Line data Source code
1 : !--------------------------------------------------------------------------------------------------!
2 : ! CP2K: A general program to perform molecular dynamics simulations !
3 : ! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
4 : ! !
5 : ! SPDX-License-Identifier: GPL-2.0-or-later !
6 : !--------------------------------------------------------------------------------------------------!
7 :
8 : ! **************************************************************************************************
9 : MODULE atom_pseudo
10 : USE atom_electronic_structure, ONLY: calculate_atom
11 : USE atom_fit, ONLY: atom_fit_pseudo
12 : USE atom_operators, ONLY: atom_int_release,&
13 : atom_int_setup,&
14 : atom_ppint_release,&
15 : atom_ppint_setup,&
16 : atom_relint_release,&
17 : atom_relint_setup
18 : USE atom_output, ONLY: atom_print_basis,&
19 : atom_print_info,&
20 : atom_print_method,&
21 : atom_print_potential
22 : USE atom_types, ONLY: &
23 : atom_basis_type, atom_integrals, atom_optimization_type, atom_orbitals, atom_p_type, &
24 : atom_potential_type, atom_state, create_atom_orbs, create_atom_type, init_atom_basis, &
25 : init_atom_potential, lmat, read_atom_opt_section, release_atom_basis, &
26 : release_atom_potential, release_atom_type, set_atom
27 : USE atom_utils, ONLY: atom_consistent_method,&
28 : atom_set_occupation,&
29 : get_maxl_occ,&
30 : get_maxn_occ
31 : USE cp_log_handling, ONLY: cp_get_default_logger,&
32 : cp_logger_type
33 : USE cp_output_handling, ONLY: cp_print_key_finished_output,&
34 : cp_print_key_unit_nr
35 : USE input_constants, ONLY: do_analytic,&
36 : poly_conf
37 : USE input_section_types, ONLY: section_vals_get,&
38 : section_vals_get_subs_vals,&
39 : section_vals_type,&
40 : section_vals_val_get
41 : USE kinds, ONLY: default_string_length,&
42 : dp
43 : USE periodic_table, ONLY: nelem,&
44 : ptable
45 : USE physcon, ONLY: bohr
46 : #include "./base/base_uses.f90"
47 :
48 : IMPLICIT NONE
49 : PRIVATE
50 : PUBLIC :: atom_pseudo_opt
51 :
52 : CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'atom_pseudo'
53 :
54 : ! **************************************************************************************************
55 :
56 : CONTAINS
57 :
58 : ! **************************************************************************************************
59 :
60 : ! **************************************************************************************************
61 : !> \brief ...
62 : !> \param atom_section ...
63 : ! **************************************************************************************************
64 26 : SUBROUTINE atom_pseudo_opt(atom_section)
65 : TYPE(section_vals_type), POINTER :: atom_section
66 :
67 : CHARACTER(len=*), PARAMETER :: routineN = 'atom_pseudo_opt'
68 :
69 : CHARACTER(LEN=2) :: elem
70 : CHARACTER(LEN=default_string_length), &
71 26 : DIMENSION(:), POINTER :: tmpstringlist
72 : INTEGER :: ads, do_eric, do_erie, handle, i, im, &
73 : in, iw, k, l, maxl, mb, method, mo, &
74 : n_meth, n_rep, nr_gh, reltyp, zcore, &
75 : zval, zz
76 : INTEGER, DIMENSION(0:lmat) :: maxn
77 26 : INTEGER, DIMENSION(:), POINTER :: cn
78 : LOGICAL :: do_gh, eri_c, eri_e, pp_calc
79 : REAL(KIND=dp) :: ne, nm
80 : REAL(KIND=dp), DIMENSION(0:lmat, 10) :: pocc
81 : TYPE(atom_basis_type), POINTER :: ae_basis, pp_basis
82 : TYPE(atom_integrals), POINTER :: ae_int, pp_int
