LCOV - code coverage report
Current view: top level - src/common - splines.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:2fce0f8) Lines: 0 151 0.0 %
Date: 2024-12-21 06:28:57 Functions: 0 12 0.0 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2024 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief Simple splines
      10             : !> Splines are fully specified by the interpolation points, except that
      11             : !> at the ends, we have the freedom to prescribe the second derivatives.
      12             : !> If we know a derivative at an end (exactly), then best is to impose that.
      13             : !> Otherwise, it is better to use the "consistent" end conditions: the second
      14             : !> derivative is determined such that it is smooth.
      15             : !>
      16             : !> High level API: spline3, spline3ders.
      17             : !> Low level API: the rest of public soubroutines.
      18             : !>
      19             : !> Use the high level API to obtain cubic spline fit with consistent boundary
      20             : !> conditions and optionally the derivatives. Use the low level API if more fine
      21             : !> grained control is needed.
      22             : !>
      23             : !> This module is based on a code written by John E. Pask, LLNL.
      24             : !> \par History
      25             : !>      Adapted for use in CP2K  (30.12.2016,JGH)
      26             : !> \author JGH
      27             : ! **************************************************************************************************
      28             : MODULE splines
      29             : 
      30             :    USE kinds,                           ONLY: dp
      31             :    USE lapack,                          ONLY: lapack_sgbsv
      32             : #include "../base/base_uses.f90"
      33             : 
      34             :    IMPLICIT NONE
      35             : 
      36             :    PRIVATE
      37             : 
      38             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'splines'
      39             : 
      40             :    PUBLIC :: spline3, spline3ders
      41             : 
      42             : CONTAINS
      43             : 
      44             : ! **************************************************************************************************
      45             : !> \brief ...
      46             : !> \param x ...
      47             : !> \param y ...
      48             : !> \param xnew ...
      49             : !> \return ...
      50             : ! **************************************************************************************************
      51           0 :    FUNCTION spline3(x, y, xnew) RESULT(ynew)
      52             :       ! Takes the function values 'y' on the grid 'x' and returns new values 'ynew'
      53             :       ! at the given grid 'xnew' using cubic splines interpolation with such
      54             :       ! boundary conditions so that the 2nd derivative is consistent with the
      55             :       ! interpolating cubic.
      56             :       REAL(dp), INTENT(in)                               :: x(:), y(:), xnew(:)
      57             :       REAL(dp)                                           :: ynew(SIZE(xnew))
      58             : 
      59             :       INTEGER                                            :: i, ip
      60           0 :       REAL(dp)                                           :: c(0:4, SIZE(x) - 1)
      61             : 
      62             :       ! get spline parameters: 2nd derivs at ends determined by cubic interpolation
      63           0 :       CALL spline3pars(x, y, [2, 2], [0._dp, 0._dp], c)
      64             : 
      65           0 :       ip = 0
      66           0 :       DO i = 1, SIZE(xnew)
      67           0 :          ip = iixmin(xnew(i), x, ip)
      68           0 :          ynew(i) = poly3(xnew(i), c(:, ip))
      69             :       END DO
      70           0 :    END FUNCTION
      71             : 
      72             : ! **************************************************************************************************
      73             : !> \brief ...
      74             : !> \param x ...
      75             : !> \param y ...
      76             : !> \param xnew ...
      77             : !> \param ynew ...
      78             : !> \param dynew ...
      79             : !> \param d2ynew ...
