LCOV - code coverage report
Current view: top level - src - bse_util.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:2fce0f8) Lines: 604 718 84.1 %
Date: 2024-12-21 06:28:57 Functions: 14 15 93.3 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2024 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief Auxiliary routines for GW + Bethe-Salpeter for computing electronic excitations
      10             : !> \par History
      11             : !>      11.2023 created [Maximilian Graml]
      12             : ! **************************************************************************************************
      13             : MODULE bse_util
      14             :    USE atomic_kind_types,               ONLY: atomic_kind_type
      15             :    USE cell_types,                      ONLY: cell_type
      16             :    USE cp_blacs_env,                    ONLY: cp_blacs_env_type
      17             :    USE cp_control_types,                ONLY: dft_control_type
      18             :    USE cp_dbcsr_api,                    ONLY: dbcsr_create,&
      19             :                                               dbcsr_init_p,&
      20             :                                               dbcsr_p_type,&
      21             :                                               dbcsr_set,&
      22             :                                               dbcsr_type_symmetric
      23             :    USE cp_dbcsr_cp2k_link,              ONLY: cp_dbcsr_alloc_block_from_nbl
      24             :    USE cp_dbcsr_operations,             ONLY: cp_dbcsr_sm_fm_multiply,&
      25             :                                               dbcsr_allocate_matrix_set,&
      26             :                                               dbcsr_deallocate_matrix_set
      27             :    USE cp_fm_basic_linalg,              ONLY: cp_fm_trace,&
      28             :                                               cp_fm_upper_to_full
      29             :    USE cp_fm_cholesky,                  ONLY: cp_fm_cholesky_decompose,&
      30             :                                               cp_fm_cholesky_invert
      31             :    USE cp_fm_struct,                    ONLY: cp_fm_struct_create,&
      32             :                                               cp_fm_struct_release,&
      33             :                                               cp_fm_struct_type
      34             :    USE cp_fm_types,                     ONLY: cp_fm_create,&
      35             :                                               cp_fm_get_info,&
      36             :                                               cp_fm_release,&
      37             :                                               cp_fm_set_all,&
      38             :                                               cp_fm_to_fm_submat,&
      39             :                                               cp_fm_to_fm_submat_general,&
      40             :                                               cp_fm_type
      41             :    USE cp_log_handling,                 ONLY: cp_get_default_logger,&
      42             :                                               cp_logger_type
      43             :    USE cp_output_handling,              ONLY: cp_print_key_finished_output,&
      44             :                                               cp_print_key_unit_nr
      45             :    USE cp_realspace_grid_cube,          ONLY: cp_pw_to_cube
      46             :    USE input_constants,                 ONLY: bse_screening_alpha,&
      47             :                                               bse_screening_rpa,&
      48             :                                               bse_screening_tdhf,&
      49             :                                               use_mom_ref_coac
      50             :    USE input_section_types,             ONLY: section_vals_type
      51             :    USE kinds,                           ONLY: default_path_length,&
      52             :                                               dp,&
      53             :                                               int_8
      54             :    USE message_passing,                 ONLY: mp_para_env_type,&
      55             :                                               mp_request_type
      56             :    USE moments_utils,                   ONLY: get_reference_point
      57             :    USE mp2_types,                       ONLY: integ_mat_buffer_type,&
      58             :                                               mp2_type
      59             :    USE parallel_gemm_api,               ONLY: parallel_gemm
      60             :    USE particle_list_types,             ONLY: particle_list_type
      61             :    USE particle_types,                  ONLY: particle_type
      62             :    USE physcon,                         ONLY: evolt
      63             :    USE pw_env_types,                    ONLY: pw_env_get,&
      64             :                                               pw_env_type
      65             :    USE pw_poisson_types,                ONLY: pw_poisson_type
      66             :    USE pw_pool_types,                   ONLY: pw_pool_p_type,&
      67             :                                               pw_pool_type
      68             :    USE pw_types,                        ONLY: pw_c1d_gs_type,&
      69             :                                               pw_r3d_rs_type
      70             :    USE qs_collocate_density,            ONLY: calculate_wavefunction
      71             :    USE qs_environment_types,            ONLY: get_qs_env,&
      72             :                                               qs_environment_type
      73             :    USE qs_kind_types,                   ONLY: qs_kind_type
      74             :    USE qs_mo_types,                     ONLY: get_mo_set,&
      75             :                                               mo_set_type
      76             :    USE qs_moments,                      ONLY: build_local_moment_matrix
      77             :    USE qs_neighbor_list_types,          ONLY: neighbor_list_set_p_type
      78             :    USE qs_subsys_types,                 ONLY: qs_subsys_get,&
      79             :                                               qs_subsys_type
      80             :    USE rpa_communication,               ONLY: communicate_buffer
      81             :    USE util,                            ONLY: sort,&
      82             :                                               sort_unique
      83             : #include "./base/base_uses.f90"
      84             : 
      85             :    IMPLICIT NONE
      86             : 
      87             :    PRIVATE
      88             : 
      89             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'bse_util'
      90             : 
      91             :    PUBLIC :: mult_B_with_W, fm_general_add_bse, truncate_fm, &
      92             :              deallocate_matrices_bse, comp_eigvec_coeff_BSE, sort_excitations, &
      93             :              estimate_BSE_resources, filter_eigvec_contrib, truncate_BSE_matrices, &
      94             :              determine_cutoff_indices, adapt_BSE_input_params, get_multipoles_mo, &
      95             :              reshuffle_eigvec, print_bse_nto_cubes, trace_exciton_descr
      96             : 
      97             : CONTAINS
      98             : 
      99             : ! **************************************************************************************************
     100             : !> \brief Multiplies B-matrix (RI-3c-Integrals) with W (screening) to obtain \bar{B}
     101             : !> \param fm_mat_S_ij_bse ...
     102             : !> \param fm_mat_S_ia_bse ...
     103             : !> \param fm_mat_S_bar_ia_bse ...
     104             : !> \param fm_mat_S_bar_ij_bse ...
     105             : !> \param fm_mat_Q_static_bse_gemm ...
     106             : !> \param dimen_RI ...
     107             : !> \param homo ...
     108             : !> \param virtual ...
     109             : ! **************************************************************************************************
     110         252 :    SUBROUTINE mult_B_with_W(fm_mat_S_ij_bse, fm_mat_S_ia_bse, fm_mat_S_bar_ia_bse, &
     111             :                             fm_mat_S_bar_ij_bse, fm_mat_Q_static_bse_gemm, &
     112             :                             dimen_RI, homo, virtual)
     113             : 
     114             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mat_S_ij_bse, fm_mat_S_ia_bse
     115             :       TYPE(cp_fm_type), INTENT(OUT)                      :: fm_mat_S_bar_ia_bse, fm_mat_S_bar_ij_bse
     116             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mat_Q_static_bse_gemm
     117             :       INTEGER, INTENT(IN)                                :: dimen_RI, homo, virtual
     118             : 
     119             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'mult_B_with_W'
     120             : 
     121             :       INTEGER                                            :: handle, i_global, iiB, info_chol, &
     122             :                                                             j_global, jjB, ncol_local, nrow_local
     123          42 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices, row_indices
     124             :       TYPE(cp_fm_type)                                   :: fm_work
     125             : 
     126          42 :       CALL timeset(routineN, handle)
     127             : 
     128          42 :       CALL cp_fm_create(fm_mat_S_bar_ia_bse, fm_mat_S_ia_bse%matrix_struct)
     129          42 :       CALL cp_fm_set_all(fm_mat_S_bar_ia_bse, 0.0_dp)
     130             : 
     131          42 :       CALL cp_fm_create(fm_mat_S_bar_ij_bse, fm_mat_S_ij_bse%matrix_struct)
     132          42 :       CALL cp_fm_set_all(fm_mat_S_bar_ij_bse, 0.0_dp)
     133             : 
     134          42 :       CALL cp_fm_create(fm_work, fm_mat_Q_static_bse_gemm%matrix_struct)
     135          42 :       CALL cp_fm_set_all(fm_work, 0.0_dp)
     136             : 
     137             :       ! get info of fm_mat_Q_static_bse and compute ((1+Q(0))^-1-1)
     138             :       CALL cp_fm_get_info(matrix=fm_mat_Q_static_bse_gemm, &
     139             :                           nrow_local=nrow_local, &
     140             :                           ncol_local=ncol_local, &
     141             :                           row_indices=row_indices, &
     142          42 :                           col_indices=col_indices)
     143             : 
     144        3528 :       DO jjB = 1, ncol_local
     145        3486 :          j_global = col_indices(jjB)
     146      148197 :          DO iiB = 1, nrow_local
     147      144669 :             i_global = row_indices(iiB)
     148      148155 :             IF (j_global == i_global .AND. i_global <= dimen_RI) THEN
     149        1743 :                fm_mat_Q_static_bse_gemm%local_data(iiB, jjB) = fm_mat_Q_static_bse_gemm%local_data(iiB, jjB) + 1.0_dp
     150             :             END IF
     151             :          END DO
     152             :       END DO
     153             : 
     154             :       ! calculate Trace(Log(Matrix)) as Log(DET(Matrix)) via cholesky decomposition
     155          42 :       CALL cp_fm_cholesky_decompose(matrix=fm_mat_Q_static_bse_gemm, n=dimen_RI, info_out=info_chol)
     156             : 
     157          42 :       CPASSERT(info_chol == 0)
     158             : 
     159             :       ! calculate [1+Q(i0)]^-1
     160          42 :       CALL cp_fm_cholesky_invert(fm_mat_Q_static_bse_gemm)
     161             : 
     162             :       ! symmetrize the result
     163          42 :       CALL cp_fm_upper_to_full(fm_mat_Q_static_bse_gemm, fm_work)
     164             : 
     165             :       CALL parallel_gemm(transa="N", transb="N", m=dimen_RI, n=homo**2, k=dimen_RI, alpha=1.0_dp, &
     166             :                          matrix_a=fm_mat_Q_static_bse_gemm, matrix_b=fm_mat_S_ij_bse, beta=0.0_dp, &
     167          42 :                          matrix_c=fm_mat_S_bar_ij_bse)
     168             : 
     169             :       ! fm_mat_S_bar_ia_bse has a different blacs_env as fm_mat_S_ij_bse since we take
     170             :       ! fm_mat_S_ia_bse from RPA. Therefore, we also need a different fm_mat_Q_static_bse_gemm
     171             :       CALL parallel_gemm(transa="N", transb="N", m=dimen_RI, n=homo*virtual, k=dimen_RI, alpha=1.0_dp, &
     172             :                          matrix_a=fm_mat_Q_static_bse_gemm, matrix_b=fm_mat_S_ia_bse, beta=0.0_dp, &
     173          42 :                          matrix_c=fm_mat_S_bar_ia_bse)
     174             : 
     175          42 :       CALL cp_fm_release(fm_work)
     176             : 
     177          42 :       CALL timestop(handle)
     178             : 
     179          42 :    END SUBROUTINE
     180             : 
     181             : ! **************************************************************************************************
     182             : !> \brief Adds and reorders full matrices with a combined index structure, e.g. adding W_ij,ab
     183             : !> to A_ia, jb which needs MPI communication.
     184             : !> \param fm_out ...
     185             : !> \param fm_in ...
     186             : !> \param beta ...
     187             : !> \param nrow_secidx_in ...
     188             : !> \param ncol_secidx_in ...
     189             : !> \param nrow_secidx_out ...
     190             : !> \param ncol_secidx_out ...
     191             : !> \param unit_nr ...
     192             : !> \param reordering ...
     193             : !> \param mp2_env ...