83 : TYPE(atom_optimization_type) :: optimization
84 : TYPE(atom_orbitals), POINTER :: orbitals
85 26 : TYPE(atom_p_type), DIMENSION(:, :), POINTER :: atom_info, atom_refs
86 : TYPE(atom_potential_type), POINTER :: ae_pot, p_pot
87 : TYPE(atom_state), POINTER :: state, statepp
88 : TYPE(cp_logger_type), POINTER :: logger
89 : TYPE(section_vals_type), POINTER :: basis_section, method_section, &
90 : opt_section, potential_section, &
91 : powell_section, xc_section
92 :
93 26 : CALL timeset(routineN, handle)
94 :
95 : ! What atom do we calculate
96 26 : CALL section_vals_val_get(atom_section, "ATOMIC_NUMBER", i_val=zval)
97 26 : CALL section_vals_val_get(atom_section, "ELEMENT", c_val=elem)
98 26 : zz = 0
99 140 : DO i = 1, nelem
100 140 : IF (ptable(i)%symbol == elem) THEN
101 : zz = i
102 : EXIT
103 : END IF
104 : END DO
105 26 : IF (zz /= 1) zval = zz
106 :
107 : ! read and set up information on the basis sets
108 962 : ALLOCATE (ae_basis, pp_basis)
109 26 : basis_section => section_vals_get_subs_vals(atom_section, "AE_BASIS")
110 26 : NULLIFY (ae_basis%grid)
111 26 : CALL init_atom_basis(ae_basis, basis_section, zval, "AA")
112 26 : NULLIFY (pp_basis%grid)
113 26 : basis_section => section_vals_get_subs_vals(atom_section, "PP_BASIS")
114 26 : CALL init_atom_basis(pp_basis, basis_section, zval, "AP")
115 :
116 : ! print general and basis set information
117 26 : logger => cp_get_default_logger()
118 26 : iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%PROGRAM_BANNER", extension=".log")
119 26 : IF (iw > 0) CALL atom_print_info(zval, "Atomic Energy Calculation", iw)
120 26 : CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%PROGRAM_BANNER")
121 26 : iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%BASIS_SET", extension=".log")
122 26 : IF (iw > 0) THEN
123 8 : CALL atom_print_basis(ae_basis, iw, " All Electron Basis")
124 8 : CALL atom_print_basis(pp_basis, iw, " Pseudopotential Basis")
125 : END IF
126 26 : CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%BASIS_SET")
127 :
128 : ! read and setup information on the pseudopotential
129 26 : NULLIFY (potential_section)
130 26 : potential_section => section_vals_get_subs_vals(atom_section, "POTENTIAL")
131 273130 : ALLOCATE (ae_pot, p_pot)
132 26 : CALL init_atom_potential(p_pot, potential_section, zval)
133 26 : CALL init_atom_potential(ae_pot, potential_section, -1)
134 26 : IF (.NOT. p_pot%confinement .AND. .NOT. ae_pot%confinement) THEN
135 : !set default confinement potential
136 24 : p_pot%confinement = .TRUE.
137 24 : p_pot%conf_type = poly_conf
138 24 : p_pot%scon = 2.0_dp
139 24 : p_pot%acon = 0.5_dp
140 : ! this seems to be the default in the old code
141 24 : p_pot%rcon = (2._dp*ptable(zval)%covalent_radius*bohr)**2
142 24 : ae_pot%confinement = .TRUE.
143 24 : ae_pot%conf_type = poly_conf
144 24 : ae_pot%scon = 2.0_dp
145 24 : ae_pot%acon = 0.5_dp
146 : ! this seems to be the default in the old code
147 24 : ae_pot%rcon = (2._dp*ptable(zval)%covalent_radius*bohr)**2
148 : END IF
149 :
150 : ! if the ERI's are calculated analytically, we have to precalculate them
151 26 : eri_c = .FALSE.
152 26 : CALL section_vals_val_get(atom_section, "COULOMB_INTEGRALS", i_val=do_eric)
153 26 : IF (do_eric == do_analytic) eri_c = .TRUE.
154 26 : eri_e = .FALSE.
155 26 : CALL section_vals_val_get(atom_section, "EXCHANGE_INTEGRALS", i_val=do_erie)
156 26 : IF (do_erie == do_analytic) eri_e = .TRUE.