      80             : ! **************************************************************************************************
      81           0 :    SUBROUTINE spline3ders(x, y, xnew, ynew, dynew, d2ynew)
      82             :       ! Just like 'spline', but also calculate 1st and 2nd derivatives
      83             :       REAL(dp), INTENT(in)                               :: x(:), y(:), xnew(:)
      84             :       REAL(dp), INTENT(out), OPTIONAL                    :: ynew(:), dynew(:), d2ynew(:)
      85             : 
      86             :       INTEGER                                            :: i, ip
      87           0 :       REAL(dp)                                           :: c(0:4, SIZE(x) - 1)
      88             : 
      89           0 :       CALL spline3pars(x, y, [2, 2], [0._dp, 0._dp], c)
      90             : 
      91           0 :       ip = 0
      92           0 :       DO i = 1, SIZE(xnew)
      93           0 :          ip = iixmin(xnew(i), x, ip)
      94           0 :          IF (PRESENT(ynew)) ynew(i) = poly3(xnew(i), c(:, ip))
      95           0 :          IF (PRESENT(dynew)) dynew(i) = dpoly3(xnew(i), c(:, ip))
      96           0 :          IF (PRESENT(d2ynew)) d2ynew(i) = d2poly3(xnew(i), c(:, ip))
      97             :       END DO
      98           0 :    END SUBROUTINE
      99             : 
     100             : ! **************************************************************************************************
     101             : !> \brief ...
     102             : !> \param xi ...
     103             : !> \param yi ...
     104             : !> \param bctype ...
     105             : !> \param bcval ...
     106             : !> \param c ...
     107             : ! **************************************************************************************************
     108           0 :    SUBROUTINE spline3pars(xi, yi, bctype, bcval, c)
     109             :       ! Returns parameters c defining cubic spline interpolating x-y data xi, yi, with
     110             :       ! boundary conditions specified by bcytpe, bcvals
     111             :       REAL(dp), INTENT(in)                               :: xi(:), yi(:)
     112             :       INTEGER, INTENT(in)                                :: bctype(2)
     113             :       REAL(dp), INTENT(in)                               :: bcval(2)
     114             :       REAL(dp), INTENT(out)                              :: c(0:, :)
     115             : 
     116             :       INTEGER                                            :: i, i2, info, ipiv(4), j, n
     117             :       REAL(dp) :: Ae(4, 4), be(4), bemat(4, 1), c1, c2, c3, c4, ce(4), d2p1, d2pn, x0, xe(4), &
     118           0 :          ye(4), hi(SIZE(c, 2)), cs(2*SIZE(c, 2)), bs(2*SIZE(c, 2)), bmat(2*SIZE(c, 2), 1), &
     119           0 :          As(5, 2*SIZE(c, 2))
     120           0 :       INTEGER                                            :: ipiv2(2*SIZE(c, 2))
     121             : 
     122             :       ! x values of data
     123             :       ! y values of data
     124             :       ! type of boundary condition at each end:
     125             :       ! bctype(1) = type at left end, bctype(2) = type at right end.
     126             :       ! 1 = specified 2nd derivative, 2 = 2nd derivative consistent with interpolating cubic.
     127             :       ! boundary condition values at each end:
     128             :       ! bcval(1) = value at left end, bcval(2) = value at right end
     129             :       ! parameters defining spline: c(i,j) = ith parameter of jth
     130             :       ! spline polynomial, p_j = sum_{i=1}^4 c(i,j) (x-c(0,j))^(i-1), j = 1..n-1, n = # of data pts.
     131             :       ! dimensions: c(0:4,1:n-1)
     132             :       ! spline eq. matrix -- LAPACK band form
     133             :       ! spline eq. rhs vector
     134             :       ! spline eq. solution vector
     135             :       ! spline intervals
     136             :       ! end-cubic eq. matrix
     137             :       ! end-cubic eq. rhs vector
     138             :       ! end-cubic eq. solution vector
     139             :       ! x,y values at ends
     140             :       ! 2nd derivatives at ends
     141             :       ! expansion center
     142             :       ! expansion coefficients
     143             :       ! number of data points
     144             :       ! lapack variables
     145             : 
     146             :       ! check input parameters
     147           0 :       IF (bctype(1) < 1 .OR. bctype(1) > 2) CALL stop_error("spline3pars error: bctype /= 1 or 2.")
