    1234             :       END IF
    1235        7997 :       IF (PRESENT(dabb)) THEN
    1236        3397 :          CPASSERT((SIZE(dabb, 1) >= na*npgfa))
    1237        3397 :          CPASSERT((SIZE(dabb, 2) >= nb1*npgfb1))
    1238        3397 :          CPASSERT((SIZE(dabb, 3) >= nb2*npgfb2))
    1239        3397 :          CPASSERT((SIZE(dabb, 4) >= 3))
    1240             :       END IF
    1241             : 
    1242             :       ! Loops over all pairs of primitive Gaussian-type functions
    1243        7997 :       ma = 0
    1244       60026 :       DO ipgf = 1, npgfa
    1245       52029 :          mb1 = 0
    1246      392532 :          DO j1pgf = 1, npgfb1
    1247      340503 :             mb2 = 0
    1248     1393966 :             DO j2pgf = 1, npgfb2
    1249             :                ! Distance Screening
    1250     1053463 :                rpgfb = MIN(rpgfb1(j1pgf), rpgfb2(j2pgf))
    1251     1053463 :                IF (rpgfa(ipgf) + rpgfb < tab) THEN
    1252    11929000 :                   IF (PRESENT(sabb)) sabb(ma + 1:ma + na, mb1 + 1:mb1 + nb1, mb2 + 1:mb2 + nb2) = 0.0_dp
    1253    15070032 :                   IF (PRESENT(dabb)) dabb(ma + 1:ma + na, mb1 + 1:mb1 + nb1, mb2 + 1:mb2 + nb2, 1:3) = 0.0_dp
    1254      253218 :                   mb2 = mb2 + nb2
    1255      253218 :                   CYCLE
    1256             :                END IF
    1257             : 
    1258             :                ! Calculate some prefactors
    1259      800245 :                a = zeta(ipgf)
    1260      800245 :                b = zetb1(j1pgf) + zetb2(j2pgf)
    1261      800245 :                zet = a + b
    1262      800245 :                xhi = a*b/zet
    1263     3200980 :                rap = b*rab/zet
    1264     3200980 :                rbp = -a*rab/zet
    1265             : 
    1266             :                ! [s|s] integral
    1267      800245 :                f0 = (pi/zet)**(1.5_dp)*EXP(-xhi*rab2)
    1268             : 
    1269             :                ! Calculate the recurrence relation
    1270      800245 :                CALL os_rr_ovlp(rap, lma, rbp, lmb, zet, ldrr, rr)
    1271             : 
    1272     1706310 :                DO lb2 = lb2_min, lb2_max
    1273     3765333 :                DO bx2 = 0, lb2
    1274     7068414 :                DO by2 = 0, lb2 - bx2
    1275     4103326 :                   bz2 = lb2 - bx2 - by2
    1276     4103326 :                   cob2 = coset(bx2, by2, bz2) - ofb2
    1277     4103326 :                   ib2 = mb2 + cob2
    1278    11070029 :                   DO lb1 = lb1_min, lb1_max
    1279    17121130 :                   DO bx1 = 0, lb1
    1280    25341538 :                   DO by1 = 0, lb1 - bx1
    1281    12323734 :                      bz1 = lb1 - bx1 - by1
    1282    12323734 :                      cob1 = coset(bx1, by1, bz1) - ofb1
    1283    12323734 :                      ib1 = mb1 + cob1
    1284    36559042 :                      DO la = la_min, la_max
    1285    53606848 :                      DO ax = 0, la
    1286    77262690 :                      DO ay = 0, la - ax
    1287    35979576 :                         az = la - ax - ay
    1288    35979576 :                         coa = coset(ax, ay, az) - ofa
    1289    35979576 :                         ia = ma + coa
    1290             :                         ! integrals
    1291    35979576 :                         IF (PRESENT(sabb)) THEN
    1292    35979576 :                            sabb(ia, ib1, ib2) = f0*rr(ax, bx1 + bx2, 1)*rr(ay, by1 + by2, 2)*rr(az, bz1 + bz2, 3)
    1293             :                         END IF
    1294             :                         ! first derivatives
    1295    61137506 :                         IF (PRESENT(dabb)) THEN
    1296    19827139 :                            bx = bx1 + bx2
    1297    19827139 :                            by = by1 + by2
    1298    19827139 :                            bz = bz1 + bz2
    1299             :                            ! (da|b) = 2*a*(a+1|b) - N(a)*(a-1|b)
    1300             :                            ! dx
    1301    19827139 :                            dumx = 2.0_dp*a*rr(ax + 1, bx, 1)
    1302    19827139 :                            IF (ax > 0) dumx = dumx - REAL(ax, dp)*rr(ax - 1, bx, 1)
    1303    19827139 :                            dabb(ia, ib1, ib2, 1) = f0*dumx*rr(ay, by, 2)*rr(az, bz, 3)
    1304             :                            ! dy
    1305    19827139 :                            dumy = 2.0_dp*a*rr(ay + 1, by, 2)
    1306    19827139 :                            IF (ay > 0) dumy = dumy - REAL(ay, dp)*rr(ay - 1, by, 2)
    1307    19827139 :                            dabb(ia, ib1, ib2, 2) = f0*rr(ax, bx, 1)*dumy*rr(az, bz, 3)
    1308             :                            ! dz
    1309    19827139 :                            dumz = 2.0_dp*a*rr(az + 1, bz, 3)
    1310    19827139 :                            IF (az > 0) dumz = dumz - REAL(az, dp)*rr(az - 1, bz, 3)
    1311    19827139 :                            dabb(ia, ib1, ib2, 3) = f0*rr(ax, bx, 1)*rr(ay, by, 2)*dumz
    1312             :                         END IF
    1313             :                         !
    1314             :                      END DO
    1315             :                      END DO
    1316             :                      END DO !la
    1317             :                   END DO
    1318             :                   END DO
    1319             :                   END DO !lb1
    1320             :                END DO
    1321             :                END DO
    1322             :                END DO !lb2
    1323             : 
    1324     1140748 :                mb2 = mb2 + nb2
    1325             :             END DO
    1326      392532 :             mb1 = mb1 + nb1
    1327             :          END DO
    1328       60026 :          ma = ma + na
    1329             :       END DO
    1330             : 
    1331        7997 :       DEALLOCATE (rr)
    1332             : 
    1333        7997 :    END SUBROUTINE overlap_abb
    1334             : 
    1335             : ! **************************************************************************************************
    1336             : !> \brief   Calculation of the two-center overlap integrals [aaa|b] over
    1337             : !>          Cartesian Gaussian-type functions.
