LCOV - code coverage report
Current view: top level - src - cp_control_utils.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:262480d) Lines: 1277 1442 88.6 %
Date: 2024-11-22 07:00:40 Functions: 13 13 100.0 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2024 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief Utilities to set up the control types
      10             : ! **************************************************************************************************
      11             : MODULE cp_control_utils
      12             :    USE bibliography,                    ONLY: &
      13             :         Andreussi2012, Dewar1977, Dewar1985, Elstner1998, Fattebert2002, Grimme2017, Hu2007, &
      14             :         Krack2000, Lippert1997, Lippert1999, Porezag1995, Pracht2019, Repasky2002, Rocha2006, &
      15             :         Schenter2008, Seifert1996, Souza2002, Stengel2009, Stewart1989, Stewart2007, Thiel1992, &
      16             :         Umari2002, VanVoorhis2015, VandeVondele2005a, VandeVondele2005b, Yin2017, Zhechkov2005, &
      17             :         cite_reference
      18             :    USE cp_control_types,                ONLY: &
      19             :         admm_control_create, admm_control_type, ddapc_control_create, ddapc_restraint_type, &
      20             :         dft_control_create, dft_control_type, efield_type, expot_control_create, &
      21             :         maxwell_control_create, qs_control_type, tddfpt2_control_type, tddfpt_control_create, &
      22             :         tddfpt_control_type, xtb_control_type
      23             :    USE cp_files,                        ONLY: close_file,&
      24             :                                               open_file
      25             :    USE cp_log_handling,                 ONLY: cp_get_default_logger,&
      26             :                                               cp_logger_type
      27             :    USE cp_output_handling,              ONLY: cp_print_key_finished_output,&
      28             :                                               cp_print_key_unit_nr
      29             :    USE cp_units,                        ONLY: cp_unit_from_cp2k,&
      30             :                                               cp_unit_to_cp2k
      31             :    USE eeq_input,                       ONLY: read_eeq_param
      32             :    USE force_fields_input,              ONLY: read_gp_section
      33             :    USE input_constants,                 ONLY: &
      34             :         admm1_type, admm2_type, admmp_type, admmq_type, admms_type, constant_env, custom_env, &
      35             :         do_admm_aux_exch_func_bee, do_admm_aux_exch_func_bee_libxc, do_admm_aux_exch_func_default, &
      36             :         do_admm_aux_exch_func_default_libxc, do_admm_aux_exch_func_none, &
      37             :         do_admm_aux_exch_func_opt, do_admm_aux_exch_func_opt_libxc, do_admm_aux_exch_func_pbex, &
      38             :         do_admm_aux_exch_func_pbex_libxc, do_admm_aux_exch_func_sx_libxc, &
      39             :         do_admm_basis_projection, do_admm_blocked_projection, do_admm_blocking_purify_full, &
      40             :         do_admm_charge_constrained_projection, do_admm_exch_scaling_merlot, &
      41             :         do_admm_exch_scaling_none, do_admm_purify_cauchy, do_admm_purify_cauchy_subspace, &
      42             :         do_admm_purify_mcweeny, do_admm_purify_mo_diag, do_admm_purify_mo_no_diag, &
      43             :         do_admm_purify_none, do_admm_purify_none_dm, do_ddapc_constraint, do_ddapc_restraint, &
      44             :         do_method_am1, do_method_dftb, do_method_gapw, do_method_gapw_xc, do_method_gpw, &
      45             :         do_method_lrigpw, do_method_mndo, do_method_mndod, do_method_ofgpw, do_method_pdg, &
      46             :         do_method_pm3, do_method_pm6, do_method_pm6fm, do_method_pnnl, do_method_rigpw, &
      47             :         do_method_rm1, do_method_xtb, do_pwgrid_ns_fullspace, do_pwgrid_ns_halfspace, &
      48             :         do_pwgrid_spherical, do_s2_constraint, do_s2_restraint, do_se_is_kdso, do_se_is_kdso_d, &
      49             :         do_se_is_slater, do_se_lr_ewald, do_se_lr_ewald_gks, do_se_lr_ewald_r3, do_se_lr_none, &
      50             :         gapw_1c_large, gapw_1c_medium, gapw_1c_orb, gapw_1c_small, gapw_1c_very_large, &
      51             :         gaussian_env, no_admm_type, numerical, ramp_env, real_time_propagation, sccs_andreussi, &
      52             :         sccs_derivative_cd3, sccs_derivative_cd5, sccs_derivative_cd7, sccs_derivative_fft, &
      53             :         sccs_fattebert_gygi, sic_ad, sic_eo, sic_list_all, sic_list_unpaired, sic_mauri_spz, &
      54             :         sic_mauri_us, sic_none, slater, tddfpt_dipole_length, tddfpt_excitations, &
      55             :         tddfpt_kernel_stda, use_mom_ref_user, xtb_vdw_type_d3, xtb_vdw_type_d4, xtb_vdw_type_none
      56             :    USE input_cp2k_check,                ONLY: xc_functionals_expand
      57             :    USE input_cp2k_dft,                  ONLY: create_dft_section
      58             :    USE input_enumeration_types,         ONLY: enum_i2c,&
      59             :                                               enumeration_type
      60             :    USE input_keyword_types,             ONLY: keyword_get,&
      61             :                                               keyword_type
      62             :    USE input_section_types,             ONLY: &
      63             :         section_get_ival, section_get_keyword, section_release, section_type, section_vals_get, &
      64             :         section_vals_get_subs_vals, section_vals_type, section_vals_val_get, section_vals_val_set
      65             :    USE kinds,                           ONLY: default_path_length,&
      66             :                                               default_string_length,&
      67             :                                               dp
      68             :    USE mathconstants,                   ONLY: fourpi
      69             :    USE pair_potential_types,            ONLY: pair_potential_reallocate
      70             :    USE periodic_table,                  ONLY: get_ptable_info
      71             :    USE qs_cdft_utils,                   ONLY: read_cdft_control_section
      72             :    USE smeagol_control_types,           ONLY: read_smeagol_control
      73             :    USE string_utilities,                ONLY: uppercase
      74             :    USE util,                            ONLY: sort
      75             :    USE xc,                              ONLY: xc_uses_kinetic_energy_density,&
      76             :                                               xc_uses_norm_drho
      77             :    USE xc_input_constants,              ONLY: xc_deriv_collocate
      78             :    USE xc_write_output,                 ONLY: xc_write
      79             : #include "./base/base_uses.f90"
      80             : 
      81             :    IMPLICIT NONE
      82             : 
      83             :    PRIVATE
      84             : 
      85             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'cp_control_utils'
      86             : 
      87             :    PUBLIC :: read_dft_control, &
      88             :              read_mgrid_section, &
      89             :              read_qs_section, &
      90             :              read_tddfpt_control, &
      91             :              read_tddfpt2_control, &
      92             :              write_dft_control, &
      93             :              write_qs_control, &
      94             :              write_admm_control, &
      95             :              read_ddapc_section
      96             : CONTAINS
      97             : 
      98             : ! **************************************************************************************************
      99             : !> \brief ...
     100             : !> \param dft_control ...
     101             : !> \param dft_section ...
     102             : ! **************************************************************************************************
     103       86918 :    SUBROUTINE read_dft_control(dft_control, dft_section)
     104             :       TYPE(dft_control_type), POINTER                    :: dft_control
     105             :       TYPE(section_vals_type), POINTER                   :: dft_section
     106             : 
     107             :       CHARACTER(len=default_path_length)                 :: basis_set_file_name, potential_file_name
     108             :       CHARACTER(LEN=default_string_length), &
     109        6686 :          DIMENSION(:), POINTER                           :: tmpstringlist
     110             :       INTEGER                                            :: admmtype, excitations, irep, isize, &
     111             :                                                             method_id, nrep, xc_deriv_method_id
     112             :       LOGICAL                                            :: do_ot, do_rtp, exopt1, exopt2, exopt3, &
     113             :                                                             explicit, is_present, l_param, not_SE, &
     114             :                                                             was_present
     115             :       REAL(KIND=dp)                                      :: density_cut, gradient_cut, tau_cut
     116        6686 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: pol
     117             :       TYPE(cp_logger_type), POINTER                      :: logger
     118             :       TYPE(section_vals_type), POINTER                   :: maxwell_section, sccs_section, &
     119             :                                                             scf_section, tmp_section, &
     120             :                                                             xc_fun_section, xc_section
     121             : 
     122        6686 :       was_present = .FALSE.
     123             : 
     124        6686 :       logger => cp_get_default_logger()
     125             : 
     126        6686 :       NULLIFY (tmp_section, xc_fun_section, xc_section)
     127        6686 :       ALLOCATE (dft_control)
     128        6686 :       CALL dft_control_create(dft_control)
     129             :       ! determine wheather this is a semiempirical or DFTB run
     130             :       ! --> (no XC section needs to be provided)
     131        6686 :       not_SE = .TRUE.
     132        6686 :       CALL section_vals_val_get(dft_section, "QS%METHOD", i_val=method_id)
     133        1504 :       SELECT CASE (method_id)
     134             :       CASE (do_method_dftb, do_method_xtb, do_method_mndo, do_method_am1, do_method_pm3, do_method_pnnl, &
     135             :             do_method_pm6, do_method_pm6fm, do_method_pdg, do_method_rm1, do_method_mndod)
     136        6686 :          not_SE = .FALSE.
     137             :       END SELECT
     138             :       ! Check for XC section and XC_FUNCTIONAL section
     139        6686 :       xc_section => section_vals_get_subs_vals(dft_section, "XC")
     140        6686 :       CALL section_vals_get(xc_section, explicit=is_present)
     141        6686 :       IF (.NOT. is_present .AND. not_SE) THEN
     142           0 :          CPABORT("XC section missing.")
     143             :       END IF
     144        6686 :       IF (is_present) THEN
     145        5194 :          CALL section_vals_val_get(xc_section, "density_cutoff", r_val=density_cut)
     146        5194 :          CALL section_vals_val_get(xc_section, "gradient_cutoff", r_val=gradient_cut)
     147        5194 :          CALL section_vals_val_get(xc_section, "tau_cutoff", r_val=tau_cut)
     148             :          ! Perform numerical stability checks and possibly correct the issues
     149        5194 :          IF (density_cut <= EPSILON(0.0_dp)*100.0_dp) &
     150             :             CALL cp_warn(__LOCATION__, &
     151             :                          "DENSITY_CUTOFF lower than 100*EPSILON, where EPSILON is the machine precision. "// &
     152           0 :                          "This may lead to numerical problems. Setting up shake_tol to 100*EPSILON! ")
     153        5194 :          density_cut = MAX(EPSILON(0.0_dp)*100.0_dp, density_cut)
     154        5194 :          IF (gradient_cut <= EPSILON(0.0_dp)*100.0_dp) &
     155             :             CALL cp_warn(__LOCATION__, &
     156             :                          "GRADIENT_CUTOFF lower than 100*EPSILON, where EPSILON is the machine precision. "// &
     157           0 :                          "This may lead to numerical problems. Setting up shake_tol to 100*EPSILON! ")
     158        5194 :          gradient_cut = MAX(EPSILON(0.0_dp)*100.0_dp, gradient_cut)
     159        5194 :          IF (tau_cut <= EPSILON(0.0_dp)*100.0_dp) &
     160             :             CALL cp_warn(__LOCATION__, &
     161             :                          "TAU_CUTOFF lower than 100*EPSILON, where EPSILON is the machine precision. "// &
     162           0 :                          "This may lead to numerical problems. Setting up shake_tol to 100*EPSILON! ")
     163        5194 :          tau_cut = MAX(EPSILON(0.0_dp)*100.0_dp, tau_cut)
     164        5194 :          CALL section_vals_val_set(xc_section, "density_cutoff", r_val=density_cut)
     165        5194 :          CALL section_vals_val_set(xc_section, "gradient_cutoff", r_val=gradient_cut)
     166        5194 :          CALL section_vals_val_set(xc_section, "tau_cutoff", r_val=tau_cut)
     167             :       END IF
     168        6686 :       xc_fun_section => section_vals_get_subs_vals(xc_section, "XC_FUNCTIONAL")
     169        6686 :       CALL section_vals_get(xc_fun_section, explicit=is_present)
     170        6686 :       IF (.NOT. is_present .AND. not_SE) THEN
     171           0 :          CPABORT("XC_FUNCTIONAL section missing.")
     172             :       END IF
     173        6686 :       scf_section => section_vals_get_subs_vals(dft_section, "SCF")
     174        6686 :       CALL section_vals_val_get(dft_section, "UKS", l_val=dft_control%uks)
     175        6686 :       CALL section_vals_val_get(dft_section, "ROKS", l_val=dft_control%roks)
     176        6686 :       IF (dft_control%uks .OR. dft_control%roks) THEN
     177        1483 :          dft_control%nspins = 2
     178             :       ELSE
     179        5203 :          dft_control%nspins = 1
     180             :       END IF
     181             : 
     182        6686 :       dft_control%lsd = (dft_control%nspins > 1)
     183        6686 :       dft_control%use_kinetic_energy_density = xc_uses_kinetic_energy_density(xc_fun_section, dft_control%lsd)
     184             : 
     185        6686 :       xc_deriv_method_id = section_get_ival(xc_section, "XC_GRID%XC_DERIV")
     186             :       dft_control%drho_by_collocation = (xc_uses_norm_drho(xc_fun_section, dft_control%lsd) &
     187        6686 :                                          .AND. (xc_deriv_method_id == xc_deriv_collocate))
     188        6686 :       IF (dft_control%drho_by_collocation) THEN
     189           0 :          CPABORT("derivatives by collocation not implemented")
     190             :       END IF
     191             : 
     192             :       ! Automatic auxiliary basis set generation
     193        6686 :       CALL section_vals_val_get(dft_section, "AUTO_BASIS", n_rep_val=nrep)
     194       13372 :       DO irep = 1, nrep
     195        6686 :          CALL section_vals_val_get(dft_section, "AUTO_BASIS", i_rep_val=irep, c_vals=tmpstringlist)
     196       13372 :          IF (SIZE(tmpstringlist) == 2) THEN
     197        6686 :             CALL uppercase(tmpstringlist(2))
     198        6686 :             SELECT CASE (tmpstringlist(2))
     199             :             CASE ("X")
     200          78 :                isize = -1
     201             :             CASE ("SMALL")
     202          78 :                isize = 0
     203             :             CASE ("MEDIUM")
     204          48 :                isize = 1
     205             :             CASE ("LARGE")
     206           0 :                isize = 2
     207             :             CASE ("HUGE")
     208           2 :                isize = 3
     209             :             CASE DEFAULT
     210        6686 :                CPWARN("Unknown basis size in AUTO_BASIS keyword:"//TRIM(tmpstringlist(1)))
     211             :             END SELECT
     212             :             !
     213        6688 :             SELECT CASE (tmpstringlist(1))
     214             :             CASE ("X")
     215             :             CASE ("RI_AUX")
     216           2 :                dft_control%auto_basis_ri_aux = isize
     217             :             CASE ("AUX_FIT")
     218           0 :                dft_control%auto_basis_aux_fit = isize
     219             :             CASE ("LRI_AUX")
     220           0 :                dft_control%auto_basis_lri_aux = isize
     221             :             CASE ("P_LRI_AUX")
     222           0 :                dft_control%auto_basis_p_lri_aux = isize
     223             :             CASE ("RI_HXC")
     224           0 :                dft_control%auto_basis_ri_hxc = isize
     225             :             CASE ("RI_XAS")
     226          48 :                dft_control%auto_basis_ri_xas = isize
     227             :             CASE ("RI_HFX")
     228          78 :                dft_control%auto_basis_ri_hfx = isize
     229             :             CASE DEFAULT
     230        6686 :                CPWARN("Unknown basis type in AUTO_BASIS keyword:"//TRIM(tmpstringlist(1)))
     231             :             END SELECT
     232             :          ELSE
     233             :             CALL cp_abort(__LOCATION__, &
     234           0 :                           "AUTO_BASIS keyword in &DFT section has a wrong number of arguments.")
     235             :          END IF
     236             :       END DO
     237             : 
     238             :       !! check if we do wavefunction fitting
     239        6686 :       tmp_section => section_vals_get_subs_vals(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD")
     240        6686 :       CALL section_vals_get(tmp_section, explicit=is_present)
     241        6686 :       dft_control%do_admm = is_present
     242        6686 :       dft_control%do_admm_mo = .FALSE.
     243        6686 :       dft_control%do_admm_dm = .FALSE.
     244        6686 :       IF (is_present) THEN
     245             :          do_ot = .FALSE.
     246         442 :          CALL section_vals_val_get(scf_section, "OT%_SECTION_PARAMETERS_", l_val=do_ot)
     247         442 :          CALL admm_control_create(dft_control%admm_control)
     248             : 
     249         442 :          CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%ADMM_TYPE", i_val=admmtype)
     250         442 :          CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%ADMM_PURIFICATION_METHOD", explicit=exopt1)
     251         442 :          CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%METHOD", explicit=exopt2)
     252         442 :          CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%EXCH_SCALING_MODEL", explicit=exopt3)
     253         442 :          dft_control%admm_control%admm_type = admmtype
     254         432 :          SELECT CASE (admmtype)
     255             :          CASE (no_admm_type)
     256         432 :             CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%ADMM_PURIFICATION_METHOD", i_val=method_id)
     257         432 :             dft_control%admm_control%purification_method = method_id
     258         432 :             CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%METHOD", i_val=method_id)
     259         432 :             dft_control%admm_control%method = method_id
     260         432 :             CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%EXCH_SCALING_MODEL", i_val=method_id)
     261         432 :             dft_control%admm_control%scaling_model = method_id
     262             :          CASE (admm1_type)
     263             :             ! METHOD BASIS_PROJECTION
     264             :             ! ADMM_PURIFICATION_METHOD choose
     265             :             ! EXCH_SCALING_MODEL NONE
     266           2 :             CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%ADMM_PURIFICATION_METHOD", i_val=method_id)
     267           2 :             dft_control%admm_control%purification_method = method_id
     268           2 :             dft_control%admm_control%method = do_admm_basis_projection
     269           2 :             dft_control%admm_control%scaling_model = do_admm_exch_scaling_none
     270             :          CASE (admm2_type)
     271             :             ! METHOD BASIS_PROJECTION
     272             :             ! ADMM_PURIFICATION_METHOD NONE
     273             :             ! EXCH_SCALING_MODEL NONE
     274           2 :             dft_control%admm_control%purification_method = do_admm_purify_none
     275           2 :             dft_control%admm_control%method = do_admm_basis_projection
     276           2 :             dft_control%admm_control%scaling_model = do_admm_exch_scaling_none
     277             :          CASE (admms_type)
     278             :             ! ADMM_PURIFICATION_METHOD NONE
     279             :             ! METHOD CHARGE_CONSTRAINED_PROJECTION
     280             :             ! EXCH_SCALING_MODEL MERLOT
     281           2 :             dft_control%admm_control%purification_method = do_admm_purify_none
     282           2 :             dft_control%admm_control%method = do_admm_charge_constrained_projection
     283           2 :             dft_control%admm_control%scaling_model = do_admm_exch_scaling_merlot
     284             :          CASE (admmp_type)
     285             :             ! ADMM_PURIFICATION_METHOD NONE
     286             :             ! METHOD BASIS_PROJECTION
     287             :             ! EXCH_SCALING_MODEL MERLOT
     288           2 :             dft_control%admm_control%purification_method = do_admm_purify_none
     289           2 :             dft_control%admm_control%method = do_admm_basis_projection
     290           2 :             dft_control%admm_control%scaling_model = do_admm_exch_scaling_merlot
     291             :          CASE (admmq_type)
     292             :             ! ADMM_PURIFICATION_METHOD NONE
     293             :             ! METHOD CHARGE_CONSTRAINED_PROJECTION
     294             :             ! EXCH_SCALING_MODEL NONE
     295           2 :             dft_control%admm_control%purification_method = do_admm_purify_none
     296           2 :             dft_control%admm_control%method = do_admm_charge_constrained_projection
     297           2 :             dft_control%admm_control%scaling_model = do_admm_exch_scaling_none
     298             :          CASE DEFAULT
     299             :             CALL cp_abort(__LOCATION__, &
     300         442 :                           "ADMM_TYPE keyword in &AUXILIARY_DENSITY_MATRIX_METHOD section has a wrong value.")
     301             :          END SELECT
     302             : 
     303             :          CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%EPS_FILTER", &
     304         442 :                                    r_val=dft_control%admm_control%eps_filter)
     305             : 
     306         442 :          CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%EXCH_CORRECTION_FUNC", i_val=method_id)
     307         442 :          dft_control%admm_control%aux_exch_func = method_id
     308             : 
     309             :          ! parameters for X functional
     310         442 :          dft_control%admm_control%aux_exch_func_param = .FALSE.
     311             :          CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%OPTX_A1", explicit=explicit, &
     312         442 :                                    r_val=dft_control%admm_control%aux_x_param(1))
     313         442 :          IF (explicit) dft_control%admm_control%aux_exch_func_param = .TRUE.
     314             :          CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%OPTX_A2", explicit=explicit, &
     315         442 :                                    r_val=dft_control%admm_control%aux_x_param(2))
     316         442 :          IF (explicit) dft_control%admm_control%aux_exch_func_param = .TRUE.