     194             : ! **************************************************************************************************
     195         490 :    SUBROUTINE fm_general_add_bse(fm_out, fm_in, beta, nrow_secidx_in, ncol_secidx_in, &
     196             :                                  nrow_secidx_out, ncol_secidx_out, unit_nr, reordering, mp2_env)
     197             : 
     198             :       TYPE(cp_fm_type), INTENT(INOUT)                    :: fm_out
     199             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_in
     200             :       REAL(kind=dp)                                      :: beta
     201             :       INTEGER, INTENT(IN)                                :: nrow_secidx_in, ncol_secidx_in, &
     202             :                                                             nrow_secidx_out, ncol_secidx_out
     203             :       INTEGER                                            :: unit_nr
     204             :       INTEGER, DIMENSION(4)                              :: reordering
     205             :       TYPE(mp2_type), INTENT(IN)                         :: mp2_env
     206             : 
     207             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'fm_general_add_bse'
     208             : 
     209             :       INTEGER :: col_idx_loc, dummy, handle, handle2, i_entry_rec, idx_col_out, idx_row_out, ii, &
     210             :          iproc, jj, ncol_block_in, ncol_block_out, ncol_local_in, ncol_local_out, nprocs, &
     211             :          nrow_block_in, nrow_block_out, nrow_local_in, nrow_local_out, proc_send, row_idx_loc, &
     212             :          send_pcol, send_prow
     213         490 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: entry_counter, num_entries_rec, &
     214             :                                                             num_entries_send
     215             :       INTEGER, DIMENSION(4)                              :: indices_in
     216         490 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices_in, col_indices_out, &
     217         490 :                                                             row_indices_in, row_indices_out
     218             :       TYPE(integ_mat_buffer_type), ALLOCATABLE, &
     219         490 :          DIMENSION(:)                                    :: buffer_rec, buffer_send
     220             :       TYPE(mp_para_env_type), POINTER                    :: para_env_out
     221         490 :       TYPE(mp_request_type), DIMENSION(:, :), POINTER    :: req_array
     222             : 
     223         490 :       CALL timeset(routineN, handle)
     224         490 :       CALL timeset(routineN//"_1_setup", handle2)
     225             : 
     226         490 :       para_env_out => fm_out%matrix_struct%para_env
     227             :       ! A_iajb
     228             :       ! We start by moving data from local parts of W_ijab to the full matrix A_iajb using buffers
     229             :       CALL cp_fm_get_info(matrix=fm_out, &
     230             :                           nrow_local=nrow_local_out, &
     231             :                           ncol_local=ncol_local_out, &
     232             :                           row_indices=row_indices_out, &
     233             :                           col_indices=col_indices_out, &
     234             :                           nrow_block=nrow_block_out, &
     235         490 :                           ncol_block=ncol_block_out)
     236             : 
     237        1470 :       ALLOCATE (num_entries_rec(0:para_env_out%num_pe - 1))
     238        1470 :       ALLOCATE (num_entries_send(0:para_env_out%num_pe - 1))
     239             : 
     240        1470 :       num_entries_rec(:) = 0
     241        1470 :       num_entries_send(:) = 0
     242             : 
     243         490 :       dummy = 0
     244             : 
     245             :       CALL cp_fm_get_info(matrix=fm_in, &
     246             :                           nrow_local=nrow_local_in, &
     247             :                           ncol_local=ncol_local_in, &
     248             :                           row_indices=row_indices_in, &
     249             :                           col_indices=col_indices_in, &
     250             :                           nrow_block=nrow_block_in, &
     251         490 :                           ncol_block=ncol_block_in)
     252             : 
     253         490 :       IF (unit_nr > 0 .AND. mp2_env%bse%bse_debug_print) THEN
     254          94 :          WRITE (unit_nr, '(T2,A10,T13,A14,A10,T71,I10)') 'BSE|DEBUG|', 'Row number of ', fm_out%name, &
     255         188 :             fm_out%matrix_struct%nrow_global
     256          94 :          WRITE (unit_nr, '(T2,A10,T13,A17,A10,T71,I10)') 'BSE|DEBUG|', 'Column number of ', fm_out%name, &
     257         188 :             fm_out%matrix_struct%ncol_global
     258             : 
     259          94 :          WRITE (unit_nr, '(T2,A10,T13,A18,A10,T71,I10)') 'BSE|DEBUG|', 'Row block size of ', fm_out%name, nrow_block_out
     260          94 :          WRITE (unit_nr, '(T2,A10,T13,A21,A10,T71,I10)') 'BSE|DEBUG|', 'Column block size of ', fm_out%name, ncol_block_out
     261             : 
     262          94 :          WRITE (unit_nr, '(T2,A10,T13,A14,A10,T71,I10)') 'BSE|DEBUG|', 'Row number of ', fm_in%name, &
     263         188 :             fm_in%matrix_struct%nrow_global
     264          94 :          WRITE (unit_nr, '(T2,A10,T13,A17,A10,T71,I10)') 'BSE|DEBUG|', 'Column number of ', fm_in%name, &
     265         188 :             fm_in%matrix_struct%ncol_global
     266             : 
     267          94 :          WRITE (unit_nr, '(T2,A10,T13,A18,A10,T71,I10)') 'BSE|DEBUG|', 'Row block size of ', fm_in%name, nrow_block_in
     268          94 :          WRITE (unit_nr, '(T2,A10,T13,A21,A10,T71,I10)') 'BSE|DEBUG|', 'Column block size of ', fm_in%name, ncol_block_in
     269             :       END IF
     270             : 
     271             :       ! Use scalapack wrapper to find process index in fm_out
     272             :       ! To that end, we obtain the global index in fm_out from the level indices
     273         490 :       indices_in(:) = 0
     274        9342 :       DO row_idx_loc = 1, nrow_local_in
     275        8852 :          indices_in(1) = (row_indices_in(row_idx_loc) - 1)/nrow_secidx_in + 1
     276        8852 :          indices_in(2) = MOD(row_indices_in(row_idx_loc) - 1, nrow_secidx_in) + 1
     277       93294 :          DO col_idx_loc = 1, ncol_local_in
     278       83952 :             indices_in(3) = (col_indices_in(col_idx_loc) - 1)/ncol_secidx_in + 1
     279       83952 :             indices_in(4) = MOD(col_indices_in(col_idx_loc) - 1, ncol_secidx_in) + 1
     280             : 
     281       83952 :             idx_row_out = indices_in(reordering(2)) + (indices_in(reordering(1)) - 1)*nrow_secidx_out
     282       83952 :             idx_col_out = indices_in(reordering(4)) + (indices_in(reordering(3)) - 1)*ncol_secidx_out
     283             : 
     284       83952 :             send_prow = fm_out%matrix_struct%g2p_row(idx_row_out)
     285       83952 :             send_pcol = fm_out%matrix_struct%g2p_col(idx_col_out)
     286             : 
     287       83952 :             proc_send = fm_out%matrix_struct%context%blacs2mpi(send_prow, send_pcol)
     288             : 
     289       92804 :             num_entries_send(proc_send) = num_entries_send(proc_send) + 1
     290             : 
     291             :          END DO
     292             :       END DO
     293             : 
     294         490 :       CALL timestop(handle2)
     295             : 
     296         490 :       CALL timeset(routineN//"_2_comm_entry_nums", handle2)
     297         490 :       IF (unit_nr > 0 .AND. mp2_env%bse%bse_debug_print) THEN
     298          94 :          WRITE (unit_nr, '(T2,A10,T13,A27)') 'BSE|DEBUG|', 'Communicating entry numbers'
     299             :       END IF
     300             : 
     301         490 :       CALL para_env_out%alltoall(num_entries_send, num_entries_rec, 1)
     302             : 
     303         490 :       CALL timestop(handle2)
     304             : 
     305         490 :       CALL timeset(routineN//"_3_alloc_buffer", handle2)
     306         490 :       IF (unit_nr > 0 .AND. mp2_env%bse%bse_debug_print) THEN
     307          94 :          WRITE (unit_nr, '(T2,A10,T13,A18)') 'BSE|DEBUG|', 'Allocating buffers'
     308             :       END IF
     309             : 
     310             :       ! Buffers for entries and their indices
     311        2450 :       ALLOCATE (buffer_rec(0:para_env_out%num_pe - 1))
     312        2450 :       ALLOCATE (buffer_send(0:para_env_out%num_pe - 1))
     313             : 
     314             :       ! allocate data message and corresponding indices
     315        1470 :       DO iproc = 0, para_env_out%num_pe - 1
     316             : 
     317        2237 :          ALLOCATE (buffer_rec(iproc)%msg(num_entries_rec(iproc)))
     318       85422 :          buffer_rec(iproc)%msg = 0.0_dp
     319             : 
     320             :       END DO
     321             : 
     322        1470 :       DO iproc = 0, para_env_out%num_pe - 1
     323             : 
     324        2237 :          ALLOCATE (buffer_send(iproc)%msg(num_entries_send(iproc)))
     325       85422 :          buffer_send(iproc)%msg = 0.0_dp
     326             : 
     327             :       END DO
     328             : 
     329        1470 :       DO iproc = 0, para_env_out%num_pe - 1
     330             : 
     331        2237 :          ALLOCATE (buffer_rec(iproc)%indx(num_entries_rec(iproc), 2))
     332      171334 :          buffer_rec(iproc)%indx = 0
     333             : 
     334             :       END DO
     335             : 
     336        1470 :       DO iproc = 0, para_env_out%num_pe - 1
     337             : 
     338        2237 :          ALLOCATE (buffer_send(iproc)%indx(num_entries_send(iproc), 2))
     339      171334 :          buffer_send(iproc)%indx = 0
     340             : 
     341             :       END DO
     342             : 
     343         490 :       CALL timestop(handle2)
     344             : 
     345         490 :       CALL timeset(routineN//"_4_buf_from_fmin_"//fm_out%name, handle2)
     346         490 :       IF (unit_nr > 0 .AND. mp2_env%bse%bse_debug_print) THEN
     347          94 :          WRITE (unit_nr, '(T2,A10,T13,A18,A10,A13)') 'BSE|DEBUG|', 'Writing data from ', fm_in%name, ' into buffers'
     348             :       END IF
     349             : 
     350        1470 :       ALLOCATE (entry_counter(0:para_env_out%num_pe - 1))
     351        1470 :       entry_counter(:) = 0
     352             : 
     353             :       ! Now we can write the actual data and indices to the send-buffer
     354        9342 :       DO row_idx_loc = 1, nrow_local_in
     355        8852 :          indices_in(1) = (row_indices_in(row_idx_loc) - 1)/nrow_secidx_in + 1
     356        8852 :          indices_in(2) = MOD(row_indices_in(row_idx_loc) - 1, nrow_secidx_in) + 1
     357       93294 :          DO col_idx_loc = 1, ncol_local_in
     358       83952 :             indices_in(3) = (col_indices_in(col_idx_loc) - 1)/ncol_secidx_in + 1
     359       83952 :             indices_in(4) = MOD(col_indices_in(col_idx_loc) - 1, ncol_secidx_in) + 1
     360             : 
     361       83952 :             idx_row_out = indices_in(reordering(2)) + (indices_in(reordering(1)) - 1)*nrow_secidx_out
     362       83952 :             idx_col_out = indices_in(reordering(4)) + (indices_in(reordering(3)) - 1)*ncol_secidx_out
     363             : 
     364       83952 :             send_prow = fm_out%matrix_struct%g2p_row(idx_row_out)
     365       83952 :             send_pcol = fm_out%matrix_struct%g2p_col(idx_col_out)
     366             : 
     367       83952 :             proc_send = fm_out%matrix_struct%context%blacs2mpi(send_prow, send_pcol)
     368       83952 :             entry_counter(proc_send) = entry_counter(proc_send) + 1
     369             : 
     370             :             buffer_send(proc_send)%msg(entry_counter(proc_send)) = &
     371       83952 :                fm_in%local_data(row_idx_loc, col_idx_loc)
     372             : 
     373       83952 :             buffer_send(proc_send)%indx(entry_counter(proc_send), 1) = idx_row_out
     374       92804 :             buffer_send(proc_send)%indx(entry_counter(proc_send), 2) = idx_col_out
     375             : 
     376             :          END DO
     377             :       END DO
     378             : 
     379        7350 :       ALLOCATE (req_array(1:para_env_out%num_pe, 4))
     380             : 
     381         490 :       CALL timestop(handle2)
     382             : 
     383         490 :       CALL timeset(routineN//"_5_comm_buffer", handle2)
     384         490 :       IF (unit_nr > 0 .AND. mp2_env%bse%bse_debug_print) THEN
     385          94 :          WRITE (unit_nr, '(T2,A10,T13,A21)') 'BSE|DEBUG|', 'Communicating buffers'
     386             :       END IF
     387             : 
     388             :       ! communicate the buffer
     389             :       CALL communicate_buffer(para_env_out, num_entries_rec, num_entries_send, buffer_rec, &
     390         490 :                               buffer_send, req_array)
     391             : 
     392         490 :       CALL timestop(handle2)
     393             : 
     394         490 :       CALL timeset(routineN//"_6_buffer_to_fmout"//fm_out%name, handle2)
     395         490 :       IF (unit_nr > 0 .AND. mp2_env%bse%bse_debug_print) THEN
     396          94 :          WRITE (unit_nr, '(T2,A10,T13,A24,A10)') 'BSE|DEBUG|', 'Writing from buffers to ', fm_out%name
     397             :       END IF
     398             : 
     399             :       ! fill fm_out with the entries from buffer_rec, i.e. buffer_rec are parts of fm_in
     400         490 :       nprocs = para_env_out%num_pe
     401             : 
     402             : !$OMP PARALLEL DO DEFAULT(NONE) &
     403             : !$OMP SHARED(fm_out, nprocs, num_entries_rec, buffer_rec, beta) &
     404         490 : !$OMP PRIVATE(iproc, i_entry_rec, ii, jj)
     405             :       DO iproc = 0, nprocs - 1
     406             :          DO i_entry_rec = 1, num_entries_rec(iproc)
     407             :             ii = fm_out%matrix_struct%g2l_row(buffer_rec(iproc)%indx(i_entry_rec, 1))
     408             :             jj = fm_out%matrix_struct%g2l_col(buffer_rec(iproc)%indx(i_entry_rec, 2))
     409             : 
     410             :             fm_out%local_data(ii, jj) = fm_out%local_data(ii, jj) + beta*buffer_rec(iproc)%msg(i_entry_rec)
     411             :          END DO
     412             :       END DO
     413             : !$OMP END PARALLEL DO
     414             : 
     415         490 :       CALL timestop(handle2)
     416             : 
     417         490 :       CALL timeset(routineN//"_7_cleanup", handle2)
     418         490 :       IF (unit_nr > 0 .AND. mp2_env%bse%bse_debug_print) THEN
     419          94 :          WRITE (unit_nr, '(T2,A10,T13,A41)') 'BSE|DEBUG|', 'Starting cleanup of communication buffers'
     420             :       END IF
     421             : 
     422             :       !Clean up all the arrays from the communication process
     423        1470 :       DO iproc = 0, para_env_out%num_pe - 1
     424         980 :          DEALLOCATE (buffer_rec(iproc)%msg)
     425         980 :          DEALLOCATE (buffer_rec(iproc)%indx)
     426         980 :          DEALLOCATE (buffer_send(iproc)%msg)
     427        1470 :          DEALLOCATE (buffer_send(iproc)%indx)
     428             :       END DO
     429        2450 :       DEALLOCATE (buffer_rec, buffer_send)
     430         490 :       DEALLOCATE (req_array)
     431         490 :       DEALLOCATE (entry_counter)
     432         490 :       DEALLOCATE (num_entries_rec, num_entries_send)
     433             : 
     434         490 :       CALL timestop(handle2)
     435         490 :       CALL timestop(handle)
     436             : 
     437        3430 :    END SUBROUTINE fm_general_add_bse
     438             : 
     439             : ! **************************************************************************************************
     440             : !> \brief Routine for truncating a full matrix as given by the energy cutoffs in the input file.
     441             : !>  Logic: Matrices have some dimension dimen_RI x nrow_in*ncol_in  for the incoming (untruncated) matrix
     442             : !>  and dimen_RI x nrow_out*ncol_out for the truncated matrix. The truncation is done by resorting the indices
     443             : !>  via parallel communication.
     444             : !> \param fm_out ...
     445             : !> \param fm_in ...
     446             : !> \param ncol_in ...
     447             : !> \param nrow_out ...
     448             : !> \param ncol_out ...
     449             : !> \param unit_nr ...
     450             : !> \param mp2_env ...
     451             : !> \param nrow_offset ...
     452             : !> \param ncol_offset ...
     453             : ! **************************************************************************************************
     454         126 :    SUBROUTINE truncate_fm(fm_out, fm_in, ncol_in, &
     455             :                           nrow_out, ncol_out, unit_nr, mp2_env, &
     456             :                           nrow_offset, ncol_offset)
     457             : 
     458             :       TYPE(cp_fm_type), INTENT(INOUT)                    :: fm_out
     459             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_in
     460             :       INTEGER                                            :: ncol_in, nrow_out, ncol_out, unit_nr
     461             :       TYPE(mp2_type), INTENT(INOUT)                      :: mp2_env
     462             :       INTEGER, INTENT(IN), OPTIONAL                      :: nrow_offset, ncol_offset
     463             : 
     464             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'truncate_fm'
     465             : 
     466             :       INTEGER :: col_idx_loc, dummy, handle, handle2, i_entry_rec, idx_col_first, idx_col_in, &
     467             :          idx_col_out, idx_col_sec, idx_row_in, ii, iproc, jj, ncol_block_in, ncol_block_out, &
     468             :          ncol_local_in, ncol_local_out, nprocs, nrow_block_in, nrow_block_out, nrow_local_in, &
     469             :          nrow_local_out, proc_send, row_idx_loc, send_pcol, send_prow
     470         126 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: entry_counter, num_entries_rec, &
     471             :                                                             num_entries_send
     472         126 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices_in, col_indices_out, &
     473         126 :                                                             row_indices_in, row_indices_out
     474             :       LOGICAL                                            :: correct_ncol, correct_nrow
     475             :       TYPE(integ_mat_buffer_type), ALLOCATABLE, &
     476         126 :          DIMENSION(:)                                    :: buffer_rec, buffer_send
     477             :       TYPE(mp_para_env_type), POINTER                    :: para_env_out
     478         126 :       TYPE(mp_request_type), DIMENSION(:, :), POINTER    :: req_array
     479             : 
     480         126 :       CALL timeset(routineN, handle)
     481         126 :       CALL timeset(routineN//"_1_setup", handle2)
     482             : 
     483         126 :       correct_nrow = .FALSE.