    1338             : !> \param la1_max    Max L on center A (basis 1)
    1339             : !> \param la1_min    Min L on center A (basis 1)
    1340             : !> \param npgfa1     Number of primitives on center A (basis 1)
    1341             : !> \param rpgfa1     Range of functions on A, used for screening (basis 1)
    1342             : !> \param zeta1      Exponents on center A (basis 1)
    1343             : !> \param la2_max    Max L on center A (basis 2)
    1344             : !> \param la2_min    Min L on center A (basis 2)
    1345             : !> \param npgfa2     Number of primitives on center A (basis 2)
    1346             : !> \param rpgfa2     Range of functions on A, used for screening (basis 2)
    1347             : !> \param zeta2      Exponents on center A (basis 2)
    1348             : !> \param la3_max    Max L on center A (basis 3)
    1349             : !> \param la3_min    Min L on center A (basis 3)
    1350             : !> \param npgfa3     Number of primitives on center A (basis 3)
    1351             : !> \param rpgfa3     Range of functions on A, used for screening (basis 3)
    1352             : !> \param zeta3      Exponents on center A (basis 3)
    1353             : !> \param lb_max     Max L on center B
    1354             : !> \param lb_min     Min L on center B
    1355             : !> \param npgfb      Number of primitives on center B
    1356             : !> \param rpgfb      Range of functions on B, used for screening
    1357             : !> \param zetb       Exponents on center B
    1358             : !> \param rab        Distance vector A-B
    1359             : !> \param saaab      Final overlap integrals
    1360             : !> \param daaab      First derivative overlap integrals
    1361             : !> \date    01.07.2014
    1362             : !> \author  JGH
    1363             : ! **************************************************************************************************
    1364           0 :    SUBROUTINE overlap_aaab(la1_max, la1_min, npgfa1, rpgfa1, zeta1, &
    1365           0 :                            la2_max, la2_min, npgfa2, rpgfa2, zeta2, &
    1366           0 :                            la3_max, la3_min, npgfa3, rpgfa3, zeta3, &
    1367           0 :                            lb_max, lb_min, npgfb, rpgfb, zetb, &
    1368           0 :                            rab, saaab, daaab)
    1369             :       INTEGER, INTENT(IN)                                :: la1_max, la1_min, npgfa1
    1370             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: rpgfa1, zeta1
    1371             :       INTEGER, INTENT(IN)                                :: la2_max, la2_min, npgfa2
    1372             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: rpgfa2, zeta2
    1373             :       INTEGER, INTENT(IN)                                :: la3_max, la3_min, npgfa3
    1374             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: rpgfa3, zeta3
    1375             :       INTEGER, INTENT(IN)                                :: lb_max, lb_min, npgfb
    1376             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: rpgfb, zetb
    1377             :       REAL(KIND=dp), DIMENSION(3), INTENT(IN)            :: rab
    1378             :       REAL(KIND=dp), DIMENSION(:, :, :, :), &
    1379             :          INTENT(INOUT), OPTIONAL                         :: saaab
    1380             :       REAL(KIND=dp), DIMENSION(:, :, :, :, :), &
    1381             :          INTENT(INOUT), OPTIONAL                         :: daaab
    1382             : 
    1383             :       INTEGER :: ax, ax1, ax2, ax3, ay, ay1, ay2, ay3, az, az1, az2, az3, bx, by, bz, coa1, coa2, &
    1384             :          coa3, cob, i1pgf, i2pgf, i3pgf, ia1, ia2, ia3, ib, jpgf, la1, la2, la3, lb, ldrr, lma, &
    1385             :          lmb, ma1, ma2, ma3, mb, na1, na2, na3, nb, ofa1, ofa2, ofa3, ofb
    1386             :       REAL(KIND=dp)                                      :: a, b, dumx, dumy, dumz, f0, rab2, rpgfa, &
    1387             :                                                             tab, xhi, zet
    1388           0 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :)     :: rr
    1389             :       REAL(KIND=dp), DIMENSION(3)                        :: rap, rbp
    1390             : 
    1391             : ! Distance of the centers a and b
    1392             : 
    1393           0 :       rab2 = rab(1)*rab(1) + rab(2)*rab(2) + rab(3)*rab(3)
    1394           0 :       tab = SQRT(rab2)
    1395             : 
    1396             :       ! Maximum l for auxiliary integrals
    1397           0 :       IF (PRESENT(saaab)) THEN
    1398           0 :          lma = la1_max + la2_max + la3_max
    1399           0 :          lmb = lb_max
    1400             :       END IF
    1401           0 :       IF (PRESENT(daaab)) THEN
    1402           0 :          lma = la1_max + la2_max + la3_max + 1
    1403           0 :          lmb = lb_max
    1404             :       END IF
    1405           0 :       ldrr = MAX(lma, lmb) + 1
    1406             : 
    1407             :       ! Allocate space for auxiliary integrals
    1408           0 :       ALLOCATE (rr(0:ldrr - 1, 0:ldrr - 1, 3))
    1409             : 
    1410             :       ! Number of integrals, check size of arrays
    1411           0 :       ofa1 = ncoset(la1_min - 1)
    1412           0 :       ofa2 = ncoset(la2_min - 1)
    1413           0 :       ofa3 = ncoset(la3_min - 1)
    1414           0 :       ofb = ncoset(lb_min - 1)
    1415           0 :       na1 = ncoset(la1_max) - ofa1
    1416           0 :       na2 = ncoset(la2_max) - ofa2
    1417           0 :       na3 = ncoset(la3_max) - ofa3
    1418           0 :       nb = ncoset(lb_max) - ofb
    1419           0 :       IF (PRESENT(saaab)) THEN
    1420           0 :          CPASSERT((SIZE(saaab, 1) >= na1*npgfa1))
    1421           0 :          CPASSERT((SIZE(saaab, 2) >= na2*npgfa2))
    1422           0 :          CPASSERT((SIZE(saaab, 3) >= na3*npgfa3))
    1423           0 :          CPASSERT((SIZE(saaab, 4) >= nb*npgfb))
    1424             :       END IF
    1425           0 :       IF (PRESENT(daaab)) THEN
    1426           0 :          CPASSERT((SIZE(daaab, 1) >= na1*npgfa1))
    1427           0 :          CPASSERT((SIZE(daaab, 2) >= na2*npgfa2))
    1428           0 :          CPASSERT((SIZE(daaab, 3) >= na3*npgfa3))
    1429           0 :          CPASSERT((SIZE(daaab, 4) >= nb*npgfb))
    1430           0 :          CPASSERT((SIZE(daaab, 5) >= 3))
    1431             :       END IF
    1432             : 
    1433             :       ! Loops over all primitive Gaussian-type functions
    1434           0 :       ma1 = 0
    1435           0 :       DO i1pgf = 1, npgfa1
    1436           0 :          ma2 = 0
    1437           0 :          DO i2pgf = 1, npgfa2
    1438           0 :             ma3 = 0