     317             :          CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%OPTX_GAMMA", explicit=explicit, &
     318         442 :                                    r_val=dft_control%admm_control%aux_x_param(3))
     319         442 :          IF (explicit) dft_control%admm_control%aux_exch_func_param = .TRUE.
     320             : 
     321         442 :          CALL read_admm_block_list(dft_control%admm_control, dft_section)
     322             : 
     323             :          ! check for double assignments
     324           2 :          SELECT CASE (admmtype)
     325             :          CASE (admm2_type)
     326           2 :             IF (exopt2) CALL cp_warn(__LOCATION__, &
     327           0 :                                      "Value of ADMM_PURIFICATION_METHOD keyword will be overwritten with ADMM_TYPE selections.")
     328           2 :             IF (exopt3) CALL cp_warn(__LOCATION__, &
     329           0 :                                      "Value of EXCH_SCALING_MODEL keyword will be overwritten with ADMM_TYPE selections.")
     330             :          CASE (admm1_type, admms_type, admmp_type, admmq_type)
     331           8 :             IF (exopt1) CALL cp_warn(__LOCATION__, &
     332           0 :                                      "Value of METHOD keyword will be overwritten with ADMM_TYPE selections.")
     333           8 :             IF (exopt2) CALL cp_warn(__LOCATION__, &
     334           0 :                                      "Value of METHOD keyword will be overwritten with ADMM_TYPE selections.")
     335           8 :             IF (exopt3) CALL cp_warn(__LOCATION__, &
     336         442 :                                      "Value of EXCH_SCALING_MODEL keyword will be overwritten with ADMM_TYPE selections.")
     337             :          END SELECT
     338             : 
     339             :          !    In the case of charge-constrained projection (e.g. according to Merlot),
     340             :          !    there is no purification needed and hence, do_admm_purify_none has to be set.
     341             : 
     342             :          IF ((dft_control%admm_control%method == do_admm_blocking_purify_full .OR. &
     343             :               dft_control%admm_control%method == do_admm_blocked_projection) &
     344         442 :              .AND. dft_control%admm_control%scaling_model == do_admm_exch_scaling_merlot) THEN
     345           0 :             CPABORT("ADMM: Blocking and Merlot scaling are mutually exclusive.")
     346             :          END IF
     347             : 
     348         442 :          IF (dft_control%admm_control%method == do_admm_charge_constrained_projection .AND. &
     349             :              dft_control%admm_control%purification_method /= do_admm_purify_none) THEN
     350             :             CALL cp_abort(__LOCATION__, &
     351             :                           "ADMM: In the case of METHOD=CHARGE_CONSTRAINED_PROJECTION, "// &
     352           0 :                           "ADMM_PURIFICATION_METHOD=NONE has to be set.")
     353             :          END IF
     354             : 
     355         442 :          IF (dft_control%admm_control%purification_method == do_admm_purify_mo_diag .OR. &
     356             :              dft_control%admm_control%purification_method == do_admm_purify_mo_no_diag) THEN
     357          60 :             IF (dft_control%admm_control%method /= do_admm_basis_projection) &
     358           0 :                CPABORT("ADMM: Chosen purification requires BASIS_PROJECTION")
     359             : 
     360          60 :             IF (.NOT. do_ot) CPABORT("ADMM: MO-based purification requires OT.")
     361             :          END IF
     362             : 
     363         442 :          IF (dft_control%admm_control%purification_method == do_admm_purify_none_dm .OR. &
     364             :              dft_control%admm_control%purification_method == do_admm_purify_mcweeny) THEN
     365          14 :             dft_control%do_admm_dm = .TRUE.
     366             :          ELSE
     367         428 :             dft_control%do_admm_mo = .TRUE.
     368             :          END IF
     369             :       END IF
     370             : 
     371             :       ! Set restricted to true, if both OT and ROKS are requested
     372             :       !MK in principle dft_control%restricted could be dropped completely like the
     373             :       !MK input key by using only dft_control%roks now
     374        6686 :       CALL section_vals_val_get(scf_section, "OT%_SECTION_PARAMETERS_", l_val=l_param)
     375        6686 :       dft_control%restricted = (dft_control%roks .AND. l_param)
     376             : 
     377        6686 :       CALL section_vals_val_get(dft_section, "CHARGE", i_val=dft_control%charge)
     378        6686 :       CALL section_vals_val_get(dft_section, "MULTIPLICITY", i_val=dft_control%multiplicity)
     379        6686 :       CALL section_vals_val_get(dft_section, "RELAX_MULTIPLICITY", r_val=dft_control%relax_multiplicity)
     380        6686 :       IF (dft_control%relax_multiplicity > 0.0_dp) THEN
     381           8 :          IF (.NOT. dft_control%uks) &
     382             :             CALL cp_abort(__LOCATION__, "The option RELAX_MULTIPLICITY is only valid for "// &
     383           0 :                           "unrestricted Kohn-Sham (UKS) calculations")
     384             :       END IF
     385             : 
     386             :       ! check for the presence of the low spin roks section
     387        6686 :       tmp_section => section_vals_get_subs_vals(dft_section, "LOW_SPIN_ROKS")
     388        6686 :       CALL section_vals_get(tmp_section, explicit=dft_control%low_spin_roks)
     389             : 
     390        6686 :       dft_control%sic_method_id = sic_none
     391        6686 :       dft_control%sic_scaling_a = 1.0_dp
     392        6686 :       dft_control%sic_scaling_b = 1.0_dp
     393             : 
     394             :       ! DFT+U
     395        6686 :       dft_control%dft_plus_u = .FALSE.
     396        6686 :       CALL section_vals_val_get(dft_section, "PLUS_U_METHOD", i_val=method_id)
     397        6686 :       dft_control%plus_u_method_id = method_id
     398             : 
     399             :       ! Smearing in use
     400        6686 :       dft_control%smear = .FALSE.
     401             : 
     402             :       ! Surface dipole correction
     403        6686 :       dft_control%correct_surf_dip = .FALSE.
     404        6686 :       CALL section_vals_val_get(dft_section, "SURFACE_DIPOLE_CORRECTION", l_val=dft_control%correct_surf_dip)
     405        6686 :       CALL section_vals_val_get(dft_section, "SURF_DIP_DIR", i_val=dft_control%dir_surf_dip)
     406        6686 :       dft_control%pos_dir_surf_dip = -1.0_dp
     407        6686 :       CALL section_vals_val_get(dft_section, "SURF_DIP_POS", r_val=dft_control%pos_dir_surf_dip)
     408             :       ! another logical variable, surf_dip_correct_switch, is introduced for
     409             :       ! implementation of "SURF_DIP_SWITCH" [SGh]
     410        6686 :       dft_control%switch_surf_dip = .FALSE.
     411        6686 :       dft_control%surf_dip_correct_switch = dft_control%correct_surf_dip
     412        6686 :       CALL section_vals_val_get(dft_section, "SURF_DIP_SWITCH", l_val=dft_control%switch_surf_dip)
     413        6686 :       dft_control%correct_el_density_dip = .FALSE.
     414        6686 :       CALL section_vals_val_get(dft_section, "CORE_CORR_DIP", l_val=dft_control%correct_el_density_dip)
     415        6686 :       IF (dft_control%correct_el_density_dip) THEN
     416           4 :          IF (dft_control%correct_surf_dip) THEN
     417             :             ! Do nothing, move on
     418             :          ELSE
     419           0 :             dft_control%correct_el_density_dip = .FALSE.
     420           0 :             CPWARN("CORE_CORR_DIP keyword is activated only if SURFACE_DIPOLE_CORRECTION is TRUE")
     421             :          END IF
     422             :       END IF
     423             : 
     424             :       CALL section_vals_val_get(dft_section, "BASIS_SET_FILE_NAME", &
     425        6686 :                                 c_val=basis_set_file_name)
     426             :       CALL section_vals_val_get(dft_section, "POTENTIAL_FILE_NAME", &
     427        6686 :                                 c_val=potential_file_name)
     428             : 
     429             :       ! Read the input section
     430        6686 :       tmp_section => section_vals_get_subs_vals(dft_section, "sic")
     431             :       CALL section_vals_val_get(tmp_section, "SIC_METHOD", &
     432        6686 :                                 i_val=dft_control%sic_method_id)
     433             :       CALL section_vals_val_get(tmp_section, "ORBITAL_SET", &
     434        6686 :                                 i_val=dft_control%sic_list_id)
     435             :       CALL section_vals_val_get(tmp_section, "SIC_SCALING_A", &
     436        6686 :                                 r_val=dft_control%sic_scaling_a)
     437             :       CALL section_vals_val_get(tmp_section, "SIC_SCALING_B", &
     438        6686 :                                 r_val=dft_control%sic_scaling_b)
     439             : 
     440             :       ! Determine if this is a TDDFPT run
     441        6686 :       CALL section_vals_val_get(dft_section, "EXCITATIONS", i_val=excitations)
     442        6686 :       dft_control%do_tddfpt_calculation = (excitations == tddfpt_excitations)
     443        6686 :       IF (dft_control%do_tddfpt_calculation) THEN
     444          12 :          CALL tddfpt_control_create(dft_control%tddfpt_control)
     445             :       END IF
     446             : 
     447        6686 :       do_rtp = .FALSE.
     448        6686 :       tmp_section => section_vals_get_subs_vals(dft_section, "REAL_TIME_PROPAGATION")
     449        6686 :       CALL section_vals_get(tmp_section, explicit=is_present)
     450        6686 :       IF (is_present) THEN
     451         248 :          CALL read_rtp_section(dft_control, tmp_section)
     452         248 :          do_rtp = .TRUE.
     453             :       END IF
     454             : 
     455             :       ! Read the input section
     456        6686 :       tmp_section => section_vals_get_subs_vals(dft_section, "XAS")
     457        6686 :       CALL section_vals_get(tmp_section, explicit=dft_control%do_xas_calculation)
     458        6686 :       IF (dft_control%do_xas_calculation) THEN
     459             :          ! Override with section parameter
     460             :          CALL section_vals_val_get(tmp_section, "_SECTION_PARAMETERS_", &
     461          42 :                                    l_val=dft_control%do_xas_calculation)
     462             :       END IF
     463             : 
     464        6686 :       tmp_section => section_vals_get_subs_vals(dft_section, "XAS_TDP")
     465        6686 :       CALL section_vals_get(tmp_section, explicit=dft_control%do_xas_tdp_calculation)
     466        6686 :       IF (dft_control%do_xas_tdp_calculation) THEN
     467             :          ! Override with section parameter
     468             :          CALL section_vals_val_get(tmp_section, "_SECTION_PARAMETERS_", &
     469          50 :                                    l_val=dft_control%do_xas_tdp_calculation)
     470             :       END IF
     471             : 
     472             :       ! Read the finite field input section
     473        6686 :       dft_control%apply_efield = .FALSE.
     474        6686 :       dft_control%apply_efield_field = .FALSE. !this is for RTP
     475        6686 :       dft_control%apply_vector_potential = .FALSE. !this is for RTP
     476        6686 :       tmp_section => section_vals_get_subs_vals(dft_section, "EFIELD")
     477        6686 :       CALL section_vals_get(tmp_section, n_repetition=nrep, explicit=is_present)
     478        6686 :       IF (is_present) THEN
     479        1008 :          ALLOCATE (dft_control%efield_fields(nrep))
     480         252 :          CALL read_efield_sections(dft_control, tmp_section)
     481         252 :          IF (do_rtp) THEN
     482          24 :             IF (.NOT. dft_control%rtp_control%velocity_gauge) THEN
     483          16 :                dft_control%apply_efield_field = .TRUE.
     484             :             ELSE
     485           8 :                dft_control%apply_vector_potential = .TRUE.
     486             :                ! Use this input value of vector potential to (re)start RTP
     487          32 :                dft_control%rtp_control%vec_pot = dft_control%efield_fields(1)%efield%vec_pot_initial
     488             :             END IF
     489             :          ELSE
     490         228 :             dft_control%apply_efield = .TRUE.
     491         228 :             CPASSERT(nrep == 1)
     492             :          END IF
     493             :       END IF
     494             : 
     495             :       ! Read the finite field input section for periodic fields
     496        6686 :       tmp_section => section_vals_get_subs_vals(dft_section, "PERIODIC_EFIELD")
     497        6686 :       CALL section_vals_get(tmp_section, explicit=dft_control%apply_period_efield)
     498        6686 :       IF (dft_control%apply_period_efield) THEN
     499         406 :          ALLOCATE (dft_control%period_efield)
     500          58 :          CALL section_vals_val_get(tmp_section, "POLARISATION", r_vals=pol)
     501         406 :          dft_control%period_efield%polarisation(1:3) = pol(1:3)
     502          58 :          CALL section_vals_val_get(tmp_section, "D_FILTER", r_vals=pol)
     503         406 :          dft_control%period_efield%d_filter(1:3) = pol(1:3)
     504             :          CALL section_vals_val_get(tmp_section, "INTENSITY", &
     505          58 :                                    r_val=dft_control%period_efield%strength)
     506          58 :          dft_control%period_efield%displacement_field = .FALSE.
     507             :          CALL section_vals_val_get(tmp_section, "DISPLACEMENT_FIELD", &
     508          58 :                                    l_val=dft_control%period_efield%displacement_field)
     509             :          ! periodic fields don't work with RTP
     510          58 :          CPASSERT(.NOT. do_rtp)
     511          58 :          IF (dft_control%period_efield%displacement_field) THEN
     512          16 :             CALL cite_reference(Stengel2009)
     513             :          ELSE
     514          42 :             CALL cite_reference(Souza2002)
     515          42 :             CALL cite_reference(Umari2002)
     516             :          END IF
     517             :       END IF
     518             : 
     519             :       ! Read the external potential input section
     520        6686 :       tmp_section => section_vals_get_subs_vals(dft_section, "EXTERNAL_POTENTIAL")
     521        6686 :       CALL section_vals_get(tmp_section, explicit=dft_control%apply_external_potential)
     522        6686 :       IF (dft_control%apply_external_potential) THEN
     523          16 :          CALL expot_control_create(dft_control%expot_control)
     524             :          CALL section_vals_val_get(tmp_section, "READ_FROM_CUBE", &
     525          16 :                                    l_val=dft_control%expot_control%read_from_cube)
     526             :          CALL section_vals_val_get(tmp_section, "STATIC", &
     527          16 :                                    l_val=dft_control%expot_control%static)
     528             :          CALL section_vals_val_get(tmp_section, "SCALING_FACTOR", &
     529          16 :                                    r_val=dft_control%expot_control%scaling_factor)
     530             :          ! External potential using Maxwell equation
     531          16 :          maxwell_section => section_vals_get_subs_vals(tmp_section, "MAXWELL")
     532          16 :          CALL section_vals_get(maxwell_section, explicit=is_present)
     533          16 :          IF (is_present) THEN
     534           0 :             dft_control%expot_control%maxwell_solver = .TRUE.
     535           0 :             CALL maxwell_control_create(dft_control%maxwell_control)
     536             :             ! read the input values from Maxwell section
     537             :             CALL section_vals_val_get(maxwell_section, "TEST_REAL", &
     538           0 :                                       r_val=dft_control%maxwell_control%real_test)
     539             :             CALL section_vals_val_get(maxwell_section, "TEST_INTEGER", &
     540           0 :                                       i_val=dft_control%maxwell_control%int_test)
     541             :             CALL section_vals_val_get(maxwell_section, "TEST_LOGICAL", &
     542           0 :                                       l_val=dft_control%maxwell_control%log_test)
     543             :          ELSE
     544          16 :             dft_control%expot_control%maxwell_solver = .FALSE.
     545             :          END IF
     546             :       END IF
     547             : 
     548             :       ! Read the SCCS input section if present
     549        6686 :       sccs_section => section_vals_get_subs_vals(dft_section, "SCCS")
     550        6686 :       CALL section_vals_get(sccs_section, explicit=is_present)
     551        6686 :       IF (is_present) THEN
     552             :          ! Check section parameter if SCCS is activated
     553             :          CALL section_vals_val_get(sccs_section, "_SECTION_PARAMETERS_", &
     554          10 :                                    l_val=dft_control%do_sccs)
     555          10 :          IF (dft_control%do_sccs) THEN
     556          10 :             ALLOCATE (dft_control%sccs_control)
     557             :             CALL section_vals_val_get(sccs_section, "RELATIVE_PERMITTIVITY", &
     558          10 :                                       r_val=dft_control%sccs_control%epsilon_solvent)
     559             :             CALL section_vals_val_get(sccs_section, "ALPHA", &
     560          10 :                                       r_val=dft_control%sccs_control%alpha_solvent)
     561             :             CALL section_vals_val_get(sccs_section, "BETA", &
     562          10 :                                       r_val=dft_control%sccs_control%beta_solvent)
     563             :             CALL section_vals_val_get(sccs_section, "DELTA_RHO", &
     564          10 :                                       r_val=dft_control%sccs_control%delta_rho)
     565             :             CALL section_vals_val_get(sccs_section, "DERIVATIVE_METHOD", &
     566          10 :                                       i_val=dft_control%sccs_control%derivative_method)
     567             :             CALL section_vals_val_get(sccs_section, "METHOD", &
     568          10 :                                       i_val=dft_control%sccs_control%method_id)
     569             :             CALL section_vals_val_get(sccs_section, "EPS_SCCS", &
     570          10 :                                       r_val=dft_control%sccs_control%eps_sccs)
     571             :             CALL section_vals_val_get(sccs_section, "EPS_SCF", &
     572          10 :                                       r_val=dft_control%sccs_control%eps_scf)
     573             :             CALL section_vals_val_get(sccs_section, "GAMMA", &
     574          10 :                                       r_val=dft_control%sccs_control%gamma_solvent)
     575             :             CALL section_vals_val_get(sccs_section, "MAX_ITER", &
     576          10 :                                       i_val=dft_control%sccs_control%max_iter)
     577             :             CALL section_vals_val_get(sccs_section, "MIXING", &
     578          10 :                                       r_val=dft_control%sccs_control%mixing)
     579          18 :             SELECT CASE (dft_control%sccs_control%method_id)
     580             :             CASE (sccs_andreussi)
     581           8 :                tmp_section => section_vals_get_subs_vals(sccs_section, "ANDREUSSI")
     582             :                CALL section_vals_val_get(tmp_section, "RHO_MAX", &
     583           8 :                                          r_val=dft_control%sccs_control%rho_max)
     584             :                CALL section_vals_val_get(tmp_section, "RHO_MIN", &
     585           8 :                                          r_val=dft_control%sccs_control%rho_min)
     586           8 :                IF (dft_control%sccs_control%rho_max < dft_control%sccs_control%rho_min) THEN
     587             :                   CALL cp_abort(__LOCATION__, &
     588             :                                 "The SCCS parameter RHO_MAX is smaller than RHO_MIN. "// &
     589           0 :                                 "Please, check your input!")
     590             :                END IF
     591           8 :                CALL cite_reference(Andreussi2012)
     592             :             CASE (sccs_fattebert_gygi)
     593           2 :                tmp_section => section_vals_get_subs_vals(sccs_section, "FATTEBERT-GYGI")
     594             :                CALL section_vals_val_get(tmp_section, "BETA", &
     595           2 :                                          r_val=dft_control%sccs_control%beta)
     596           2 :                IF (dft_control%sccs_control%beta < 0.5_dp) THEN
     597             :                   CALL cp_abort(__LOCATION__, &
     598             :                                 "A value smaller than 0.5 for the SCCS parameter beta "// &
     599           0 :                                 "causes numerical problems. Please, check your input!")
     600             :                END IF
     601             :                CALL section_vals_val_get(tmp_section, "RHO_ZERO", &
     602           2 :                                          r_val=dft_control%sccs_control%rho_zero)
     603           2 :                CALL cite_reference(Fattebert2002)
     604             :             CASE DEFAULT
     605          10 :                CPABORT("Invalid SCCS model specified. Please, check your input!")
     606             :             END SELECT
     607          10 :             CALL cite_reference(Yin2017)
     608             :          END IF
     609             :       END IF
     610             : 
     611             :       ! ZMP added input sections
     612             :       ! Read the external density input section
     613        6686 :       tmp_section => section_vals_get_subs_vals(dft_section, "EXTERNAL_DENSITY")
     614        6686 :       CALL section_vals_get(tmp_section, explicit=dft_control%apply_external_density)
     615             : 
     616             :       ! Read the external vxc input section
     617        6686 :       tmp_section => section_vals_get_subs_vals(dft_section, "EXTERNAL_VXC")
     618        6686 :       CALL section_vals_get(tmp_section, explicit=dft_control%apply_external_vxc)
     619             : 
     620             :       ! SMEAGOL interface
     621        6686 :       tmp_section => section_vals_get_subs_vals(dft_section, "SMEAGOL")
     622        6686 :       CALL read_smeagol_control(dft_control%smeagol_control, tmp_section)
     623             : 
     624        6686 :    END SUBROUTINE read_dft_control
     625             : 
     626             : ! **************************************************************************************************
     627             : !> \brief ...
     628             : !> \param qs_control ...
     629             : !> \param dft_section ...