     484         126 :       correct_ncol = .FALSE.
     485             :       !In case of truncation in the occupied space, we need to correct the interval of indices
     486         126 :       IF (PRESENT(nrow_offset)) THEN
     487          84 :          correct_nrow = .TRUE.
     488             :       END IF
     489         126 :       IF (PRESENT(ncol_offset)) THEN
     490          42 :          correct_ncol = .TRUE.
     491             :       END IF
     492             : 
     493         126 :       para_env_out => fm_out%matrix_struct%para_env
     494             : 
     495             :       CALL cp_fm_get_info(matrix=fm_out, &
     496             :                           nrow_local=nrow_local_out, &
     497             :                           ncol_local=ncol_local_out, &
     498             :                           row_indices=row_indices_out, &
     499             :                           col_indices=col_indices_out, &
     500             :                           nrow_block=nrow_block_out, &
     501         126 :                           ncol_block=ncol_block_out)
     502             : 
     503         378 :       ALLOCATE (num_entries_rec(0:para_env_out%num_pe - 1))
     504         378 :       ALLOCATE (num_entries_send(0:para_env_out%num_pe - 1))
     505             : 
     506         378 :       num_entries_rec(:) = 0
     507         378 :       num_entries_send(:) = 0
     508             : 
     509         126 :       dummy = 0
     510             : 
     511             :       CALL cp_fm_get_info(matrix=fm_in, &
     512             :                           nrow_local=nrow_local_in, &
     513             :                           ncol_local=ncol_local_in, &
     514             :                           row_indices=row_indices_in, &
     515             :                           col_indices=col_indices_in, &
     516             :                           nrow_block=nrow_block_in, &
     517         126 :                           ncol_block=ncol_block_in)
     518             : 
     519         126 :       IF (unit_nr > 0 .AND. mp2_env%bse%bse_debug_print) THEN
     520          12 :          WRITE (unit_nr, '(T2,A10,T13,A14,A10,T71,I10)') 'BSE|DEBUG|', 'Row number of ', fm_out%name, &
     521          24 :             fm_out%matrix_struct%nrow_global
     522          12 :          WRITE (unit_nr, '(T2,A10,T13,A17,A10,T71,I10)') 'BSE|DEBUG|', 'Column number of ', fm_out%name, &
     523          24 :             fm_out%matrix_struct%ncol_global
     524             : 
     525          12 :          WRITE (unit_nr, '(T2,A10,T13,A18,A10,T71,I10)') 'BSE|DEBUG|', 'Row block size of ', fm_out%name, nrow_block_out
     526          12 :          WRITE (unit_nr, '(T2,A10,T13,A21,A10,T71,I10)') 'BSE|DEBUG|', 'Column block size of ', fm_out%name, ncol_block_out
     527             : 
     528          12 :          WRITE (unit_nr, '(T2,A10,T13,A14,A10,T71,I10)') 'BSE|DEBUG|', 'Row number of ', fm_in%name, &
     529          24 :             fm_in%matrix_struct%nrow_global
     530          12 :          WRITE (unit_nr, '(T2,A10,T13,A17,A10,T71,I10)') 'BSE|DEBUG|', 'Column number of ', fm_in%name, &
     531          24 :             fm_in%matrix_struct%ncol_global
     532             : 
     533          12 :          WRITE (unit_nr, '(T2,A10,T13,A18,A10,T71,I10)') 'BSE|DEBUG|', 'Row block size of ', fm_in%name, nrow_block_in
     534          12 :          WRITE (unit_nr, '(T2,A10,T13,A21,A10,T71,I10)') 'BSE|DEBUG|', 'Column block size of ', fm_in%name, ncol_block_in
     535             :       END IF
     536             : 
     537             :       ! We find global indices in S with nrow_in and ncol_in for truncation
     538       10038 :       DO col_idx_loc = 1, ncol_local_in
     539        9912 :          idx_col_in = col_indices_in(col_idx_loc)
     540             : 
     541        9912 :          idx_col_first = (idx_col_in - 1)/ncol_in + 1
     542        9912 :          idx_col_sec = MOD(idx_col_in - 1, ncol_in) + 1
     543             : 
     544             :          ! If occupied orbitals are included, these have to be handled differently
     545             :          ! due to their reversed indexing
     546        9912 :          IF (correct_nrow) THEN
     547        3864 :             idx_col_first = idx_col_first - nrow_offset + 1
     548        3864 :             IF (idx_col_first .LE. 0) CYCLE
     549             :          ELSE
     550        6048 :             IF (idx_col_first > nrow_out) EXIT
     551             :          END IF
     552        9912 :          IF (correct_ncol) THEN
     553         672 :             idx_col_sec = idx_col_sec - ncol_offset + 1
     554         672 :             IF (idx_col_sec .LE. 0) CYCLE
     555             :          ELSE
     556        9240 :             IF (idx_col_sec > ncol_out) CYCLE
     557             :          END IF
     558             : 
     559        8736 :          idx_col_out = idx_col_sec + (idx_col_first - 1)*ncol_out
     560             : 
     561      371406 :          DO row_idx_loc = 1, nrow_local_in
     562      362544 :             idx_row_in = row_indices_in(row_idx_loc)
     563             : 
     564      362544 :             send_prow = fm_out%matrix_struct%g2p_row(idx_row_in)
     565      362544 :             send_pcol = fm_out%matrix_struct%g2p_col(idx_col_out)
     566             : 
     567      362544 :             proc_send = fm_out%matrix_struct%context%blacs2mpi(send_prow, send_pcol)
     568             : 
     569      372456 :             num_entries_send(proc_send) = num_entries_send(proc_send) + 1
     570             : 
     571             :          END DO
     572             :       END DO
     573             : 
     574         126 :       CALL timestop(handle2)
     575             : 
     576         126 :       CALL timeset(routineN//"_2_comm_entry_nums", handle2)
     577         126 :       IF (unit_nr > 0 .AND. mp2_env%bse%bse_debug_print) THEN
     578          12 :          WRITE (unit_nr, '(T2,A10,T13,A27)') 'BSE|DEBUG|', 'Communicating entry numbers'
     579             :       END IF
     580             : 
     581         126 :       CALL para_env_out%alltoall(num_entries_send, num_entries_rec, 1)
     582             : 
     583         126 :       CALL timestop(handle2)
     584             : 
     585         126 :       CALL timeset(routineN//"_3_alloc_buffer", handle2)
     586         126 :       IF (unit_nr > 0 .AND. mp2_env%bse%bse_debug_print) THEN
     587          12 :          WRITE (unit_nr, '(T2,A10,T13,A18)') 'BSE|DEBUG|', 'Allocating buffers'
     588             :       END IF
     589             : 
     590             :       ! Buffers for entries and their indices
     591         630 :       ALLOCATE (buffer_rec(0:para_env_out%num_pe - 1))
     592         630 :       ALLOCATE (buffer_send(0:para_env_out%num_pe - 1))
     593             : 
     594             :       ! allocate data message and corresponding indices
     595         378 :       DO iproc = 0, para_env_out%num_pe - 1
     596             : 
     597         672 :          ALLOCATE (buffer_rec(iproc)%msg(num_entries_rec(iproc)))
     598      362922 :          buffer_rec(iproc)%msg = 0.0_dp
     599             : 
     600             :       END DO
     601             : 
     602         378 :       DO iproc = 0, para_env_out%num_pe - 1
     603             : 
     604         672 :          ALLOCATE (buffer_send(iproc)%msg(num_entries_send(iproc)))
     605      362922 :          buffer_send(iproc)%msg = 0.0_dp
     606             : 
     607             :       END DO
     608             : 
     609         378 :       DO iproc = 0, para_env_out%num_pe - 1
     610             : 
     611         672 :          ALLOCATE (buffer_rec(iproc)%indx(num_entries_rec(iproc), 2))
     612      725970 :          buffer_rec(iproc)%indx = 0
     613             : 
     614             :       END DO
     615             : 
     616         378 :       DO iproc = 0, para_env_out%num_pe - 1
     617             : 
     618         672 :          ALLOCATE (buffer_send(iproc)%indx(num_entries_send(iproc), 2))
     619      725970 :          buffer_send(iproc)%indx = 0
     620             : 
     621             :       END DO
     622             : 
     623         126 :       CALL timestop(handle2)
     624             : 
     625         126 :       CALL timeset(routineN//"_4_buf_from_fmin_"//fm_out%name, handle2)
     626         126 :       IF (unit_nr > 0 .AND. mp2_env%bse%bse_debug_print) THEN
     627          12 :          WRITE (unit_nr, '(T2,A10,T13,A18,A10,A13)') 'BSE|DEBUG|', 'Writing data from ', fm_in%name, ' into buffers'
     628             :       END IF
     629             : 
     630         378 :       ALLOCATE (entry_counter(0:para_env_out%num_pe - 1))
     631         378 :       entry_counter(:) = 0
     632             : 
     633             :       ! Now we can write the actual data and indices to the send-buffer
     634       10038 :       DO col_idx_loc = 1, ncol_local_in
     635        9912 :          idx_col_in = col_indices_in(col_idx_loc)
     636             : 
     637        9912 :          idx_col_first = (idx_col_in - 1)/ncol_in + 1
     638        9912 :          idx_col_sec = MOD(idx_col_in - 1, ncol_in) + 1
     639             : 
     640             :          ! If occupied orbitals are included, these have to be handled differently
     641             :          ! due to their reversed indexing
     642        9912 :          IF (correct_nrow) THEN
     643        3864 :             idx_col_first = idx_col_first - nrow_offset + 1
     644        3864 :             IF (idx_col_first .LE. 0) CYCLE
     645             :          ELSE
     646        6048 :             IF (idx_col_first > nrow_out) EXIT
     647             :          END IF
     648        9912 :          IF (correct_ncol) THEN
     649         672 :             idx_col_sec = idx_col_sec - ncol_offset + 1
     650         672 :             IF (idx_col_sec .LE. 0) CYCLE
     651             :          ELSE
     652        9240 :             IF (idx_col_sec > ncol_out) CYCLE
     653             :          END IF
     654             : 
     655        8736 :          idx_col_out = idx_col_sec + (idx_col_first - 1)*ncol_out
     656             : 
     657      371406 :          DO row_idx_loc = 1, nrow_local_in
     658      362544 :             idx_row_in = row_indices_in(row_idx_loc)
     659             : 
     660      362544 :             send_prow = fm_out%matrix_struct%g2p_row(idx_row_in)
     661             : 
     662      362544 :             send_pcol = fm_out%matrix_struct%g2p_col(idx_col_out)
     663             : 
     664      362544 :             proc_send = fm_out%matrix_struct%context%blacs2mpi(send_prow, send_pcol)
     665      362544 :             entry_counter(proc_send) = entry_counter(proc_send) + 1
     666             : 
     667             :             buffer_send(proc_send)%msg(entry_counter(proc_send)) = &
     668      362544 :                fm_in%local_data(row_idx_loc, col_idx_loc)
     669             :             !No need to create row_out, since it is identical to incoming
     670             :             !We dont change the RI index for any fm_mat_XX_BSE
     671      362544 :             buffer_send(proc_send)%indx(entry_counter(proc_send), 1) = idx_row_in
     672      372456 :             buffer_send(proc_send)%indx(entry_counter(proc_send), 2) = idx_col_out
     673             : 
     674             :          END DO
     675             :       END DO
     676             : 
     677        1890 :       ALLOCATE (req_array(1:para_env_out%num_pe, 4))
     678             : 
     679         126 :       CALL timestop(handle2)
     680             : 
     681         126 :       CALL timeset(routineN//"_5_comm_buffer", handle2)
     682         126 :       IF (unit_nr > 0 .AND. mp2_env%bse%bse_debug_print) THEN
     683          12 :          WRITE (unit_nr, '(T2,A10,T13,A21)') 'BSE|DEBUG|', 'Communicating buffers'
     684             :       END IF
     685             : 
     686             :       ! communicate the buffer
     687             :       CALL communicate_buffer(para_env_out, num_entries_rec, num_entries_send, buffer_rec, &
     688         126 :                               buffer_send, req_array)
     689             : 
     690         126 :       CALL timestop(handle2)
     691             : 
     692         126 :       CALL timeset(routineN//"_6_buffer_to_fmout"//fm_out%name, handle2)
     693         126 :       IF (unit_nr > 0 .AND. mp2_env%bse%bse_debug_print) THEN
     694          12 :          WRITE (unit_nr, '(T2,A10,T13,A24,A10)') 'BSE|DEBUG|', 'Writing from buffers to ', fm_out%name
     695             :       END IF
     696             : 
     697             :       ! fill fm_out with the entries from buffer_rec, i.e. buffer_rec are parts of fm_in
     698         126 :       nprocs = para_env_out%num_pe
     699             : 
     700             : !$OMP PARALLEL DO DEFAULT(NONE) &
     701             : !$OMP SHARED(fm_out, nprocs, num_entries_rec, buffer_rec) &
     702         126 : !$OMP PRIVATE(iproc, i_entry_rec, ii, jj)
     703             :       DO iproc = 0, nprocs - 1
     704             :          DO i_entry_rec = 1, num_entries_rec(iproc)
     705             :             ii = fm_out%matrix_struct%g2l_row(buffer_rec(iproc)%indx(i_entry_rec, 1))
     706             :             jj = fm_out%matrix_struct%g2l_col(buffer_rec(iproc)%indx(i_entry_rec, 2))
     707             : 
     708             :             fm_out%local_data(ii, jj) = fm_out%local_data(ii, jj) + buffer_rec(iproc)%msg(i_entry_rec)
     709             :          END DO
     710             :       END DO
     711             : !$OMP END PARALLEL DO
     712             : 
     713         126 :       CALL timestop(handle2)
     714             : 
     715         126 :       CALL timeset(routineN//"_7_cleanup", handle2)
     716         126 :       IF (unit_nr > 0 .AND. mp2_env%bse%bse_debug_print) THEN
     717          12 :          WRITE (unit_nr, '(T2,A10,T13,A41)') 'BSE|DEBUG|', 'Starting cleanup of communication buffers'
     718             :       END IF
     719             : 
     720             :       !Clean up all the arrays from the communication process
     721         378 :       DO iproc = 0, para_env_out%num_pe - 1
     722         252 :          DEALLOCATE (buffer_rec(iproc)%msg)
     723         252 :          DEALLOCATE (buffer_rec(iproc)%indx)
     724         252 :          DEALLOCATE (buffer_send(iproc)%msg)
     725         378 :          DEALLOCATE (buffer_send(iproc)%indx)
     726             :       END DO
     727         630 :       DEALLOCATE (buffer_rec, buffer_send)
     728         126 :       DEALLOCATE (req_array)
     729         126 :       DEALLOCATE (entry_counter)
     730         126 :       DEALLOCATE (num_entries_rec, num_entries_send)
     731             : 
     732         126 :       CALL timestop(handle2)
     733         126 :       CALL timestop(handle)
     734             : 
     735        1008 :    END SUBROUTINE truncate_fm
     736             : 
     737             : ! **************************************************************************************************
     738             : !> \brief ...