    1439           0 :             DO i3pgf = 1, npgfa3
    1440           0 :                rpgfa = MIN(rpgfa1(i1pgf), rpgfa2(i2pgf), rpgfa3(i3pgf))
    1441           0 :                mb = 0
    1442           0 :                DO jpgf = 1, npgfb
    1443             :                   ! Distance Screening
    1444           0 :                   IF (rpgfa + rpgfb(jpgf) < tab) THEN
    1445           0 :                      IF (PRESENT(saaab)) saaab(ma1 + 1:ma1 + na1, ma2 + 1:ma2 + na2, ma3 + 1:ma3 + na3, mb + 1:mb + nb) = 0.0_dp
    1446           0 :                     IF (PRESENT(daaab)) daaab(ma1 + 1:ma1 + na1, ma2 + 1:ma2 + na2, ma3 + 1:ma3 + na3, mb + 1:mb + nb, 1:3) = 0.0_dp
    1447           0 :                      mb = mb + nb
    1448           0 :                      CYCLE
    1449             :                   END IF
    1450             : 
    1451             :                   ! Calculate some prefactors
    1452           0 :                   a = zeta1(i1pgf) + zeta2(i2pgf) + zeta3(i3pgf)
    1453           0 :                   b = zetb(jpgf)
    1454           0 :                   zet = a + b
    1455           0 :                   xhi = a*b/zet
    1456           0 :                   rap = b*rab/zet
    1457           0 :                   rbp = -a*rab/zet
    1458             : 
    1459             :                   ! [sss|s] integral
    1460           0 :                   f0 = (pi/zet)**(1.5_dp)*EXP(-xhi*rab2)
    1461             : 
    1462             :                   ! Calculate the recurrence relation
    1463           0 :                   CALL os_rr_ovlp(rap, lma, rbp, lmb, zet, ldrr, rr)
    1464             : 
    1465           0 :                   DO lb = lb_min, lb_max
    1466           0 :                   DO bx = 0, lb
    1467           0 :                   DO by = 0, lb - bx
    1468           0 :                      bz = lb - bx - by
    1469           0 :                      cob = coset(bx, by, bz) - ofb
    1470           0 :                      ib = mb + cob
    1471           0 :                      DO la3 = la3_min, la3_max
    1472           0 :                      DO ax3 = 0, la3
    1473           0 :                      DO ay3 = 0, la3 - ax3
    1474           0 :                         az3 = la3 - ax3 - ay3
    1475           0 :                         coa3 = coset(ax3, ay3, az3) - ofa3
    1476           0 :                         ia3 = ma3 + coa3
    1477           0 :                         DO la2 = la2_min, la2_max
    1478           0 :                         DO ax2 = 0, la2
    1479           0 :                         DO ay2 = 0, la2 - ax2
    1480           0 :                            az2 = la2 - ax2 - ay2
    1481           0 :                            coa2 = coset(ax2, ay2, az2) - ofa2
    1482           0 :                            ia2 = ma2 + coa2
    1483           0 :                            DO la1 = la1_min, la1_max
    1484           0 :                            DO ax1 = 0, la1
    1485           0 :                            DO ay1 = 0, la1 - ax1
    1486           0 :                               az1 = la1 - ax1 - ay1
    1487           0 :                               coa1 = coset(ax1, ay1, az1) - ofa1
    1488           0 :                               ia1 = ma1 + coa1
    1489             :                               ! integrals
    1490           0 :                               IF (PRESENT(saaab)) THEN
    1491             :                                  saaab(ia1, ia2, ia3, ib) = f0*rr(ax1 + ax2 + ax3, bx, 1)* &
    1492           0 :                                                             rr(ay1 + ay2 + ay3, by, 2)*rr(az1 + az2 + az3, bz, 3)
    1493             :                               END IF
    1494             :                               ! first derivatives
    1495           0 :                               IF (PRESENT(daaab)) THEN
    1496           0 :                                  ax = ax1 + ax2 + ax3
    1497           0 :                                  ay = ay1 + ay2 + ay3
    1498           0 :                                  az = az1 + az2 + az3
    1499             :                                  ! (da|b) = 2*a*(a+1|b) - N(a)*(a-1|b)
    1500             :                                  ! dx
    1501           0 :                                  dumx = 2.0_dp*a*rr(ax + 1, bx, 1)
    1502           0 :                                  IF (ax > 0) dumx = dumx - REAL(ax, dp)*rr(ax - 1, bx, 1)
    1503           0 :                                  daaab(ia1, ia2, ia3, ib, 1) = f0*dumx*rr(ay, by, 2)*rr(az, bz, 3)
    1504             :                                  ! dy
    1505           0 :                                  dumy = 2.0_dp*a*rr(ay + 1, by, 2)
    1506           0 :                                  IF (ay > 0) dumy = dumy - REAL(ay, dp)*rr(ay - 1, by, 2)
    1507           0 :                                  daaab(ia1, ia2, ia3, ib, 2) = f0*rr(ax, bx, 1)*dumy*rr(az, bz, 3)
    1508             :                                  ! dz
    1509           0 :                                  dumz = 2.0_dp*a*rr(az + 1, bz, 3)
    1510           0 :                                  IF (az > 0) dumz = dumz - REAL(az, dp)*rr(az - 1, bz, 3)
    1511           0 :                                  daaab(ia1, ia2, ia3, ib, 3) = f0*rr(ax, bx, 1)*rr(ay, by, 2)*dumz
    1512             :                               END IF
    1513             :                               !
    1514             :                            END DO
    1515             :                            END DO
    1516             :                            END DO !la1
    1517             :                         END DO
    1518             :                         END DO
    1519             :                         END DO !la2
    1520             :                      END DO
    1521             :                      END DO
    1522             :                      END DO !la3
    1523             :                   END DO
    1524             :                   END DO
    1525             :                   END DO !lb
    1526             : 
    1527           0 :                   mb = mb + nb
    1528             :                END DO
    1529           0 :                ma3 = ma3 + na3
    1530             :             END DO
    1531           0 :             ma2 = ma2 + na2
    1532             :          END DO
    1533           0 :          ma1 = ma1 + na1
    1534             :       END DO
    1535             : 
    1536           0 :       DEALLOCATE (rr)
    1537             : 
    1538           0 :    END SUBROUTINE overlap_aaab
    1539             : ! **************************************************************************************************
    1540             : !> \brief   Calculation of the two-center overlap integrals [aa|bb] over
    1541             : !>          Cartesian Gaussian-type functions.