     630             : ! **************************************************************************************************
     631        6686 :    SUBROUTINE read_mgrid_section(qs_control, dft_section)
     632             : 
     633             :       TYPE(qs_control_type), INTENT(INOUT)               :: qs_control
     634             :       TYPE(section_vals_type), POINTER                   :: dft_section
     635             : 
     636             :       CHARACTER(len=*), PARAMETER :: routineN = 'read_mgrid_section'
     637             : 
     638             :       INTEGER                                            :: handle, igrid_level, ngrid_level
     639             :       LOGICAL                                            :: explicit, multigrid_set
     640             :       REAL(dp)                                           :: cutoff
     641        6686 :       REAL(dp), DIMENSION(:), POINTER                    :: cutofflist
     642             :       TYPE(section_vals_type), POINTER                   :: mgrid_section
     643             : 
     644        6686 :       CALL timeset(routineN, handle)
     645             : 
     646        6686 :       NULLIFY (mgrid_section, cutofflist)
     647        6686 :       mgrid_section => section_vals_get_subs_vals(dft_section, "MGRID")
     648             : 
     649        6686 :       CALL section_vals_val_get(mgrid_section, "NGRIDS", i_val=ngrid_level)
     650        6686 :       CALL section_vals_val_get(mgrid_section, "MULTIGRID_SET", l_val=multigrid_set)
     651        6686 :       CALL section_vals_val_get(mgrid_section, "CUTOFF", r_val=cutoff)
     652        6686 :       CALL section_vals_val_get(mgrid_section, "PROGRESSION_FACTOR", r_val=qs_control%progression_factor)
     653        6686 :       CALL section_vals_val_get(mgrid_section, "COMMENSURATE", l_val=qs_control%commensurate_mgrids)
     654        6686 :       CALL section_vals_val_get(mgrid_section, "REALSPACE", l_val=qs_control%realspace_mgrids)
     655        6686 :       CALL section_vals_val_get(mgrid_section, "REL_CUTOFF", r_val=qs_control%relative_cutoff)
     656             :       CALL section_vals_val_get(mgrid_section, "SKIP_LOAD_BALANCE_DISTRIBUTED", &
     657        6686 :                                 l_val=qs_control%skip_load_balance_distributed)
     658             : 
     659             :       ! For SE and DFTB possibly override with new defaults
     660        6686 :       IF (qs_control%semi_empirical .OR. qs_control%dftb .OR. qs_control%xtb) THEN
     661        1504 :          ngrid_level = 1
     662        1504 :          multigrid_set = .FALSE.
     663             :          ! Override default cutoff value unless user specified an explicit argument..
     664        1504 :          CALL section_vals_val_get(mgrid_section, "CUTOFF", explicit=explicit, r_val=cutoff)
     665        1504 :          IF (.NOT. explicit) cutoff = 1.0_dp
     666             :       END IF
     667             : 
     668       20058 :       ALLOCATE (qs_control%e_cutoff(ngrid_level))
     669        6686 :       qs_control%cutoff = cutoff
     670             : 
     671        6686 :       IF (multigrid_set) THEN
     672             :          ! Read the values from input
     673           4 :          IF (qs_control%commensurate_mgrids) THEN
     674           0 :             CPABORT("Do not specify cutoffs for the commensurate grids (NYI)")
     675             :          END IF
     676             : 
     677           4 :          CALL section_vals_val_get(mgrid_section, "MULTIGRID_CUTOFF", r_vals=cutofflist)
     678           4 :          IF (ASSOCIATED(cutofflist)) THEN
     679           4 :             IF (SIZE(cutofflist, 1) /= ngrid_level) THEN
     680           0 :                CPABORT("Number of multi-grids requested and number of cutoff values do not match")
     681             :             END IF
     682          20 :             DO igrid_level = 1, ngrid_level
     683          20 :                qs_control%e_cutoff(igrid_level) = cutofflist(igrid_level)
     684             :             END DO
     685             :          END IF
     686             :          ! set cutoff to smallest value in multgrid available with >= cutoff
     687          20 :          DO igrid_level = ngrid_level, 1, -1
     688          16 :             IF (qs_control%cutoff <= qs_control%e_cutoff(igrid_level)) THEN
     689           0 :                qs_control%cutoff = qs_control%e_cutoff(igrid_level)
     690           0 :                EXIT
     691             :             END IF
     692             :             ! set largest grid value to cutoff
     693          20 :             IF (igrid_level == 1) THEN
     694           4 :                qs_control%cutoff = qs_control%e_cutoff(1)
     695             :             END IF
     696             :          END DO
     697             :       ELSE
     698        6682 :          IF (qs_control%commensurate_mgrids) qs_control%progression_factor = 4.0_dp
     699        6682 :          qs_control%e_cutoff(1) = qs_control%cutoff
     700       22082 :          DO igrid_level = 2, ngrid_level
     701             :             qs_control%e_cutoff(igrid_level) = qs_control%e_cutoff(igrid_level - 1)/ &
     702       22082 :                                                qs_control%progression_factor
     703             :          END DO
     704             :       END IF
     705             :       ! check that multigrids are ordered
     706       22098 :       DO igrid_level = 2, ngrid_level
     707       22098 :          IF (qs_control%e_cutoff(igrid_level) > qs_control%e_cutoff(igrid_level - 1)) THEN
     708           0 :             CPABORT("The cutoff values for the multi-grids are not ordered from large to small")
     709       15412 :          ELSE IF (qs_control%e_cutoff(igrid_level) == qs_control%e_cutoff(igrid_level - 1)) THEN
     710           0 :             CPABORT("The same cutoff value was specified for two multi-grids")
     711             :          END IF
     712             :       END DO
     713        6686 :       CALL timestop(handle)
     714       13372 :    END SUBROUTINE read_mgrid_section
     715             : 
     716             : ! **************************************************************************************************
     717             : !> \brief ...
     718             : !> \param qs_control ...
     719             : !> \param qs_section ...
     720             : ! **************************************************************************************************
     721      106976 :    SUBROUTINE read_qs_section(qs_control, qs_section)
     722             : 
     723             :       TYPE(qs_control_type), INTENT(INOUT)               :: qs_control
     724             :       TYPE(section_vals_type), POINTER                   :: qs_section
     725             : 
     726             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'read_qs_section'
     727             : 
     728             :       CHARACTER(LEN=default_string_length)               :: cval
     729             :       CHARACTER(LEN=default_string_length), &
     730        6686 :          DIMENSION(:), POINTER                           :: clist
     731             :       INTEGER                                            :: handle, itmp, j, jj, k, n_rep, n_var, &
     732             :                                                             ngauss, ngp, nrep
     733        6686 :       INTEGER, DIMENSION(:), POINTER                     :: tmplist
     734             :       LOGICAL                                            :: explicit, was_present
     735             :       REAL(dp)                                           :: tmp, tmpsqrt, value
     736        6686 :       REAL(dp), POINTER                                  :: scal(:)
     737             :       TYPE(section_vals_type), POINTER :: cdft_control_section, ddapc_restraint_section, &
     738             :          dftb_parameter, dftb_section, eeq_section, genpot_section, lri_optbas_section, &
     739             :          mull_section, nonbonded_section, s2_restraint_section, se_section, xtb_parameter, &
     740             :          xtb_section
     741             : 
     742        6686 :       CALL timeset(routineN, handle)
     743             : 
     744        6686 :       was_present = .FALSE.
     745        6686 :       NULLIFY (mull_section, ddapc_restraint_section, s2_restraint_section, &
     746        6686 :                se_section, dftb_section, xtb_section, dftb_parameter, xtb_parameter, lri_optbas_section, &
     747        6686 :                cdft_control_section, genpot_section, eeq_section)
     748             : 
     749        6686 :       mull_section => section_vals_get_subs_vals(qs_section, "MULLIKEN_RESTRAINT")
     750        6686 :       ddapc_restraint_section => section_vals_get_subs_vals(qs_section, "DDAPC_RESTRAINT")
     751        6686 :       s2_restraint_section => section_vals_get_subs_vals(qs_section, "S2_RESTRAINT")
     752        6686 :       se_section => section_vals_get_subs_vals(qs_section, "SE")
     753        6686 :       dftb_section => section_vals_get_subs_vals(qs_section, "DFTB")
     754        6686 :       xtb_section => section_vals_get_subs_vals(qs_section, "xTB")
     755        6686 :       dftb_parameter => section_vals_get_subs_vals(dftb_section, "PARAMETER")
     756        6686 :       xtb_parameter => section_vals_get_subs_vals(xtb_section, "PARAMETER")
     757        6686 :       eeq_section => section_vals_get_subs_vals(xtb_section, "EEQ")
     758        6686 :       lri_optbas_section => section_vals_get_subs_vals(qs_section, "OPTIMIZE_LRI_BASIS")
     759        6686 :       cdft_control_section => section_vals_get_subs_vals(qs_section, "CDFT")
     760        6686 :       nonbonded_section => section_vals_get_subs_vals(xtb_section, "NONBONDED")
     761        6686 :       genpot_section => section_vals_get_subs_vals(nonbonded_section, "GENPOT")
     762             : 
     763             :       ! Setup all defaults values and overwrite input parameters
     764             :       ! EPS_DEFAULT should set the target accuracy in the total energy (~per electron) or a closely related value
     765        6686 :       CALL section_vals_val_get(qs_section, "EPS_DEFAULT", r_val=value)
     766        6686 :       tmpsqrt = SQRT(value) ! a trick to work around a NAG 5.1 optimizer bug
     767             : 
     768             :       ! random choice ?
     769        6686 :       qs_control%eps_core_charge = value/100.0_dp
     770             :       ! correct if all Gaussians would have the same radius (overlap will be smaller than eps_pgf_orb**2).
     771             :       ! Can be significantly in error if not... requires fully new screening/pairlist procedures
     772        6686 :       qs_control%eps_pgf_orb = tmpsqrt
     773        6686 :       qs_control%eps_kg_orb = qs_control%eps_pgf_orb
     774             :       ! consistent since also a kind of overlap
     775        6686 :       qs_control%eps_ppnl = qs_control%eps_pgf_orb/100.0_dp
     776             :       ! accuracy is basically set by the overlap, this sets an empirical shift
     777        6686 :       qs_control%eps_ppl = 1.0E-2_dp
     778             :       !
     779        6686 :       qs_control%gapw_control%eps_cpc = value
     780             :       ! expexted error in the density
     781        6686 :       qs_control%eps_rho_gspace = value
     782        6686 :       qs_control%eps_rho_rspace = value
     783             :       ! error in the gradient, can be the sqrt of the error in the energy, ignored if map_consistent
     784        6686 :       qs_control%eps_gvg_rspace = tmpsqrt
     785             :       !
     786        6686 :       CALL section_vals_val_get(qs_section, "EPS_CORE_CHARGE", n_rep_val=n_rep)
     787        6686 :       IF (n_rep /= 0) THEN
     788           0 :          CALL section_vals_val_get(qs_section, "EPS_CORE_CHARGE", r_val=qs_control%eps_core_charge)
     789             :       END IF
     790        6686 :       CALL section_vals_val_get(qs_section, "EPS_GVG_RSPACE", n_rep_val=n_rep)
     791        6686 :       IF (n_rep /= 0) THEN
     792         132 :          CALL section_vals_val_get(qs_section, "EPS_GVG_RSPACE", r_val=qs_control%eps_gvg_rspace)
     793             :       END IF
     794        6686 :       CALL section_vals_val_get(qs_section, "EPS_PGF_ORB", n_rep_val=n_rep)
     795        6686 :       IF (n_rep /= 0) THEN
     796         612 :          CALL section_vals_val_get(qs_section, "EPS_PGF_ORB", r_val=qs_control%eps_pgf_orb)
     797             :       END IF
     798        6686 :       CALL section_vals_val_get(qs_section, "EPS_KG_ORB", n_rep_val=n_rep)
     799        6686 :       IF (n_rep /= 0) THEN
     800          62 :          CALL section_vals_val_get(qs_section, "EPS_KG_ORB", r_val=tmp)
     801          62 :          qs_control%eps_kg_orb = SQRT(tmp)
     802             :       END IF
     803        6686 :       CALL section_vals_val_get(qs_section, "EPS_PPL", n_rep_val=n_rep)
     804        6686 :       IF (n_rep /= 0) THEN
     805        6686 :          CALL section_vals_val_get(qs_section, "EPS_PPL", r_val=qs_control%eps_ppl)
     806             :       END IF
     807        6686 :       CALL section_vals_val_get(qs_section, "EPS_PPNL", n_rep_val=n_rep)
     808        6686 :       IF (n_rep /= 0) THEN
     809           0 :          CALL section_vals_val_get(qs_section, "EPS_PPNL", r_val=qs_control%eps_ppnl)
     810             :       END IF
     811        6686 :       CALL section_vals_val_get(qs_section, "EPS_RHO", n_rep_val=n_rep)
     812        6686 :       IF (n_rep /= 0) THEN
     813          30 :          CALL section_vals_val_get(qs_section, "EPS_RHO", r_val=qs_control%eps_rho_gspace)
     814          30 :          qs_control%eps_rho_rspace = qs_control%eps_rho_gspace
     815             :       END IF
     816        6686 :       CALL section_vals_val_get(qs_section, "EPS_RHO_RSPACE", n_rep_val=n_rep)
     817        6686 :       IF (n_rep /= 0) THEN
     818           2 :          CALL section_vals_val_get(qs_section, "EPS_RHO_RSPACE", r_val=qs_control%eps_rho_rspace)
     819             :       END IF
     820        6686 :       CALL section_vals_val_get(qs_section, "EPS_RHO_GSPACE", n_rep_val=n_rep)
     821        6686 :       IF (n_rep /= 0) THEN
     822           2 :          CALL section_vals_val_get(qs_section, "EPS_RHO_GSPACE", r_val=qs_control%eps_rho_gspace)
     823             :       END IF
     824        6686 :       CALL section_vals_val_get(qs_section, "EPS_FILTER_MATRIX", n_rep_val=n_rep)
     825        6686 :       IF (n_rep /= 0) THEN
     826        6686 :          CALL section_vals_val_get(qs_section, "EPS_FILTER_MATRIX", r_val=qs_control%eps_filter_matrix)
     827             :       END IF
     828        6686 :       CALL section_vals_val_get(qs_section, "EPS_CPC", n_rep_val=n_rep)
     829        6686 :       IF (n_rep /= 0) THEN
     830           0 :          CALL section_vals_val_get(qs_section, "EPS_CPC", r_val=qs_control%gapw_control%eps_cpc)
     831             :       END IF
     832             : 
     833        6686 :       CALL section_vals_val_get(qs_section, "EPSFIT", r_val=qs_control%gapw_control%eps_fit)
     834        6686 :       CALL section_vals_val_get(qs_section, "EPSISO", r_val=qs_control%gapw_control%eps_iso)
     835        6686 :       CALL section_vals_val_get(qs_section, "EPSSVD", r_val=qs_control%gapw_control%eps_svd)
     836        6686 :       CALL section_vals_val_get(qs_section, "EPSRHO0", r_val=qs_control%gapw_control%eps_Vrho0)
     837        6686 :       CALL section_vals_val_get(qs_section, "ALPHA0_HARD", r_val=qs_control%gapw_control%alpha0_hard)
     838        6686 :       qs_control%gapw_control%lrho1_eq_lrho0 = .FALSE.
     839        6686 :       qs_control%gapw_control%alpha0_hard_from_input = .FALSE.
     840        6686 :       IF (qs_control%gapw_control%alpha0_hard /= 0.0_dp) qs_control%gapw_control%alpha0_hard_from_input = .TRUE.
     841        6686 :       CALL section_vals_val_get(qs_section, "FORCE_PAW", l_val=qs_control%gapw_control%force_paw)
     842        6686 :       CALL section_vals_val_get(qs_section, "MAX_RAD_LOCAL", r_val=qs_control%gapw_control%max_rad_local)
     843             : 
     844        6686 :       CALL section_vals_val_get(qs_section, "MIN_PAIR_LIST_RADIUS", r_val=qs_control%pairlist_radius)
     845             : 
     846        6686 :       CALL section_vals_val_get(qs_section, "LS_SCF", l_val=qs_control%do_ls_scf)
     847        6686 :       CALL section_vals_val_get(qs_section, "ALMO_SCF", l_val=qs_control%do_almo_scf)
     848        6686 :       CALL section_vals_val_get(qs_section, "KG_METHOD", l_val=qs_control%do_kg)
     849             : 
     850             :       ! Logicals
     851        6686 :       CALL section_vals_val_get(qs_section, "REF_EMBED_SUBSYS", l_val=qs_control%ref_embed_subsys)
     852        6686 :       CALL section_vals_val_get(qs_section, "CLUSTER_EMBED_SUBSYS", l_val=qs_control%cluster_embed_subsys)
     853        6686 :       CALL section_vals_val_get(qs_section, "HIGH_LEVEL_EMBED_SUBSYS", l_val=qs_control%high_level_embed_subsys)
     854        6686 :       CALL section_vals_val_get(qs_section, "DFET_EMBEDDED", l_val=qs_control%dfet_embedded)
     855        6686 :       CALL section_vals_val_get(qs_section, "DMFET_EMBEDDED", l_val=qs_control%dmfet_embedded)
     856             : 
     857             :       ! Integers gapw
     858        6686 :       CALL section_vals_val_get(qs_section, "LMAXN1", i_val=qs_control%gapw_control%lmax_sphere)
     859        6686 :       CALL section_vals_val_get(qs_section, "LMAXN0", i_val=qs_control%gapw_control%lmax_rho0)
     860        6686 :       CALL section_vals_val_get(qs_section, "LADDN0", i_val=qs_control%gapw_control%ladd_rho0)
     861        6686 :       CALL section_vals_val_get(qs_section, "QUADRATURE", i_val=qs_control%gapw_control%quadrature)
     862             :       ! GAPW 1c basis
     863        6686 :       CALL section_vals_val_get(qs_section, "GAPW_1C_BASIS", i_val=qs_control%gapw_control%basis_1c)
     864        6686 :       IF (qs_control%gapw_control%basis_1c /= gapw_1c_orb) THEN
     865          18 :          qs_control%gapw_control%eps_svd = MAX(qs_control%gapw_control%eps_svd, 1.E-12_dp)
     866             :       END IF
     867             : 
     868             :       ! Integers grids
     869        6686 :       CALL section_vals_val_get(qs_section, "PW_GRID", i_val=itmp)
     870           0 :       SELECT CASE (itmp)
     871             :       CASE (do_pwgrid_spherical)
     872           0 :          qs_control%pw_grid_opt%spherical = .TRUE.
     873           0 :          qs_control%pw_grid_opt%fullspace = .FALSE.
     874             :       CASE (do_pwgrid_ns_fullspace)
     875        6686 :          qs_control%pw_grid_opt%spherical = .FALSE.
     876        6686 :          qs_control%pw_grid_opt%fullspace = .TRUE.
     877             :       CASE (do_pwgrid_ns_halfspace)
     878           0 :          qs_control%pw_grid_opt%spherical = .FALSE.
     879        6686 :          qs_control%pw_grid_opt%fullspace = .FALSE.
     880             :       END SELECT
     881             : 
     882             :       !   Method for PPL calculation
     883        6686 :       CALL section_vals_val_get(qs_section, "CORE_PPL", i_val=itmp)
     884        6686 :       qs_control%do_ppl_method = itmp
     885             : 
     886        6686 :       CALL section_vals_val_get(qs_section, "PW_GRID_LAYOUT", i_vals=tmplist)
     887       20058 :       qs_control%pw_grid_opt%distribution_layout = tmplist
     888        6686 :       CALL section_vals_val_get(qs_section, "PW_GRID_BLOCKED", i_val=qs_control%pw_grid_opt%blocked)
     889             : 
     890             :       !Integers extrapolation
     891        6686 :       CALL section_vals_val_get(qs_section, "EXTRAPOLATION", i_val=qs_control%wf_interpolation_method_nr)
     892        6686 :       CALL section_vals_val_get(qs_section, "EXTRAPOLATION_ORDER", i_val=qs_control%wf_extrapolation_order)
     893             : 
     894             :       !Method
     895        6686 :       CALL section_vals_val_get(qs_section, "METHOD", i_val=qs_control%method_id)
     896        6686 :       qs_control%gapw = .FALSE.
     897        6686 :       qs_control%gapw_xc = .FALSE.
     898        6686 :       qs_control%gpw = .FALSE.
     899        6686 :       qs_control%pao = .FALSE.
     900        6686 :       qs_control%dftb = .FALSE.
     901        6686 :       qs_control%xtb = .FALSE.
     902        6686 :       qs_control%semi_empirical = .FALSE.
     903        6686 :       qs_control%ofgpw = .FALSE.
     904        6686 :       qs_control%lrigpw = .FALSE.
     905        6686 :       qs_control%rigpw = .FALSE.
     906        7500 :       SELECT CASE (qs_control%method_id)
     907             :       CASE (do_method_gapw)
     908         814 :          CALL cite_reference(Lippert1999)
     909         814 :          CALL cite_reference(Krack2000)
     910         814 :          qs_control%gapw = .TRUE.
     911             :       CASE (do_method_gapw_xc)
     912         106 :          qs_control%gapw_xc = .TRUE.
     913             :       CASE (do_method_gpw)
     914        4222 :          CALL cite_reference(Lippert1997)
     915        4222 :          CALL cite_reference(VandeVondele2005a)
     916        4222 :          qs_control%gpw = .TRUE.
     917             :       CASE (do_method_ofgpw)
     918           0 :          qs_control%ofgpw = .TRUE.
     919             :       CASE (do_method_lrigpw)
     920          40 :          qs_control%lrigpw = .TRUE.
     921             :       CASE (do_method_rigpw)
     922           0 :          qs_control%rigpw = .TRUE.