     739             : !> \param fm_mat_S_bar_ia_bse ...
     740             : !> \param fm_mat_S_bar_ij_bse ...
     741             : !> \param fm_mat_S_trunc ...
     742             : !> \param fm_mat_S_ij_trunc ...
     743             : !> \param fm_mat_S_ab_trunc ...
     744             : !> \param fm_mat_Q_static_bse_gemm ...
     745             : !> \param mp2_env ...
     746             : ! **************************************************************************************************
     747          42 :    SUBROUTINE deallocate_matrices_bse(fm_mat_S_bar_ia_bse, fm_mat_S_bar_ij_bse, &
     748             :                                       fm_mat_S_trunc, fm_mat_S_ij_trunc, fm_mat_S_ab_trunc, &
     749             :                                       fm_mat_Q_static_bse_gemm, mp2_env)
     750             : 
     751             :       TYPE(cp_fm_type), INTENT(INOUT) :: fm_mat_S_bar_ia_bse, fm_mat_S_bar_ij_bse, fm_mat_S_trunc, &
     752             :          fm_mat_S_ij_trunc, fm_mat_S_ab_trunc, fm_mat_Q_static_bse_gemm
     753             :       TYPE(mp2_type)                                     :: mp2_env
     754             : 
     755             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'deallocate_matrices_bse'
     756             : 
     757             :       INTEGER                                            :: handle
     758             : 
     759          42 :       CALL timeset(routineN, handle)
     760             : 
     761          42 :       CALL cp_fm_release(fm_mat_S_bar_ia_bse)
     762          42 :       CALL cp_fm_release(fm_mat_S_bar_ij_bse)
     763          42 :       CALL cp_fm_release(fm_mat_S_trunc)
     764          42 :       CALL cp_fm_release(fm_mat_S_ij_trunc)
     765          42 :       CALL cp_fm_release(fm_mat_S_ab_trunc)
     766          42 :       CALL cp_fm_release(fm_mat_Q_static_bse_gemm)
     767          42 :       IF (mp2_env%bse%do_nto_analysis) THEN
     768           4 :          DEALLOCATE (mp2_env%bse%bse_nto_state_list_final)
     769             :       END IF
     770             : 
     771          42 :       CALL timestop(handle)
     772             : 
     773          42 :    END SUBROUTINE deallocate_matrices_bse
     774             : 
     775             : ! **************************************************************************************************
     776             : !> \brief Routine for computing the coefficients of the eigenvectors of the BSE matrix from a
     777             : !>  multiplication with the eigenvalues
     778             : !> \param fm_work ...
     779             : !> \param eig_vals ...
     780             : !> \param beta ...
     781             : !> \param gamma ...
     782             : !> \param do_transpose ...
     783             : ! **************************************************************************************************
     784         104 :    SUBROUTINE comp_eigvec_coeff_BSE(fm_work, eig_vals, beta, gamma, do_transpose)
     785             : 
     786             :       TYPE(cp_fm_type), INTENT(INOUT)                    :: fm_work
     787             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
     788             :          INTENT(IN)                                      :: eig_vals
     789             :       REAL(KIND=dp), INTENT(IN)                          :: beta
     790             :       REAL(KIND=dp), INTENT(IN), OPTIONAL                :: gamma
     791             :       LOGICAL, INTENT(IN), OPTIONAL                      :: do_transpose
     792             : 
     793             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'comp_eigvec_coeff_BSE'
     794             : 
     795             :       INTEGER                                            :: handle, i_row_global, ii, j_col_global, &
     796             :                                                             jj, ncol_local, nrow_local
     797          52 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices, row_indices
     798             :       LOGICAL                                            :: my_do_transpose
     799             :       REAL(KIND=dp)                                      :: coeff, my_gamma
     800             : 
     801          52 :       CALL timeset(routineN, handle)
     802             : 
     803          52 :       IF (PRESENT(gamma)) THEN
     804          52 :          my_gamma = gamma
     805             :       ELSE
     806             :          my_gamma = 2.0_dp
     807             :       END IF
     808             : 
     809          52 :       IF (PRESENT(do_transpose)) THEN
     810          52 :          my_do_transpose = do_transpose
     811             :       ELSE
     812             :          my_do_transpose = .FALSE.
     813             :       END IF
     814             : 
     815             :       CALL cp_fm_get_info(matrix=fm_work, &
     816             :                           nrow_local=nrow_local, &
     817             :                           ncol_local=ncol_local, &
     818             :                           row_indices=row_indices, &
     819          52 :                           col_indices=col_indices)
     820             : 
     821          52 :       IF (my_do_transpose) THEN
     822        2548 :          DO jj = 1, ncol_local
     823        2496 :             j_col_global = col_indices(jj)
     824       62452 :             DO ii = 1, nrow_local
     825       59904 :                coeff = (eig_vals(j_col_global)**beta)/my_gamma
     826       62400 :                fm_work%local_data(ii, jj) = fm_work%local_data(ii, jj)*coeff
     827             :             END DO
     828             :          END DO
     829             :       ELSE
     830           0 :          DO jj = 1, ncol_local
     831           0 :             DO ii = 1, nrow_local
     832           0 :                i_row_global = row_indices(ii)
     833           0 :                coeff = (eig_vals(i_row_global)**beta)/my_gamma
     834           0 :                fm_work%local_data(ii, jj) = fm_work%local_data(ii, jj)*coeff
     835             :             END DO
     836             :          END DO
     837             :       END IF
     838             : 
     839          52 :       CALL timestop(handle)
     840             : 
     841          52 :    END SUBROUTINE
     842             : 
     843             : ! **************************************************************************************************
     844             : !> \brief ...
     845             : !> \param idx_prim ...
     846             : !> \param idx_sec ...
     847             : !> \param eigvec_entries ...
     848             : ! **************************************************************************************************
     849        1700 :    SUBROUTINE sort_excitations(idx_prim, idx_sec, eigvec_entries)
     850             : 
     851             :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: idx_prim, idx_sec
     852             :       REAL(kind=dp), ALLOCATABLE, DIMENSION(:)           :: eigvec_entries
     853             : 
     854             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'sort_excitations'
     855             : 
     856             :       INTEGER                                            :: handle, ii, kk, num_entries, num_mults
     857        1700 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: idx_prim_work, idx_sec_work, tmp_index
     858             :       LOGICAL                                            :: unique_entries
     859        1700 :       REAL(kind=dp), ALLOCATABLE, DIMENSION(:)           :: eigvec_entries_work
     860             : 
     861        1700 :       CALL timeset(routineN, handle)
     862             : 
     863        1700 :       num_entries = SIZE(idx_prim)
     864             : 
     865        4450 :       ALLOCATE (tmp_index(num_entries))
     866             : 
     867        1700 :       CALL sort(idx_prim, num_entries, tmp_index)
     868             : 
     869        2750 :       ALLOCATE (idx_sec_work(num_entries))
     870        4450 :       ALLOCATE (eigvec_entries_work(num_entries))
     871             : 
     872        4254 :       DO ii = 1, num_entries
     873        2554 :          idx_sec_work(ii) = idx_sec(tmp_index(ii))
     874        4254 :          eigvec_entries_work(ii) = eigvec_entries(tmp_index(ii))
     875             :       END DO
     876             : 
     877        1700 :       DEALLOCATE (tmp_index)
     878        1700 :       DEALLOCATE (idx_sec)
     879        1700 :       DEALLOCATE (eigvec_entries)
     880             : 
     881        1700 :       CALL MOVE_ALLOC(idx_sec_work, idx_sec)
     882        1700 :       CALL MOVE_ALLOC(eigvec_entries_work, eigvec_entries)
     883             : 
     884             :       !Now check for multiple entries in first idx to check necessity of sorting in second idx
     885        1700 :       CALL sort_unique(idx_prim, unique_entries)
     886        1700 :       IF (.NOT. unique_entries) THEN
     887         508 :          ALLOCATE (idx_prim_work(num_entries))
     888        1448 :          idx_prim_work(:) = idx_prim(:)
     889             :          ! Find duplicate entries in idx_prim
     890        1448 :          DO ii = 1, num_entries
     891        1194 :             IF (idx_prim_work(ii) == 0) CYCLE
     892        4856 :             num_mults = COUNT(idx_prim_work == idx_prim_work(ii))
     893         796 :             IF (num_mults > 1) THEN
     894             :                !Set all duplicate entries to 0
     895        1046 :                idx_prim_work(ii:ii + num_mults - 1) = 0
     896             :                !Start sorting in secondary index
     897         972 :                ALLOCATE (idx_sec_work(num_mults))
     898         972 :                ALLOCATE (eigvec_entries_work(num_mults))
     899        1046 :                idx_sec_work(:) = idx_sec(ii:ii + num_mults - 1)
     900        1046 :                eigvec_entries_work(:) = eigvec_entries(ii:ii + num_mults - 1)
     901         648 :                ALLOCATE (tmp_index(num_mults))
     902         324 :                CALL sort(idx_sec_work, num_mults, tmp_index)
     903             : 
     904             :                !Now write newly sorted indices to original arrays
     905        1046 :                DO kk = ii, ii + num_mults - 1
     906         722 :                   idx_sec(kk) = idx_sec_work(kk - ii + 1)
     907        1046 :                   eigvec_entries(kk) = eigvec_entries_work(tmp_index(kk - ii + 1))
     908             :                END DO
     909             :                !Deallocate work arrays
     910         324 :                DEALLOCATE (tmp_index)
     911         324 :                DEALLOCATE (idx_sec_work)
     912         324 :                DEALLOCATE (eigvec_entries_work)
     913             :             END IF
     914        1448 :             idx_prim_work(ii) = idx_prim(ii)
     915             :          END DO
     916         254 :          DEALLOCATE (idx_prim_work)
     917             :       END IF
     918             : 
     919        1700 :       CALL timestop(handle)
     920             : 
     921        5100 :    END SUBROUTINE sort_excitations
     922             : 
     923             : ! **************************************************************************************************
     924             : !> \brief Roughly estimates the needed runtime and memory during the BSE run
     925             : !> \param homo_red ...
     926             : !> \param virtual_red ...
     927             : !> \param unit_nr ...
     928             : !> \param bse_abba ...
     929             : !> \param para_env ...
     930             : !> \param diag_runtime_est ...
     931             : ! **************************************************************************************************
     932          42 :    SUBROUTINE estimate_BSE_resources(homo_red, virtual_red, unit_nr, bse_abba, &
     933             :                                      para_env, diag_runtime_est)
     934             : 
     935             :       INTEGER                                            :: homo_red, virtual_red, unit_nr
     936             :       LOGICAL                                            :: bse_abba
     937             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     938             :       REAL(KIND=dp)                                      :: diag_runtime_est
     939             : 
     940             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'estimate_BSE_resources'
     941             : 
     942             :       INTEGER                                            :: handle, num_BSE_matrices
     943             :       INTEGER(KIND=int_8)                                :: full_dim
     944             :       REAL(KIND=dp)                                      :: mem_est, mem_est_per_rank
     945             : 
     946          42 :       CALL timeset(routineN, handle)
     947             : 
     948             :       ! Number of matrices with size of A in TDA is 2 (A itself and W_ijab)
     949          42 :       num_BSE_matrices = 2
     950             :       ! With the full diagonalization of ABBA, we need several auxiliary matrices in the process
     951             :       ! The maximum number is 2 + 2 + 6 (additional B and C matrix as well as 6 matrices to create C)
     952          42 :       IF (bse_abba) THEN
     953          26 :          num_BSE_matrices = 10
     954             :       END IF
     955             : 
     956          42 :       full_dim = (INT(homo_red, KIND=int_8)**2*INT(virtual_red, KIND=int_8)**2)*INT(num_BSE_matrices, KIND=int_8)
     957          42 :       mem_est = REAL(8*full_dim, KIND=dp)/REAL(1024**3, KIND=dp)
     958          42 :       mem_est_per_rank = REAL(mem_est/para_env%num_pe, KIND=dp)
     959             : 
     960          42 :       IF (unit_nr > 0) THEN
     961             :          ! WRITE (unit_nr, '(T2,A4,T7,A40,T68,F13.3)') 'BSE|', 'Total peak memory estimate from BSE [GB]', &
     962             :          !    mem_est
     963          21 :          WRITE (unit_nr, '(T2,A4,T7,A40,T68,ES13.3)') 'BSE|', 'Total peak memory estimate from BSE [GB]', &
     964          42 :             mem_est
     965          21 :          WRITE (unit_nr, '(T2,A4,T7,A47,T68,F13.3)') 'BSE|', 'Peak memory estimate per MPI rank from BSE [GB]', &
     966          42 :             mem_est_per_rank
     967          21 :          WRITE (unit_nr, '(T2,A4)') 'BSE|'
     968             :       END IF
     969             :       ! Rough estimation of diagonalization runtimes. Baseline was a full BSE Naphthalene
     970             :       ! run with 11000x11000 entries in A/B/C, which took 10s on 32 ranks
     971             :       diag_runtime_est = REAL(INT(homo_red, KIND=int_8)*INT(virtual_red, KIND=int_8)/11000_int_8, KIND=dp)**3* &
     972          42 :                          10*32/REAL(para_env%num_pe, KIND=dp)
     973             : 
     974          42 :       CALL timestop(handle)
     975             : 
     976          42 :    END SUBROUTINE estimate_BSE_resources
     977             : 
     978             : ! **************************************************************************************************
     979             : !> \brief Filters eigenvector entries above a given threshold to describe excitations in the
     980             : !> singleparticle basis
     981             : !> \param fm_eigvec ...
     982             : !> \param idx_homo ...
     983             : !> \param idx_virt ...
     984             : !> \param eigvec_entries ...