    1542             : !> \param la1_max    Max L on center A (basis 1)
    1543             : !> \param la1_min    Min L on center A (basis 1)
    1544             : !> \param npgfa1     Number of primitives on center A (basis 1)
    1545             : !> \param rpgfa1     Range of functions on A, used for screening (basis 1)
    1546             : !> \param zeta1      Exponents on center A (basis 1)
    1547             : !> \param la2_max    Max L on center A (basis 2)
    1548             : !> \param la2_min    Min L on center A (basis 2)
    1549             : !> \param npgfa2     Number of primitives on center A (basis 2)
    1550             : !> \param rpgfa2     Range of functions on A, used for screening (basis 2)
    1551             : !> \param zeta2      Exponents on center A (basis 2)
    1552             : !> \param lb1_max    Max L on center B (basis 3)
    1553             : !> \param lb1_min    Min L on center B (basis 3)
    1554             : !> \param npgfb1     Number of primitives on center B (basis 3)
    1555             : !> \param rpgfb1     Range of functions on B, used for screening (basis 3)
    1556             : !> \param zetb1      Exponents on center B (basis 3)
    1557             : !> \param lb2_max    Max L on center B (basis 4)
    1558             : !> \param lb2_min    Min L on center B (basis 4)
    1559             : !> \param npgfb2     Number of primitives on center B (basis 4)
    1560             : !> \param rpgfb2     Range of functions on B, used for screening (basis 4)
    1561             : !> \param zetb2      Exponents on center B (basis 4)
    1562             : !> \param rab        Distance vector A-B
    1563             : !> \param saabb      Final overlap integrals
    1564             : !> \param daabb      First derivative overlap integrals
    1565             : !> \date    01.07.2014
    1566             : !> \author  JGH
    1567             : ! **************************************************************************************************
    1568           0 :    SUBROUTINE overlap_aabb(la1_max, la1_min, npgfa1, rpgfa1, zeta1, &
    1569           0 :                            la2_max, la2_min, npgfa2, rpgfa2, zeta2, &
    1570           0 :                            lb1_max, lb1_min, npgfb1, rpgfb1, zetb1, &
    1571           0 :                            lb2_max, lb2_min, npgfb2, rpgfb2, zetb2, &
    1572           0 :                            rab, saabb, daabb)
    1573             :       INTEGER, INTENT(IN)                                :: la1_max, la1_min, npgfa1
    1574             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: rpgfa1, zeta1
    1575             :       INTEGER, INTENT(IN)                                :: la2_max, la2_min, npgfa2
    1576             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: rpgfa2, zeta2
    1577             :       INTEGER, INTENT(IN)                                :: lb1_max, lb1_min, npgfb1
    1578             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: rpgfb1, zetb1
    1579             :       INTEGER, INTENT(IN)                                :: lb2_max, lb2_min, npgfb2
    1580             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: rpgfb2, zetb2
    1581             :       REAL(KIND=dp), DIMENSION(3), INTENT(IN)            :: rab
    1582             :       REAL(KIND=dp), DIMENSION(:, :, :, :), &
    1583             :          INTENT(INOUT), OPTIONAL                         :: saabb
    1584             :       REAL(KIND=dp), DIMENSION(:, :, :, :, :), &
    1585             :          INTENT(INOUT), OPTIONAL                         :: daabb
    1586             : 
    1587             :       INTEGER :: ax, ax1, ax2, ay, ay1, ay2, az, az1, az2, bx, bx1, bx2, by, by1, by2, bz, bz1, &
    1588             :          bz2, coa1, coa2, cob1, cob2, i1pgf, i2pgf, ia1, ia2, ib1, ib2, j1pgf, j2pgf, la1, la2, &
    1589             :          lb1, lb2, ldrr, lma, lmb, ma1, ma2, mb1, mb2, na1, na2, nb1, nb2, ofa1, ofa2, ofb1, ofb2
    1590             :       REAL(KIND=dp)                                      :: a, b, dumx, dumy, dumz, f0, rab2, rpgfa, &
    1591             :                                                             rpgfb, tab, xhi, zet
    1592           0 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :)     :: rr
    1593             :       REAL(KIND=dp), DIMENSION(3)                        :: rap, rbp
    1594             : 
    1595             : ! Distance of the centers a and b
    1596             : 
    1597           0 :       rab2 = rab(1)*rab(1) + rab(2)*rab(2) + rab(3)*rab(3)
    1598           0 :       tab = SQRT(rab2)
    1599             : 
    1600             :       ! Maximum l for auxiliary integrals
    1601           0 :       IF (PRESENT(saabb)) THEN
    1602           0 :          lma = la1_max + la2_max
    1603           0 :          lmb = lb1_max + lb2_max
    1604             :       END IF
    1605           0 :       IF (PRESENT(daabb)) THEN
    1606           0 :          lma = la1_max + la2_max + 1
    1607           0 :          lmb = lb1_max + lb2_max
    1608             :       END IF
    1609           0 :       ldrr = MAX(lma, lmb) + 1
    1610             : 
    1611             :       ! Allocate space for auxiliary integrals
    1612           0 :       ALLOCATE (rr(0:ldrr - 1, 0:ldrr - 1, 3))
    1613             : 
    1614             :       ! Number of integrals, check size of arrays
    1615           0 :       ofa1 = ncoset(la1_min - 1)
    1616           0 :       ofa2 = ncoset(la2_min - 1)
    1617           0 :       ofb1 = ncoset(lb1_min - 1)
    1618           0 :       ofb2 = ncoset(lb2_min - 1)
    1619           0 :       na1 = ncoset(la1_max) - ofa1
    1620           0 :       na2 = ncoset(la2_max) - ofa2
    1621           0 :       nb1 = ncoset(lb1_max) - ofb1
    1622           0 :       nb2 = ncoset(lb2_max) - ofb2
    1623           0 :       IF (PRESENT(saabb)) THEN
    1624           0 :          CPASSERT((SIZE(saabb, 1) >= na1*npgfa1))
    1625           0 :          CPASSERT((SIZE(saabb, 2) >= na2*npgfa2))
    1626           0 :          CPASSERT((SIZE(saabb, 3) >= nb1*npgfb1))
    1627           0 :          CPASSERT((SIZE(saabb, 4) >= nb2*npgfb2))
    1628             :       END IF
    1629           0 :       IF (PRESENT(daabb)) THEN
    1630           0 :          CPASSERT((SIZE(daabb, 1) >= na1*npgfa1))
    1631           0 :          CPASSERT((SIZE(daabb, 2) >= na2*npgfa2))
    1632           0 :          CPASSERT((SIZE(daabb, 3) >= nb1*npgfb1))
    1633           0 :          CPASSERT((SIZE(daabb, 4) >= nb2*npgfb2))
    1634           0 :          CPASSERT((SIZE(daabb, 5) >= 3))
    1635             :       END IF
    1636             : 
    1637             :       ! Loops over all primitive Gaussian-type functions
    1638           0 :       ma1 = 0
    1639           0 :       DO i1pgf = 1, npgfa1
    1640           0 :          ma2 = 0
    1641           0 :          DO i2pgf = 1, npgfa2
    1642           0 :             mb1 = 0
    1643           0 :             rpgfa = MIN(rpgfa1(i1pgf), rpgfa2(i2pgf))
    1644           0 :             DO j1pgf = 1, npgfb1
    1645           0 :                mb2 = 0
    1646           0 :                DO j2pgf = 1, npgfb2
    1647           0 :                   rpgfb = MIN(rpgfb1(j1pgf), rpgfb2(j2pgf))
    1648             :                   ! Distance Screening
    1649           0 :                   IF (rpgfa + rpgfb < tab) THEN
    1650           0 :                      IF (PRESENT(saabb)) saabb(ma1 + 1:ma1 + na1, ma2 + 1:ma2 + na2, mb1 + 1:mb1 + nb1, mb2 + 1:mb2 + nb2) = 0.0_dp
    1651           0 :                  IF (PRESENT(daabb)) daabb(ma1 + 1:ma1 + na1, ma2 + 1:ma2 + na2, mb1 + 1:mb1 + nb1, mb2 + 1:mb2 + nb2, 1:3) = 0.0_dp