     923             :       CASE (do_method_dftb)
     924         222 :          qs_control%dftb = .TRUE.
     925         222 :          CALL cite_reference(Porezag1995)
     926         222 :          CALL cite_reference(Seifert1996)
     927             :       CASE (do_method_xtb)
     928         284 :          qs_control%xtb = .TRUE.
     929         284 :          CALL cite_reference(Grimme2017)
     930         284 :          CALL cite_reference(Pracht2019)
     931             :       CASE (do_method_mndo)
     932          52 :          CALL cite_reference(Dewar1977)
     933          52 :          qs_control%semi_empirical = .TRUE.
     934             :       CASE (do_method_am1)
     935         112 :          CALL cite_reference(Dewar1985)
     936         112 :          qs_control%semi_empirical = .TRUE.
     937             :       CASE (do_method_pm3)
     938          46 :          CALL cite_reference(Stewart1989)
     939          46 :          qs_control%semi_empirical = .TRUE.
     940             :       CASE (do_method_pnnl)
     941          14 :          CALL cite_reference(Schenter2008)
     942          14 :          qs_control%semi_empirical = .TRUE.
     943             :       CASE (do_method_pm6)
     944         754 :          CALL cite_reference(Stewart2007)
     945         754 :          qs_control%semi_empirical = .TRUE.
     946             :       CASE (do_method_pm6fm)
     947           0 :          CALL cite_reference(VanVoorhis2015)
     948           0 :          qs_control%semi_empirical = .TRUE.
     949             :       CASE (do_method_pdg)
     950           2 :          CALL cite_reference(Repasky2002)
     951           2 :          qs_control%semi_empirical = .TRUE.
     952             :       CASE (do_method_rm1)
     953           2 :          CALL cite_reference(Rocha2006)
     954           2 :          qs_control%semi_empirical = .TRUE.
     955             :       CASE (do_method_mndod)
     956          16 :          CALL cite_reference(Dewar1977)
     957          16 :          CALL cite_reference(Thiel1992)
     958        6702 :          qs_control%semi_empirical = .TRUE.
     959             :       END SELECT
     960             : 
     961        6686 :       CALL section_vals_get(mull_section, explicit=qs_control%mulliken_restraint)
     962             : 
     963        6686 :       IF (qs_control%mulliken_restraint) THEN
     964           2 :          CALL section_vals_val_get(mull_section, "STRENGTH", r_val=qs_control%mulliken_restraint_control%strength)
     965           2 :          CALL section_vals_val_get(mull_section, "TARGET", r_val=qs_control%mulliken_restraint_control%target)
     966           2 :          CALL section_vals_val_get(mull_section, "ATOMS", n_rep_val=n_rep)
     967           2 :          jj = 0
     968           4 :          DO k = 1, n_rep
     969           2 :             CALL section_vals_val_get(mull_section, "ATOMS", i_rep_val=k, i_vals=tmplist)
     970           4 :             jj = jj + SIZE(tmplist)
     971             :          END DO
     972           2 :          qs_control%mulliken_restraint_control%natoms = jj
     973           2 :          IF (qs_control%mulliken_restraint_control%natoms < 1) &
     974           0 :             CPABORT("Need at least 1 atom to use mulliken constraints")
     975           6 :          ALLOCATE (qs_control%mulliken_restraint_control%atoms(qs_control%mulliken_restraint_control%natoms))
     976           2 :          jj = 0
     977           6 :          DO k = 1, n_rep
     978           2 :             CALL section_vals_val_get(mull_section, "ATOMS", i_rep_val=k, i_vals=tmplist)
     979           6 :             DO j = 1, SIZE(tmplist)
     980           2 :                jj = jj + 1
     981           4 :                qs_control%mulliken_restraint_control%atoms(jj) = tmplist(j)
     982             :             END DO
     983             :          END DO
     984             :       END IF
     985        6686 :       CALL section_vals_get(ddapc_restraint_section, n_repetition=nrep, explicit=qs_control%ddapc_restraint)
     986        6686 :       IF (qs_control%ddapc_restraint) THEN
     987          60 :          ALLOCATE (qs_control%ddapc_restraint_control(nrep))
     988          14 :          CALL read_ddapc_section(qs_control, qs_section=qs_section)
     989          14 :          qs_control%ddapc_restraint_is_spin = .FALSE.
     990          14 :          qs_control%ddapc_explicit_potential = .FALSE.
     991             :       END IF
     992             : 
     993        6686 :       CALL section_vals_get(s2_restraint_section, explicit=qs_control%s2_restraint)
     994        6686 :       IF (qs_control%s2_restraint) THEN
     995             :          CALL section_vals_val_get(s2_restraint_section, "STRENGTH", &
     996           0 :                                    r_val=qs_control%s2_restraint_control%strength)
     997             :          CALL section_vals_val_get(s2_restraint_section, "TARGET", &
     998           0 :                                    r_val=qs_control%s2_restraint_control%target)
     999             :          CALL section_vals_val_get(s2_restraint_section, "FUNCTIONAL_FORM", &
    1000           0 :                                    i_val=qs_control%s2_restraint_control%functional_form)
    1001             :       END IF
    1002             : 
    1003        6686 :       CALL section_vals_get(cdft_control_section, explicit=qs_control%cdft)
    1004        6686 :       IF (qs_control%cdft) THEN
    1005         264 :          CALL read_cdft_control_section(qs_control, cdft_control_section)
    1006             :       END IF
    1007             : 
    1008             :       ! Semi-empirical code
    1009        6686 :       IF (qs_control%semi_empirical) THEN
    1010             :          CALL section_vals_val_get(se_section, "ORTHOGONAL_BASIS", &
    1011         998 :                                    l_val=qs_control%se_control%orthogonal_basis)
    1012             :          CALL section_vals_val_get(se_section, "DELTA", &
    1013         998 :                                    r_val=qs_control%se_control%delta)
    1014             :          CALL section_vals_val_get(se_section, "ANALYTICAL_GRADIENTS", &
    1015         998 :                                    l_val=qs_control%se_control%analytical_gradients)
    1016             :          CALL section_vals_val_get(se_section, "FORCE_KDSO-D_EXCHANGE", &
    1017         998 :                                    l_val=qs_control%se_control%force_kdsod_EX)
    1018             :          ! Integral Screening
    1019             :          CALL section_vals_val_get(se_section, "INTEGRAL_SCREENING", &
    1020         998 :                                    i_val=qs_control%se_control%integral_screening)
    1021         998 :          IF (qs_control%method_id == do_method_pnnl) THEN
    1022          14 :             IF (qs_control%se_control%integral_screening /= do_se_IS_slater) &
    1023             :                CALL cp_warn(__LOCATION__, &
    1024             :                             "PNNL semi-empirical parameterization supports only the Slater type "// &
    1025           0 :                             "integral scheme. Revert to Slater and continue the calculation.")
    1026          14 :             qs_control%se_control%integral_screening = do_se_IS_slater
    1027             :          END IF
    1028             :          ! Global Arrays variable
    1029             :          CALL section_vals_val_get(se_section, "GA%NCELLS", &
    1030         998 :                                    i_val=qs_control%se_control%ga_ncells)
    1031             :          ! Long-Range correction
    1032             :          CALL section_vals_val_get(se_section, "LR_CORRECTION%CUTOFF", &
    1033         998 :                                    r_val=qs_control%se_control%cutoff_lrc)
    1034         998 :          qs_control%se_control%taper_lrc = qs_control%se_control%cutoff_lrc
    1035             :          CALL section_vals_val_get(se_section, "LR_CORRECTION%RC_TAPER", &
    1036         998 :                                    explicit=explicit)
    1037         998 :          IF (explicit) THEN
    1038             :             CALL section_vals_val_get(se_section, "LR_CORRECTION%RC_TAPER", &
    1039           0 :                                       r_val=qs_control%se_control%taper_lrc)
    1040             :          END IF
    1041             :          CALL section_vals_val_get(se_section, "LR_CORRECTION%RC_RANGE", &
    1042         998 :                                    r_val=qs_control%se_control%range_lrc)
    1043             :          ! Coulomb
    1044             :          CALL section_vals_val_get(se_section, "COULOMB%CUTOFF", &
    1045         998 :                                    r_val=qs_control%se_control%cutoff_cou)
    1046         998 :          qs_control%se_control%taper_cou = qs_control%se_control%cutoff_cou
    1047             :          CALL section_vals_val_get(se_section, "COULOMB%RC_TAPER", &
    1048         998 :                                    explicit=explicit)
    1049         998 :          IF (explicit) THEN
    1050             :             CALL section_vals_val_get(se_section, "COULOMB%RC_TAPER", &
    1051           0 :                                       r_val=qs_control%se_control%taper_cou)
    1052             :          END IF
    1053             :          CALL section_vals_val_get(se_section, "COULOMB%RC_RANGE", &
    1054         998 :                                    r_val=qs_control%se_control%range_cou)
    1055             :          ! Exchange
    1056             :          CALL section_vals_val_get(se_section, "EXCHANGE%CUTOFF", &
    1057         998 :                                    r_val=qs_control%se_control%cutoff_exc)
    1058         998 :          qs_control%se_control%taper_exc = qs_control%se_control%cutoff_exc
    1059             :          CALL section_vals_val_get(se_section, "EXCHANGE%RC_TAPER", &
    1060         998 :                                    explicit=explicit)
    1061         998 :          IF (explicit) THEN
    1062             :             CALL section_vals_val_get(se_section, "EXCHANGE%RC_TAPER", &
    1063          38 :                                       r_val=qs_control%se_control%taper_exc)
    1064             :          END IF
    1065             :          CALL section_vals_val_get(se_section, "EXCHANGE%RC_RANGE", &
    1066         998 :                                    r_val=qs_control%se_control%range_exc)
    1067             :          ! Screening (only if the integral scheme is of dumped type)
    1068         998 :          IF (qs_control%se_control%integral_screening == do_se_IS_kdso_d) THEN
    1069             :             CALL section_vals_val_get(se_section, "SCREENING%RC_TAPER", &
    1070          14 :                                       r_val=qs_control%se_control%taper_scr)
    1071             :             CALL section_vals_val_get(se_section, "SCREENING%RC_RANGE", &
    1072          14 :                                       r_val=qs_control%se_control%range_scr)
    1073             :          END IF
    1074             :          ! Periodic Type Calculation
    1075             :          CALL section_vals_val_get(se_section, "PERIODIC", &
    1076         998 :                                    i_val=qs_control%se_control%periodic_type)
    1077        1964 :          SELECT CASE (qs_control%se_control%periodic_type)
    1078             :          CASE (do_se_lr_none)
    1079         966 :             qs_control%se_control%do_ewald = .FALSE.
    1080         966 :             qs_control%se_control%do_ewald_r3 = .FALSE.
    1081         966 :             qs_control%se_control%do_ewald_gks = .FALSE.
    1082             :          CASE (do_se_lr_ewald)
    1083          30 :             qs_control%se_control%do_ewald = .TRUE.
    1084          30 :             qs_control%se_control%do_ewald_r3 = .FALSE.
    1085          30 :             qs_control%se_control%do_ewald_gks = .FALSE.
    1086             :          CASE (do_se_lr_ewald_gks)
    1087           2 :             qs_control%se_control%do_ewald = .FALSE.
    1088           2 :             qs_control%se_control%do_ewald_r3 = .FALSE.
    1089           2 :             qs_control%se_control%do_ewald_gks = .TRUE.
    1090           2 :             IF (qs_control%method_id /= do_method_pnnl) &
    1091             :                CALL cp_abort(__LOCATION__, &
    1092             :                              "A periodic semi-empirical calculation was requested with a long-range  "// &
    1093             :                              "summation on the single integral evaluation. This scheme is supported  "// &
    1094           0 :                              "only by the PNNL parameterization.")
    1095             :          CASE (do_se_lr_ewald_r3)
    1096           0 :             qs_control%se_control%do_ewald = .TRUE.
    1097           0 :             qs_control%se_control%do_ewald_r3 = .TRUE.
    1098           0 :             qs_control%se_control%do_ewald_gks = .FALSE.
    1099           0 :             IF (qs_control%se_control%integral_screening /= do_se_IS_kdso) &
    1100             :                CALL cp_abort(__LOCATION__, &
    1101             :                              "A periodic semi-empirical calculation was requested with a long-range  "// &
    1102             :                              "summation for the slowly convergent part 1/R^3, which is not congruent "// &
    1103             :                              "with the integral screening chosen. The only integral screening supported "// &
    1104         998 :                              "by this periodic type calculation is the standard Klopman-Dewar-Sabelli-Ohno.")
    1105             :          END SELECT
    1106             : 
    1107             :          ! dispersion pair potentials
    1108             :          CALL section_vals_val_get(se_section, "DISPERSION", &
    1109         998 :                                    l_val=qs_control%se_control%dispersion)
    1110             :          CALL section_vals_val_get(se_section, "DISPERSION_RADIUS", &
    1111         998 :                                    r_val=qs_control%se_control%rcdisp)
    1112             :          CALL section_vals_val_get(se_section, "COORDINATION_CUTOFF", &
    1113         998 :                                    r_val=qs_control%se_control%epscn)
    1114         998 :          CALL section_vals_val_get(se_section, "D3_SCALING", r_vals=scal)
    1115         998 :          qs_control%se_control%sd3(1) = scal(1)
    1116         998 :          qs_control%se_control%sd3(2) = scal(2)
    1117         998 :          qs_control%se_control%sd3(3) = scal(3)
    1118             :          CALL section_vals_val_get(se_section, "DISPERSION_PARAMETER_FILE", &
    1119         998 :                                    c_val=qs_control%se_control%dispersion_parameter_file)
    1120             : 
    1121             :          ! Stop the execution for non-implemented features
    1122         998 :          IF (qs_control%se_control%periodic_type == do_se_lr_ewald_r3) THEN
    1123           0 :             CPABORT("EWALD_R3 not implemented yet!")
    1124             :          END IF
    1125             : 
    1126             :          IF (qs_control%method_id == do_method_mndo .OR. &
    1127             :              qs_control%method_id == do_method_am1 .OR. &
    1128             :              qs_control%method_id == do_method_mndod .OR. &
    1129             :              qs_control%method_id == do_method_pdg .OR. &
    1130             :              qs_control%method_id == do_method_pm3 .OR. &
    1131             :              qs_control%method_id == do_method_pm6 .OR. &
    1132             :              qs_control%method_id == do_method_pm6fm .OR. &
    1133         998 :              qs_control%method_id == do_method_pnnl .OR. &
    1134             :              qs_control%method_id == do_method_rm1) THEN
    1135         998 :             qs_control%se_control%orthogonal_basis = .TRUE.
    1136             :          END IF
    1137             :       END IF
    1138             : 
    1139             :       ! DFTB code
    1140        6686 :       IF (qs_control%dftb) THEN
    1141             :          CALL section_vals_val_get(dftb_section, "ORTHOGONAL_BASIS", &
    1142         222 :                                    l_val=qs_control%dftb_control%orthogonal_basis)
    1143             :          CALL section_vals_val_get(dftb_section, "SELF_CONSISTENT", &
    1144         222 :                                    l_val=qs_control%dftb_control%self_consistent)
    1145             :          CALL section_vals_val_get(dftb_section, "DISPERSION", &
    1146         222 :                                    l_val=qs_control%dftb_control%dispersion)
    1147             :          CALL section_vals_val_get(dftb_section, "DIAGONAL_DFTB3", &
    1148         222 :                                    l_val=qs_control%dftb_control%dftb3_diagonal)
    1149             :          CALL section_vals_val_get(dftb_section, "HB_SR_GAMMA", &
    1150         222 :                                    l_val=qs_control%dftb_control%hb_sr_damp)
    1151             :          CALL section_vals_val_get(dftb_section, "EPS_DISP", &
    1152         222 :                                    r_val=qs_control%dftb_control%eps_disp)
    1153         222 :          CALL section_vals_val_get(dftb_section, "DO_EWALD", explicit=explicit)
    1154         222 :          IF (explicit) THEN
    1155             :             CALL section_vals_val_get(dftb_section, "DO_EWALD", &
    1156         166 :                                       l_val=qs_control%dftb_control%do_ewald)
    1157             :          ELSE
    1158          56 :             qs_control%dftb_control%do_ewald = (qs_control%periodicity /= 0)
    1159             :          END IF
    1160             :          CALL section_vals_val_get(dftb_parameter, "PARAM_FILE_PATH", &
    1161         222 :                                    c_val=qs_control%dftb_control%sk_file_path)
    1162             :          CALL section_vals_val_get(dftb_parameter, "PARAM_FILE_NAME", &
    1163         222 :                                    c_val=qs_control%dftb_control%sk_file_list)
    1164             :          CALL section_vals_val_get(dftb_parameter, "HB_SR_PARAM", &
    1165         222 :                                    r_val=qs_control%dftb_control%hb_sr_para)
    1166         222 :          CALL section_vals_val_get(dftb_parameter, "SK_FILE", n_rep_val=n_var)
    1167         470 :          ALLOCATE (qs_control%dftb_control%sk_pair_list(3, n_var))
    1168         284 :          DO k = 1, n_var
    1169             :             CALL section_vals_val_get(dftb_parameter, "SK_FILE", i_rep_val=k, &
    1170          62 :                                       c_vals=clist)
    1171         470 :             qs_control%dftb_control%sk_pair_list(1:3, k) = clist(1:3)
    1172             :          END DO
    1173             :          ! Dispersion type
    1174             :          CALL section_vals_val_get(dftb_parameter, "DISPERSION_TYPE", &
    1175         222 :                                    i_val=qs_control%dftb_control%dispersion_type)
    1176             :          CALL section_vals_val_get(dftb_parameter, "UFF_FORCE_FIELD", &
    1177         222 :                                    c_val=qs_control%dftb_control%uff_force_field)
    1178             :          ! D3 Dispersion
    1179             :          CALL section_vals_val_get(dftb_parameter, "DISPERSION_RADIUS", &
    1180         222 :                                    r_val=qs_control%dftb_control%rcdisp)
    1181             :          CALL section_vals_val_get(dftb_parameter, "COORDINATION_CUTOFF", &
    1182         222 :                                    r_val=qs_control%dftb_control%epscn)
    1183             :          CALL section_vals_val_get(dftb_parameter, "D2_EXP_PRE", &
    1184         222 :                                    r_val=qs_control%dftb_control%exp_pre)
    1185             :          CALL section_vals_val_get(dftb_parameter, "D2_SCALING", &
    1186         222 :                                    r_val=qs_control%dftb_control%scaling)
    1187         222 :          CALL section_vals_val_get(dftb_parameter, "D3_SCALING", r_vals=scal)
    1188         222 :          qs_control%dftb_control%sd3(1) = scal(1)
    1189         222 :          qs_control%dftb_control%sd3(2) = scal(2)
    1190         222 :          qs_control%dftb_control%sd3(3) = scal(3)
    1191         222 :          CALL section_vals_val_get(dftb_parameter, "D3BJ_SCALING", r_vals=scal)
    1192         222 :          qs_control%dftb_control%sd3bj(1) = scal(1)
    1193         222 :          qs_control%dftb_control%sd3bj(2) = scal(2)
    1194         222 :          qs_control%dftb_control%sd3bj(3) = scal(3)
    1195         222 :          qs_control%dftb_control%sd3bj(4) = scal(4)
    1196             :          CALL section_vals_val_get(dftb_parameter, "DISPERSION_PARAMETER_FILE", &
    1197         222 :                                    c_val=qs_control%dftb_control%dispersion_parameter_file)
    1198             : 
    1199         222 :          IF (qs_control%dftb_control%dispersion) CALL cite_reference(Zhechkov2005)
    1200         222 :          IF (qs_control%dftb_control%self_consistent) CALL cite_reference(Elstner1998)
    1201         666 :          IF (qs_control%dftb_control%hb_sr_damp) CALL cite_reference(Hu2007)
    1202             :       END IF
    1203             : 
    1204             :       ! xTB code
    1205        6686 :       IF (qs_control%xtb) THEN
    1206         284 :          CALL section_vals_val_get(xtb_section, "GFN_TYPE", i_val=qs_control%xtb_control%gfn_type)
    1207         284 :          CALL section_vals_val_get(xtb_section, "DO_EWALD", explicit=explicit)
    1208         284 :          IF (explicit) THEN
    1209             :             CALL section_vals_val_get(xtb_section, "DO_EWALD", &
    1210         134 :                                       l_val=qs_control%xtb_control%do_ewald)
    1211             :          ELSE
    1212         150 :             qs_control%xtb_control%do_ewald = (qs_control%periodicity /= 0)
    1213             :          END IF
    1214             :          ! vdW
    1215         284 :          CALL section_vals_val_get(xtb_section, "VDW_POTENTIAL", explicit=explicit)
    1216         284 :          IF (explicit) THEN
    1217          34 :             CALL section_vals_val_get(xtb_section, "VDW_POTENTIAL", c_val=cval)
    1218          34 :             CALL uppercase(cval)
    1219           0 :             SELECT CASE (cval)
    1220             :             CASE ("NONE")
    1221           0 :                qs_control%xtb_control%vdw_type = xtb_vdw_type_none
    1222             :             CASE ("DFTD3")
    1223          32 :                qs_control%xtb_control%vdw_type = xtb_vdw_type_d3
    1224             :             CASE ("DFTD4")
    1225           2 :                qs_control%xtb_control%vdw_type = xtb_vdw_type_d4
    1226             :             CASE DEFAULT
    1227          34 :                CPABORT("vdW type")
    1228             :             END SELECT
    1229             :          ELSE
    1230         252 :             SELECT CASE (qs_control%xtb_control%gfn_type)
    1231             :             CASE (0)
    1232           2 :                qs_control%xtb_control%vdw_type = xtb_vdw_type_d4
    1233             :             CASE (1)
    1234         248 :                qs_control%xtb_control%vdw_type = xtb_vdw_type_d3
    1235             :             CASE (2)
    1236           0 :                qs_control%xtb_control%vdw_type = xtb_vdw_type_d4
    1237           0 :                CPABORT("gfn2-xtb tbd")
    1238             :             CASE DEFAULT
    1239         250 :                CPABORT("GFN type")
    1240             :             END SELECT
    1241             :          END IF
    1242             :          !