     985             : !> \param i_exc ...
     986             : !> \param virtual ...
     987             : !> \param num_entries ...
     988             : !> \param mp2_env ...
     989             : ! **************************************************************************************************
     990        1700 :    SUBROUTINE filter_eigvec_contrib(fm_eigvec, idx_homo, idx_virt, eigvec_entries, &
     991             :                                     i_exc, virtual, num_entries, mp2_env)
     992             : 
     993             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_eigvec
     994             :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: idx_homo, idx_virt
     995             :       REAL(kind=dp), ALLOCATABLE, DIMENSION(:)           :: eigvec_entries
     996             :       INTEGER                                            :: i_exc, virtual, num_entries
     997             :       TYPE(mp2_type), INTENT(INOUT)                      :: mp2_env
     998             : 
     999             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'filter_eigvec_contrib'
    1000             : 
    1001             :       INTEGER                                            :: eigvec_idx, handle, ii, iproc, jj, kk, &
    1002             :                                                             ncol_local, nrow_local, &
    1003             :                                                             num_entries_local
    1004             :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: num_entries_to_comm
    1005        1700 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices, row_indices
    1006             :       REAL(KIND=dp)                                      :: eigvec_entry
    1007             :       TYPE(integ_mat_buffer_type), ALLOCATABLE, &
    1008        1700 :          DIMENSION(:)                                    :: buffer_entries
    1009             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    1010             : 
    1011        1700 :       CALL timeset(routineN, handle)
    1012             : 
    1013        1700 :       para_env => fm_eigvec%matrix_struct%para_env
    1014             : 
    1015             :       CALL cp_fm_get_info(matrix=fm_eigvec, &
    1016             :                           nrow_local=nrow_local, &
    1017             :                           ncol_local=ncol_local, &
    1018             :                           row_indices=row_indices, &
    1019        1700 :                           col_indices=col_indices)
    1020             : 
    1021        5100 :       ALLOCATE (num_entries_to_comm(0:para_env%num_pe - 1))
    1022        5100 :       num_entries_to_comm(:) = 0
    1023             : 
    1024       83300 :       DO jj = 1, ncol_local
    1025             :          !First check if i is localized on this proc
    1026       81600 :          IF (col_indices(jj) /= i_exc) THEN
    1027             :             CYCLE
    1028             :          END IF
    1029       44200 :          DO ii = 1, nrow_local
    1030       40800 :             eigvec_idx = row_indices(ii)
    1031       40800 :             eigvec_entry = fm_eigvec%local_data(ii, jj)/SQRT(2.0_dp)
    1032      122400 :             IF (ABS(eigvec_entry) > mp2_env%bse%eps_x) THEN
    1033        1277 :                num_entries_to_comm(para_env%mepos) = num_entries_to_comm(para_env%mepos) + 1
    1034             :             END IF
    1035             :          END DO
    1036             :       END DO
    1037             : 
    1038             :       !Gather number of entries of other processes
    1039        1700 :       CALL para_env%sum(num_entries_to_comm)
    1040             : 
    1041        1700 :       num_entries_local = num_entries_to_comm(para_env%mepos)
    1042             : 
    1043        8500 :       ALLOCATE (buffer_entries(0:para_env%num_pe - 1))
    1044             : 
    1045        5100 :       DO iproc = 0, para_env%num_pe - 1
    1046        8438 :          ALLOCATE (buffer_entries(iproc)%msg(num_entries_to_comm(iproc)))
    1047        8438 :          ALLOCATE (buffer_entries(iproc)%indx(num_entries_to_comm(iproc), 2))
    1048        5954 :          buffer_entries(iproc)%msg = 0.0_dp
    1049       17008 :          buffer_entries(iproc)%indx = 0
    1050             :       END DO
    1051             : 
    1052             :       kk = 1
    1053       83300 :       DO jj = 1, ncol_local
    1054             :          !First check if i is localized on this proc
    1055       81600 :          IF (col_indices(jj) /= i_exc) THEN
    1056             :             CYCLE
    1057             :          END IF
    1058       44200 :          DO ii = 1, nrow_local
    1059       40800 :             eigvec_idx = row_indices(ii)
    1060       40800 :             eigvec_entry = fm_eigvec%local_data(ii, jj)/SQRT(2.0_dp)
    1061      122400 :             IF (ABS(eigvec_entry) > mp2_env%bse%eps_x) THEN
    1062        1277 :                buffer_entries(para_env%mepos)%indx(kk, 1) = (eigvec_idx - 1)/virtual + 1
    1063        1277 :                buffer_entries(para_env%mepos)%indx(kk, 2) = MOD(eigvec_idx - 1, virtual) + 1
    1064        1277 :                buffer_entries(para_env%mepos)%msg(kk) = eigvec_entry
    1065        1277 :                kk = kk + 1
    1066             :             END IF
    1067             :          END DO
    1068             :       END DO
    1069             : 
    1070        5100 :       DO iproc = 0, para_env%num_pe - 1
    1071        3400 :          CALL para_env%sum(buffer_entries(iproc)%msg)
    1072        5100 :          CALL para_env%sum(buffer_entries(iproc)%indx)
    1073             :       END DO
    1074             : 
    1075             :       !Now sum up gathered information
    1076        5100 :       num_entries = SUM(num_entries_to_comm)
    1077        4450 :       ALLOCATE (idx_homo(num_entries))
    1078        2750 :       ALLOCATE (idx_virt(num_entries))
    1079        4450 :       ALLOCATE (eigvec_entries(num_entries))
    1080             : 
    1081        1700 :       kk = 1
    1082        5100 :       DO iproc = 0, para_env%num_pe - 1
    1083        5100 :          IF (num_entries_to_comm(iproc) /= 0) THEN
    1084        4192 :             DO ii = 1, num_entries_to_comm(iproc)
    1085        2554 :                idx_homo(kk) = buffer_entries(iproc)%indx(ii, 1)
    1086        2554 :                idx_virt(kk) = buffer_entries(iproc)%indx(ii, 2)
    1087        2554 :                eigvec_entries(kk) = buffer_entries(iproc)%msg(ii)
    1088        4192 :                kk = kk + 1
    1089             :             END DO
    1090             :          END IF
    1091             :       END DO
    1092             : 
    1093             :       !Deallocate all the used arrays
    1094        5100 :       DO iproc = 0, para_env%num_pe - 1
    1095        3400 :          DEALLOCATE (buffer_entries(iproc)%msg)
    1096        5100 :          DEALLOCATE (buffer_entries(iproc)%indx)
    1097             :       END DO
    1098        6800 :       DEALLOCATE (buffer_entries)
    1099        1700 :       DEALLOCATE (num_entries_to_comm)
    1100        1700 :       NULLIFY (row_indices)
    1101        1700 :       NULLIFY (col_indices)
    1102             : 
    1103             :       !Now sort the results according to the involved singleparticle orbitals
    1104             :       ! (homo first, then virtual)
    1105        1700 :       CALL sort_excitations(idx_homo, idx_virt, eigvec_entries)
    1106             : 
    1107        1700 :       CALL timestop(handle)
    1108             : 
    1109        1700 :    END SUBROUTINE
    1110             : 
    1111             : ! **************************************************************************************************
    1112             : !> \brief Reads cutoffs for BSE from mp2_env and compares to energies in Eigenval to extract
    1113             : !>        reduced homo/virtual and
    1114             : !> \param Eigenval array (1d) with energies, can be e.g. from GW or DFT
    1115             : !> \param homo Total number of occupied orbitals
    1116             : !> \param virtual Total number of unoccupied orbitals
    1117             : !> \param homo_red Total number of occupied orbitals to include after cutoff
    1118             : !> \param virt_red Total number of unoccupied orbitals to include after ctuoff
    1119             : !> \param homo_incl First occupied index to include after cutoff
    1120             : !> \param virt_incl Last unoccupied index to include after cutoff
    1121             : !> \param mp2_env ...
    1122             : ! **************************************************************************************************
    1123          84 :    SUBROUTINE determine_cutoff_indices(Eigenval, &
    1124             :                                        homo, virtual, &
    1125             :                                        homo_red, virt_red, &
    1126             :                                        homo_incl, virt_incl, &
    1127             :                                        mp2_env)
    1128             : 
    1129             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: Eigenval
    1130             :       INTEGER, INTENT(IN)                                :: homo, virtual
    1131             :       INTEGER, INTENT(OUT)                               :: homo_red, virt_red, homo_incl, virt_incl
    1132             :       TYPE(mp2_type), INTENT(INOUT)                      :: mp2_env
    1133             : 
    1134             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'determine_cutoff_indices'
    1135             : 
    1136             :       INTEGER                                            :: handle, i_homo, j_virt
    1137             : 
    1138          84 :       CALL timeset(routineN, handle)
    1139             :       ! Determine index in homo and virtual for truncation
    1140             :       ! Uses indices of outermost orbitals within energy range (-mp2_env%bse%bse_cutoff_occ,mp2_env%bse%bse_cutoff_empty)
    1141          84 :       IF (mp2_env%bse%bse_cutoff_occ > 0 .OR. mp2_env%bse%bse_cutoff_empty > 0) THEN
    1142             :          IF (-mp2_env%bse%bse_cutoff_occ .LT. Eigenval(1) - Eigenval(homo) &
    1143          84 :              .OR. mp2_env%bse%bse_cutoff_occ < 0) THEN
    1144          84 :             homo_red = homo
    1145          84 :             homo_incl = 1
    1146             :          ELSE
    1147           0 :             homo_incl = 1
    1148           0 :             DO i_homo = 1, homo
    1149           0 :                IF (Eigenval(i_homo) - Eigenval(homo) .GT. -mp2_env%bse%bse_cutoff_occ) THEN
    1150           0 :                   homo_incl = i_homo
    1151           0 :                   EXIT
    1152             :                END IF
    1153             :             END DO
    1154           0 :             homo_red = homo - homo_incl + 1
    1155             :          END IF
    1156             : 
    1157             :          IF (mp2_env%bse%bse_cutoff_empty .GT. Eigenval(homo + virtual) - Eigenval(homo + 1) &
    1158          84 :              .OR. mp2_env%bse%bse_cutoff_empty < 0) THEN
    1159           0 :             virt_red = virtual
    1160           0 :             virt_incl = virtual
    1161             :          ELSE
    1162          84 :             virt_incl = homo + 1
    1163        1092 :             DO j_virt = 1, virtual
    1164        1092 :                IF (Eigenval(homo + j_virt) - Eigenval(homo + 1) .GT. mp2_env%bse%bse_cutoff_empty) THEN
    1165          84 :                   virt_incl = j_virt - 1
    1166          84 :                   EXIT
    1167             :                END IF
    1168             :             END DO
    1169          84 :             virt_red = virt_incl
    1170             :          END IF
    1171             :       ELSE
    1172           0 :          homo_red = homo
    1173           0 :          virt_red = virtual
    1174           0 :          homo_incl = 1
    1175           0 :          virt_incl = virtual
    1176             :       END IF
    1177             : 
    1178          84 :       CALL timestop(handle)
    1179             : 
    1180          84 :    END SUBROUTINE
    1181             : 
    1182             : ! **************************************************************************************************
    1183             : !> \brief Determines indices within the given energy cutoffs and truncates Eigenvalues and matrices
    1184             : !> \param fm_mat_S_ia_bse ...
    1185             : !> \param fm_mat_S_ij_bse ...
    1186             : !> \param fm_mat_S_ab_bse ...
    1187             : !> \param fm_mat_S_trunc ...
    1188             : !> \param fm_mat_S_ij_trunc ...
    1189             : !> \param fm_mat_S_ab_trunc ...
    1190             : !> \param Eigenval_scf ...
    1191             : !> \param Eigenval ...
    1192             : !> \param Eigenval_reduced ...
    1193             : !> \param homo ...
    1194             : !> \param virtual ...
    1195             : !> \param dimen_RI ...
    1196             : !> \param unit_nr ...
    1197             : !> \param bse_lev_virt ...
    1198             : !> \param homo_red ...
    1199             : !> \param virt_red ...
    1200             : !> \param mp2_env ...