     148           0 :       IF (bctype(2) < 1 .OR. bctype(2) > 2) CALL stop_error("spline3pars error: bctype /= 1 or 2.")
     149           0 :       IF (SIZE(c, 1) /= 5) CALL stop_error("spline3pars error: size(c,1) /= 5.")
     150           0 :       IF (SIZE(c, 2) /= SIZE(xi) - 1) CALL stop_error("spline3pars error: size(c,2) /= size(xi)-1.")
     151           0 :       IF (SIZE(xi) /= SIZE(yi)) CALL stop_error("spline3pars error: size(xi) /= size(yi)")
     152             : 
     153             :       ! To get rid of compiler warnings:
     154           0 :       d2p1 = 0
     155           0 :       d2pn = 0
     156             : 
     157             :       ! initializations
     158           0 :       n = SIZE(xi)
     159           0 :       DO i = 1, n - 1
     160           0 :          hi(i) = xi(i + 1) - xi(i)
     161             :       END DO
     162             : 
     163             :       ! compute interpolating-cubic 2nd derivs at ends, if required
     164             :       ! left end
     165           0 :       IF (bctype(1) == 2) THEN
     166           0 :          IF (n < 4) CALL stop_error("spline3pars error: n < 4")
     167           0 :          xe = xi(1:4)
     168           0 :          ye = yi(1:4)
     169           0 :          x0 = xe(1) ! center at end
     170           0 :          DO i = 1, 4
     171           0 :             DO j = 1, 4
     172           0 :                Ae(i, j) = (xe(i) - x0)**(j - 1)
     173             :             END DO
     174             :          END DO
     175           0 :          Ae(:, 1) = 1 ! set 0^0 = 1
     176           0 :          be = ye; bemat(:, 1) = be
     177           0 :          CALL dgesv(4, 1, Ae, 4, ipiv, bemat, 4, info)
     178           0 :          IF (info /= 0) CALL stop_error("spline3pars error: dgesv error.")
     179           0 :          ce = bemat(:, 1)
     180           0 :          d2p1 = 2*ce(3)
     181             :       END IF
     182             :       ! right end
     183           0 :       IF (bctype(2) == 2) THEN
     184           0 :          IF (n < 4) CALL stop_error("spline3pars error: n < 4")
     185           0 :          xe = xi(n - 3:n)
     186           0 :          ye = yi(n - 3:n)
     187           0 :          x0 = xe(4) ! center at end
     188           0 :          DO i = 1, 4
     189           0 :             DO j = 1, 4
     190           0 :                Ae(i, j) = (xe(i) - x0)**(j - 1)
     191             :             END DO
     192             :          END DO
     193           0 :          Ae(:, 1) = 1 ! set 0^0 = 1
     194           0 :          be = ye; bemat(:, 1) = be
     195           0 :          CALL dgesv(4, 1, Ae, 4, ipiv, bemat, 4, info)
     196           0 :          IF (info /= 0) CALL stop_error("spline3pars error: dgesv error.")