    1243         284 :          CALL section_vals_val_get(xtb_section, "STO_NG", i_val=ngauss)
    1244         284 :          qs_control%xtb_control%sto_ng = ngauss
    1245         284 :          CALL section_vals_val_get(xtb_section, "HYDROGEN_STO_NG", i_val=ngauss)
    1246         284 :          qs_control%xtb_control%h_sto_ng = ngauss
    1247             :          CALL section_vals_val_get(xtb_parameter, "PARAM_FILE_PATH", &
    1248         284 :                                    c_val=qs_control%xtb_control%parameter_file_path)
    1249         284 :          CALL section_vals_val_get(xtb_parameter, "PARAM_FILE_NAME", explicit=explicit)
    1250         284 :          IF (explicit) THEN
    1251             :             CALL section_vals_val_get(xtb_parameter, "PARAM_FILE_NAME", &
    1252           0 :                                       c_val=qs_control%xtb_control%parameter_file_name)
    1253             :          ELSE
    1254         318 :             SELECT CASE (qs_control%xtb_control%gfn_type)
    1255             :             CASE (0)
    1256          34 :                qs_control%xtb_control%parameter_file_name = "xTB0_parameters"
    1257             :             CASE (1)
    1258         250 :                qs_control%xtb_control%parameter_file_name = "xTB1_parameters"
    1259             :             CASE (2)
    1260           0 :                CPABORT("gfn2-xtb tbd")
    1261             :             CASE DEFAULT
    1262         284 :                CPABORT("GFN type")
    1263             :             END SELECT
    1264             :          END IF
    1265             :          ! D3 Dispersion
    1266             :          CALL section_vals_val_get(xtb_parameter, "DISPERSION_RADIUS", &
    1267         284 :                                    r_val=qs_control%xtb_control%rcdisp)
    1268             :          CALL section_vals_val_get(xtb_parameter, "COORDINATION_CUTOFF", &
    1269         284 :                                    r_val=qs_control%xtb_control%epscn)
    1270         284 :          CALL section_vals_val_get(xtb_parameter, "D3BJ_SCALING", explicit=explicit)
    1271         284 :          IF (explicit) THEN
    1272           0 :             CALL section_vals_val_get(xtb_parameter, "D3BJ_SCALING", r_vals=scal)
    1273           0 :             qs_control%xtb_control%s6 = scal(1)
    1274           0 :             qs_control%xtb_control%s8 = scal(2)
    1275             :          ELSE
    1276         318 :             SELECT CASE (qs_control%xtb_control%gfn_type)
    1277             :             CASE (0)
    1278          34 :                qs_control%xtb_control%s6 = 1.00_dp
    1279          34 :                qs_control%xtb_control%s8 = 2.85_dp
    1280             :             CASE (1)
    1281         250 :                qs_control%xtb_control%s6 = 1.00_dp
    1282         250 :                qs_control%xtb_control%s8 = 2.40_dp
    1283             :             CASE (2)
    1284           0 :                CPABORT("gfn2-xtb tbd")
    1285             :             CASE DEFAULT
    1286         284 :                CPABORT("GFN type")
    1287             :             END SELECT
    1288             :          END IF
    1289         284 :          CALL section_vals_val_get(xtb_parameter, "D3BJ_PARAM", explicit=explicit)
    1290         284 :          IF (explicit) THEN
    1291           0 :             CALL section_vals_val_get(xtb_parameter, "D3BJ_PARAM", r_vals=scal)
    1292           0 :             qs_control%xtb_control%a1 = scal(1)
    1293           0 :             qs_control%xtb_control%a2 = scal(2)
    1294             :          ELSE
    1295         318 :             SELECT CASE (qs_control%xtb_control%gfn_type)
    1296             :             CASE (0)
    1297          34 :                qs_control%xtb_control%a1 = 0.80_dp
    1298          34 :                qs_control%xtb_control%a2 = 4.60_dp
    1299             :             CASE (1)
    1300         250 :                qs_control%xtb_control%a1 = 0.63_dp
    1301         250 :                qs_control%xtb_control%a2 = 5.00_dp
    1302             :             CASE (2)
    1303           0 :                CPABORT("gfn2-xtb tbd")
    1304             :             CASE DEFAULT
    1305         284 :                CPABORT("GFN type")
    1306             :             END SELECT
    1307             :          END IF
    1308             :          CALL section_vals_val_get(xtb_parameter, "DISPERSION_PARAMETER_FILE", &
    1309         284 :                                    c_val=qs_control%xtb_control%dispersion_parameter_file)
    1310             :          ! global parameters
    1311         284 :          CALL section_vals_val_get(xtb_parameter, "HUCKEL_CONSTANTS", explicit=explicit)
    1312         284 :          IF (explicit) THEN
    1313           0 :             CALL section_vals_val_get(xtb_parameter, "HUCKEL_CONSTANTS", r_vals=scal)
    1314           0 :             qs_control%xtb_control%ks = scal(1)
    1315           0 :             qs_control%xtb_control%kp = scal(2)
    1316           0 :             qs_control%xtb_control%kd = scal(3)
    1317           0 :             qs_control%xtb_control%ksp = scal(4)
    1318           0 :             qs_control%xtb_control%k2sh = scal(5)
    1319           0 :             IF (qs_control%xtb_control%gfn_type == 0) THEN
    1320             :                ! enforce ksp for gfn0
    1321           0 :                qs_control%xtb_control%ksp = 0.5_dp*(scal(1) + scal(2))
    1322             :             END IF
    1323             :          ELSE
    1324         318 :             SELECT CASE (qs_control%xtb_control%gfn_type)
    1325             :             CASE (0)
    1326          34 :                qs_control%xtb_control%ks = 2.00_dp
    1327          34 :                qs_control%xtb_control%kp = 2.4868_dp
    1328          34 :                qs_control%xtb_control%kd = 2.27_dp
    1329          34 :                qs_control%xtb_control%ksp = 2.2434_dp
    1330          34 :                qs_control%xtb_control%k2sh = 1.1241_dp
    1331             :             CASE (1)
    1332         250 :                qs_control%xtb_control%ks = 1.85_dp
    1333         250 :                qs_control%xtb_control%kp = 2.25_dp
    1334         250 :                qs_control%xtb_control%kd = 2.00_dp
    1335         250 :                qs_control%xtb_control%ksp = 2.08_dp
    1336         250 :                qs_control%xtb_control%k2sh = 2.85_dp
    1337             :             CASE (2)
    1338           0 :                CPABORT("gfn2-xtb tbd")
    1339             :             CASE DEFAULT
    1340         284 :                CPABORT("GFN type")
    1341             :             END SELECT
    1342             :          END IF
    1343         284 :          CALL section_vals_val_get(xtb_parameter, "COULOMB_CONSTANTS", explicit=explicit)
    1344         284 :          IF (explicit) THEN
    1345           0 :             CALL section_vals_val_get(xtb_parameter, "COULOMB_CONSTANTS", r_vals=scal)
    1346           0 :             qs_control%xtb_control%kg = scal(1)
    1347           0 :             qs_control%xtb_control%kf = scal(2)
    1348             :          ELSE
    1349         318 :             SELECT CASE (qs_control%xtb_control%gfn_type)
    1350             :             CASE (0)
    1351          34 :                qs_control%xtb_control%kg = 2.00_dp
    1352          34 :                qs_control%xtb_control%kf = 1.50_dp
    1353             :             CASE (1)
    1354         250 :                qs_control%xtb_control%kg = 2.00_dp
    1355         250 :                qs_control%xtb_control%kf = 1.50_dp
    1356             :             CASE (2)
    1357           0 :                CPABORT("gfn2-xtb tbd")
    1358             :             CASE DEFAULT
    1359         284 :                CPABORT("GFN type")
    1360             :             END SELECT
    1361             :          END IF
    1362         284 :          CALL section_vals_val_get(xtb_parameter, "CN_CONSTANTS", r_vals=scal)
    1363         284 :          qs_control%xtb_control%kcns = scal(1)
    1364         284 :          qs_control%xtb_control%kcnp = scal(2)
    1365         284 :          qs_control%xtb_control%kcnd = scal(3)
    1366             :          !
    1367         284 :          CALL section_vals_val_get(xtb_parameter, "EN_CONSTANTS", explicit=explicit)
    1368         284 :          IF (explicit) THEN
    1369           0 :             CALL section_vals_val_get(xtb_parameter, "EN_CONSTANTS", r_vals=scal)
    1370           0 :             SELECT CASE (qs_control%xtb_control%gfn_type)
    1371             :             CASE (0)
    1372           0 :                qs_control%xtb_control%ksen = scal(1)
    1373           0 :                qs_control%xtb_control%kpen = scal(2)
    1374           0 :                qs_control%xtb_control%kden = scal(3)
    1375             :             CASE (1)
    1376           0 :                qs_control%xtb_control%ken = scal(1)
    1377             :             CASE (2)
    1378           0 :                CPABORT("gfn2-xtb tbd")
    1379             :             CASE DEFAULT
    1380           0 :                CPABORT("GFN type")
    1381             :             END SELECT
    1382             :          ELSE
    1383         318 :             SELECT CASE (qs_control%xtb_control%gfn_type)
    1384             :             CASE (0)
    1385          34 :                qs_control%xtb_control%ksen = 0.006_dp
    1386          34 :                qs_control%xtb_control%kpen = -0.001_dp
    1387          34 :                qs_control%xtb_control%kden = -0.002_dp
    1388             :             CASE (1)
    1389         250 :                qs_control%xtb_control%ken = -0.007_dp
    1390             :             CASE (2)
    1391           0 :                CPABORT("gfn2-xtb tbd")
    1392             :             CASE DEFAULT
    1393         284 :                CPABORT("GFN type")
    1394             :             END SELECT
    1395             :          END IF
    1396             :          ! ben
    1397         284 :          CALL section_vals_val_get(xtb_parameter, "BEN_CONSTANT", r_vals=scal)
    1398         284 :          qs_control%xtb_control%ben = scal(1)
    1399             :          ! enscale (hidden parameter in repulsion
    1400         284 :          CALL section_vals_val_get(xtb_parameter, "ENSCALE", explicit=explicit)
    1401         284 :          IF (explicit) THEN
    1402             :             CALL section_vals_val_get(xtb_parameter, "ENSCALE", &
    1403           0 :                                       r_val=qs_control%xtb_control%enscale)
    1404             :          ELSE
    1405         318 :             SELECT CASE (qs_control%xtb_control%gfn_type)
    1406             :             CASE (0)
    1407          34 :                qs_control%xtb_control%enscale = -0.09_dp
    1408             :             CASE (1)
    1409         250 :                qs_control%xtb_control%enscale = 0._dp
    1410             :             CASE (2)
    1411           0 :                CPABORT("gfn2-xtb tbd")
    1412             :             CASE DEFAULT
    1413         284 :                CPABORT("GFN type")
    1414             :             END SELECT
    1415             :          END IF
    1416             :          ! XB
    1417             :          CALL section_vals_val_get(xtb_section, "USE_HALOGEN_CORRECTION", &
    1418         284 :                                    l_val=qs_control%xtb_control%xb_interaction)
    1419         284 :          CALL section_vals_val_get(xtb_parameter, "HALOGEN_BINDING", r_vals=scal)
    1420         284 :          qs_control%xtb_control%kxr = scal(1)
    1421         284 :          qs_control%xtb_control%kx2 = scal(2)
    1422             :          ! NONBONDED interactions
    1423             :          CALL section_vals_val_get(xtb_section, "DO_NONBONDED", &
    1424         284 :                                    l_val=qs_control%xtb_control%do_nonbonded)
    1425         284 :          CALL section_vals_get(nonbonded_section, explicit=explicit)
    1426         284 :          IF (explicit .AND. qs_control%xtb_control%do_nonbonded) THEN
    1427           6 :             CALL section_vals_get(genpot_section, explicit=explicit, n_repetition=ngp)
    1428           6 :             IF (explicit) THEN
    1429           6 :                CALL pair_potential_reallocate(qs_control%xtb_control%nonbonded, 1, ngp, gp=.TRUE.)
    1430           6 :                CALL read_gp_section(qs_control%xtb_control%nonbonded, genpot_section, 0)
    1431             :             END IF
    1432             :          END IF !nonbonded
    1433             :          CALL section_vals_val_get(xtb_section, "EPS_PAIRPOTENTIAL", &
    1434         284 :                                    r_val=qs_control%xtb_control%eps_pair)
    1435             :          ! SR Coulomb
    1436         284 :          CALL section_vals_val_get(xtb_parameter, "COULOMB_SR_CUT", r_vals=scal)
    1437         284 :          qs_control%xtb_control%coulomb_sr_cut = scal(1)
    1438         284 :          CALL section_vals_val_get(xtb_parameter, "COULOMB_SR_EPS", r_vals=scal)
    1439         284 :          qs_control%xtb_control%coulomb_sr_eps = scal(1)
    1440             :          ! XB_radius
    1441         284 :          CALL section_vals_val_get(xtb_parameter, "XB_RADIUS", r_val=qs_control%xtb_control%xb_radius)
    1442             :          ! Kab
    1443         284 :          CALL section_vals_val_get(xtb_parameter, "KAB_PARAM", n_rep_val=n_rep)
    1444             :          ! Coulomb
    1445         318 :          SELECT CASE (qs_control%xtb_control%gfn_type)
    1446             :          CASE (0)
    1447          34 :             qs_control%xtb_control%coulomb_interaction = .FALSE.
    1448          34 :             qs_control%xtb_control%coulomb_lr = .FALSE.
    1449          34 :             qs_control%xtb_control%tb3_interaction = .FALSE.
    1450          34 :             qs_control%xtb_control%check_atomic_charges = .FALSE.
    1451             :          CASE (1)
    1452             :             ! For debugging purposes
    1453             :             CALL section_vals_val_get(xtb_section, "COULOMB_INTERACTION", &
    1454         250 :                                       l_val=qs_control%xtb_control%coulomb_interaction)
    1455             :             CALL section_vals_val_get(xtb_section, "COULOMB_LR", &
    1456         250 :                                       l_val=qs_control%xtb_control%coulomb_lr)
    1457             :             CALL section_vals_val_get(xtb_section, "TB3_INTERACTION", &
    1458         250 :                                       l_val=qs_control%xtb_control%tb3_interaction)
    1459             :             ! Check for bad atomic charges
    1460             :             CALL section_vals_val_get(xtb_section, "CHECK_ATOMIC_CHARGES", &
    1461         250 :                                       l_val=qs_control%xtb_control%check_atomic_charges)
    1462             :          CASE (2)
    1463           0 :             CPABORT("gfn2-xtb tbd")
    1464             :          CASE DEFAULT
    1465         284 :             CPABORT("GFN type")
    1466             :          END SELECT
    1467         284 :          qs_control%xtb_control%kab_nval = n_rep
    1468         284 :          IF (n_rep > 0) THEN
    1469           6 :             ALLOCATE (qs_control%xtb_control%kab_param(3, n_rep))
    1470           6 :             ALLOCATE (qs_control%xtb_control%kab_types(2, n_rep))
    1471           6 :             ALLOCATE (qs_control%xtb_control%kab_vals(n_rep))
    1472           4 :             DO j = 1, n_rep
    1473           2 :                CALL section_vals_val_get(xtb_parameter, "KAB_PARAM", i_rep_val=j, c_vals=clist)
    1474           2 :                qs_control%xtb_control%kab_param(1, j) = clist(1)
    1475             :                CALL get_ptable_info(clist(1), &
    1476           2 :                                     ielement=qs_control%xtb_control%kab_types(1, j))
    1477           2 :                qs_control%xtb_control%kab_param(2, j) = clist(2)
    1478             :                CALL get_ptable_info(clist(2), &
    1479           2 :                                     ielement=qs_control%xtb_control%kab_types(2, j))
    1480           2 :                qs_control%xtb_control%kab_param(3, j) = clist(3)
    1481           4 :                READ (clist(3), '(F10.0)') qs_control%xtb_control%kab_vals(j)
    1482             :             END DO
    1483             :          END IF
    1484             : 
    1485         284 :          IF (qs_control%xtb_control%gfn_type == 0) THEN
    1486          34 :             CALL section_vals_val_get(xtb_parameter, "SRB_PARAMETER", r_vals=scal)
    1487          34 :             qs_control%xtb_control%ksrb = scal(1)
    1488          34 :             qs_control%xtb_control%esrb = scal(2)
    1489          34 :             qs_control%xtb_control%gscal = scal(3)
    1490          34 :             qs_control%xtb_control%c1srb = scal(4)
    1491          34 :             qs_control%xtb_control%c2srb = scal(5)
    1492          34 :             qs_control%xtb_control%shift = scal(6)
    1493             :          END IF
    1494             : 
    1495         284 :          CALL section_vals_val_get(xtb_section, "EN_SHIFT_TYPE", c_val=cval)
    1496         284 :          CALL uppercase(cval)
    1497         284 :          SELECT CASE (TRIM(cval))
    1498             :          CASE ("SELECT")
    1499           0 :             qs_control%xtb_control%enshift_type = 0
    1500             :          CASE ("MOLECULE")
    1501         284 :             qs_control%xtb_control%enshift_type = 1
    1502             :          CASE ("CRYSTAL")
    1503           0 :             qs_control%xtb_control%enshift_type = 2
    1504             :          CASE DEFAULT
    1505         284 :             CPABORT("Unknown value for EN_SHIFT_TYPE")
    1506             :          END SELECT
    1507             : 
    1508             :          ! EEQ solver params
    1509         284 :          CALL read_eeq_param(eeq_section, qs_control%xtb_control%eeq_sparam)
    1510             : 
    1511             :       END IF
    1512             : 
    1513             :       ! Optimize LRI basis set
    1514        6686 :       CALL section_vals_get(lri_optbas_section, explicit=qs_control%lri_optbas)
    1515             : 
    1516        6686 :       CALL timestop(handle)
    1517        6686 :    END SUBROUTINE read_qs_section
    1518             : 
    1519             : ! **************************************************************************************************
    1520             : !> \brief ...
    1521             : !> \param t_control ...
    1522             : !> \param dft_section ...
    1523             : ! **************************************************************************************************
    1524          12 :    SUBROUTINE read_tddfpt_control(t_control, dft_section)
    1525             :       TYPE(tddfpt_control_type)                          :: t_control
    1526             :       TYPE(section_vals_type), POINTER                   :: dft_section
    1527             : 
    1528             :       LOGICAL                                            :: kenergy_den
    1529             :       TYPE(section_vals_type), POINTER                   :: sic_section, t_section
    1530             : 
    1531          12 :       kenergy_den = .FALSE.
    1532          12 :       NULLIFY (sic_section, t_section)
    1533          12 :       t_section => section_vals_get_subs_vals(dft_section, "TDDFPT")
    1534             : 
    1535          12 :       CALL section_vals_val_get(t_section, "CONVERGENCE", r_val=t_control%tolerance)
    1536          12 :       CALL section_vals_val_get(t_section, "NEV", i_val=t_control%n_ev)
    1537          12 :       CALL section_vals_val_get(t_section, "MAX_KV", i_val=t_control%max_kv)
    1538          12 :       CALL section_vals_val_get(t_section, "RESTARTS", i_val=t_control%n_restarts)
    1539          12 :       CALL section_vals_val_get(t_section, "NREORTHO", i_val=t_control%n_reortho)
    1540          12 :       CALL section_vals_val_get(t_section, "RES_ETYPE", i_val=t_control%res_etype)
    1541          12 :       CALL section_vals_val_get(t_section, "DIAG_METHOD", i_val=t_control%diag_method)
    1542          12 :       CALL section_vals_val_get(t_section, "KERNEL", l_val=t_control%do_kernel)
    1543          12 :       CALL section_vals_val_get(t_section, "LSD_SINGLETS", l_val=t_control%lsd_singlets)
    1544          12 :       CALL section_vals_val_get(t_section, "INVERT_S", l_val=t_control%invert_S)
    1545          12 :       CALL section_vals_val_get(t_section, "PRECOND", l_val=t_control%precond)
    1546          12 :       CALL section_vals_val_get(t_section, "OE_CORR", i_val=t_control%oe_corr)
    1547             : 
    1548          12 :       t_control%use_kinetic_energy_density = .FALSE.