157 26 : CALL section_vals_val_get(atom_section, "USE_GAUSS_HERMITE", l_val=do_gh)
158 26 : CALL section_vals_val_get(atom_section, "GRID_POINTS_GH", i_val=nr_gh)
159 :
160 : ! information on the states to be calculated
161 26 : CALL section_vals_val_get(atom_section, "MAX_ANGULAR_MOMENTUM", i_val=maxl)
162 26 : maxn = 0
163 26 : CALL section_vals_val_get(atom_section, "CALCULATE_STATES", i_vals=cn)
164 52 : DO in = 1, MIN(SIZE(cn), 4)
165 52 : maxn(in - 1) = cn(in)
166 : END DO
167 182 : DO in = 0, lmat
168 182 : maxn(in) = MIN(maxn(in), ae_basis%nbas(in))
169 : END DO
170 :
171 : ! read optimization section
172 26 : opt_section => section_vals_get_subs_vals(atom_section, "OPTIMIZATION")
173 26 : CALL read_atom_opt_section(optimization, opt_section)
174 :
175 : ! Check for the total number of electron configurations to be calculated
176 26 : CALL section_vals_val_get(atom_section, "ELECTRON_CONFIGURATION", n_rep_val=n_rep)
177 : ! Check for the total number of method types to be calculated
178 26 : method_section => section_vals_get_subs_vals(atom_section, "METHOD")
179 26 : CALL section_vals_get(method_section, n_repetition=n_meth)
180 :
181 : ! integrals
182 11050 : ALLOCATE (ae_int, pp_int)
183 :
184 260 : ALLOCATE (atom_info(n_rep, n_meth), atom_refs(n_rep, n_meth))
185 :
186 26 : iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%PROGRAM_BANNER", extension=".log")
187 26 : IF (iw > 0) THEN
188 13 : WRITE (iw, '(/," ",79("*"))')
189 13 : WRITE (iw, '(" ",26("*"),A,25("*"))') " Calculate Reference States "
190 13 : WRITE (iw, '(" ",79("*"))')
191 : END IF
192 26 : CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%PROGRAM_BANNER")
193 :
194 52 : DO in = 1, n_rep
195 78 : DO im = 1, n_meth
196 :
197 26 : NULLIFY (atom_info(in, im)%atom, atom_refs(in, im)%atom)
198 26 : CALL create_atom_type(atom_info(in, im)%atom)
199 26 : CALL create_atom_type(atom_refs(in, im)%atom)
200 :
201 26 : atom_info(in, im)%atom%optimization = optimization
202 26 : atom_refs(in, im)%atom%optimization = optimization
203 :
204 26 : atom_info(in, im)%atom%z = zval
205 26 : atom_refs(in, im)%atom%z = zval
206 26 : xc_section => section_vals_get_subs_vals(method_section, "XC", i_rep_section=im)
207 26 : atom_info(in, im)%atom%xc_section => xc_section
208 26 : atom_refs(in, im)%atom%xc_section => xc_section
209 :
210 18850 : ALLOCATE (state, statepp)
211 :
212 : ! get the electronic configuration
213 : CALL section_vals_val_get(atom_section, "ELECTRON_CONFIGURATION", i_rep_val=in, &
214 26 : c_vals=tmpstringlist)
215 : ! all electron configurations have to be with full core
216 26 : pp_calc = INDEX(tmpstringlist(1), "CORE") /= 0
217 26 : CPASSERT(.NOT. pp_calc)
218 :
219 : ! set occupations
220 26 : CALL atom_set_occupation(tmpstringlist, state%occ, state%occupation, state%multiplicity)
221 26 : state%maxl_occ = get_maxl_occ(state%occ)
222 182 : state%maxn_occ = get_maxn_occ(state%occ)
223 : ! set number of states to be calculated
224 26 : state%maxl_calc = MAX(maxl, state%maxl_occ)
225 26 : state%maxl_calc = MIN(lmat, state%maxl_calc)
226 182 : state%maxn_calc = 0
227 96 : DO k = 0, state%maxl_calc
228 70 : ads = 2
229 70 : IF (state%maxn_occ(k) == 0) ads = 1
230 70 : state%maxn_calc(k) = MAX(maxn(k), state%maxn_occ(k) + ads)
231 96 : state%maxn_calc(k) = MIN(state%maxn_calc(k), ae_basis%nbas(k))
232 : END DO
233 1846 : state%core = 0._dp
234 26 : CALL set_atom(atom_refs(in, im)%atom, zcore=zval, pp_calc=.FALSE.)
235 :
236 26 : IF (state%multiplicity /= -1) THEN
237 : ! set alpha and beta occupations
238 142 : state%occa = 0._dp
239 142 : state%occb = 0._dp
240 14 : DO l = 0, lmat
241 12 : nm = REAL((2*l + 1), KIND=dp)
242 20 : DO k = 1, 10
243 18 : ne = state%occupation(l, k)
244 18 : IF (ne == 0._dp) THEN !empty shell
245 : EXIT !assume there are no holes
246 6 : ELSEIF (ne == 2._dp*nm) THEN !closed shell
247 4 : state%occa(l, k) = nm
248 4 : state%occb(l, k) = nm
249 2 : ELSEIF (state%multiplicity == -2) THEN !High spin case
250 0 : state%occa(l, k) = MIN(ne, nm)
251 0 : state%occb(l, k) = MAX(0._dp, ne - nm)
252 : ELSE
253 2 : state%occa(l, k) = 0.5_dp*(ne + state%multiplicity - 1._dp)
254 2 : state%occb(l, k) = ne - state%occa(l, k)
255 : END IF
256 : END DO
257 : END DO
258 : END IF
259 :
260 : ! set occupations for pseudopotential calculation
261 26 : CALL section_vals_val_get(atom_section, "CORE", c_vals=tmpstringlist)
262 26 : CALL atom_set_occupation(tmpstringlist, statepp%core, pocc)
263 1846 : zcore = zval - NINT(SUM(statepp%core))
264 26 : CALL set_atom(atom_info(in, im)%atom, zcore=zcore, pp_calc=.TRUE.)