    1201             : ! **************************************************************************************************
    1202         210 :    SUBROUTINE truncate_BSE_matrices(fm_mat_S_ia_bse, fm_mat_S_ij_bse, fm_mat_S_ab_bse, &
    1203             :                                     fm_mat_S_trunc, fm_mat_S_ij_trunc, fm_mat_S_ab_trunc, &
    1204          42 :                                     Eigenval_scf, Eigenval, Eigenval_reduced, &
    1205             :                                     homo, virtual, dimen_RI, unit_nr, &
    1206             :                                     bse_lev_virt, &
    1207             :                                     homo_red, virt_red, &
    1208             :                                     mp2_env)
    1209             : 
    1210             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mat_S_ia_bse, fm_mat_S_ij_bse, &
    1211             :                                                             fm_mat_S_ab_bse
    1212             :       TYPE(cp_fm_type), INTENT(INOUT)                    :: fm_mat_S_trunc, fm_mat_S_ij_trunc, &
    1213             :                                                             fm_mat_S_ab_trunc
    1214             :       REAL(KIND=dp), DIMENSION(:)                        :: Eigenval_scf, Eigenval
    1215             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: Eigenval_reduced
    1216             :       INTEGER, INTENT(IN)                                :: homo, virtual, dimen_RI, unit_nr, &
    1217             :                                                             bse_lev_virt
    1218             :       INTEGER, INTENT(OUT)                               :: homo_red, virt_red
    1219             :       TYPE(mp2_type), INTENT(INOUT)                      :: mp2_env
    1220             : 
    1221             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'truncate_BSE_matrices'
    1222             : 
    1223             :       INTEGER                                            :: handle, homo_incl, virt_incl
    1224             :       TYPE(cp_blacs_env_type), POINTER                   :: context
    1225             :       TYPE(cp_fm_struct_type), POINTER                   :: fm_struct_ab, fm_struct_ia, fm_struct_ij
    1226             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    1227             : 
    1228          42 :       CALL timeset(routineN, handle)
    1229             : 
    1230             :       ! Determine index in homo and virtual for truncation
    1231             :       ! Uses indices of outermost orbitals within energy range (-mp2_env%bse%bse_cutoff_occ,mp2_env%bse%bse_cutoff_empty)
    1232             : 
    1233             :       CALL determine_cutoff_indices(Eigenval_scf, &
    1234             :                                     homo, virtual, &
    1235             :                                     homo_red, virt_red, &
    1236             :                                     homo_incl, virt_incl, &
    1237          42 :                                     mp2_env)
    1238             : 
    1239          42 :       IF (unit_nr > 0) THEN
    1240          21 :          IF (mp2_env%bse%bse_cutoff_occ > 0) THEN
    1241          21 :             WRITE (unit_nr, '(T2,A4,T7,A29,T71,F10.3)') 'BSE|', 'Cutoff occupied orbitals [eV]', &
    1242          42 :                mp2_env%bse%bse_cutoff_occ*evolt
    1243             :          ELSE
    1244           0 :             WRITE (unit_nr, '(T2,A4,T7,A37)') 'BSE|', 'No cutoff given for occupied orbitals'
    1245             :          END IF
    1246          21 :          IF (mp2_env%bse%bse_cutoff_empty > 0) THEN
    1247          21 :             WRITE (unit_nr, '(T2,A4,T7,A26,T71,F10.3)') 'BSE|', 'Cutoff empty orbitals [eV]', &
    1248          42 :                mp2_env%bse%bse_cutoff_empty*evolt
    1249             :          ELSE
    1250           0 :             WRITE (unit_nr, '(T2,A4,T7,A34)') 'BSE|', 'No cutoff given for empty orbitals'
    1251             :          END IF
    1252          21 :          WRITE (unit_nr, '(T2,A4,T7,A20,T71,I10)') 'BSE|', 'First occupied index', homo_incl
    1253          21 :          WRITE (unit_nr, '(T2,A4,T7,A32,T71,I10)') 'BSE|', 'Last empty index (not MO index!)', virt_incl
    1254          21 :          WRITE (unit_nr, '(T2,A4,T7,A35,T71,F10.3)') 'BSE|', 'Energy of first occupied index [eV]', Eigenval(homo_incl)*evolt
    1255          21 :          WRITE (unit_nr, '(T2,A4,T7,A31,T71,F10.3)') 'BSE|', 'Energy of last empty index [eV]', Eigenval(homo + virt_incl)*evolt
    1256          21 :          WRITE (unit_nr, '(T2,A4,T7,A54,T71,F10.3)') 'BSE|', 'Energy difference of first occupied index to HOMO [eV]', &
    1257          42 :             -(Eigenval(homo_incl) - Eigenval(homo))*evolt
    1258          21 :          WRITE (unit_nr, '(T2,A4,T7,A50,T71,F10.3)') 'BSE|', 'Energy difference of last empty index to LUMO [eV]', &
    1259          42 :             (Eigenval(homo + virt_incl) - Eigenval(homo + 1))*evolt
    1260          21 :          WRITE (unit_nr, '(T2,A4,T7,A35,T71,I10)') 'BSE|', 'Number of GW-corrected occupied MOs', mp2_env%ri_g0w0%corr_mos_occ
    1261          21 :          WRITE (unit_nr, '(T2,A4,T7,A32,T71,I10)') 'BSE|', 'Number of GW-corrected empty MOs', mp2_env%ri_g0w0%corr_mos_virt
    1262          21 :          WRITE (unit_nr, '(T2,A4)') 'BSE|'
    1263             :       END IF
    1264          42 :       IF (unit_nr > 0) THEN
    1265          21 :          IF (homo - homo_incl + 1 > mp2_env%ri_g0w0%corr_mos_occ) THEN
    1266           0 :             CPABORT("Number of GW-corrected occupied MOs too small for chosen BSE cutoff")
    1267             :          END IF
    1268          21 :          IF (virt_incl > mp2_env%ri_g0w0%corr_mos_virt) THEN
    1269           0 :             CPABORT("Number of GW-corrected virtual MOs too small for chosen BSE cutoff")
    1270             :          END IF
    1271             :       END IF
    1272             :       !Truncate full fm_S matrices
    1273             :       !Allocate new truncated matrices of proper size
    1274          42 :       para_env => fm_mat_S_ia_bse%matrix_struct%para_env
    1275          42 :       context => fm_mat_S_ia_bse%matrix_struct%context
    1276             : 
    1277          42 :       CALL cp_fm_struct_create(fm_struct_ia, para_env, context, dimen_RI, homo_red*virt_red)
    1278          42 :       CALL cp_fm_struct_create(fm_struct_ij, para_env, context, dimen_RI, homo_red*homo_red)
    1279          42 :       CALL cp_fm_struct_create(fm_struct_ab, para_env, context, dimen_RI, virt_red*virt_red)
    1280             : 
    1281          42 :       CALL cp_fm_create(fm_mat_S_trunc, fm_struct_ia, "fm_S_trunc")
    1282          42 :       CALL cp_fm_create(fm_mat_S_ij_trunc, fm_struct_ij, "fm_S_ij_trunc")
    1283          42 :       CALL cp_fm_create(fm_mat_S_ab_trunc, fm_struct_ab, "fm_S_ab_trunc")
    1284             : 
    1285             :       !Copy parts of original matrices to truncated ones
    1286          42 :       IF (mp2_env%bse%bse_cutoff_occ > 0 .OR. mp2_env%bse%bse_cutoff_empty > 0) THEN
    1287             :          !Truncate eigenvals
    1288         126 :          ALLOCATE (Eigenval_reduced(homo_red + virt_red))
    1289             :          ! Include USE_KS_ENERGIES input
    1290          42 :          IF (mp2_env%bse%use_ks_energies) THEN
    1291           0 :             Eigenval_reduced(:) = Eigenval_scf(homo_incl:homo + virt_incl)
    1292             :          ELSE
    1293         714 :             Eigenval_reduced(:) = Eigenval(homo_incl:homo + virt_incl)
    1294             :          END IF
    1295             : 
    1296             :          CALL truncate_fm(fm_mat_S_trunc, fm_mat_S_ia_bse, virtual, &
    1297             :                           homo_red, virt_red, unit_nr, mp2_env, &
    1298          42 :                           nrow_offset=homo_incl)
    1299             :          CALL truncate_fm(fm_mat_S_ij_trunc, fm_mat_S_ij_bse, homo, &
    1300             :                           homo_red, homo_red, unit_nr, mp2_env, &
    1301          42 :                           homo_incl, homo_incl)
    1302             :          CALL truncate_fm(fm_mat_S_ab_trunc, fm_mat_S_ab_bse, bse_lev_virt, &
    1303          42 :                           virt_red, virt_red, unit_nr, mp2_env)
    1304             : 
    1305             :       ELSE
    1306           0 :          IF (unit_nr > 0) THEN
    1307           0 :             WRITE (unit_nr, '(T2,A4,T7,A37)') 'BSE|', 'No truncation of BSE matrices applied'
    1308           0 :             WRITE (unit_nr, '(T2,A4)') 'BSE|'
    1309             :          END IF
    1310           0 :          ALLOCATE (Eigenval_reduced(homo_red + virt_red))
    1311             :          ! Include USE_KS_ENERGIES input
    1312           0 :          IF (mp2_env%bse%use_ks_energies) THEN
    1313           0 :             Eigenval_reduced(:) = Eigenval_scf(:)
    1314             :          ELSE
    1315           0 :             Eigenval_reduced(:) = Eigenval(:)
    1316             :          END IF
    1317             :          CALL cp_fm_to_fm_submat_general(fm_mat_S_ia_bse, fm_mat_S_trunc, dimen_RI, homo_red*virt_red, &
    1318           0 :                                          1, 1, 1, 1, context)
    1319             :          CALL cp_fm_to_fm_submat_general(fm_mat_S_ij_bse, fm_mat_S_ij_trunc, dimen_RI, homo_red*homo_red, &
    1320           0 :                                          1, 1, 1, 1, context)
    1321             :          CALL cp_fm_to_fm_submat_general(fm_mat_S_ab_bse, fm_mat_S_ab_trunc, dimen_RI, virt_red*virt_red, &
    1322           0 :                                          1, 1, 1, 1, context)
    1323             :       END IF
    1324             : 
    1325          42 :       CALL cp_fm_struct_release(fm_struct_ia)
    1326          42 :       CALL cp_fm_struct_release(fm_struct_ij)
    1327          42 :       CALL cp_fm_struct_release(fm_struct_ab)
    1328             : 
    1329          42 :       NULLIFY (para_env)
    1330          42 :       NULLIFY (context)
    1331             : 
    1332          42 :       CALL timestop(handle)
    1333             : 
    1334          42 :    END SUBROUTINE truncate_BSE_matrices
    1335             : 
    1336             : ! **************************************************************************************************
    1337             : !> \brief ...
    1338             : !> \param fm_eigvec ...
    1339             : !> \param fm_eigvec_reshuffled ...
    1340             : !> \param homo ...
    1341             : !> \param virtual ...
    1342             : !> \param n_exc ...
    1343             : !> \param do_transpose ...
    1344             : !> \param unit_nr ...
    1345             : !> \param mp2_env ...
    1346             : ! **************************************************************************************************
    1347         900 :    SUBROUTINE reshuffle_eigvec(fm_eigvec, fm_eigvec_reshuffled, homo, virtual, n_exc, do_transpose, &
    1348             :                                unit_nr, mp2_env)
    1349             : 
    1350             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_eigvec
    1351             :       TYPE(cp_fm_type), INTENT(INOUT)                    :: fm_eigvec_reshuffled
    1352             :       INTEGER, INTENT(IN)                                :: homo, virtual, n_exc
    1353             :       LOGICAL, INTENT(IN)                                :: do_transpose
    1354             :       INTEGER, INTENT(IN)                                :: unit_nr
    1355             :       TYPE(mp2_type), INTENT(INOUT)                      :: mp2_env
    1356             : 
    1357             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'reshuffle_eigvec'
    1358             : 
    1359             :       INTEGER                                            :: handle, my_m_col, my_n_row
    1360             :       INTEGER, DIMENSION(4)                              :: reordering
    1361             :       TYPE(cp_fm_struct_type), POINTER                   :: fm_struct_eigvec_col, &
    1362             :                                                             fm_struct_eigvec_reshuffled
    1363             :       TYPE(cp_fm_type)                                   :: fm_eigvec_col
    1364             : 
    1365         300 :       CALL timeset(routineN, handle)
    1366             : 
    1367             :       ! Define reordering:
    1368             :       ! (ia,11) to (a1,i1) for transposition
    1369             :       ! (ia,11) to (i1,a1) for default
    1370         300 :       IF (do_transpose) THEN
    1371          50 :          reordering = (/2, 3, 1, 4/)
    1372          50 :          my_n_row = virtual
    1373          50 :          my_m_col = homo
    1374             :       ELSE
    1375         250 :          reordering = (/1, 3, 2, 4/)
    1376         250 :          my_n_row = homo
    1377         250 :          my_m_col = virtual
    1378             :       END IF
    1379             : 
    1380             :       CALL cp_fm_struct_create(fm_struct_eigvec_col, &
    1381             :                                fm_eigvec%matrix_struct%para_env, fm_eigvec%matrix_struct%context, &
    1382         300 :                                homo*virtual, 1)
    1383             :       CALL cp_fm_struct_create(fm_struct_eigvec_reshuffled, &
    1384             :                                fm_eigvec%matrix_struct%para_env, fm_eigvec%matrix_struct%context, &
    1385         300 :                                my_n_row, my_m_col)
    1386             : 
    1387             :       ! Resort indices
    1388         300 :       CALL cp_fm_create(fm_eigvec_col, fm_struct_eigvec_col, name="BSE_column_vector")
    1389         300 :       CALL cp_fm_set_all(fm_eigvec_col, 0.0_dp)
    1390         300 :       CALL cp_fm_create(fm_eigvec_reshuffled, fm_struct_eigvec_reshuffled, name="BSE_reshuffled_eigenvector")
    1391         300 :       CALL cp_fm_set_all(fm_eigvec_reshuffled, 0.0_dp)
    1392             :       ! Fill matrix
    1393             :       CALL cp_fm_to_fm_submat(fm_eigvec, fm_eigvec_col, &
    1394             :                               homo*virtual, 1, &
    1395             :                               1, n_exc, &
    1396         300 :                               1, 1)
    1397             :       ! Reshuffle
    1398             :       CALL fm_general_add_bse(fm_eigvec_reshuffled, fm_eigvec_col, 1.0_dp, &
    1399             :                               virtual, 1, &
    1400             :                               1, 1, &
    1401         300 :                               unit_nr, reordering, mp2_env)
    1402             : 
    1403         300 :       CALL cp_fm_release(fm_eigvec_col)
    1404         300 :       CALL cp_fm_struct_release(fm_struct_eigvec_col)
    1405         300 :       CALL cp_fm_struct_release(fm_struct_eigvec_reshuffled)
    1406             : 
    1407         300 :       CALL timestop(handle)
    1408             : 
    1409         300 :    END SUBROUTINE reshuffle_eigvec
    1410             : 
    1411             : ! **************************************************************************************************
    1412             : !> \brief Borrowed from the tddfpt module with slight adaptions
    1413             : !> \param qs_env ...
    1414             : !> \param mos ...
    1415             : !> \param istate ...
    1416             : !> \param info_approximation ...
    1417             : !> \param stride ...
    1418             : !> \param append_cube ...
    1419             : !> \param print_section ...