    1549          12 :       sic_section => section_vals_get_subs_vals(t_section, "SIC")
    1550          12 :       CALL section_vals_val_get(sic_section, "SIC_METHOD", i_val=t_control%sic_method_id)
    1551          12 :       CALL section_vals_val_get(sic_section, "ORBITAL_SET", i_val=t_control%sic_list_id)
    1552          12 :       CALL section_vals_val_get(sic_section, "SIC_SCALING_A", r_val=t_control%sic_scaling_a)
    1553          12 :       CALL section_vals_val_get(sic_section, "SIC_SCALING_B", r_val=t_control%sic_scaling_b)
    1554             : 
    1555          12 :    END SUBROUTINE read_tddfpt_control
    1556             : 
    1557             : ! **************************************************************************************************
    1558             : !> \brief Read TDDFPT-related input parameters.
    1559             : !> \param t_control  TDDFPT control parameters
    1560             : !> \param t_section  TDDFPT input section
    1561             : !> \param qs_control Quickstep control parameters
    1562             : ! **************************************************************************************************
    1563        6686 :    SUBROUTINE read_tddfpt2_control(t_control, t_section, qs_control)
    1564             :       TYPE(tddfpt2_control_type), POINTER                :: t_control
    1565             :       TYPE(section_vals_type), POINTER                   :: t_section
    1566             :       TYPE(qs_control_type), POINTER                     :: qs_control
    1567             : 
    1568             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'read_tddfpt2_control'
    1569             : 
    1570             :       CHARACTER(LEN=default_string_length), &
    1571        6686 :          DIMENSION(:), POINTER                           :: tmpstringlist
    1572             :       INTEGER                                            :: handle, irep, isize, nrep
    1573        6686 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: inds
    1574             :       LOGICAL                                            :: do_ewald, do_exchange, expl, explicit, &
    1575             :                                                             multigrid_set
    1576             :       REAL(KIND=dp)                                      :: filter, fval, hfx
    1577             :       TYPE(section_vals_type), POINTER                   :: dipole_section, mgrid_section, &
    1578             :                                                             soc_section, stda_section, xc_func, &
    1579             :                                                             xc_section
    1580             : 
    1581        6686 :       CALL timeset(routineN, handle)
    1582             : 
    1583        6686 :       CALL section_vals_val_get(t_section, "_SECTION_PARAMETERS_", l_val=t_control%enabled)
    1584             : 
    1585        6686 :       CALL section_vals_val_get(t_section, "NSTATES", i_val=t_control%nstates)
    1586        6686 :       CALL section_vals_val_get(t_section, "MAX_ITER", i_val=t_control%niters)
    1587        6686 :       CALL section_vals_val_get(t_section, "MAX_KV", i_val=t_control%nkvs)
    1588        6686 :       CALL section_vals_val_get(t_section, "NLUMO", i_val=t_control%nlumo)
    1589        6686 :       CALL section_vals_val_get(t_section, "NPROC_STATE", i_val=t_control%nprocs)
    1590        6686 :       CALL section_vals_val_get(t_section, "KERNEL", i_val=t_control%kernel)
    1591        6686 :       CALL section_vals_val_get(t_section, "OE_CORR", i_val=t_control%oe_corr)
    1592        6686 :       CALL section_vals_val_get(t_section, "EV_SHIFT", r_val=t_control%ev_shift)
    1593        6686 :       CALL section_vals_val_get(t_section, "EOS_SHIFT", r_val=t_control%eos_shift)
    1594             : 
    1595        6686 :       CALL section_vals_val_get(t_section, "CONVERGENCE", r_val=t_control%conv)
    1596        6686 :       CALL section_vals_val_get(t_section, "MIN_AMPLITUDE", r_val=t_control%min_excitation_amplitude)
    1597        6686 :       CALL section_vals_val_get(t_section, "ORTHOGONAL_EPS", r_val=t_control%orthogonal_eps)
    1598             : 
    1599        6686 :       CALL section_vals_val_get(t_section, "RESTART", l_val=t_control%is_restart)
    1600        6686 :       CALL section_vals_val_get(t_section, "RKS_TRIPLETS", l_val=t_control%rks_triplets)
    1601        6686 :       CALL section_vals_val_get(t_section, "DO_LRIGPW", l_val=t_control%do_lrigpw)
    1602        6686 :       CALL section_vals_val_get(t_section, "ADMM_KERNEL_CORRECTION_SYMMETRIC", l_val=t_control%admm_symm)
    1603        6686 :       CALL section_vals_val_get(t_section, "ADMM_KERNEL_XC_CORRECTION", l_val=t_control%admm_xc_correction)
    1604             : 
    1605             :       ! read automatically generated auxiliary basis for LRI
    1606        6686 :       CALL section_vals_val_get(t_section, "AUTO_BASIS", n_rep_val=nrep)
    1607       13372 :       DO irep = 1, nrep
    1608        6686 :          CALL section_vals_val_get(t_section, "AUTO_BASIS", i_rep_val=irep, c_vals=tmpstringlist)
    1609       13372 :          IF (SIZE(tmpstringlist) == 2) THEN
    1610        6686 :             CALL uppercase(tmpstringlist(2))
    1611        6686 :             SELECT CASE (tmpstringlist(2))
    1612             :             CASE ("X")
    1613           0 :                isize = -1
    1614             :             CASE ("SMALL")
    1615           0 :                isize = 0
    1616             :             CASE ("MEDIUM")
    1617           0 :                isize = 1
    1618             :             CASE ("LARGE")
    1619           0 :                isize = 2
    1620             :             CASE ("HUGE")
    1621           0 :                isize = 3
    1622             :             CASE DEFAULT
    1623        6686 :                CPABORT("Unknown basis size in AUTO_BASIS keyword:"//TRIM(tmpstringlist(1)))
    1624             :             END SELECT
    1625             :             !
    1626        6686 :             SELECT CASE (tmpstringlist(1))
    1627             :             CASE ("X")
    1628             :             CASE ("P_LRI_AUX")
    1629           0 :                t_control%auto_basis_p_lri_aux = isize
    1630             :             CASE DEFAULT
    1631        6686 :                CPABORT("Unknown basis type in AUTO_BASIS keyword:"//TRIM(tmpstringlist(1)))
    1632             :             END SELECT
    1633             :          ELSE
    1634             :             CALL cp_abort(__LOCATION__, &
    1635           0 :                           "AUTO_BASIS keyword in &PROPERTIES &TDDFT section has a wrong number of arguments.")
    1636             :          END IF
    1637             :       END DO
    1638             : 
    1639        6686 :       IF (t_control%conv < 0) &
    1640           0 :          t_control%conv = ABS(t_control%conv)
    1641             : 
    1642             :       ! DIPOLE_MOMENTS subsection
    1643        6686 :       dipole_section => section_vals_get_subs_vals(t_section, "DIPOLE_MOMENTS")
    1644        6686 :       CALL section_vals_val_get(dipole_section, "DIPOLE_FORM", explicit=explicit)
    1645        6686 :       IF (explicit) THEN
    1646          10 :          CALL section_vals_val_get(dipole_section, "DIPOLE_FORM", i_val=t_control%dipole_form)
    1647             :       ELSE
    1648        6676 :          t_control%dipole_form = 0
    1649             :       END IF
    1650        6686 :       CALL section_vals_val_get(dipole_section, "REFERENCE", i_val=t_control%dipole_reference)
    1651        6686 :       CALL section_vals_val_get(dipole_section, "REFERENCE_POINT", explicit=explicit)
    1652        6686 :       IF (explicit) THEN
    1653           0 :          CALL section_vals_val_get(dipole_section, "REFERENCE_POINT", r_vals=t_control%dipole_ref_point)
    1654             :       ELSE
    1655        6686 :          NULLIFY (t_control%dipole_ref_point)
    1656        6686 :          IF (t_control%dipole_form == tddfpt_dipole_length .AND. t_control%dipole_reference == use_mom_ref_user) THEN
    1657           0 :             CPABORT("User-defined reference point should be given explicitly")
    1658             :          END IF
    1659             :       END IF
    1660             : 
    1661             :       !SOC subsection
    1662        6686 :       soc_section => section_vals_get_subs_vals(t_section, "SOC")
    1663        6686 :       CALL section_vals_get(soc_section, explicit=explicit)
    1664        6686 :       IF (explicit) THEN
    1665           8 :          t_control%do_soc = .TRUE.
    1666             :       END IF
    1667             : 
    1668             :       ! MGRID subsection
    1669        6686 :       mgrid_section => section_vals_get_subs_vals(t_section, "MGRID")
    1670        6686 :       CALL section_vals_get(mgrid_section, explicit=t_control%mgrid_is_explicit)
    1671             : 
    1672        6686 :       IF (t_control%mgrid_is_explicit) THEN
    1673           2 :          CALL section_vals_val_get(mgrid_section, "NGRIDS", i_val=t_control%mgrid_ngrids, explicit=explicit)
    1674           2 :          IF (.NOT. explicit) t_control%mgrid_ngrids = SIZE(qs_control%e_cutoff)
    1675             : 
    1676           2 :          CALL section_vals_val_get(mgrid_section, "CUTOFF", r_val=t_control%mgrid_cutoff, explicit=explicit)
    1677           2 :          IF (.NOT. explicit) t_control%mgrid_cutoff = qs_control%cutoff
    1678             : 
    1679             :          CALL section_vals_val_get(mgrid_section, "PROGRESSION_FACTOR", &
    1680           2 :                                    r_val=t_control%mgrid_progression_factor, explicit=explicit)
    1681           2 :          IF (explicit) THEN
    1682           0 :             IF (t_control%mgrid_progression_factor <= 1.0_dp) &
    1683             :                CALL cp_abort(__LOCATION__, &
    1684           0 :                              "Progression factor should be greater then 1.0 to ensure multi-grid ordering")
    1685             :          ELSE
    1686           2 :             t_control%mgrid_progression_factor = qs_control%progression_factor
    1687             :          END IF
    1688             : 
    1689           2 :          CALL section_vals_val_get(mgrid_section, "COMMENSURATE", l_val=t_control%mgrid_commensurate_mgrids, explicit=explicit)
    1690           2 :          IF (.NOT. explicit) t_control%mgrid_commensurate_mgrids = qs_control%commensurate_mgrids
    1691           2 :          IF (t_control%mgrid_commensurate_mgrids) THEN
    1692           0 :             IF (explicit) THEN
    1693           0 :                t_control%mgrid_progression_factor = 4.0_dp
    1694             :             ELSE
    1695           0 :                t_control%mgrid_progression_factor = qs_control%progression_factor
    1696             :             END IF
    1697             :          END IF
    1698             : 
    1699           2 :          CALL section_vals_val_get(mgrid_section, "REL_CUTOFF", r_val=t_control%mgrid_relative_cutoff, explicit=explicit)
    1700           2 :          IF (.NOT. explicit) t_control%mgrid_relative_cutoff = qs_control%relative_cutoff
    1701             : 
    1702           2 :          CALL section_vals_val_get(mgrid_section, "MULTIGRID_SET", l_val=multigrid_set, explicit=explicit)
    1703           2 :          IF (.NOT. explicit) multigrid_set = .FALSE.
    1704           2 :          IF (multigrid_set) THEN
    1705           0 :             CALL section_vals_val_get(mgrid_section, "MULTIGRID_CUTOFF", r_vals=t_control%mgrid_e_cutoff)
    1706             :          ELSE
    1707           2 :             NULLIFY (t_control%mgrid_e_cutoff)
    1708             :          END IF
    1709             : 
    1710           2 :          CALL section_vals_val_get(mgrid_section, "REALSPACE", l_val=t_control%mgrid_realspace_mgrids, explicit=explicit)
    1711           2 :          IF (.NOT. explicit) t_control%mgrid_realspace_mgrids = qs_control%realspace_mgrids
    1712             : 
    1713             :          CALL section_vals_val_get(mgrid_section, "SKIP_LOAD_BALANCE_DISTRIBUTED", &
    1714           2 :                                    l_val=t_control%mgrid_skip_load_balance, explicit=explicit)
    1715           2 :          IF (.NOT. explicit) t_control%mgrid_skip_load_balance = qs_control%skip_load_balance_distributed
    1716             : 
    1717           2 :          IF (ASSOCIATED(t_control%mgrid_e_cutoff)) THEN
    1718           0 :             IF (SIZE(t_control%mgrid_e_cutoff) /= t_control%mgrid_ngrids) &
    1719           0 :                CPABORT("Inconsistent values for number of multi-grids")
    1720             : 
    1721             :             ! sort multi-grids in descending order according to their cutoff values
    1722           0 :             t_control%mgrid_e_cutoff = -t_control%mgrid_e_cutoff
    1723           0 :             ALLOCATE (inds(t_control%mgrid_ngrids))
    1724           0 :             CALL sort(t_control%mgrid_e_cutoff, t_control%mgrid_ngrids, inds)
    1725           0 :             DEALLOCATE (inds)
    1726           0 :             t_control%mgrid_e_cutoff = -t_control%mgrid_e_cutoff
    1727             :          END IF
    1728             :       END IF
    1729             : 
    1730             :       ! expand XC subsection (if given explicitly)
    1731        6686 :       xc_section => section_vals_get_subs_vals(t_section, "XC")
    1732        6686 :       xc_func => section_vals_get_subs_vals(xc_section, "XC_FUNCTIONAL")
    1733        6686 :       CALL section_vals_get(xc_func, explicit=explicit)
    1734        6686 :       IF (explicit) &
    1735         192 :          CALL xc_functionals_expand(xc_func, xc_section)
    1736             : 
    1737             :       ! sTDA subsection
    1738        6686 :       stda_section => section_vals_get_subs_vals(t_section, "STDA")
    1739        6686 :       IF (t_control%kernel == tddfpt_kernel_stda) THEN
    1740         118 :          t_control%stda_control%hfx_fraction = 0.0_dp
    1741         118 :          t_control%stda_control%do_exchange = .TRUE.
    1742         118 :          t_control%stda_control%eps_td_filter = 1.e-10_dp
    1743         118 :          t_control%stda_control%mn_alpha = -99.0_dp
    1744         118 :          t_control%stda_control%mn_beta = -99.0_dp
    1745             :          ! set default for Ewald method (on/off) dependent on periodicity
    1746         212 :          SELECT CASE (qs_control%periodicity)
    1747             :          CASE (0)
    1748          94 :             t_control%stda_control%do_ewald = .FALSE.
    1749             :          CASE (1)
    1750           0 :             t_control%stda_control%do_ewald = .TRUE.
    1751             :          CASE (2)
    1752           0 :             t_control%stda_control%do_ewald = .TRUE.
    1753             :          CASE (3)
    1754          24 :             t_control%stda_control%do_ewald = .TRUE.
    1755             :          CASE DEFAULT
    1756         118 :             CPABORT("Illegal value for periodiciy")
    1757             :          END SELECT
    1758         118 :          CALL section_vals_get(stda_section, explicit=explicit)
    1759         118 :          IF (explicit) THEN
    1760         104 :             CALL section_vals_val_get(stda_section, "HFX_FRACTION", r_val=hfx, explicit=expl)
    1761         104 :             IF (expl) t_control%stda_control%hfx_fraction = hfx
    1762         104 :             CALL section_vals_val_get(stda_section, "EPS_TD_FILTER", r_val=filter, explicit=expl)
    1763         104 :             IF (expl) t_control%stda_control%eps_td_filter = filter
    1764         104 :             CALL section_vals_val_get(stda_section, "DO_EWALD", l_val=do_ewald, explicit=expl)
    1765         104 :             IF (expl) t_control%stda_control%do_ewald = do_ewald
    1766         104 :             CALL section_vals_val_get(stda_section, "DO_EXCHANGE", l_val=do_exchange, explicit=expl)
    1767         104 :             IF (expl) t_control%stda_control%do_exchange = do_exchange
    1768         104 :             CALL section_vals_val_get(stda_section, "MATAGA_NISHIMOTO_CEXP", r_val=fval)
    1769         104 :             t_control%stda_control%mn_alpha = fval
    1770         104 :             CALL section_vals_val_get(stda_section, "MATAGA_NISHIMOTO_XEXP", r_val=fval)
    1771         104 :             t_control%stda_control%mn_beta = fval
    1772             :          END IF
    1773         118 :          CALL section_vals_val_get(stda_section, "COULOMB_SR_CUT", r_val=fval)
    1774         118 :          t_control%stda_control%coulomb_sr_cut = fval
    1775         118 :          CALL section_vals_val_get(stda_section, "COULOMB_SR_EPS", r_val=fval)
    1776         118 :          t_control%stda_control%coulomb_sr_eps = fval
    1777             :       END IF
    1778             : 
    1779        6686 :       CALL timestop(handle)
    1780        6686 :    END SUBROUTINE read_tddfpt2_control
    1781             : 
    1782             : ! **************************************************************************************************
    1783             : !> \brief Write the DFT control parameters to the output unit.
    1784             : !> \param dft_control ...
    1785             : !> \param dft_section ...