     197           0 :          ce = bemat(:, 1)
     198           0 :          d2pn = 2*ce(3)
     199             :       END IF
     200             : 
     201             :       ! set 2nd derivs at ends
     202           0 :       IF (bctype(1) == 1) d2p1 = bcval(1)
     203           0 :       IF (bctype(2) == 1) d2pn = bcval(2)
     204             : 
     205             :       ! construct spline equations -- LAPACK band form
     206             :       ! basis: phi1 = -(x-x_i)/h_i, phi2 = (x-x_{i+1})/h_i, phi3 = phi1^3-phi1, phi4 = phi2^3-phi2
     207             :       ! on interval [x_i,x_{i+1}] of length h_i = x_{i+1}-x_i
     208             :       !A=0  ! full matrix
     209           0 :       As = 0
     210             :       ! left end condition
     211           0 :       As(4, 1) = 6/hi(1)**2
     212           0 :       bs(1) = d2p1
     213             :       ! internal knot conditions
     214           0 :       DO i = 2, n - 1
     215           0 :          i2 = 2*(i - 1)
     216           0 :          As(5, i2 - 1) = 1/hi(i - 1)
     217           0 :          As(4, i2) = 2/hi(i - 1)
     218           0 :          As(3, i2 + 1) = 2/hi(i)
     219           0 :          As(2, i2 + 2) = 1/hi(i)
     220           0 :          As(5, i2) = 1/hi(i - 1)**2
     221           0 :          As(4, i2 + 1) = -1/hi(i)**2
     222           0 :          bs(i2) = (yi(i + 1) - yi(i))/hi(i) - (yi(i) - yi(i - 1))/hi(i - 1)
     223           0 :          bs(i2 + 1) = 0
     224             :       END DO
     225             :       ! right end condition
     226           0 :       As(4, 2*(n - 1)) = 6/hi(n - 1)**2
     227           0 :       bs(2*(n - 1)) = d2pn
     228             : 
     229             :       ! solve spline equations -- LAPACK band form
     230           0 :       bmat(:, 1) = bs
     231           0 :       CALL lapack_sgbsv(2*(n - 1), 1, 2, 1, As, 5, ipiv2, bmat, 2*(n - 1), info)
     232           0 :       IF (info /= 0) CALL stop_error("spline3pars error: dgbsv error.")
     233           0 :       cs = bmat(:, 1)
     234             : 
     235             :       ! transform to (x-x0)^(i-1) basis and return
     236           0 :       DO i = 1, n - 1
     237             :          ! coefficients in spline basis:
     238           0 :          c1 = yi(i)
     239           0 :          c2 = yi(i + 1)
     240           0 :          c3 = cs(2*i - 1)
     241           0 :          c4 = cs(2*i)
     242             :          ! coefficients in (x-x0)^(i-1) basis
     243           0 :          c(0, i) = xi(i)
     244           0 :          c(1, i) = c1
     245           0 :          c(2, i) = -(c1 - c2 + 2*c3 + c4)/hi(i)
     246           0 :          c(3, i) = 3*c3/hi(i)**2
     247           0 :          c(4, i) = (-c3 + c4)/hi(i)**3
     248             :       END DO
     249           0 :    END SUBROUTINE
     250             : 
     251             : !--------------------------------------------------------------------------------------------------!
     252             : 
     253             : ! **************************************************************************************************
     254             : !> \brief ...
     255             : !> \param x ...
     256             : !> \param xi ...
     257             : !> \param c ...
     258             : !> \param val ...
     259             : !> \param der ...
     260             : ! **************************************************************************************************
     261           0 :    SUBROUTINE spline3valder(x, xi, c, val, der)
     262             :       ! Returns value and 1st derivative of spline defined by knots xi and parameters c
     263             :       ! returned by spline3pars
     264             :       REAL(dp), INTENT(in)                               :: x, xi(:), c(0:, :)
     265             :       REAL(dp), INTENT(out)                              :: val, der
     266             : 
     267             :       INTEGER                                            :: i1, n
     268             : 
     269             :       ! point at which to evaluate spline
     270             :       ! spline knots (x values of data)
     271             :       ! spline parameters: c(i,j) = ith parameter of jth
     272             :       ! spline polynomial, p_j = sum_{i=1}^4 c(i,j) (x-c(0,j))^(i-1), j = 1..n-1, n = # of data pts.
     273             :       ! dimensions: c(0:4,1:n-1)
     274             :       ! value of spline at x
     275             :       ! 1st derivative of spline at x
     276             :       ! number of knots
     277             : 
     278             :       ! initialize, check input parameters
     279           0 :       n = SIZE(xi)
     280           0 :       IF (SIZE(c, 1) /= 5) CALL stop_error("spline3 error: size(c,1) /= 5.")