265 :
266 3666 : statepp%occ = state%occ - statepp%core
267 1846 : statepp%occupation = 0._dp
268 182 : DO l = 0, lmat
269 : k = 0
270 1742 : DO i = 1, 10
271 1716 : IF (statepp%occ(l, i) /= 0._dp) THEN
272 46 : k = k + 1
273 46 : statepp%occupation(l, k) = state%occ(l, i)
274 46 : IF (state%multiplicity /= -1) THEN
275 4 : statepp%occa(l, k) = state%occa(l, i) - statepp%core(l, i)/2
276 4 : statepp%occb(l, k) = state%occb(l, i) - statepp%core(l, i)/2
277 : END IF
278 : END IF
279 : END DO
280 : END DO
281 :
282 26 : statepp%maxl_occ = get_maxl_occ(statepp%occ)
283 182 : statepp%maxn_occ = get_maxn_occ(statepp%occ)
284 26 : statepp%maxl_calc = state%maxl_calc
285 182 : statepp%maxn_calc = 0
286 26 : maxn = get_maxn_occ(statepp%core)
287 96 : DO k = 0, statepp%maxl_calc
288 70 : statepp%maxn_calc(k) = state%maxn_calc(k) - maxn(k)
289 96 : statepp%maxn_calc(k) = MIN(statepp%maxn_calc(k), pp_basis%nbas(k))
290 : END DO
291 26 : statepp%multiplicity = state%multiplicity
292 :
293 26 : CALL section_vals_val_get(method_section, "METHOD_TYPE", i_val=method, i_rep_section=im)
294 26 : CALL section_vals_val_get(method_section, "RELATIVISTIC", i_val=reltyp, i_rep_section=im)
295 26 : CALL set_atom(atom_info(in, im)%atom, method_type=method)
296 26 : CALL set_atom(atom_refs(in, im)%atom, method_type=method, relativistic=reltyp)
297 :
298 : ! calculate integrals: pseudopotential basis
299 : ! general integrals
300 26 : CALL atom_int_setup(pp_int, pp_basis, potential=p_pot, eri_coulomb=eri_c, eri_exchange=eri_e)
301 : !
302 26 : NULLIFY (pp_int%tzora, pp_int%hdkh)
303 : ! potential
304 26 : CALL atom_ppint_setup(pp_int, pp_basis, potential=p_pot)
305 : !
306 26 : CALL set_atom(atom_info(in, im)%atom, basis=pp_basis, integrals=pp_int, potential=p_pot)
307 338 : statepp%maxn_calc(:) = MIN(statepp%maxn_calc(:), pp_basis%nbas(:))
308 182 : CPASSERT(ALL(state%maxn_calc(:) >= state%maxn_occ))
309 :
310 : ! calculate integrals: all electron basis
311 : ! general integrals
312 : CALL atom_int_setup(ae_int, ae_basis, potential=ae_pot, &
313 26 : eri_coulomb=eri_c, eri_exchange=eri_e)
314 : ! potential
315 26 : CALL atom_ppint_setup(ae_int, ae_basis, potential=ae_pot)
316 : ! relativistic correction terms
317 26 : CALL atom_relint_setup(ae_int, ae_basis, reltyp, zcore=REAL(zval, dp))
318 : !