    1786             : ! **************************************************************************************************
    1787       11864 :    SUBROUTINE write_dft_control(dft_control, dft_section)
    1788             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1789             :       TYPE(section_vals_type), POINTER                   :: dft_section
    1790             : 
    1791             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'write_dft_control'
    1792             : 
    1793             :       CHARACTER(LEN=20)                                  :: tmpStr
    1794             :       INTEGER                                            :: handle, output_unit
    1795             :       REAL(kind=dp)                                      :: density_cut, density_smooth_cut_range, &
    1796             :                                                             gradient_cut, tau_cut
    1797             :       TYPE(cp_logger_type), POINTER                      :: logger
    1798             :       TYPE(enumeration_type), POINTER                    :: enum
    1799             :       TYPE(keyword_type), POINTER                        :: keyword
    1800             :       TYPE(section_type), POINTER                        :: section
    1801             :       TYPE(section_vals_type), POINTER                   :: xc_section
    1802             : 
    1803        7190 :       IF (dft_control%qs_control%semi_empirical) RETURN
    1804        5686 :       IF (dft_control%qs_control%dftb) RETURN
    1805        5464 :       IF (dft_control%qs_control%xtb) THEN
    1806         284 :          CALL write_xtb_control(dft_control%qs_control%xtb_control, dft_section)
    1807         284 :          RETURN
    1808             :       END IF
    1809        5180 :       CALL timeset(routineN, handle)
    1810             : 
    1811        5180 :       NULLIFY (logger)
    1812        5180 :       logger => cp_get_default_logger()
    1813             : 
    1814             :       output_unit = cp_print_key_unit_nr(logger, dft_section, &
    1815        5180 :                                          "PRINT%DFT_CONTROL_PARAMETERS", extension=".Log")
    1816             : 
    1817        5180 :       IF (output_unit > 0) THEN
    1818             : 
    1819        1336 :          xc_section => section_vals_get_subs_vals(dft_section, "XC")
    1820             : 
    1821        1336 :          IF (dft_control%uks) THEN
    1822             :             WRITE (UNIT=output_unit, FMT="(/,T2,A,T78,A)") &
    1823         411 :                "DFT| Spin unrestricted (spin-polarized) Kohn-Sham calculation", "UKS"
    1824         925 :          ELSE IF (dft_control%roks) THEN
    1825             :             WRITE (UNIT=output_unit, FMT="(/,T2,A,T77,A)") &
    1826          15 :                "DFT| Spin restricted open Kohn-Sham calculation", "ROKS"
    1827             :          ELSE
    1828             :             WRITE (UNIT=output_unit, FMT="(/,T2,A,T78,A)") &
    1829         910 :                "DFT| Spin restricted Kohn-Sham (RKS) calculation", "RKS"
    1830             :          END IF
    1831             : 
    1832             :          WRITE (UNIT=output_unit, FMT="(T2,A,T76,I5)") &
    1833        1336 :             "DFT| Multiplicity", dft_control%multiplicity
    1834             :          WRITE (UNIT=output_unit, FMT="(T2,A,T76,I5)") &
    1835        1336 :             "DFT| Number of spin states", dft_control%nspins
    1836             : 
    1837             :          WRITE (UNIT=output_unit, FMT="(T2,A,T76,I5)") &
    1838        1336 :             "DFT| Charge", dft_control%charge
    1839             : 
    1840        1336 :          IF (dft_control%sic_method_id .NE. sic_none) CALL cite_reference(VandeVondele2005b)
    1841        2658 :          SELECT CASE (dft_control%sic_method_id)
    1842             :          CASE (sic_none)
    1843        1322 :             tmpstr = "NO"
    1844             :          CASE (sic_mauri_spz)
    1845           6 :             tmpstr = "SPZ/MAURI SIC"
    1846             :          CASE (sic_mauri_us)
    1847           3 :             tmpstr = "US/MAURI SIC"
    1848             :          CASE (sic_ad)
    1849           3 :             tmpstr = "AD SIC"
    1850             :          CASE (sic_eo)
    1851           2 :             tmpstr = "Explicit Orbital SIC"
    1852             :          CASE DEFAULT
    1853             :             ! fix throughout the cp2k for this option
    1854        1336 :             CPABORT("SIC option unknown")
    1855             :          END SELECT
    1856             : 
    1857             :          WRITE (UNIT=output_unit, FMT="(T2,A,T61,A20)") &
    1858        1336 :             "DFT| Self-interaction correction (SIC)", ADJUSTR(TRIM(tmpstr))
    1859             : 
    1860        1336 :          IF (dft_control%sic_method_id /= sic_none) THEN
    1861             :             WRITE (UNIT=output_unit, FMT="(T2,A,T66,ES15.6)") &
    1862          14 :                "DFT| SIC scaling parameter a", dft_control%sic_scaling_a, &
    1863          28 :                "DFT| SIC scaling parameter b", dft_control%sic_scaling_b
    1864             :          END IF
    1865             : 
    1866        1336 :          IF (dft_control%sic_method_id == sic_eo) THEN
    1867           2 :             IF (dft_control%sic_list_id == sic_list_all) THEN
    1868             :                WRITE (UNIT=output_unit, FMT="(T2,A,T66,A)") &
    1869           1 :                   "DFT| SIC orbitals", "ALL"
    1870             :             END IF
    1871           2 :             IF (dft_control%sic_list_id == sic_list_unpaired) THEN
    1872             :                WRITE (UNIT=output_unit, FMT="(T2,A,T66,A)") &
    1873           1 :                   "DFT| SIC orbitals", "UNPAIRED"
    1874             :             END IF
    1875             :          END IF
    1876             : 
    1877        1336 :          CALL section_vals_val_get(xc_section, "density_cutoff", r_val=density_cut)
    1878        1336 :          CALL section_vals_val_get(xc_section, "gradient_cutoff", r_val=gradient_cut)
    1879        1336 :          CALL section_vals_val_get(xc_section, "tau_cutoff", r_val=tau_cut)
    1880        1336 :          CALL section_vals_val_get(xc_section, "density_smooth_cutoff_range", r_val=density_smooth_cut_range)
    1881             : 
    1882             :          WRITE (UNIT=output_unit, FMT="(T2,A,T66,ES15.6)") &
    1883        1336 :             "DFT| Cutoffs: density ", density_cut, &
    1884        1336 :             "DFT|          gradient", gradient_cut, &
    1885        1336 :             "DFT|          tau     ", tau_cut, &
    1886        2672 :             "DFT|          cutoff_smoothing_range", density_smooth_cut_range
    1887             :          CALL section_vals_val_get(xc_section, "XC_GRID%XC_SMOOTH_RHO", &
    1888        1336 :                                    c_val=tmpStr)
    1889             :          WRITE (output_unit, '( A, T61, A )') &
    1890        1336 :             " DFT| XC density smoothing ", ADJUSTR(tmpStr)
    1891             :          CALL section_vals_val_get(xc_section, "XC_GRID%XC_DERIV", &
    1892        1336 :                                    c_val=tmpStr)
    1893             :          WRITE (output_unit, '( A, T61, A )') &
    1894        1336 :             " DFT| XC derivatives ", ADJUSTR(tmpStr)
    1895        1336 :          IF (dft_control%dft_plus_u) THEN
    1896          16 :             NULLIFY (enum, keyword, section)
    1897          16 :             CALL create_dft_section(section)
    1898          16 :             keyword => section_get_keyword(section, "PLUS_U_METHOD")
    1899          16 :             CALL keyword_get(keyword, enum=enum)
    1900             :             WRITE (UNIT=output_unit, FMT="(/,T2,A,T41,A40)") &
    1901          16 :                "DFT+U| Method", ADJUSTR(TRIM(enum_i2c(enum, dft_control%plus_u_method_id)))
    1902             :             WRITE (UNIT=output_unit, FMT="(T2,A)") &
    1903          16 :                "DFT+U| Check atomic kind information for details"
    1904          16 :             CALL section_release(section)
    1905             :          END IF
    1906             : 
    1907        1336 :          WRITE (UNIT=output_unit, FMT="(A)") ""
    1908        1336 :          CALL xc_write(output_unit, xc_section, dft_control%lsd)
    1909             : 
    1910        1336 :          IF (dft_control%apply_period_efield) THEN
    1911           4 :             WRITE (UNIT=output_unit, FMT="(A)") ""
    1912           4 :             IF (dft_control%period_efield%displacement_field) THEN
    1913             :                WRITE (UNIT=output_unit, FMT="(T2,A)") &
    1914           0 :                   "PERIODIC_EFIELD| Use displacement field formulation"
    1915             :                WRITE (UNIT=output_unit, FMT="(T2,A,T66,1X,ES14.6)") &
    1916           0 :                   "PERIODIC_EFIELD| Displacement field filter: x", &
    1917           0 :                   dft_control%period_efield%d_filter(1), &
    1918           0 :                   "PERIODIC_EFIELD|                            y", &
    1919           0 :                   dft_control%period_efield%d_filter(2), &
    1920           0 :                   "PERIODIC_EFIELD|                            z", &
    1921           0 :                   dft_control%period_efield%d_filter(3)
    1922             :             END IF
    1923             :             WRITE (UNIT=output_unit, FMT="(T2,A,T66,1X,ES14.6)") &
    1924           4 :                "PERIODIC_EFIELD| Polarisation vector:       x", &
    1925           4 :                dft_control%period_efield%polarisation(1), &
    1926           4 :                "PERIODIC_EFIELD|                            y", &
    1927           4 :                dft_control%period_efield%polarisation(2), &
    1928           4 :                "PERIODIC_EFIELD|                            z", &
    1929           4 :                dft_control%period_efield%polarisation(3), &
    1930           4 :                "PERIODIC_EFIELD| Intensity [a.u.]:", &
    1931           8 :                dft_control%period_efield%strength
    1932          16 :             IF (SQRT(DOT_PRODUCT(dft_control%period_efield%polarisation, &
    1933             :                                  dft_control%period_efield%polarisation)) < EPSILON(0.0_dp)) THEN
    1934           0 :                CPABORT("Invalid (too small) polarisation vector specified for PERIODIC_EFIELD")
    1935             :             END IF
    1936             :          END IF
    1937             : 
    1938        1336 :          IF (dft_control%do_sccs) THEN
    1939             :             WRITE (UNIT=output_unit, FMT="(/,T2,A)") &
    1940           5 :                "SCCS| Self-consistent continuum solvation model"
    1941             :             WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
    1942           5 :                "SCCS| Relative permittivity of the solvent (medium)", &
    1943           5 :                dft_control%sccs_control%epsilon_solvent, &
    1944           5 :                "SCCS| Absolute permittivity [a.u.]", &
    1945          10 :                dft_control%sccs_control%epsilon_solvent/fourpi
    1946           9 :             SELECT CASE (dft_control%sccs_control%method_id)
    1947             :             CASE (sccs_andreussi)
    1948             :                WRITE (UNIT=output_unit, FMT="(T2,A,/,(T2,A,T61,ES20.6))") &
    1949           4 :                   "SCCS| Dielectric function proposed by Andreussi et al.", &
    1950           4 :                   "SCCS|  rho_max", dft_control%sccs_control%rho_max, &
    1951           8 :                   "SCCS|  rho_min", dft_control%sccs_control%rho_min
    1952             :             CASE (sccs_fattebert_gygi)
    1953             :                WRITE (UNIT=output_unit, FMT="(T2,A,/,(T2,A,T61,ES20.6))") &
    1954           1 :                   "SCCS| Dielectric function proposed by Fattebert and Gygi", &
    1955           1 :                   "SCCS|  beta", dft_control%sccs_control%beta, &
    1956           2 :                   "SCCS|  rho_zero", dft_control%sccs_control%rho_zero
    1957             :             CASE DEFAULT
    1958           5 :                CPABORT("Invalid SCCS model specified. Please, check your input!")
    1959             :             END SELECT
    1960           6 :             SELECT CASE (dft_control%sccs_control%derivative_method)
    1961             :             CASE (sccs_derivative_fft)
    1962             :                WRITE (UNIT=output_unit, FMT="(T2,A,T46,A35)") &
    1963           1 :                   "SCCS| Numerical derivative calculation", &
    1964           2 :                   ADJUSTR("FFT")
    1965             :             CASE (sccs_derivative_cd3)
    1966             :                WRITE (UNIT=output_unit, FMT="(T2,A,T46,A35)") &
    1967           0 :                   "SCCS| Numerical derivative calculation", &
    1968           0 :                   ADJUSTR("3-point stencil central differences")
    1969             :             CASE (sccs_derivative_cd5)
    1970             :                WRITE (UNIT=output_unit, FMT="(T2,A,T46,A35)") &
    1971           4 :                   "SCCS| Numerical derivative calculation", &
    1972           8 :                   ADJUSTR("5-point stencil central differences")
    1973             :             CASE (sccs_derivative_cd7)
    1974             :                WRITE (UNIT=output_unit, FMT="(T2,A,T46,A35)") &
    1975           0 :                   "SCCS| Numerical derivative calculation", &
    1976           0 :                   ADJUSTR("7-point stencil central differences")
    1977             :             CASE DEFAULT
    1978             :                CALL cp_abort(__LOCATION__, &
    1979             :                              "Invalid derivative method specified for SCCS model. "// &
    1980           5 :                              "Please, check your input!")
    1981             :             END SELECT
    1982             :             WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
    1983           5 :                "SCCS| Repulsion parameter alpha [mN/m] = [dyn/cm]", &
    1984          10 :                cp_unit_from_cp2k(dft_control%sccs_control%alpha_solvent, "mN/m")
    1985             :             WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
    1986           5 :                "SCCS| Dispersion parameter beta [GPa]", &
    1987          10 :                cp_unit_from_cp2k(dft_control%sccs_control%beta_solvent, "GPa")
    1988             :             WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
    1989           5 :                "SCCS| Surface tension gamma [mN/m] = [dyn/cm]", &
    1990          10 :                cp_unit_from_cp2k(dft_control%sccs_control%gamma_solvent, "mN/m")
    1991             :             WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
    1992           5 :                "SCCS| Mixing parameter applied during the iteration cycle", &
    1993          10 :                dft_control%sccs_control%mixing
    1994             :             WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
    1995           5 :                "SCCS| Tolerance for the convergence of the SCCS iteration cycle", &
    1996          10 :                dft_control%sccs_control%eps_sccs
    1997             :             WRITE (UNIT=output_unit, FMT="(T2,A,T61,I20)") &
    1998           5 :                "SCCS| Maximum number of iteration steps", &
    1999          10 :                dft_control%sccs_control%max_iter
    2000             :             WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
    2001           5 :                "SCCS| SCF convergence threshold for starting the SCCS iteration", &
    2002          10 :                dft_control%sccs_control%eps_scf
    2003             :             WRITE (UNIT=output_unit, FMT="(T2,A,T61,ES20.6)") &
    2004           5 :                "SCCS| Numerical increment for the cavity surface calculation", &
    2005          10 :                dft_control%sccs_control%delta_rho
    2006             :          END IF
    2007             : 
    2008        1336 :          WRITE (UNIT=output_unit, FMT="(A)") ""
    2009             : 
    2010             :       END IF
    2011             : 
    2012             :       CALL cp_print_key_finished_output(output_unit, logger, dft_section, &
    2013        5180 :                                         "PRINT%DFT_CONTROL_PARAMETERS")
    2014             : 
    2015        5180 :       CALL timestop(handle)
    2016             : 
    2017             :    END SUBROUTINE write_dft_control
    2018             : 
    2019             : ! **************************************************************************************************
    2020             : !> \brief Write the ADMM control parameters to the output unit.
    2021             : !> \param admm_control ...
    2022             : !> \param dft_section ...
    2023             : ! **************************************************************************************************
    2024         442 :    SUBROUTINE write_admm_control(admm_control, dft_section)
    2025             :       TYPE(admm_control_type), POINTER                   :: admm_control
    2026             :       TYPE(section_vals_type), POINTER                   :: dft_section
    2027             : 
    2028             :       INTEGER                                            :: iounit
    2029             :       TYPE(cp_logger_type), POINTER                      :: logger
    2030             : 
    2031         442 :       NULLIFY (logger)
    2032         442 :       logger => cp_get_default_logger()
    2033             : 
    2034             :       iounit = cp_print_key_unit_nr(logger, dft_section, &
    2035         442 :                                     "PRINT%DFT_CONTROL_PARAMETERS", extension=".Log")
    2036             : 
    2037         442 :       IF (iounit > 0) THEN
    2038             : 
    2039         233 :          SELECT CASE (admm_control%admm_type)
    2040             :          CASE (no_admm_type)
    2041         114 :             WRITE (UNIT=iounit, FMT="(/,T2,A,T77,A)") "ADMM| Specific ADMM type specified", "NONE"
    2042             :          CASE (admm1_type)
    2043           1 :             WRITE (UNIT=iounit, FMT="(/,T2,A,T76,A)") "ADMM| Specific ADMM type specified", "ADMM1"
    2044             :          CASE (admm2_type)
    2045           1 :             WRITE (UNIT=iounit, FMT="(/,T2,A,T76,A)") "ADMM| Specific ADMM type specified", "ADMM2"
    2046             :          CASE (admms_type)
    2047           1 :             WRITE (UNIT=iounit, FMT="(/,T2,A,T76,A)") "ADMM| Specific ADMM type specified", "ADMMS"
    2048             :          CASE (admmp_type)
    2049           1 :             WRITE (UNIT=iounit, FMT="(/,T2,A,T76,A)") "ADMM| Specific ADMM type specified", "ADMMP"
    2050             :          CASE (admmq_type)
    2051           1 :             WRITE (UNIT=iounit, FMT="(/,T2,A,T76,A)") "ADMM| Specific ADMM type specified", "ADMMQ"
    2052             :          CASE DEFAULT
    2053         119 :             CPABORT("admm_type")
    2054             :          END SELECT
    2055             : 
    2056         189 :          SELECT CASE (admm_control%purification_method)
    2057             :          CASE (do_admm_purify_none)
    2058          70 :             WRITE (UNIT=iounit, FMT="(T2,A,T77,A)") "ADMM| Density matrix purification method", "NONE"
    2059             :          CASE (do_admm_purify_cauchy)
    2060           9 :             WRITE (UNIT=iounit, FMT="(T2,A,T75,A)") "ADMM| Density matrix purification method", "Cauchy"
    2061             :          CASE (do_admm_purify_cauchy_subspace)
    2062           5 :             WRITE (UNIT=iounit, FMT="(T2,A,T66,A)") "ADMM| Density matrix purification method", "Cauchy subspace"
    2063             :          CASE (do_admm_purify_mo_diag)
    2064          25 :             WRITE (UNIT=iounit, FMT="(T2,A,T63,A)") "ADMM| Density matrix purification method", "MO diagonalization"
    2065             :          CASE (do_admm_purify_mo_no_diag)
    2066           3 :             WRITE (UNIT=iounit, FMT="(T2,A,T71,A)") "ADMM| Density matrix purification method", "MO no diag"
    2067             :          CASE (do_admm_purify_mcweeny)
    2068           1 :             WRITE (UNIT=iounit, FMT="(T2,A,T74,A)") "ADMM| Density matrix purification method", "McWeeny"
    2069             :          CASE (do_admm_purify_none_dm)
    2070           6 :             WRITE (UNIT=iounit, FMT="(T2,A,T73,A)") "ADMM| Density matrix purification method", "NONE(DM)"
    2071             :          CASE DEFAULT
    2072         119 :             CPABORT("admm_purification_method")
    2073             :          END SELECT
    2074             : 
    2075         214 :          SELECT CASE (admm_control%method)
    2076             :          CASE (do_admm_basis_projection)
    2077          95 :             WRITE (UNIT=iounit, FMT="(T2,A)") "ADMM| Orbital projection on ADMM basis"
    2078             :          CASE (do_admm_blocking_purify_full)
    2079           3 :             WRITE (UNIT=iounit, FMT="(T2,A)") "ADMM| Blocked Fock matrix projection with full purification"
    2080             :          CASE (do_admm_blocked_projection)
    2081           6 :             WRITE (UNIT=iounit, FMT="(T2,A)") "ADMM| Blocked Fock matrix projection"
    2082             :          CASE (do_admm_charge_constrained_projection)
    2083          15 :             WRITE (UNIT=iounit, FMT="(T2,A)") "ADMM| Orbital projection with charge constrain"
    2084             :          CASE DEFAULT
    2085         119 :             CPABORT("admm method")
    2086             :          END SELECT
    2087             : 
    2088         136 :          SELECT CASE (admm_control%scaling_model)
    2089             :          CASE (do_admm_exch_scaling_none)
    2090             :          CASE (do_admm_exch_scaling_merlot)
    2091          17 :             WRITE (UNIT=iounit, FMT="(T2,A)") "ADMM| Use Merlot (2014) scaling model"
    2092             :          CASE DEFAULT
    2093         119 :             CPABORT("admm scaling_model")
    2094             :          END SELECT
    2095             : 
    2096         119 :          WRITE (UNIT=iounit, FMT="(T2,A,T61,G20.10)") "ADMM| eps_filter", admm_control%eps_filter
    2097             : 
    2098         127 :          SELECT CASE (admm_control%aux_exch_func)
    2099             :          CASE (do_admm_aux_exch_func_none)
    2100           8 :             WRITE (UNIT=iounit, FMT="(T2,A)") "ADMM| No exchange functional correction term used"
    2101             :          CASE (do_admm_aux_exch_func_default, do_admm_aux_exch_func_default_libxc)
    2102          85 :             WRITE (UNIT=iounit, FMT="(T2,A,T74,A)") "ADMM| Exchange functional in correction term", "(W)PBEX"
    2103             :          CASE (do_admm_aux_exch_func_pbex, do_admm_aux_exch_func_pbex_libxc)
    2104          17 :             WRITE (UNIT=iounit, FMT="(T2,A,T77,A)") "ADMM| Exchange functional in correction term", "PBEX"
    2105             :          CASE (do_admm_aux_exch_func_opt, do_admm_aux_exch_func_opt_libxc)
    2106           8 :             WRITE (UNIT=iounit, FMT="(T2,A,T77,A)") "ADMM| Exchange functional in correction term", "OPTX"
    2107             :          CASE (do_admm_aux_exch_func_bee, do_admm_aux_exch_func_bee_libxc)
    2108           1 :             WRITE (UNIT=iounit, FMT="(T2,A,T74,A)") "ADMM| Exchange functional in correction term", "Becke88"
    2109             :          CASE (do_admm_aux_exch_func_sx_libxc)
    2110           0 :             WRITE (UNIT=iounit, FMT="(T2,A,T74,A)") "ADMM| Exchange functional in correction term", "SlaterX"
    2111             :          CASE DEFAULT
    2112         119 :             CPABORT("admm aux_exch_func")
    2113             :          END SELECT
    2114             : 
    2115         119 :          WRITE (UNIT=iounit, FMT="(A)") ""
    2116             : 
    2117             :       END IF
    2118             : 
    2119             :       CALL cp_print_key_finished_output(iounit, logger, dft_section, &
    2120         442 :                                         "PRINT%DFT_CONTROL_PARAMETERS")
    2121         442 :    END SUBROUTINE write_admm_control
    2122             : 
    2123             : ! **************************************************************************************************
    2124             : !> \brief Write the xTB control parameters to the output unit.
    2125             : !> \param xtb_control ...
    2126             : !> \param dft_section ...
    2127             : ! **************************************************************************************************
    2128         284 :    SUBROUTINE write_xtb_control(xtb_control, dft_section)
    2129             :       TYPE(xtb_control_type), POINTER                    :: xtb_control
    2130             :       TYPE(section_vals_type), POINTER                   :: dft_section
    2131             : 
    2132             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'write_xtb_control'
    2133             : 
    2134             :       INTEGER                                            :: handle, output_unit
    2135             :       TYPE(cp_logger_type), POINTER                      :: logger
    2136             : 
    2137         284 :       CALL timeset(routineN, handle)
    2138         284 :       NULLIFY (logger)
    2139         284 :       logger => cp_get_default_logger()
    2140             : 
    2141             :       output_unit = cp_print_key_unit_nr(logger, dft_section, &
    2142         284 :                                          "PRINT%DFT_CONTROL_PARAMETERS", extension=".Log")
    2143             : 
    2144         284 :       IF (output_unit > 0) THEN
    2145             : 
    2146             :          WRITE (UNIT=output_unit, FMT="(/,T2,A,T31,A50)") &
    2147          37 :             "xTB| Parameter file", ADJUSTR(TRIM(xtb_control%parameter_file_name))
    2148             :          WRITE (UNIT=output_unit, FMT="(T2,A,T71,I10)") &
    2149          37 :             "xTB| Basis expansion STO-NG", xtb_control%sto_ng
    2150             :          WRITE (UNIT=output_unit, FMT="(T2,A,T71,I10)") &
    2151          37 :             "xTB| Basis expansion STO-NG for Hydrogen", xtb_control%h_sto_ng
    2152             :          WRITE (UNIT=output_unit, FMT="(T2,A,T71,E10.4)") &
    2153          37 :             "xTB| Repulsive pair potential accuracy", xtb_control%eps_pair
    2154             :          WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.6)") &
    2155          37 :             "xTB| Repulsive enhancement factor", xtb_control%enscale
    2156             :          WRITE (UNIT=output_unit, FMT="(T2,A,T71,L10)") &
    2157          37 :             "xTB| Halogen interaction potential", xtb_control%xb_interaction
    2158             :          WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.3)") &
    2159          37 :             "xTB| Halogen interaction potential cutoff radius", xtb_control%xb_radius
    2160             :          WRITE (UNIT=output_unit, FMT="(T2,A,T71,L10)") &
    2161          37 :             "xTB| Nonbonded interactions", xtb_control%do_nonbonded
    2162          37 :          SELECT CASE (xtb_control%vdw_type)
    2163             :          CASE (xtb_vdw_type_none)
    2164           0 :             WRITE (UNIT=output_unit, FMT="(T2,A)") "xTB| No vdW potential selected"
    2165             :          CASE (xtb_vdw_type_d3)
    2166          37 :             WRITE (UNIT=output_unit, FMT="(T2,A,T72,A)") "xTB| vdW potential type:", "DFTD3(BJ)"
    2167             :             WRITE (UNIT=output_unit, FMT="(T2,A,T31,A50)") &
    2168          37 :                "xTB| D3 Dispersion: Parameter file", ADJUSTR(TRIM(xtb_control%dispersion_parameter_file))
    2169             :          CASE (xtb_vdw_type_d4)
    2170           0 :             WRITE (UNIT=output_unit, FMT="(T2,A,T76,A)") "xTB| vdW potential type:", "DFTD4"
    2171             :             WRITE (UNIT=output_unit, FMT="(T2,A,T31,A50)") &
    2172           0 :                "xTB| D4 Dispersion: Parameter file", ADJUSTR(TRIM(xtb_control%dispersion_parameter_file))
    2173             :          CASE DEFAULT
    2174          37 :             CPABORT("vdw type")
    2175             :          END SELECT
    2176             :          WRITE (UNIT=output_unit, FMT="(T2,A,T51,3F10.3)") &
    2177          37 :             "xTB| Huckel constants ks kp kd", xtb_control%ks, xtb_control%kp, xtb_control%kd
    2178             :          WRITE (UNIT=output_unit, FMT="(T2,A,T61,2F10.3)") &
    2179          37 :             "xTB| Huckel constants ksp k2sh", xtb_control%ksp, xtb_control%k2sh
    2180             :          WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.3)") &
    2181          37 :             "xTB| Mataga-Nishimoto exponent", xtb_control%kg
    2182             :          WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.3)") &
    2183          37 :             "xTB| Repulsion potential exponent", xtb_control%kf
    2184             :          WRITE (UNIT=output_unit, FMT="(T2,A,T51,3F10.3)") &
    2185          37 :             "xTB| Coordination number scaling kcn(s) kcn(p) kcn(d)", &
    2186          74 :             xtb_control%kcns, xtb_control%kcnp, xtb_control%kcnd
    2187             :          WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.3)") &
    2188          37 :             "xTB| Electronegativity scaling", xtb_control%ken
    2189             :          WRITE (UNIT=output_unit, FMT="(T2,A,T61,2F10.3)") &
    2190          37 :             "xTB| Halogen potential scaling kxr kx2", xtb_control%kxr, xtb_control%kx2
    2191          37 :          WRITE (UNIT=output_unit, FMT="(/)")
    2192             : 
    2193             :       END IF
    2194             : 
    2195             :       CALL cp_print_key_finished_output(output_unit, logger, dft_section, &
    2196         284 :                                         "PRINT%DFT_CONTROL_PARAMETERS")
    2197             : 
    2198         284 :       CALL timestop(handle)
    2199             : 
    2200         284 :    END SUBROUTINE write_xtb_control
    2201             : 
    2202             : ! **************************************************************************************************
    2203             : !> \brief Purpose: Write the QS control parameters to the output unit.