     281           0 :       IF (SIZE(c, 2) /= SIZE(xi) - 1) CALL stop_error("spline3 error: size(c,2) /= size(xi)-1.")
     282             :       ! find interval containing x
     283           0 :       i1 = iix(x, xi)
     284             :       ! return value and derivative
     285           0 :       val = poly3(x, c(:, i1))
     286           0 :       der = dpoly3(x, c(:, i1))
     287           0 :    END SUBROUTINE
     288             : 
     289             : !--------------------------------------------------------------------------------------------------!
     290             : 
     291             : ! **************************************************************************************************
     292             : !> \brief ...
     293             : !> \param x ...
     294             : !> \param xi ...
     295             : !> \return ...
     296             : ! **************************************************************************************************
     297           0 :    INTEGER FUNCTION iix(x, xi) RESULT(i1)
     298             :       ! Returns index i of interval [xi(i),xi(i+1)] containing x in mesh xi,
     299             :       ! with intervals indexed by left-most points.
     300             :       ! N.B.: x outside [x1,xn] are indexed to nearest end.
     301             :       ! Uses bisection, except if "x" lies in the first or second elements (which is
     302             :       ! often the case)
     303             :       REAL(dp), INTENT(in)                               :: x, xi(:)
     304             : 
     305             :       INTEGER                                            :: i2, ic, n
     306             : 
     307             : ! target value
     308             : ! mesh, xi(i) < xi(i+1)
     309             : ! number of mesh points
     310             : 
     311           0 :       n = SIZE(xi)
     312           0 :       i1 = 1
     313           0 :       IF (n < 2) THEN
     314           0 :          CALL stop_error("error in iix: n < 2")
     315           0 :       ELSEIF (n == 2) THEN
     316             :          i1 = 1
     317           0 :       ELSEIF (n == 3) THEN
     318           0 :          IF (x <= xi(2)) THEN ! first element
     319             :             i1 = 1
     320             :          ELSE
     321           0 :             i1 = 2
     322             :          END IF
     323           0 :       ELSEIF (x <= xi(1)) THEN ! left end
     324             :          i1 = 1
     325           0 :       ELSEIF (x <= xi(2)) THEN ! first element
     326             :          i1 = 1
     327           0 :       ELSEIF (x <= xi(3)) THEN ! second element
     328             :          i1 = 2
     329           0 :       ELSEIF (x >= xi(n)) THEN ! right end
     330           0 :          i1 = n - 1
     331             :       ELSE
     332             :          ! bisection: xi(i1) <= x < xi(i2)
     333             :          i1 = 3; i2 = n
     334             :          DO
     335           0 :             IF (i2 - i1 == 1) EXIT
     336           0 :             ic = i1 + (i2 - i1)/2
     337           0 :             IF (x >= xi(ic)) THEN
     338             :                i1 = ic
     339             :             ELSE
     340           0 :                i2 = ic
     341             :             END IF
     342             :          END DO
     343             :       END IF
     344           0 :    END FUNCTION
     345             : 
     346             : ! **************************************************************************************************
     347             : !> \brief ...
     348             : !> \param x ...
     349             : !> \param xi ...
     350             : !> \param i_min ...
     351             : !> \return ...
     352             : ! **************************************************************************************************
     353           0 :    INTEGER FUNCTION iixmin(x, xi, i_min) RESULT(ip)
     354             :       ! Just like iix, but assumes that x >= xi(i_min)
     355             :       REAL(dp), INTENT(in)                               :: x, xi(:)
     356             :       INTEGER, INTENT(in)                                :: i_min
     357             : 
     358           0 :       IF (i_min >= 1 .AND. i_min <= SIZE(xi) - 1) THEN
     359           0 :          ip = iix(x, xi(i_min:)) + i_min - 1
     360             :       ELSE
     361           0 :          ip = iix(x, xi)
     362             :       END IF
     363           0 :    END FUNCTION
     364             : 
     365             : !--------------------------------------------------------------------------------------------------!