    1652           0 :                      mb2 = mb2 + nb2
    1653           0 :                      CYCLE
    1654             :                   END IF
    1655             : 
    1656             :                   ! Calculate some prefactors
    1657           0 :                   a = zeta1(i1pgf) + zeta2(i2pgf)
    1658           0 :                   b = zetb1(j1pgf) + zetb2(j2pgf)
    1659           0 :                   zet = a + b
    1660           0 :                   xhi = a*b/zet
    1661           0 :                   rap = b*rab/zet
    1662           0 :                   rbp = -a*rab/zet
    1663             : 
    1664             :                   ! [ss|ss] integral
    1665           0 :                   f0 = (pi/zet)**(1.5_dp)*EXP(-xhi*rab2)
    1666             : 
    1667             :                   ! Calculate the recurrence relation
    1668           0 :                   CALL os_rr_ovlp(rap, lma, rbp, lmb, zet, ldrr, rr)
    1669             : 
    1670           0 :                   DO lb2 = lb2_min, lb2_max
    1671           0 :                   DO bx2 = 0, lb2
    1672           0 :                   DO by2 = 0, lb2 - bx2
    1673           0 :                      bz2 = lb2 - bx2 - by2
    1674           0 :                      cob2 = coset(bx2, by2, bz2) - ofb2
    1675           0 :                      ib2 = mb2 + cob2
    1676           0 :                      DO lb1 = lb1_min, lb1_max
    1677           0 :                      DO bx1 = 0, lb1
    1678           0 :                      DO by1 = 0, lb1 - bx1
    1679           0 :                         bz1 = lb1 - bx1 - by1
    1680           0 :                         cob1 = coset(bx1, by1, bz1) - ofb1
    1681           0 :                         ib1 = mb1 + cob1
    1682           0 :                         DO la2 = la2_min, la2_max
    1683           0 :                         DO ax2 = 0, la2
    1684           0 :                         DO ay2 = 0, la2 - ax2
    1685           0 :                            az2 = la2 - ax2 - ay2
    1686           0 :                            coa2 = coset(ax2, ay2, az2) - ofa2
    1687           0 :                            ia2 = ma2 + coa2
    1688           0 :                            DO la1 = la1_min, la1_max
    1689           0 :                            DO ax1 = 0, la1
    1690           0 :                            DO ay1 = 0, la1 - ax1
    1691           0 :                               az1 = la1 - ax1 - ay1
    1692           0 :                               coa1 = coset(ax1, ay1, az1) - ofa1
    1693           0 :                               ia1 = ma1 + coa1
    1694             :                               ! integrals
    1695           0 :                               IF (PRESENT(saabb)) THEN
    1696             :                                  saabb(ia1, ia2, ib1, ib2) = f0*rr(ax1 + ax2, bx1 + bx2, 1)* &
    1697           0 :                                                              rr(ay1 + ay2, by1 + by2, 2)*rr(az1 + az2, bz1 + bz2, 3)
    1698             :                               END IF
    1699             :                               ! first derivatives
    1700           0 :                               IF (PRESENT(daabb)) THEN
    1701           0 :                                  ax = ax1 + ax2
    1702           0 :                                  ay = ay1 + ay2
    1703           0 :                                  az = az1 + az2
    1704           0 :                                  bx = bx1 + bx2
    1705           0 :                                  by = by1 + by2
    1706           0 :                                  bz = bz1 + bz2
    1707             :                                  ! (da|b) = 2*a*(a+1|b) - N(a)*(a-1|b)
    1708             :                                  ! dx
    1709           0 :                                  dumx = 2.0_dp*a*rr(ax + 1, bx, 1)
    1710           0 :                                  IF (ax > 0) dumx = dumx - REAL(ax, dp)*rr(ax - 1, bx, 1)
    1711           0 :                                  daabb(ia1, ia2, ib1, ib2, 1) = f0*dumx*rr(ay, by, 2)*rr(az, bz, 3)
    1712             :                                  ! dy
    1713           0 :                                  dumy = 2.0_dp*a*rr(ay + 1, by, 2)
    1714           0 :                                  IF (ay > 0) dumy = dumy - REAL(ay, dp)*rr(ay - 1, by, 2)
    1715           0 :                                  daabb(ia1, ia2, ib1, ib2, 2) = f0*rr(ax, bx, 1)*dumy*rr(az, bz, 3)
    1716             :                                  ! dz
    1717           0 :                                  dumz = 2.0_dp*a*rr(az + 1, bz, 3)
    1718           0 :                                  IF (az > 0) dumz = dumz - REAL(az, dp)*rr(az - 1, bz, 3)
    1719           0 :                                  daabb(ia1, ia2, ib1, ib2, 3) = f0*rr(ax, bx, 1)*rr(ay, by, 2)*dumz
    1720             :                               END IF
    1721             :                               !
    1722             :                            END DO
    1723             :                            END DO
    1724             :                            END DO !la1
    1725             :                         END DO
    1726             :                         END DO
    1727             :                         END DO !la2
    1728             :                      END DO
    1729             :                      END DO
    1730             :                      END DO !lb1
    1731             :                   END DO
    1732             :                   END DO
    1733             :                   END DO !lb2
    1734             : 
    1735           0 :                   mb2 = mb2 + nb2
    1736             :                END DO
    1737           0 :                mb1 = mb1 + nb1
    1738             :             END DO
    1739           0 :             ma2 = ma2 + na2
    1740             :          END DO
    1741           0 :          ma1 = ma1 + na1
    1742             :       END DO
    1743             : 
    1744           0 :       DEALLOCATE (rr)
    1745             : 
    1746           0 :    END SUBROUTINE overlap_aabb
    1747             : ! **************************************************************************************************
    1748             : !> \brief   Calculation of the two-center overlap integrals [a|bbb] over
    1749             : !>          Cartesian Gaussian-type functions.
    1750             : !> \param la_max     Max L on center A
    1751             : !> \param la_min     Min L on center A
    1752             : !> \param npgfa      Number of primitives on center A
    1753             : !> \param rpgfa      Range of functions on A, used for screening
    1754             : !> \param zeta       Exponents on center A
    1755             : !> \param lb1_max    Max L on center B (basis 1)
    1756             : !> \param lb1_min    Min L on center B (basis 1)
    1757             : !> \param npgfb1     Number of primitives on center B (basis 1)
    1758             : !> \param rpgfb1     Range of functions on B, used for screening (basis 1)
    1759             : !> \param zetb1      Exponents on center B (basis 1)
    1760             : !> \param lb2_max    Max L on center B (basis 2)
    1761             : !> \param lb2_min    Min L on center B (basis 2)
    1762             : !> \param npgfb2     Number of primitives on center B (basis 2)
    1763             : !> \param rpgfb2     Range of functions on B, used for screening (basis 2)
    1764             : !> \param zetb2      Exponents on center B (basis 2)
    1765             : !> \param lb3_max    Max L on center B (basis 3)
    1766             : !> \param lb3_min    Min L on center B (basis 3)