    1420             : ! **************************************************************************************************
    1421           0 :    SUBROUTINE print_bse_nto_cubes(qs_env, mos, istate, info_approximation, &
    1422             :                                   stride, append_cube, print_section)
    1423             : 
    1424             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1425             :       TYPE(mo_set_type), DIMENSION(:), INTENT(IN)        :: mos
    1426             :       INTEGER, INTENT(IN)                                :: istate
    1427             :       CHARACTER(LEN=10)                                  :: info_approximation
    1428             :       INTEGER, DIMENSION(:), POINTER                     :: stride
    1429             :       LOGICAL, INTENT(IN)                                :: append_cube
    1430             :       TYPE(section_vals_type), POINTER                   :: print_section
    1431             : 
    1432             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'print_bse_nto_cubes'
    1433             : 
    1434             :       CHARACTER(LEN=default_path_length)                 :: filename, info_approx_trunc, &
    1435             :                                                             my_pos_cube, title
    1436             :       INTEGER                                            :: handle, i, iset, nmo, unit_nr_cube
    1437             :       LOGICAL                                            :: mpi_io
    1438           0 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
    1439             :       TYPE(cell_type), POINTER                           :: cell
    1440             :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
    1441             :       TYPE(cp_logger_type), POINTER                      :: logger
    1442             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1443             :       TYPE(particle_list_type), POINTER                  :: particles
    1444           0 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    1445             :       TYPE(pw_c1d_gs_type)                               :: wf_g
    1446             :       TYPE(pw_env_type), POINTER                         :: pw_env
    1447           0 :       TYPE(pw_pool_p_type), DIMENSION(:), POINTER        :: pw_pools
    1448             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
    1449             :       TYPE(pw_r3d_rs_type)                               :: wf_r
    1450           0 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    1451             :       TYPE(qs_subsys_type), POINTER                      :: subsys
    1452             : 
    1453           0 :       logger => cp_get_default_logger()
    1454           0 :       CALL timeset(routineN, handle)
    1455             : 
    1456           0 :       CALL get_qs_env(qs_env=qs_env, dft_control=dft_control, pw_env=pw_env)
    1457           0 :       CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, pw_pools=pw_pools)
    1458           0 :       CALL auxbas_pw_pool%create_pw(wf_r)
    1459           0 :       CALL auxbas_pw_pool%create_pw(wf_g)
    1460             : 
    1461           0 :       CALL get_qs_env(qs_env, subsys=subsys)
    1462           0 :       CALL qs_subsys_get(subsys, particles=particles)
    1463             : 
    1464           0 :       my_pos_cube = "REWIND"
    1465           0 :       IF (append_cube) THEN
    1466           0 :          my_pos_cube = "APPEND"
    1467             :       END IF
    1468             : 
    1469             :       CALL get_qs_env(qs_env=qs_env, &
    1470             :                       atomic_kind_set=atomic_kind_set, &
    1471             :                       qs_kind_set=qs_kind_set, &
    1472             :                       cell=cell, &
    1473           0 :                       particle_set=particle_set)
    1474             : 
    1475           0 :       DO iset = 1, 2
    1476           0 :          CALL get_mo_set(mo_set=mos(iset), mo_coeff=mo_coeff, nmo=nmo)
    1477           0 :          DO i = 1, nmo
    1478             :             CALL calculate_wavefunction(mo_coeff, i, wf_r, wf_g, atomic_kind_set, qs_kind_set, &
    1479           0 :                                         cell, dft_control, particle_set, pw_env)
    1480           0 :             IF (iset == 1) THEN
    1481           0 :                WRITE (filename, '(A6,I3.3,A5,I2.2,a11)') "_NEXC_", istate, "_NTO_", i, "_Hole_State"
    1482           0 :             ELSEIF (iset == 2) THEN
    1483           0 :                WRITE (filename, '(A6,I3.3,A5,I2.2,a15)') "_NEXC_", istate, "_NTO_", i, "_Particle_State"
    1484             :             END IF
    1485           0 :             info_approx_trunc = TRIM(ADJUSTL(info_approximation))
    1486           0 :             info_approx_trunc = info_approx_trunc(2:LEN_TRIM(info_approx_trunc) - 1)
    1487           0 :             filename = TRIM(info_approx_trunc)//TRIM(filename)
    1488           0 :             mpi_io = .TRUE.
    1489             :             unit_nr_cube = cp_print_key_unit_nr(logger, print_section, '', extension=".cube", &
    1490             :                                                 middle_name=TRIM(filename), file_position=my_pos_cube, &
    1491           0 :                                                 log_filename=.FALSE., ignore_should_output=.TRUE., mpi_io=mpi_io)
    1492           0 :             IF (iset == 1) THEN
    1493           0 :                WRITE (title, *) "Natural Transition Orbital Hole State", i
    1494           0 :             ELSEIF (iset == 2) THEN
    1495           0 :                WRITE (title, *) "Natural Transition Orbital Particle State", i
    1496             :             END IF
    1497           0 :             CALL cp_pw_to_cube(wf_r, unit_nr_cube, title, particles=particles, stride=stride, mpi_io=mpi_io)
    1498             :             CALL cp_print_key_finished_output(unit_nr_cube, logger, print_section, '', &
    1499           0 :                                               ignore_should_output=.TRUE., mpi_io=mpi_io)
    1500             :          END DO
    1501             :       END DO
    1502             : 
    1503           0 :       CALL auxbas_pw_pool%give_back_pw(wf_g)
    1504           0 :       CALL auxbas_pw_pool%give_back_pw(wf_r)
    1505             : 
    1506           0 :       CALL timestop(handle)
    1507           0 :    END SUBROUTINE print_bse_nto_cubes
    1508             : 
    1509             : ! **************************************************************************************************
    1510             : !> \brief Checks BSE input section and adapts them if necessary
    1511             : !> \param homo ...
    1512             : !> \param virtual ...
    1513             : !> \param unit_nr ...
    1514             : !> \param mp2_env ...
    1515             : !> \param qs_env ...
    1516             : ! **************************************************************************************************
    1517          42 :    SUBROUTINE adapt_BSE_input_params(homo, virtual, unit_nr, mp2_env, qs_env)
    1518             : 
    1519             :       INTEGER, INTENT(IN)                                :: homo, virtual, unit_nr
    1520             :       TYPE(mp2_type)                                     :: mp2_env
    1521             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1522             : 
    1523             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'adapt_BSE_input_params'
    1524             : 
    1525             :       INTEGER                                            :: handle, i, j, n, ndim_periodic_cell, &
    1526             :                                                             ndim_periodic_poisson, &
    1527             :                                                             num_state_list_exceptions
    1528             :       TYPE(cell_type), POINTER                           :: cell_ref
    1529             :       TYPE(pw_env_type), POINTER                         :: pw_env
    1530             :       TYPE(pw_poisson_type), POINTER                     :: poisson_env
    1531             : 
    1532          42 :       CALL timeset(routineN, handle)
    1533             :       ! Get environment infos for later usage
    1534          42 :       NULLIFY (pw_env, cell_ref, poisson_env)
    1535          42 :       CALL get_qs_env(qs_env, pw_env=pw_env, cell_ref=cell_ref)
    1536          42 :       CALL pw_env_get(pw_env, poisson_env=poisson_env)
    1537         168 :       ndim_periodic_poisson = COUNT(poisson_env%parameters%periodic == 1)
    1538         168 :       ndim_periodic_cell = SUM(cell_ref%perd(1:3)) ! Borrowed from cell_methods.F/write_cell_low
    1539             : 
    1540             :       ! Handle negative NUM_PRINT_EXC
    1541          42 :       IF (mp2_env%bse%num_print_exc < 0 .OR. &
    1542             :           mp2_env%bse%num_print_exc > homo*virtual) THEN
    1543           0 :          mp2_env%bse%num_print_exc = homo*virtual
    1544           0 :          IF (unit_nr > 0) THEN
    1545             :             CALL cp_warn(__LOCATION__, &
    1546             :                          "Keyword NUM_PRINT_EXC is either negative or too large. "// &
    1547           0 :                          "Printing all computed excitations.")
    1548             :          END IF
    1549             :       END IF
    1550             : 
    1551             :       ! Default to NUM_PRINT_EXC if too large or negative,
    1552             :       ! but only if NTOs are called - would be confusing for the user otherwise
    1553             :       ! Prepare and adapt user inputs for NTO analysis
    1554             :       ! Logic: Explicit state list overrides NUM_PRINT_EXC_NTOS
    1555             :       !        If only NUM_PRINT_EXC_NTOS is given, we write the array 1,...,NUM_PRINT_EXC_NTOS to
    1556             :       !        bse_nto_state_list
    1557          42 :       IF (mp2_env%bse%do_nto_analysis) THEN
    1558           4 :          IF (mp2_env%bse%explicit_nto_list) THEN
    1559           0 :             IF (mp2_env%bse%num_print_exc_ntos > 0) THEN
    1560           0 :                IF (unit_nr > 0) THEN
    1561             :                   CALL cp_warn(__LOCATION__, &
    1562             :                                "Keywords NUM_PRINT_EXC_NTOS and STATE_LIST are both given in input. "// &
    1563           0 :                                "Overriding NUM_PRINT_EXC_NTOS.")
    1564             :                END IF
    1565             :             END IF
    1566             :             ! Check if all states are within the range
    1567             :             ! Count them and initialize new array afterwards
    1568           0 :             num_state_list_exceptions = 0
    1569           0 :             DO i = 1, SIZE(mp2_env%bse%bse_nto_state_list)
    1570           0 :                IF (mp2_env%bse%bse_nto_state_list(i) < 1 .OR. &
    1571           0 :                    mp2_env%bse%bse_nto_state_list(i) > mp2_env%bse%num_print_exc) THEN
    1572           0 :                   num_state_list_exceptions = num_state_list_exceptions + 1
    1573             :                END IF
    1574             :             END DO
    1575           0 :             IF (num_state_list_exceptions > 0) THEN
    1576           0 :                IF (unit_nr > 0) THEN
    1577             :                   CALL cp_warn(__LOCATION__, &
    1578             :                                "STATE_LIST contains indices outside the range of included excitation levels. "// &
    1579           0 :                                "Ignoring these states.")
    1580             :                END IF
    1581             :             END IF
    1582           0 :             n = SIZE(mp2_env%bse%bse_nto_state_list) - num_state_list_exceptions
    1583           0 :             ALLOCATE (mp2_env%bse%bse_nto_state_list_final(n))
    1584           0 :             mp2_env%bse%bse_nto_state_list_final(:) = 0
    1585             :             i = 1
    1586           0 :             DO j = 1, SIZE(mp2_env%bse%bse_nto_state_list)
    1587           0 :                IF (mp2_env%bse%bse_nto_state_list(j) >= 1 .AND. &
    1588           0 :                    mp2_env%bse%bse_nto_state_list(j) <= mp2_env%bse%num_print_exc) THEN
    1589           0 :                   mp2_env%bse%bse_nto_state_list_final(i) = mp2_env%bse%bse_nto_state_list(j)
    1590           0 :                   i = i + 1
    1591             :                END IF
    1592             :             END DO
    1593             : 
    1594           0 :             mp2_env%bse%num_print_exc_ntos = SIZE(mp2_env%bse%bse_nto_state_list_final)
    1595             :          ELSE
    1596           4 :             IF (mp2_env%bse%num_print_exc_ntos > mp2_env%bse%num_print_exc .OR. &
    1597             :                 mp2_env%bse%num_print_exc_ntos < 0) THEN
    1598           4 :                mp2_env%bse%num_print_exc_ntos = mp2_env%bse%num_print_exc
    1599             :             END IF
    1600          12 :             ALLOCATE (mp2_env%bse%bse_nto_state_list_final(mp2_env%bse%num_print_exc_ntos))
    1601         104 :             DO i = 1, mp2_env%bse%num_print_exc_ntos
    1602         104 :                mp2_env%bse%bse_nto_state_list_final(i) = i
    1603             :             END DO
    1604             :          END IF
    1605             :       END IF
    1606             : 
    1607             :       ! Takes care of triplet states, when oscillator strengths are 0
    1608          42 :       IF (mp2_env%bse%bse_spin_config /= 0 .AND. &
    1609             :           mp2_env%bse%eps_nto_osc_str > 0) THEN
    1610           0 :          IF (unit_nr > 0) THEN
    1611             :             CALL cp_warn(__LOCATION__, &
    1612             :                          "Cannot apply EPS_OSC_STR for Triplet excitations. "// &
    1613           0 :                          "Resetting EPS_OSC_STR to default.")
    1614             :          END IF
    1615           0 :          mp2_env%bse%eps_nto_osc_str = -1.0_dp
    1616             :       END IF
    1617             : 
    1618             :       ! Take care of number for computed exciton descriptors
    1619          42 :       IF (mp2_env%bse%num_print_exc_descr < 0 .OR. &
    1620             :           mp2_env%bse%num_print_exc_descr > mp2_env%bse%num_print_exc) THEN
    1621           4 :          IF (unit_nr > 0) THEN
    1622             :             CALL cp_warn(__LOCATION__, &
    1623             :                          "Keyword NUM_PRINT_EXC_DESCR is either negative or too large. "// &
    1624           2 :                          "Printing exciton descriptors up to NUM_PRINT_EXC.")
    1625             :          END IF
    1626           4 :          mp2_env%bse%num_print_exc_descr = mp2_env%bse%num_print_exc
    1627             :       END IF
    1628             : 
    1629             :       ! Handle screening factor options
    1630          42 :       IF (mp2_env%BSE%screening_factor > 0.0_dp) THEN
    1631           2 :          IF (mp2_env%BSE%screening_method /= bse_screening_alpha) THEN
    1632           0 :             IF (unit_nr > 0) THEN
    1633             :                CALL cp_warn(__LOCATION__, &
    1634             :                             "Screening factor is only supported for &SCREENING_IN_W ALPHA. "// &
    1635           0 :                             "Resetting SCREENING_IN_W to ALPHA.")
    1636             :             END IF
    1637           0 :             mp2_env%BSE%screening_method = bse_screening_alpha
    1638             :          END IF
    1639           2 :          IF (mp2_env%BSE%screening_factor > 1.0_dp) THEN
    1640           0 :             IF (unit_nr > 0) THEN
    1641             :                CALL cp_warn(__LOCATION__, &
    1642           0 :                             "Screening factor is larger than 1.0. ")
    1643             :             END IF
    1644             :          END IF
    1645             :       END IF
    1646             : 
    1647          42 :       IF (mp2_env%BSE%screening_factor < 0.0_dp .AND. &
    1648             :           mp2_env%BSE%screening_method == bse_screening_alpha) THEN
    1649           0 :          IF (unit_nr > 0) THEN
    1650             :             CALL cp_warn(__LOCATION__, &
    1651           0 :                          "Screening factor is negative. Defaulting to 0.25")
    1652             :          END IF
    1653           0 :          mp2_env%BSE%screening_factor = 0.25_dp
    1654             :       END IF
    1655             : 
    1656          42 :       IF (mp2_env%BSE%screening_factor == 0.0_dp) THEN
    1657             :          ! Use RPA internally in this case
    1658           0 :          mp2_env%BSE%screening_method = bse_screening_rpa
    1659             :       END IF
    1660          42 :       IF (mp2_env%BSE%screening_factor == 1.0_dp) THEN
    1661             :          ! Use TDHF internally in this case
    1662           0 :          mp2_env%BSE%screening_method = bse_screening_tdhf
    1663             :       END IF
    1664             : 
    1665             :       ! Add warning for usage of KS energies
    1666          42 :       IF (mp2_env%bse%use_ks_energies) THEN
    1667           0 :          IF (unit_nr > 0) THEN
    1668             :             CALL cp_warn(__LOCATION__, &
    1669             :                          "Using KS energies for BSE calculations. Therefore, no quantities "// &
    1670           0 :                          "of the preceeding GW calculation enter the BSE.")
    1671             :          END IF
    1672             :       END IF
    1673             : 
    1674             :       ! Add warning if periodic calculation is invoked
    1675          42 :       IF (ndim_periodic_poisson /= 0) THEN
    1676           0 :          IF (unit_nr > 0) THEN
    1677             :             CALL cp_warn(__LOCATION__, &
    1678             :                          "Poisson solver should be invoked by PERIODIC NONE. "// &
    1679             :                          "The applied length gauge might give misleading results for "// &
    1680           0 :                          "oscillator strengths.")
    1681             :          END IF
    1682             :       END IF
    1683          42 :       IF (ndim_periodic_cell /= 0) THEN
    1684           0 :          IF (unit_nr > 0) THEN
    1685             :             CALL cp_warn(__LOCATION__, &
    1686             :                          "CELL in SUBSYS should be invoked with PERIODIC NONE. "// &
    1687             :                          "The applied length gauge might give misleading results for "// &
    1688           0 :                          "oscillator strengths.")