     366             : 
     367             : ! **************************************************************************************************
     368             : !> \brief ...
     369             : !> \param x ...
     370             : !> \param n ...
     371             : !> \param x1 ...
     372             : !> \param xn ...
     373             : !> \return ...
     374             : ! **************************************************************************************************
     375           0 :    FUNCTION iixun(x, n, x1, xn)
     376             :       ! Returns index i of interval [x(i),x(i+1)] containing x in uniform mesh defined by
     377             :       !   x(i) = x1 + (i-1)/(n-1)*(xn-x1), i = 1 .. n,
     378             :       ! with intervals indexed by left-most points.
     379             :       ! N.B.: x outside [x1,xn] are indexed to nearest end.
     380             :       REAL(dp), INTENT(in)                               :: x
     381             :       INTEGER, INTENT(in)                                :: n
     382             :       REAL(dp), INTENT(in)                               :: x1, xn
     383             :       INTEGER                                            :: iixun
     384             : 
     385             :       INTEGER                                            :: i
     386             : 
     387             :       ! index i of interval [x(i),x(i+1)] containing x
     388             :       ! target value
     389             :       ! number of mesh points
     390             :       ! initial point of mesh
     391             :       ! final point of mesh
     392             : 
     393             :       ! compute index
     394           0 :       i = INT((x - x1)/(xn - x1)*(n - 1)) + 1
     395             :       ! reset if outside 1..n
     396           0 :       IF (i < 1) i = 1
     397           0 :       IF (i > n - 1) i = n - 1
     398           0 :       iixun = i
     399           0 :    END FUNCTION
     400             : 
     401             : !--------------------------------------------------------------------------------------------------!
     402             : 
     403             : ! **************************************************************************************************
     404             : !> \brief ...
     405             : !> \param x ...
     406             : !> \param n ...
     407             : !> \param x1 ...
     408             : !> \param alpha ...
     409             : !> \param beta ...
     410             : !> \return ...
     411             : ! **************************************************************************************************
     412           0 :    FUNCTION iixexp(x, n, x1, alpha, beta)
     413             :       ! Returns index i of interval [x(i),x(i+1)] containing x in exponential mesh defined by
     414             :       !   x(i) = x1 + alpha [ exp(beta(i-1)) - 1 ], i = 1 .. n,
     415             :       ! where alpha = (x(n) - x(1))/[ exp(beta(n-1)) - 1 ],
     416             :       ! beta = log(r)/(n-2), r = (x(n)-x(n-1))/(x(2)-x(1)) = ratio of last to first interval,
     417             :       ! and intervals indexed by left-most points.
     418             :       ! N.B.: x outside [x1,xn] are indexed to nearest end.
     419             :       REAL(dp), INTENT(in)                               :: x
     420             :       INTEGER, INTENT(in)                                :: n
     421             :       REAL(dp), INTENT(in)                               :: x1, alpha, beta
     422             :       INTEGER                                            :: iixexp
     423             : 
     424             :       INTEGER                                            :: i
     425             : 
     426             :       ! index i of interval [x(i),x(i+1)] containing x
     427             :       ! target value
     428             :       ! number of mesh points
     429             :       ! initial point of mesh
     430             :       ! mesh parameter:
     431             :       !   x(i) = x1 + alpha [ exp(beta(i-1)) - 1 ], i = 1 .. n,
     432             :       ! where alpha = (x(n) - x(1))/[ exp(beta(n-1)) - 1 ],
     433             :       ! beta = log(r)/(n-2), r = (x(n)-x(n-1))/(x(2)-x(1)) = ratio of last to first interval,
     434             :       ! mesh parameter
     435             : 
     436             :       ! compute index
     437           0 :       i = INT(LOG((x - x1)/alpha + 1)/beta) + 1
     438             :       ! reset if outside 1..n
     439           0 :       IF (i < 1) i = 1
     440           0 :       IF (i > n - 1) i = n - 1
     441           0 :       iixexp = i
     442           0 :    END FUNCTION
     443             : 
     444             : !--------------------------------------------------------------------------------------------------!