    1767             : !> \param npgfb3     Number of primitives on center B (basis 3)
    1768             : !> \param rpgfb3     Range of functions on B, used for screening (basis 3)
    1769             : !> \param zetb3      Exponents on center B (basis 3)
    1770             : !> \param rab        Distance vector A-B
    1771             : !> \param sabbb      Final overlap integrals
    1772             : !> \param dabbb      First derivative overlap integrals
    1773             : !> \date    01.07.2014
    1774             : !> \author  JGH
    1775             : ! **************************************************************************************************
    1776           0 :    SUBROUTINE overlap_abbb(la_max, la_min, npgfa, rpgfa, zeta, &
    1777           0 :                            lb1_max, lb1_min, npgfb1, rpgfb1, zetb1, &
    1778           0 :                            lb2_max, lb2_min, npgfb2, rpgfb2, zetb2, &
    1779           0 :                            lb3_max, lb3_min, npgfb3, rpgfb3, zetb3, &
    1780           0 :                            rab, sabbb, dabbb)
    1781             :       INTEGER, INTENT(IN)                                :: la_max, la_min, npgfa
    1782             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: rpgfa, zeta
    1783             :       INTEGER, INTENT(IN)                                :: lb1_max, lb1_min, npgfb1
    1784             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: rpgfb1, zetb1
    1785             :       INTEGER, INTENT(IN)                                :: lb2_max, lb2_min, npgfb2
    1786             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: rpgfb2, zetb2
    1787             :       INTEGER, INTENT(IN)                                :: lb3_max, lb3_min, npgfb3
    1788             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: rpgfb3, zetb3
    1789             :       REAL(KIND=dp), DIMENSION(3), INTENT(IN)            :: rab
    1790             :       REAL(KIND=dp), DIMENSION(:, :, :, :), &
    1791             :          INTENT(INOUT), OPTIONAL                         :: sabbb
    1792             :       REAL(KIND=dp), DIMENSION(:, :, :, :, :), &
    1793             :          INTENT(INOUT), OPTIONAL                         :: dabbb
    1794             : 
    1795             :       INTEGER :: ax, ay, az, bx, bx1, bx2, bx3, by, by1, by2, by3, bz, bz1, bz2, bz3, coa, cob1, &
    1796             :          cob2, cob3, ia, ib1, ib2, ib3, ipgf, j1pgf, j2pgf, j3pgf, la, lb1, lb2, lb3, ldrr, lma, &
    1797             :          lmb, ma, mb1, mb2, mb3, na, nb1, nb2, nb3, ofa, ofb1, ofb2, ofb3
    1798             :       REAL(KIND=dp)                                      :: a, b, dumx, dumy, dumz, f0, rab2, rpgfb, &
    1799             :                                                             tab, xhi, zet
    1800           0 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :)     :: rr
    1801             :       REAL(KIND=dp), DIMENSION(3)                        :: rap, rbp
    1802             : 
    1803             : ! Distance of the centers a and b
    1804             : 
    1805           0 :       rab2 = rab(1)*rab(1) + rab(2)*rab(2) + rab(3)*rab(3)
    1806           0 :       tab = SQRT(rab2)
    1807             : 
    1808             :       ! Maximum l for auxiliary integrals
    1809           0 :       IF (PRESENT(sabbb)) THEN
    1810           0 :          lma = la_max
    1811           0 :          lmb = lb1_max + lb2_max + lb3_max
    1812             :       END IF
    1813           0 :       IF (PRESENT(dabbb)) THEN
    1814           0 :          lma = la_max + 1
    1815           0 :          lmb = lb1_max + lb2_max + lb3_max
    1816             :       END IF
    1817           0 :       ldrr = MAX(lma, lmb) + 1
    1818             : 
    1819             :       ! Allocate space for auxiliary integrals
    1820           0 :       ALLOCATE (rr(0:ldrr - 1, 0:ldrr - 1, 3))
    1821             : 
    1822             :       ! Number of integrals, check size of arrays
    1823           0 :       ofa = ncoset(la_min - 1)
    1824           0 :       ofb1 = ncoset(lb1_min - 1)
    1825           0 :       ofb2 = ncoset(lb2_min - 1)
    1826           0 :       ofb3 = ncoset(lb3_min - 1)
    1827           0 :       na = ncoset(la_max) - ofa
    1828           0 :       nb1 = ncoset(lb1_max) - ofb1
    1829           0 :       nb2 = ncoset(lb2_max) - ofb2
    1830           0 :       nb3 = ncoset(lb3_max) - ofb3
    1831           0 :       IF (PRESENT(sabbb)) THEN
    1832           0 :          CPASSERT((SIZE(sabbb, 1) >= na*npgfa))
    1833           0 :          CPASSERT((SIZE(sabbb, 2) >= nb1*npgfb1))
    1834           0 :          CPASSERT((SIZE(sabbb, 3) >= nb2*npgfb2))
    1835           0 :          CPASSERT((SIZE(sabbb, 4) >= nb3*npgfb3))
    1836             :       END IF
    1837           0 :       IF (PRESENT(dabbb)) THEN
    1838           0 :          CPASSERT((SIZE(dabbb, 1) >= na*npgfa))
    1839           0 :          CPASSERT((SIZE(dabbb, 2) >= nb1*npgfb1))
    1840           0 :          CPASSERT((SIZE(dabbb, 3) >= nb2*npgfb2))
    1841           0 :          CPASSERT((SIZE(dabbb, 4) >= nb3*npgfb3))
    1842           0 :          CPASSERT((SIZE(dabbb, 5) >= 3))
    1843             :       END IF
    1844             : 
    1845             :       ! Loops over all pairs of primitive Gaussian-type functions
    1846           0 :       ma = 0
    1847           0 :       DO ipgf = 1, npgfa
    1848           0 :          mb1 = 0
    1849           0 :          DO j1pgf = 1, npgfb1
    1850           0 :             mb2 = 0
    1851           0 :             DO j2pgf = 1, npgfb2
    1852           0 :                mb3 = 0
    1853           0 :                DO j3pgf = 1, npgfb3
    1854             :                   ! Distance Screening
    1855           0 :                   rpgfb = MIN(rpgfb1(j1pgf), rpgfb2(j2pgf), rpgfb3(j3pgf))
    1856           0 :                   IF (rpgfa(ipgf) + rpgfb < tab) THEN
    1857           0 :                      IF (PRESENT(sabbb)) sabbb(ma + 1:ma + na, mb1 + 1:mb1 + nb1, mb2 + 1:mb2 + nb2, mb3 + 1:mb3 + nb3) = 0.0_dp
    1858           0 :                     IF (PRESENT(dabbb)) dabbb(ma + 1:ma + na, mb1 + 1:mb1 + nb1, mb2 + 1:mb2 + nb2, mb3 + 1:mb3 + nb3, 1:3) = 0.0_dp
    1859           0 :                      mb3 = mb3 + nb3
    1860           0 :                      CYCLE
    1861             :                   END IF
    1862             : 
    1863             :                   ! Calculate some prefactors
    1864           0 :                   a = zeta(ipgf)
    1865           0 :                   b = zetb1(j1pgf) + zetb2(j2pgf) + zetb3(j3pgf)
    1866           0 :                   zet = a + b
    1867           0 :                   xhi = a*b/zet
    1868           0 :                   rap = b*rab/zet
    1869           0 :                   rbp = -a*rab/zet
    1870             : 
    1871             :                   ! [s|s] integral
    1872           0 :                   f0 = (pi/zet)**(1.5_dp)*EXP(-xhi*rab2)
    1873             : 
    1874             :                   ! Calculate the recurrence relation
    1875           0 :                   CALL os_rr_ovlp(rap, lma, rbp, lmb, zet, ldrr, rr)
    1876             : 
    1877           0 :                   DO lb3 = lb3_min, lb3_max
    1878           0 :                   DO bx3 = 0, lb3
    1879           0 :                   DO by3 = 0, lb3 - bx3
    1880           0 :                      bz3 = lb3 - bx3 - by3
    1881           0 :                      cob3 = coset(bx3, by3, bz3) - ofb3
    1882           0 :                      ib3 = mb3 + cob3
    1883           0 :                      DO lb2 = lb2_min, lb2_max
    1884           0 :                      DO bx2 = 0, lb2