319 26 : CALL set_atom(atom_refs(in, im)%atom, basis=ae_basis, integrals=ae_int, potential=ae_pot)
320 338 : state%maxn_calc(:) = MIN(state%maxn_calc(:), ae_basis%nbas(:))
321 182 : CPASSERT(ALL(state%maxn_calc(:) >= state%maxn_occ))
322 :
323 : CALL set_atom(atom_info(in, im)%atom, coulomb_integral_type=do_eric, &
324 26 : exchange_integral_type=do_erie)
325 : CALL set_atom(atom_refs(in, im)%atom, coulomb_integral_type=do_eric, &
326 26 : exchange_integral_type=do_erie)
327 26 : atom_info(in, im)%atom%hfx_pot%do_gh = do_gh
328 26 : atom_info(in, im)%atom%hfx_pot%nr_gh = nr_gh
329 26 : atom_refs(in, im)%atom%hfx_pot%do_gh = do_gh
330 26 : atom_refs(in, im)%atom%hfx_pot%nr_gh = nr_gh
331 :
332 26 : CALL set_atom(atom_info(in, im)%atom, state=statepp)
333 26 : NULLIFY (orbitals)
334 182 : mo = MAXVAL(statepp%maxn_calc)
335 182 : mb = MAXVAL(atom_info(in, im)%atom%basis%nbas)
336 26 : CALL create_atom_orbs(orbitals, mb, mo)
337 26 : CALL set_atom(atom_info(in, im)%atom, orbitals=orbitals)
338 :
339 26 : CALL set_atom(atom_refs(in, im)%atom, state=state)
340 26 : NULLIFY (orbitals)
341 182 : mo = MAXVAL(state%maxn_calc)
342 182 : mb = MAXVAL(atom_refs(in, im)%atom%basis%nbas)
343 26 : CALL create_atom_orbs(orbitals, mb, mo)
344 26 : CALL set_atom(atom_refs(in, im)%atom, orbitals=orbitals)
345 :
346 78 : IF (atom_consistent_method(atom_refs(in, im)%atom%method_type, atom_refs(in, im)%atom%state%multiplicity)) THEN
347 : !Print method info
348 26 : iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%METHOD_INFO", extension=".log")
349 26 : CALL atom_print_method(atom_refs(in, im)%atom, iw)
350 26 : CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%METHOD_INFO")
351 : !Calculate the electronic structure
352 26 : iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%SCF_INFO", extension=".log")
353 26 : CALL calculate_atom(atom_refs(in, im)%atom, iw)
354 26 : CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%SCF_INFO")
355 : END IF
356 : END DO
357 : END DO
358 :
359 26 : iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%FIT_PSEUDO", extension=".log")
360 26 : IF (iw > 0) THEN
361 13 : WRITE (iw, '(/," ",79("*"))')
362 13 : WRITE (iw, '(" ",21("*"),A,21("*"))') " Optimize Pseudopotential Parameters "
363 13 : WRITE (iw, '(" ",79("*"))')
364 : END IF
365 26 : CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%FIT_PSEUDO")
366 26 : iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%POTENTIAL", extension=".log")
367 26 : IF (iw > 0) THEN
368 0 : CALL atom_print_potential(p_pot, iw)
369 : END IF
370 26 : CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%POTENTIAL")
371 26 : iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%FIT_PSEUDO", extension=".log")
372 26 : IF (iw > 0) THEN
373 13 : powell_section => section_vals_get_subs_vals(atom_section, "POWELL")
374 13 : CALL atom_fit_pseudo(atom_info, atom_refs, p_pot, iw, powell_section)
375 : END IF
376 26 : CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%FIT_PSEUDO")
377 26 : iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%POTENTIAL", extension=".log")
378 26 : IF (iw > 0) THEN
379 0 : CALL atom_print_potential(p_pot, iw)
380 : END IF
381 26 : CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%POTENTIAL")
382 :
383 : ! clean up
384 26 : CALL atom_int_release(ae_int)
385 26 : CALL atom_ppint_release(ae_int)
386 26 : CALL atom_relint_release(ae_int)
387 :
388 26 : CALL atom_int_release(pp_int)
389 26 : CALL atom_ppint_release(pp_int)
390 26 : CALL atom_relint_release(pp_int)
391 :
392 26 : CALL release_atom_basis(ae_basis)
393 26 : CALL release_atom_basis(pp_basis)
394 :
395 26 : CALL release_atom_potential(p_pot)
396 26 : CALL release_atom_potential(ae_pot)
397 :
398 52 : DO in = 1, n_rep
399 78 : DO im = 1, n_meth
400 26 : CALL release_atom_type(atom_info(in, im)%atom)
401 52 : CALL release_atom_type(atom_refs(in, im)%atom)
402 : END DO
403 : END DO
404 26 : DEALLOCATE (atom_info, atom_refs)
405 :
406 26 : DEALLOCATE (ae_pot, p_pot, ae_basis, pp_basis, ae_int, pp_int)
407 :
408 26 : CALL timestop(handle)
409 :
410 156 : END SUBROUTINE atom_pseudo_opt
411 :
412 : ! **************************************************************************************************
413 :
414 : END MODULE atom_pseudo
|