     445             : 
     446             : ! **************************************************************************************************
     447             : !> \brief ...
     448             : !> \param x ...
     449             : !> \param c ...
     450             : !> \return ...
     451             : ! **************************************************************************************************
     452           0 :    FUNCTION poly3(x, c)
     453             :       ! returns value of polynomial \sum_{i=1}^4 c(i) (x-c(0))^(i-1)
     454             :       REAL(dp), INTENT(in)                               :: x, c(0:)
     455             :       REAL(dp)                                           :: poly3
     456             : 
     457             :       REAL(dp)                                           :: dx
     458             : 
     459             :       ! point at which to evaluate polynomial
     460             :       ! coefficients: poly = \sum_{i=1}^4 c(i) (x-c(0))^(i-1)
     461             : 
     462           0 :       dx = x - c(0)
     463           0 :       poly3 = c(1) + c(2)*dx + c(3)*dx**2 + c(4)*dx**3
     464           0 :    END FUNCTION
     465             : 
     466             : !--------------------------------------------------------------------------------------------------!
     467             : 
     468             : ! **************************************************************************************************
     469             : !> \brief ...
     470             : !> \param x ...
     471             : !> \param c ...
     472             : !> \return ...
     473             : ! **************************************************************************************************
     474           0 :    FUNCTION dpoly3(x, c)
     475             :       ! returns 1st derivative of polynomial \sum_{i=1}^4 c(i) (x-c(0))^(i-1)
     476             :       REAL(dp), INTENT(in)                               :: x, c(0:)
     477             :       REAL(dp)                                           :: dpoly3
     478             : 
     479             :       REAL(dp)                                           :: dx
     480             : 
     481             :       ! point at which to evaluate polynomial
     482             :       ! coefficients: poly = \sum_{i=1}^4 c(i) (x-c(0))^(i-1)
     483             : 
     484           0 :       dx = x - c(0)
     485           0 :       dpoly3 = c(2) + 2*c(3)*dx + 3*c(4)*dx**2
     486           0 :    END FUNCTION
     487             : 
     488             : !--------------------------------------------------------------------------------------------------!
     489             : 
     490             : ! **************************************************************************************************
     491             : !> \brief ...
     492             : !> \param x ...
     493             : !> \param c ...
     494             : !> \return ...
     495             : ! **************************************************************************************************
     496           0 :    FUNCTION d2poly3(x, c)
     497             :       ! returns 2nd derivative of polynomial \sum_{i=1}^4 c(i) (x-c(0))^(i-1)
     498             :       REAL(dp), INTENT(in)                               :: x, c(0:)
     499             :       REAL(dp)                                           :: d2poly3
     500             : 
     501             :       REAL(dp)                                           :: dx
     502             : 
     503             :       ! point at which to evaluate polynomial
     504             :       ! coefficients: poly = \sum_{i=1}^4 c(i) (x-c(0))^(i-1)
     505             : 
     506           0 :       dx = x - c(0)
     507           0 :       d2poly3 = 2*c(3) + 6*c(4)*dx
     508           0 :    END FUNCTION
     509             : 
     510             : !--------------------------------------------------------------------------------------------------!
     511             : 
     512             : ! **************************************************************************************************
     513             : !> \brief ...
     514             : !> \param msg ...
     515             : ! **************************************************************************************************
     516           0 :    SUBROUTINE stop_error(msg)
     517             :       ! Aborts the program
     518             :       CHARACTER(LEN=*)                                   :: msg
     519             : 
     520             : ! Message to print on stdout
     521           0 :       CPABORT(msg)
     522           0 :    END SUBROUTINE
     523             : 
     524             : END MODULE splines

Generated by: LCOV version 1.15