    1885           0 :                      DO by2 = 0, lb2 - bx2
    1886           0 :                         bz2 = lb2 - bx2 - by2
    1887           0 :                         cob2 = coset(bx2, by2, bz2) - ofb2
    1888           0 :                         ib2 = mb2 + cob2
    1889           0 :                         DO lb1 = lb1_min, lb1_max
    1890           0 :                         DO bx1 = 0, lb1
    1891           0 :                         DO by1 = 0, lb1 - bx1
    1892           0 :                            bz1 = lb1 - bx1 - by1
    1893           0 :                            cob1 = coset(bx1, by1, bz1) - ofb1
    1894           0 :                            ib1 = mb1 + cob1
    1895           0 :                            DO la = la_min, la_max
    1896           0 :                            DO ax = 0, la
    1897           0 :                            DO ay = 0, la - ax
    1898           0 :                               az = la - ax - ay
    1899           0 :                               coa = coset(ax, ay, az) - ofa
    1900           0 :                               ia = ma + coa
    1901             :                               ! integrals
    1902           0 :                               IF (PRESENT(sabbb)) THEN
    1903             :                                  sabbb(ia, ib1, ib2, ib3) = f0*rr(ax, bx1 + bx2 + bx3, 1)* &
    1904           0 :                                                             rr(ay, by1 + by2 + by3, 2)*rr(az, bz1 + bz2 + bz3, 3)
    1905             :                               END IF
    1906             :                               ! first derivatives
    1907           0 :                               IF (PRESENT(dabbb)) THEN
    1908           0 :                                  bx = bx1 + bx2 + bx3
    1909           0 :                                  by = by1 + by2 + by3
    1910           0 :                                  bz = bz1 + bz2 + bz3
    1911             :                                  ! (da|b) = 2*a*(a+1|b) - N(a)*(a-1|b)
    1912             :                                  ! dx
    1913           0 :                                  dumx = 2.0_dp*a*rr(ax + 1, bx, 1)
    1914           0 :                                  IF (ax > 0) dumx = dumx - REAL(ax, dp)*rr(ax - 1, bx, 1)
    1915           0 :                                  dabbb(ia, ib1, ib2, ib3, 1) = f0*dumx*rr(ay, by, 2)*rr(az, bz, 3)
    1916             :                                  ! dy
    1917           0 :                                  dumy = 2.0_dp*a*rr(ay + 1, by, 2)
    1918           0 :                                  IF (ay > 0) dumy = dumy - REAL(ay, dp)*rr(ay - 1, by, 2)
    1919           0 :                                  dabbb(ia, ib1, ib2, ib3, 2) = f0*rr(ax, bx, 1)*dumy*rr(az, bz, 3)
    1920             :                                  ! dz
    1921           0 :                                  dumz = 2.0_dp*a*rr(az + 1, bz, 3)
    1922           0 :                                  IF (az > 0) dumz = dumz - REAL(az, dp)*rr(az - 1, bz, 3)
    1923           0 :                                  dabbb(ia, ib1, ib2, ib3, 3) = f0*rr(ax, bx, 1)*rr(ay, by, 2)*dumz
    1924             :                               END IF
    1925             :                               !
    1926             :                            END DO
    1927             :                            END DO
    1928             :                            END DO !la
    1929             :                         END DO
    1930             :                         END DO
    1931             :                         END DO !lb1
    1932             :                      END DO
    1933             :                      END DO
    1934             :                      END DO !lb2
    1935             :                   END DO
    1936             :                   END DO
    1937             :                   END DO !lb3
    1938             : 
    1939           0 :                   mb3 = mb3 + nb3
    1940             :                END DO
    1941           0 :                mb2 = mb2 + nb2
    1942             :             END DO
    1943           0 :             mb1 = mb1 + nb1
    1944             :          END DO
    1945           0 :          ma = ma + na
    1946             :       END DO
    1947             : 
    1948           0 :       DEALLOCATE (rr)
    1949             : 
    1950           0 :    END SUBROUTINE overlap_abbb
    1951             : 
    1952             : ! **************************************************************************************************
    1953             : !> \brief   Calculation of the two-center overlap integrals [a|b] over
    1954             : !>          Spherical Gaussian-type functions.
    1955             : !> \param la         Max L on center A
    1956             : !> \param zeta       Exponents on center A
    1957             : !> \param lb         Max L on center B
    1958             : !> \param zetb       Exponents on center B
    1959             : !> \param rab        Distance vector A-B
    1960             : !> \param sab        Final overlap integrals
    1961             : !> \date    01.03.2016
    1962             : !> \author  JGH
    1963             : ! **************************************************************************************************
    1964      275346 :    SUBROUTINE overlap_ab_s(la, zeta, lb, zetb, rab, sab)
    1965             :       INTEGER, INTENT(IN)                                :: la
    1966             :       REAL(KIND=dp), INTENT(IN)                          :: zeta
    1967             :       INTEGER, INTENT(IN)                                :: lb
    1968             :       REAL(KIND=dp), INTENT(IN)                          :: zetb
    1969             :       REAL(KIND=dp), DIMENSION(3), INTENT(IN)            :: rab
    1970             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(INOUT)      :: sab
    1971             : 
    1972             :       REAL(KIND=dp), PARAMETER                           :: huge4 = HUGE(1._dp)/4._dp
    1973             : 
    1974             :       INTEGER                                            :: nca, ncb, nsa, nsb
    1975             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :)        :: cab
    1976             :       REAL(KIND=dp), DIMENSION(1)                        :: rpgf, za, zb
    1977      275346 :       REAL(KIND=dp), DIMENSION(:, :), POINTER            :: c2sa, c2sb
    1978             : 
    1979      275346 :       rpgf(1) = huge4
    1980      275346 :       za(1) = zeta
    1981      275346 :       zb(1) = zetb
    1982             : 
    1983      275346 :       nca = nco(la)
    1984      275346 :       ncb = nco(lb)
    1985     1101384 :       ALLOCATE (cab(nca, ncb))
    1986      275346 :       nsa = nso(la)
    1987      275346 :       nsb = nso(lb)
    1988             : 
    1989      275346 :       CALL overlap_ab(la, la, 1, rpgf, za, lb, lb, 1, rpgf, zb, rab, cab)
    1990             : 
    1991      275346 :       c2sa => orbtramat(la)%c2s
    1992      275346 :       c2sb => orbtramat(lb)%c2s
    1993      275346 :       sab(1:nsa, 1:nsb) = MATMUL(c2sa(1:nsa, 1:nca), &
    1994    12605266 :                                  MATMUL(cab(1:nca, 1:ncb), TRANSPOSE(c2sb(1:nsb, 1:ncb))))
    1995             : 
    1996      275346 :       DEALLOCATE (cab)
    1997             : 
    1998      275346 :    END SUBROUTINE overlap_ab_s
    1999             : 
    2000             : ! **************************************************************************************************
    2001             : !> \brief   Calculation of the overlap integrals [a|b] over
    2002             : !>          cubic periodic Spherical Gaussian-type functions.