    1689             :          END IF
    1690             :       END IF
    1691             : 
    1692          42 :       CALL timestop(handle)
    1693          42 :    END SUBROUTINE adapt_BSE_input_params
    1694             : 
    1695             : ! **************************************************************************************************
    1696             : 
    1697             : ! **************************************************************************************************
    1698             : !> \brief ...
    1699             : !> \param fm_multipole_ai_trunc ...
    1700             : !> \param fm_multipole_ij_trunc ...
    1701             : !> \param fm_multipole_ab_trunc ...
    1702             : !> \param qs_env ...
    1703             : !> \param mo_coeff ...
    1704             : !> \param rpoint ...
    1705             : !> \param n_moments ...
    1706             : !> \param homo_red ...
    1707             : !> \param virtual_red ...
    1708             : !> \param context_BSE ...
    1709             : ! **************************************************************************************************
    1710          46 :    SUBROUTINE get_multipoles_mo(fm_multipole_ai_trunc, fm_multipole_ij_trunc, fm_multipole_ab_trunc, &
    1711          46 :                                 qs_env, mo_coeff, rpoint, n_moments, &
    1712             :                                 homo_red, virtual_red, context_BSE)
    1713             : 
    1714             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:), &
    1715             :          INTENT(INOUT)                                   :: fm_multipole_ai_trunc, &
    1716             :                                                             fm_multipole_ij_trunc, &
    1717             :                                                             fm_multipole_ab_trunc
    1718             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1719             :       TYPE(cp_fm_type), DIMENSION(:), INTENT(IN)         :: mo_coeff
    1720             :       REAL(dp), ALLOCATABLE, DIMENSION(:), INTENT(INOUT) :: rpoint
    1721             :       INTEGER, INTENT(IN)                                :: n_moments, homo_red, virtual_red
    1722             :       TYPE(cp_blacs_env_type), POINTER                   :: context_BSE
    1723             : 
    1724             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'get_multipoles_mo'
    1725             : 
    1726             :       INTEGER                                            :: handle, idir, n_multipole, n_occ, &
    1727             :                                                             n_virt, nao
    1728          46 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: ref_point
    1729             :       TYPE(cp_fm_struct_type), POINTER :: fm_struct_mp_ab_trunc, fm_struct_mp_ai_trunc, &
    1730             :          fm_struct_mp_ij_trunc, fm_struct_multipoles_ao, fm_struct_nao_nao
    1731             :       TYPE(cp_fm_type)                                   :: fm_work
    1732          46 :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: fm_multipole_per_dir
    1733          46 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_multipole, matrix_s
    1734          46 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
    1735             :       TYPE(mp_para_env_type), POINTER                    :: para_env_BSE
    1736             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    1737          46 :          POINTER                                         :: sab_orb
    1738             : 
    1739          46 :       CALL timeset(routineN, handle)
    1740             : 
    1741             :       !First, we calculate the AO dipoles
    1742          46 :       NULLIFY (sab_orb, matrix_s)
    1743             :       CALL get_qs_env(qs_env, &
    1744             :                       mos=mos, &
    1745             :                       matrix_s=matrix_s, &
    1746          46 :                       sab_orb=sab_orb)
    1747             : 
    1748             :       ! Use the same blacs environment as for the MO coefficients to ensure correct multiplication dbcsr x fm later on
    1749          46 :       fm_struct_multipoles_ao => mos(1)%mo_coeff%matrix_struct
    1750             :       ! BSE has different contexts and blacsenvs
    1751          46 :       para_env_BSE => context_BSE%para_env
    1752             :       ! Get size of multipole tensor
    1753          46 :       n_multipole = (6 + 11*n_moments + 6*n_moments**2 + n_moments**3)/6 - 1
    1754          46 :       NULLIFY (matrix_multipole)
    1755          46 :       CALL dbcsr_allocate_matrix_set(matrix_multipole, n_multipole)
    1756         300 :       ALLOCATE (fm_multipole_per_dir(n_multipole))
    1757         208 :       DO idir = 1, n_multipole
    1758         162 :          CALL dbcsr_init_p(matrix_multipole(idir)%matrix)
    1759             :          CALL dbcsr_create(matrix_multipole(idir)%matrix, name="ao_multipole", &
    1760         162 :                            template=matrix_s(1)%matrix, matrix_type=dbcsr_type_symmetric)
    1761         162 :          CALL cp_dbcsr_alloc_block_from_nbl(matrix_multipole(idir)%matrix, sab_orb)
    1762         208 :          CALL dbcsr_set(matrix_multipole(idir)%matrix, 0._dp)
    1763             :       END DO
    1764             : 
    1765          46 :       CALL get_reference_point(rpoint, qs_env=qs_env, reference=use_mom_ref_coac, ref_point=ref_point)
    1766             : 
    1767          46 :       CALL build_local_moment_matrix(qs_env, matrix_multipole, n_moments, ref_point=rpoint)
    1768             : 
    1769          46 :       NULLIFY (sab_orb)
    1770             : 
    1771             :       ! Now we transform them to MO
    1772             :       ! n_occ is the number of occupied MOs, nao the number of all AOs
    1773             :       ! Writing homo to n_occ instead if nmo,
    1774             :       ! takes care of ADDED_MOS, which would overwrite nmo, if invoked
    1775          46 :       CALL get_mo_set(mo_set=mos(1), homo=n_occ, nao=nao)
    1776          46 :       n_virt = nao - n_occ
    1777             : 
    1778             :       ! At the end, we need four different layouts of matrices in this multiplication, e.g. for a dipole:
    1779             :       ! D_pq = full multipole matrix for occupied and unoccupied
    1780             :       ! Final result:D_pq= C_{mu p}        <\mu|\vec{r}|\nu>        C_{\nu q}              EQ.I
    1781             :       !                   \_______/         \___________/          \______/
    1782             :       !                    fm_coeff            matrix_multipole              fm_coeff
    1783             :       !                    (EQ.Ia)             (EQ.Ib)              (EQ.Ia)
    1784             :       ! Intermediate work matrices:
    1785             :       ! fm_work =                 <\mu|\vec{r}|\nu>        C_{\nu q}              EQ.II
    1786             : 
    1787             :       ! Struct for the full multipole matrix
    1788             :       CALL cp_fm_struct_create(fm_struct_nao_nao, &
    1789             :                                fm_struct_multipoles_ao%para_env, fm_struct_multipoles_ao%context, &
    1790          46 :                                nao, nao)
    1791             : 
    1792             :       ! At the very end, we copy the multipoles corresponding to truncated BSE indices in i and a
    1793             :       CALL cp_fm_struct_create(fm_struct_mp_ai_trunc, para_env_BSE, &
    1794          46 :                                context_BSE, virtual_red, homo_red)
    1795             :       CALL cp_fm_struct_create(fm_struct_mp_ij_trunc, para_env_BSE, &
    1796          46 :                                context_BSE, homo_red, homo_red)
    1797             :       CALL cp_fm_struct_create(fm_struct_mp_ab_trunc, para_env_BSE, &
    1798          46 :                                context_BSE, virtual_red, virtual_red)
    1799         208 :       DO idir = 1, n_multipole
    1800             :          CALL cp_fm_create(fm_multipole_ai_trunc(idir), matrix_struct=fm_struct_mp_ai_trunc, &
    1801         162 :                            name="dipoles_mo_ai_trunc")
    1802         162 :          CALL cp_fm_set_all(fm_multipole_ai_trunc(idir), 0.0_dp)
    1803             :          CALL cp_fm_create(fm_multipole_ij_trunc(idir), matrix_struct=fm_struct_mp_ij_trunc, &
    1804         162 :                            name="dipoles_mo_ij_trunc")
    1805         162 :          CALL cp_fm_set_all(fm_multipole_ij_trunc(idir), 0.0_dp)
    1806             :          CALL cp_fm_create(fm_multipole_ab_trunc(idir), matrix_struct=fm_struct_mp_ab_trunc, &
    1807         162 :                            name="dipoles_mo_ab_trunc")
    1808         208 :          CALL cp_fm_set_all(fm_multipole_ab_trunc(idir), 0.0_dp)
    1809             :       END DO
    1810             : 
    1811             :       ! Need another temporary matrix to store intermediate result from right multiplication
    1812             :       ! D = C_{mu a}        <\mu|\vec{r}|\nu>        C_{\nu i}
    1813          46 :       CALL cp_fm_create(fm_work, matrix_struct=fm_struct_nao_nao, name="multipole_work")
    1814          46 :       CALL cp_fm_set_all(fm_work, 0.0_dp)
    1815             : 
    1816         208 :       DO idir = 1, n_multipole
    1817             :          ! Create the full multipole matrix per direction
    1818         162 :          CALL cp_fm_create(fm_multipole_per_dir(idir), matrix_struct=fm_struct_nao_nao, name="multipoles_mo")
    1819         162 :          CALL cp_fm_set_all(fm_multipole_per_dir(idir), 0.0_dp)
    1820             :          ! Fill final (MO) multipole matrix
    1821             :          CALL cp_dbcsr_sm_fm_multiply(matrix_multipole(idir)%matrix, mo_coeff(1), &
    1822         162 :                                       fm_work, ncol=nao)
    1823             :          ! Now obtain the multipoles by the final multiplication;
    1824             :          ! We do that inside the loop to obtain multipoles per axis for print
    1825         162 :          CALL parallel_gemm('T', 'N', nao, nao, nao, 1.0_dp, mo_coeff(1), fm_work, 0.0_dp, fm_multipole_per_dir(idir))
    1826             :          ! Truncate full matrix to the BSE indices
    1827             :          ! D_ai
    1828             :          CALL cp_fm_to_fm_submat_general(fm_multipole_per_dir(idir), &
    1829             :                                          fm_multipole_ai_trunc(idir), &
    1830             :                                          virtual_red, &
    1831             :                                          homo_red, &
    1832             :                                          n_occ + 1, &
    1833             :                                          n_occ - homo_red + 1, &
    1834             :                                          1, &
    1835             :                                          1, &
    1836         162 :                                          fm_multipole_per_dir(idir)%matrix_struct%context)
    1837             :          ! D_ij
    1838             :          CALL cp_fm_to_fm_submat_general(fm_multipole_per_dir(idir), &
    1839             :                                          fm_multipole_ij_trunc(idir), &
    1840             :                                          homo_red, &
    1841             :                                          homo_red, &
    1842             :                                          n_occ - homo_red + 1, &
    1843             :                                          n_occ - homo_red + 1, &
    1844             :                                          1, &
    1845             :                                          1, &
    1846         162 :                                          fm_multipole_per_dir(idir)%matrix_struct%context)
    1847             :          ! D_ab
    1848             :          CALL cp_fm_to_fm_submat_general(fm_multipole_per_dir(idir), &
    1849             :                                          fm_multipole_ab_trunc(idir), &
    1850             :                                          virtual_red, &
    1851             :                                          virtual_red, &
    1852             :                                          n_occ + 1, &
    1853             :                                          n_occ + 1, &
    1854             :                                          1, &
    1855             :                                          1, &
    1856         208 :                                          fm_multipole_per_dir(idir)%matrix_struct%context)
    1857             :       END DO
    1858             : 
    1859             :       !Release matrices and structs
    1860          46 :       NULLIFY (fm_struct_multipoles_ao)
    1861          46 :       CALL cp_fm_struct_release(fm_struct_mp_ai_trunc)
    1862          46 :       CALL cp_fm_struct_release(fm_struct_mp_ij_trunc)
    1863          46 :       CALL cp_fm_struct_release(fm_struct_mp_ab_trunc)
    1864          46 :       CALL cp_fm_struct_release(fm_struct_nao_nao)
    1865         208 :       DO idir = 1, n_multipole
    1866         208 :          CALL cp_fm_release(fm_multipole_per_dir(idir))
    1867             :       END DO
    1868          46 :       DEALLOCATE (fm_multipole_per_dir)
    1869          46 :       CALL cp_fm_release(fm_work)
    1870          46 :       CALL dbcsr_deallocate_matrix_set(matrix_multipole)
    1871             : 
    1872          46 :       CALL timestop(handle)
    1873             : 
    1874         138 :    END SUBROUTINE get_multipoles_mo
    1875             : 
    1876             : ! **************************************************************************************************
    1877             : !> \brief Computes trace of form Tr{A^T B C} for exciton descriptors
    1878             : !> \param fm_A Full Matrix, typically X or Y, in format homo x virtual
    1879             : !> \param fm_B ...
    1880             : !> \param fm_C ...
    1881             : !> \param alpha ...
    1882             : ! **************************************************************************************************
    1883       10800 :    SUBROUTINE trace_exciton_descr(fm_A, fm_B, fm_C, alpha)
    1884             : 
    1885             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_A, fm_B, fm_C
    1886             :       REAL(KIND=dp), INTENT(OUT)                         :: alpha
    1887             : 
    1888             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'trace_exciton_descr'
    1889             : 
    1890             :       INTEGER                                            :: handle, ncol_A, ncol_B, ncol_C, nrow_A, &
    1891             :                                                             nrow_B, nrow_C
    1892             :       TYPE(cp_fm_type)                                   :: fm_work_ia
    1893             : 
    1894        1800 :       CALL timeset(routineN, handle)
    1895             : 
    1896        1800 :       CALL cp_fm_create(fm_work_ia, fm_A%matrix_struct)
    1897        1800 :       CALL cp_fm_get_info(fm_A, nrow_global=nrow_A, ncol_global=ncol_A)
    1898        1800 :       CALL cp_fm_get_info(fm_B, nrow_global=nrow_B, ncol_global=ncol_B)
    1899        1800 :       CALL cp_fm_get_info(fm_C, nrow_global=nrow_C, ncol_global=ncol_C)
    1900             : 
    1901             :       ! Check matrix sizes
    1902        1800 :       CPASSERT(nrow_A == nrow_B .AND. ncol_A == ncol_C .AND. ncol_B == nrow_C)
    1903             : 
    1904        1800 :       CALL cp_fm_set_all(fm_work_ia, 0.0_dp)
    1905             : 
    1906             :       CALL parallel_gemm("N", "N", nrow_A, ncol_A, nrow_C, 1.0_dp, &
    1907        1800 :                          fm_B, fm_C, 0.0_dp, fm_work_ia)
    1908             : 
    1909        1800 :       CALL cp_fm_trace(fm_A, fm_work_ia, alpha)
    1910             : 
    1911        1800 :       CALL cp_fm_release(fm_work_ia)
    1912             : 
    1913        1800 :       CALL timestop(handle)
    1914             : 
    1915        1800 :    END SUBROUTINE trace_exciton_descr
    1916             : 
    1917             : END MODULE

Generated by: LCOV version 1.15