    2003             : !> \param la         Max L on center A
    2004             : !> \param zeta       Exponents on center A
    2005             : !> \param lb         Max L on center B
    2006             : !> \param zetb       Exponents on center B
    2007             : !> \param alat       Lattice constant
    2008             : !> \param sab        Final overlap integrals
    2009             : !> \date    01.03.2016
    2010             : !> \author  JGH
    2011             : ! **************************************************************************************************
    2012       36030 :    SUBROUTINE overlap_ab_sp(la, zeta, lb, zetb, alat, sab)
    2013             :       INTEGER, INTENT(IN)                                :: la
    2014             :       REAL(KIND=dp), INTENT(IN)                          :: zeta
    2015             :       INTEGER, INTENT(IN)                                :: lb
    2016             :       REAL(KIND=dp), INTENT(IN)                          :: zetb, alat
    2017             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(INOUT)      :: sab
    2018             : 
    2019             :       COMPLEX(KIND=dp)                                   :: zfg
    2020       36030 :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:, :)     :: fun, gun
    2021             :       INTEGER                                            :: ax, ay, az, bx, by, bz, i, ia, ib, l, &
    2022             :                                                             l1, l2, na, nb, nca, ncb, nmax, nsa, &
    2023             :                                                             nsb
    2024             :       REAL(KIND=dp)                                      :: oa, ob, ovol, zm
    2025       36030 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: fexp, gexp, gval
    2026       36030 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :)        :: cab
    2027             :       REAL(KIND=dp), DIMENSION(0:3, 0:3)                 :: fgsum
    2028       36030 :       REAL(KIND=dp), DIMENSION(:, :), POINTER            :: c2sa, c2sb
    2029             : 
    2030       36030 :       nca = nco(la)
    2031       36030 :       ncb = nco(lb)
    2032      144120 :       ALLOCATE (cab(nca, ncb))
    2033      290952 :       cab = 0.0_dp
    2034       36030 :       nsa = nso(la)
    2035       36030 :       nsb = nso(lb)
    2036             : 
    2037       36030 :       zm = MIN(zeta, zetb)
    2038       36030 :       nmax = NINT(1.81_dp*alat*SQRT(zm) + 1.0_dp)
    2039             :       ALLOCATE (fun(-nmax:nmax, 0:la), gun(-nmax:nmax, 0:lb), &
    2040      396330 :                 fexp(-nmax:nmax), gexp(-nmax:nmax), gval(-nmax:nmax))
    2041             : 
    2042       36030 :       oa = 1._dp/zeta
    2043       36030 :       ob = 1._dp/zetb
    2044      521510 :       DO i = -nmax, nmax
    2045      485480 :          gval(i) = twopi/alat*REAL(i, KIND=dp)
    2046      485480 :          fexp(i) = SQRT(oa*pi)*EXP(-0.25_dp*oa*gval(i)**2)
    2047      521510 :          gexp(i) = SQRT(ob*pi)*EXP(-0.25_dp*ob*gval(i)**2)
    2048             :       END DO
    2049       91894 :       DO l = 0, la
    2050       91894 :          IF (l == 0) THEN
    2051      521510 :             fun(:, l) = CMPLX(1.0_dp, 0.0_dp, KIND=dp)
    2052       19834 :          ELSEIF (l == 1) THEN
    2053      252786 :             fun(:, l) = CMPLX(0.0_dp, 0.5_dp*oa*gval(:), KIND=dp)
    2054        2073 :          ELSEIF (l == 2) THEN
    2055       29772 :             fun(:, l) = CMPLX(-(0.5_dp*oa*gval(:))**2, 0.0_dp, KIND=dp)
    2056       29772 :             fun(:, l) = fun(:, l) + CMPLX(0.5_dp*oa, 0.0_dp, KIND=dp)
    2057           0 :          ELSEIF (l == 3) THEN
    2058           0 :             fun(:, l) = CMPLX(0.0_dp, -(0.5_dp*oa*gval(:))**3, KIND=dp)
    2059           0 :             fun(:, l) = fun(:, l) + CMPLX(0.0_dp, 0.75_dp*oa*oa*gval(:), KIND=dp)
    2060             :          ELSE
    2061           0 :             CPABORT("l value too high")
    2062             :          END IF
    2063             :       END DO
    2064       91894 :       DO l = 0, lb
    2065       91894 :          IF (l == 0) THEN
    2066      521510 :             gun(:, l) = CMPLX(1.0_dp, 0.0_dp, KIND=dp)
    2067       19834 :          ELSEIF (l == 1) THEN
    2068      252786 :             gun(:, l) = CMPLX(0.0_dp, 0.5_dp*ob*gval(:), KIND=dp)
    2069        2073 :          ELSEIF (l == 2) THEN
    2070       29772 :             gun(:, l) = CMPLX(-(0.5_dp*ob*gval(:))**2, 0.0_dp, KIND=dp)
    2071       29772 :             gun(:, l) = gun(:, l) + CMPLX(0.5_dp*ob, 0.0_dp, KIND=dp)
    2072           0 :          ELSEIF (l == 3) THEN
    2073           0 :             gun(:, l) = CMPLX(0.0_dp, -(0.5_dp*ob*gval(:))**3, KIND=dp)
    2074           0 :             gun(:, l) = gun(:, l) + CMPLX(0.0_dp, 0.75_dp*ob*ob*gval(:), KIND=dp)
    2075             :          ELSE
    2076           0 :             CPABORT("l value too high")
    2077             :          END IF
    2078             :       END DO
    2079             : 
    2080       36030 :       fgsum = 0.0_dp
    2081       91894 :       DO l1 = 0, la
    2082      179846 :          DO l2 = 0, lb
    2083     1259856 :             zfg = SUM(CONJG(fun(:, l1))*fexp(:)*gun(:, l2)*gexp(:))
    2084      143816 :             fgsum(l1, l2) = REAL(zfg, KIND=dp)
    2085             :          END DO
    2086             :       END DO
    2087             : 
    2088       36030 :       na = ncoset(la - 1)
    2089       36030 :       nb = ncoset(lb - 1)
    2090       91894 :       DO ax = 0, la
    2091      169665 :          DO ay = 0, la - ax
    2092       77771 :             az = la - ax - ay
    2093       77771 :             ia = coset(ax, ay, az) - na
    2094      257740 :             DO bx = 0, lb
    2095      379027 :                DO by = 0, lb - bx
    2096      177151 :                   bz = lb - bx - by
    2097      177151 :                   ib = coset(bx, by, bz) - nb
    2098      301256 :                   cab(ia, ib) = fgsum(ax, bx)*fgsum(ay, by)*fgsum(az, bz)
    2099             :                END DO
    2100             :             END DO
    2101             :          END DO
    2102             :       END DO
    2103             : 
    2104       36030 :       c2sa => orbtramat(la)%c2s
    2105       36030 :       c2sb => orbtramat(lb)%c2s
    2106       36030 :       sab(1:nsa, 1:nsb) = MATMUL(c2sa(1:nsa, 1:nca), &
    2107     2727872 :                                  MATMUL(cab(1:nca, 1:ncb), TRANSPOSE(c2sb(1:nsb, 1:ncb))))
    2108       36030 :       ovol = 1._dp/(alat**3)
    2109      276110 :       sab(1:nsa, 1:nsb) = ovol*sab(1:nsa, 1:nsb)
    2110             : 
    2111       36030 :       DEALLOCATE (cab, fun, gun, fexp, gexp, gval)
    2112             : 
    2113       36030 :    END SUBROUTINE overlap_ab_sp
    2114             : 
    2115      311376 : END MODULE ai_overlap

Generated by: LCOV version 1.15