    2204             : !> \param qs_control ...
    2205             : !> \param dft_section ...
    2206             : ! **************************************************************************************************
    2207       11864 :    SUBROUTINE write_qs_control(qs_control, dft_section)
    2208             :       TYPE(qs_control_type), INTENT(IN)                  :: qs_control
    2209             :       TYPE(section_vals_type), POINTER                   :: dft_section
    2210             : 
    2211             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'write_qs_control'
    2212             : 
    2213             :       CHARACTER(len=20)                                  :: method, quadrature
    2214             :       INTEGER                                            :: handle, i, igrid_level, ngrid_level, &
    2215             :                                                             output_unit
    2216             :       TYPE(cp_logger_type), POINTER                      :: logger
    2217             :       TYPE(ddapc_restraint_type), POINTER                :: ddapc_restraint_control
    2218             :       TYPE(enumeration_type), POINTER                    :: enum
    2219             :       TYPE(keyword_type), POINTER                        :: keyword
    2220             :       TYPE(section_type), POINTER                        :: qs_section
    2221             :       TYPE(section_vals_type), POINTER                   :: print_section_vals, qs_section_vals
    2222             : 
    2223        7190 :       IF (qs_control%semi_empirical) RETURN
    2224        5686 :       IF (qs_control%dftb) RETURN
    2225        5464 :       IF (qs_control%xtb) RETURN
    2226        5180 :       CALL timeset(routineN, handle)
    2227        5180 :       NULLIFY (logger, print_section_vals, qs_section, qs_section_vals)
    2228        5180 :       logger => cp_get_default_logger()
    2229        5180 :       print_section_vals => section_vals_get_subs_vals(dft_section, "PRINT")
    2230        5180 :       qs_section_vals => section_vals_get_subs_vals(dft_section, "QS")
    2231        5180 :       CALL section_vals_get(qs_section_vals, section=qs_section)
    2232             : 
    2233        5180 :       NULLIFY (enum, keyword)
    2234        5180 :       keyword => section_get_keyword(qs_section, "METHOD")
    2235        5180 :       CALL keyword_get(keyword, enum=enum)
    2236        5180 :       method = enum_i2c(enum, qs_control%method_id)
    2237             : 
    2238        5180 :       NULLIFY (enum, keyword)
    2239        5180 :       keyword => section_get_keyword(qs_section, "QUADRATURE")
    2240        5180 :       CALL keyword_get(keyword, enum=enum)
    2241        5180 :       quadrature = enum_i2c(enum, qs_control%gapw_control%quadrature)
    2242             : 
    2243             :       output_unit = cp_print_key_unit_nr(logger, print_section_vals, &
    2244        5180 :                                          "DFT_CONTROL_PARAMETERS", extension=".Log")
    2245        5180 :       IF (output_unit > 0) THEN
    2246        1336 :          ngrid_level = SIZE(qs_control%e_cutoff)
    2247             :          WRITE (UNIT=output_unit, FMT="(/,T2,A,T61,A20)") &
    2248        1336 :             "QS| Method:", ADJUSTR(method)
    2249        1336 :          IF (qs_control%pw_grid_opt%spherical) THEN
    2250             :             WRITE (UNIT=output_unit, FMT="(T2,A,T61,A)") &
    2251           0 :                "QS| Density plane wave grid type", " SPHERICAL HALFSPACE"
    2252        1336 :          ELSE IF (qs_control%pw_grid_opt%fullspace) THEN
    2253             :             WRITE (UNIT=output_unit, FMT="(T2,A,T57,A)") &
    2254        1336 :                "QS| Density plane wave grid type", " NON-SPHERICAL FULLSPACE"
    2255             :          ELSE
    2256             :             WRITE (UNIT=output_unit, FMT="(T2,A,T57,A)") &
    2257           0 :                "QS| Density plane wave grid type", " NON-SPHERICAL HALFSPACE"
    2258             :          END IF
    2259             :          WRITE (UNIT=output_unit, FMT="(T2,A,T71,I10)") &
    2260        1336 :             "QS| Number of grid levels:", SIZE(qs_control%e_cutoff)
    2261        1336 :          IF (ngrid_level == 1) THEN
    2262             :             WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.1)") &
    2263          69 :                "QS| Density cutoff [a.u.]:", qs_control%e_cutoff(1)
    2264             :          ELSE
    2265             :             WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.1)") &
    2266        1267 :                "QS| Density cutoff [a.u.]:", qs_control%cutoff
    2267        1267 :             IF (qs_control%commensurate_mgrids) &
    2268         131 :                WRITE (UNIT=output_unit, FMT="(T2,A)") "QS| Using commensurate multigrids"
    2269             :             WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.1)") &
    2270        1267 :                "QS| Multi grid cutoff [a.u.]: 1) grid level", qs_control%e_cutoff(1)
    2271             :             WRITE (UNIT=output_unit, FMT="(T2,A,I3,A,T71,F10.1)") &
    2272        3964 :                ("QS|                         ", igrid_level, ") grid level", &
    2273        5231 :                 qs_control%e_cutoff(igrid_level), &
    2274        6498 :                 igrid_level=2, SIZE(qs_control%e_cutoff))
    2275             :          END IF
    2276        1336 :          IF (qs_control%pao) THEN
    2277           0 :             WRITE (UNIT=output_unit, FMT="(T2,A)") "QS| PAO active"
    2278             :          END IF
    2279             :          WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.1)") &
    2280        1336 :             "QS| Grid level progression factor:", qs_control%progression_factor
    2281             :          WRITE (UNIT=output_unit, FMT="(T2,A,T71,F10.1)") &
    2282        1336 :             "QS| Relative density cutoff [a.u.]:", qs_control%relative_cutoff
    2283             :          WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
    2284        1336 :             "QS| Interaction thresholds: eps_pgf_orb:", &
    2285        1336 :             qs_control%eps_pgf_orb, &
    2286        1336 :             "QS|                         eps_filter_matrix:", &
    2287        1336 :             qs_control%eps_filter_matrix, &
    2288        1336 :             "QS|                         eps_core_charge:", &
    2289        1336 :             qs_control%eps_core_charge, &
    2290        1336 :             "QS|                         eps_rho_gspace:", &
    2291        1336 :             qs_control%eps_rho_gspace, &
    2292        1336 :             "QS|                         eps_rho_rspace:", &
    2293        1336 :             qs_control%eps_rho_rspace, &
    2294        1336 :             "QS|                         eps_gvg_rspace:", &
    2295        1336 :             qs_control%eps_gvg_rspace, &
    2296        1336 :             "QS|                         eps_ppl:", &
    2297        1336 :             qs_control%eps_ppl, &
    2298        1336 :             "QS|                         eps_ppnl:", &
    2299        2672 :             qs_control%eps_ppnl
    2300        1336 :          IF (qs_control%gapw) THEN
    2301         388 :             SELECT CASE (qs_control%gapw_control%basis_1c)
    2302             :             CASE (gapw_1c_orb)
    2303             :                WRITE (UNIT=output_unit, FMT="(T2,A)") &
    2304         191 :                   "QS| GAPW|      One center basis from orbital basis primitives"
    2305             :             CASE (gapw_1c_small)
    2306             :                WRITE (UNIT=output_unit, FMT="(T2,A)") &
    2307           2 :                   "QS| GAPW|      One center basis extended with primitives (small:s)"
    2308             :             CASE (gapw_1c_medium)
    2309             :                WRITE (UNIT=output_unit, FMT="(T2,A)") &
    2310           1 :                   "QS| GAPW|      One center basis extended with primitives (medium:sp)"
    2311             :             CASE (gapw_1c_large)
    2312             :                WRITE (UNIT=output_unit, FMT="(T2,A)") &
    2313           2 :                   "QS| GAPW|      One center basis extended with primitives (large:spd)"
    2314             :             CASE (gapw_1c_very_large)
    2315             :                WRITE (UNIT=output_unit, FMT="(T2,A)") &
    2316           1 :                   "QS| GAPW|      One center basis extended with primitives (very large:spdf)"
    2317             :             CASE DEFAULT
    2318         197 :                CPABORT("basis_1c incorrect")
    2319             :             END SELECT
    2320             :             WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
    2321         197 :                "QS| GAPW|                   eps_fit:", &
    2322         197 :                qs_control%gapw_control%eps_fit, &
    2323         197 :                "QS| GAPW|                   eps_iso:", &
    2324         197 :                qs_control%gapw_control%eps_iso, &
    2325         197 :                "QS| GAPW|                   eps_svd:", &
    2326         197 :                qs_control%gapw_control%eps_svd, &
    2327         197 :                "QS| GAPW|                   eps_cpc:", &
    2328         394 :                qs_control%gapw_control%eps_cpc
    2329             :             WRITE (UNIT=output_unit, FMT="(T2,A,T61,A20)") &
    2330         197 :                "QS| GAPW|   atom-r-grid: quadrature:", &
    2331         394 :                ADJUSTR(quadrature)
    2332             :             WRITE (UNIT=output_unit, FMT="(T2,A,T71,I10)") &
    2333         197 :                "QS| GAPW|      atom-s-grid:  max l :", &
    2334         197 :                qs_control%gapw_control%lmax_sphere, &
    2335         197 :                "QS| GAPW|      max_l_rho0 :", &
    2336         394 :                qs_control%gapw_control%lmax_rho0
    2337         197 :             IF (qs_control%gapw_control%non_paw_atoms) THEN
    2338             :                WRITE (UNIT=output_unit, FMT="(T2,A)") &
    2339          29 :                   "QS| GAPW|      At least one kind is NOT PAW, i.e. it has only soft AO "
    2340             :             END IF
    2341         197 :             IF (qs_control%gapw_control%nopaw_as_gpw) THEN
    2342             :                WRITE (UNIT=output_unit, FMT="(T2,A)") &
    2343          29 :                   "QS| GAPW|      The NOT PAW atoms are treated fully GPW"
    2344             :             END IF
    2345             :          END IF
    2346        1336 :          IF (qs_control%gapw_xc) THEN
    2347          50 :             SELECT CASE (qs_control%gapw_control%basis_1c)
    2348             :             CASE (gapw_1c_orb)
    2349             :                WRITE (UNIT=output_unit, FMT="(T2,A)") &
    2350          25 :                   "QS| GAPW_XC|      One center basis from orbital basis primitives"
    2351             :             CASE (gapw_1c_small)
    2352             :                WRITE (UNIT=output_unit, FMT="(T2,A)") &
    2353           0 :                   "QS| GAPW_XC|      One center basis extended with primitives (small:s)"
    2354             :             CASE (gapw_1c_medium)
    2355             :                WRITE (UNIT=output_unit, FMT="(T2,A)") &
    2356           0 :                   "QS| GAPW_XC|      One center basis extended with primitives (medium:sp)"
    2357             :             CASE (gapw_1c_large)
    2358             :                WRITE (UNIT=output_unit, FMT="(T2,A)") &
    2359           0 :                   "QS| GAPW_XC|      One center basis extended with primitives (large:spd)"
    2360             :             CASE (gapw_1c_very_large)
    2361             :                WRITE (UNIT=output_unit, FMT="(T2,A)") &
    2362           0 :                   "QS| GAPW_XC|      One center basis extended with primitives (very large:spdf)"
    2363             :             CASE DEFAULT
    2364          25 :                CPABORT("basis_1c incorrect")
    2365             :             END SELECT
    2366             :             WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
    2367          25 :                "QS| GAPW_XC|                eps_fit:", &
    2368          25 :                qs_control%gapw_control%eps_fit, &
    2369          25 :                "QS| GAPW_XC|                eps_iso:", &
    2370          25 :                qs_control%gapw_control%eps_iso, &
    2371          25 :                "QS| GAPW_XC|                eps_svd:", &
    2372          50 :                qs_control%gapw_control%eps_svd
    2373             :             WRITE (UNIT=output_unit, FMT="(T2,A,T55,A30)") &
    2374          25 :                "QS| GAPW_XC|atom-r-grid: quadrature:", &
    2375          50 :                enum_i2c(enum, qs_control%gapw_control%quadrature)
    2376             :             WRITE (UNIT=output_unit, FMT="(T2,A,T71,I10)") &
    2377          25 :                "QS| GAPW_XC|   atom-s-grid:  max l :", &
    2378          50 :                qs_control%gapw_control%lmax_sphere
    2379             :          END IF
    2380        1336 :          IF (qs_control%mulliken_restraint) THEN
    2381             :             WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
    2382           1 :                "QS| Mulliken restraint target", qs_control%mulliken_restraint_control%target
    2383             :             WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
    2384           1 :                "QS| Mulliken restraint strength", qs_control%mulliken_restraint_control%strength
    2385             :             WRITE (UNIT=output_unit, FMT="(T2,A,T73,I8)") &
    2386           1 :                "QS| Mulliken restraint atoms: ", qs_control%mulliken_restraint_control%natoms
    2387           2 :             WRITE (UNIT=output_unit, FMT="(5I8)") qs_control%mulliken_restraint_control%atoms
    2388             :          END IF
    2389        1336 :          IF (qs_control%ddapc_restraint) THEN
    2390          14 :             DO i = 1, SIZE(qs_control%ddapc_restraint_control)
    2391           8 :                ddapc_restraint_control => qs_control%ddapc_restraint_control(i)
    2392           8 :                IF (SIZE(qs_control%ddapc_restraint_control) .GT. 1) &
    2393             :                   WRITE (UNIT=output_unit, FMT="(T2,A,T3,I8)") &
    2394           3 :                   "QS| parameters for DDAPC restraint number", i
    2395             :                WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
    2396           8 :                   "QS| ddapc restraint target", ddapc_restraint_control%target
    2397             :                WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
    2398           8 :                   "QS| ddapc restraint strength", ddapc_restraint_control%strength
    2399             :                WRITE (UNIT=output_unit, FMT="(T2,A,T73,I8)") &
    2400           8 :                   "QS| ddapc restraint atoms: ", ddapc_restraint_control%natoms
    2401          17 :                WRITE (UNIT=output_unit, FMT="(5I8)") ddapc_restraint_control%atoms
    2402           8 :                WRITE (UNIT=output_unit, FMT="(T2,A)") "Coefficients:"
    2403          17 :                WRITE (UNIT=output_unit, FMT="(5F6.2)") ddapc_restraint_control%coeff
    2404           6 :                SELECT CASE (ddapc_restraint_control%functional_form)
    2405             :                CASE (do_ddapc_restraint)
    2406             :                   WRITE (UNIT=output_unit, FMT="(T2,A,T61,A20)") &
    2407           3 :                      "QS| ddapc restraint functional form :", "RESTRAINT"
    2408             :                CASE (do_ddapc_constraint)
    2409             :                   WRITE (UNIT=output_unit, FMT="(T2,A,T61,A20)") &
    2410           5 :                      "QS| ddapc restraint functional form :", "CONSTRAINT"
    2411             :                CASE DEFAULT
    2412           8 :                   CPABORT("Unknown ddapc restraint")
    2413             :                END SELECT
    2414             :             END DO
    2415             :          END IF
    2416        1336 :          IF (qs_control%s2_restraint) THEN
    2417             :             WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
    2418           0 :                "QS| s2 restraint target", qs_control%s2_restraint_control%target
    2419             :             WRITE (UNIT=output_unit, FMT="(T2,A,T73,ES8.1)") &
    2420           0 :                "QS| s2 restraint strength", qs_control%s2_restraint_control%strength
    2421           0 :             SELECT CASE (qs_control%s2_restraint_control%functional_form)
    2422             :             CASE (do_s2_restraint)
    2423             :                WRITE (UNIT=output_unit, FMT="(T2,A,T61,A20)") &
    2424           0 :                   "QS| s2 restraint functional form :", "RESTRAINT"
    2425           0 :                CPABORT("Not yet implemented")
    2426             :             CASE (do_s2_constraint)
    2427             :                WRITE (UNIT=output_unit, FMT="(T2,A,T61,A20)") &
    2428           0 :                   "QS| s2 restraint functional form :", "CONSTRAINT"
    2429             :             CASE DEFAULT
    2430           0 :                CPABORT("Unknown ddapc restraint")
    2431             :             END SELECT
    2432             :          END IF
    2433             :       END IF
    2434             :       CALL cp_print_key_finished_output(output_unit, logger, print_section_vals, &
    2435        5180 :                                         "DFT_CONTROL_PARAMETERS")
    2436             : 
    2437        5180 :       CALL timestop(handle)
    2438             : 
    2439             :    END SUBROUTINE write_qs_control
    2440             : 
    2441             : ! **************************************************************************************************
    2442             : !> \brief reads the input parameters needed for ddapc.
    2443             : !> \param qs_control ...
    2444             : !> \param qs_section ...
    2445             : !> \param ddapc_restraint_section ...
    2446             : !> \author fschiff
    2447             : !> \note
    2448             : !>      either reads DFT%QS%DDAPC_RESTRAINT or PROPERTIES%ET_coupling
    2449             : !>      if(qs_section is present the DFT part is read, if ddapc_restraint_section
    2450             : !>      is present ET_COUPLING is read. Avoid having both!!!
    2451             : ! **************************************************************************************************
    2452          14 :    SUBROUTINE read_ddapc_section(qs_control, qs_section, ddapc_restraint_section)
    2453             : 
    2454             :       TYPE(qs_control_type), INTENT(INOUT)               :: qs_control
    2455             :       TYPE(section_vals_type), OPTIONAL, POINTER         :: qs_section, ddapc_restraint_section
    2456             : 
    2457             :       INTEGER                                            :: i, j, jj, k, n_rep
    2458          14 :       INTEGER, DIMENSION(:), POINTER                     :: tmplist
    2459          14 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: rtmplist
    2460             :       TYPE(ddapc_restraint_type), POINTER                :: ddapc_restraint_control
    2461             :       TYPE(section_vals_type), POINTER                   :: ddapc_section
    2462             : 
    2463          14 :       IF (PRESENT(ddapc_restraint_section)) THEN
    2464           0 :          IF (ASSOCIATED(qs_control%ddapc_restraint_control)) THEN
    2465           0 :             IF (SIZE(qs_control%ddapc_restraint_control) .GE. 2) &
    2466           0 :                CPABORT("ET_COUPLING cannot be used in combination with a normal restraint")
    2467             :          ELSE
    2468           0 :             ddapc_section => ddapc_restraint_section
    2469           0 :             ALLOCATE (qs_control%ddapc_restraint_control(1))
    2470             :          END IF
    2471             :       END IF
    2472             : 
    2473          14 :       IF (PRESENT(qs_section)) THEN
    2474          14 :          NULLIFY (ddapc_section)
    2475             :          ddapc_section => section_vals_get_subs_vals(qs_section, &
    2476          14 :                                                      "DDAPC_RESTRAINT")
    2477             :       END IF
    2478             : 
    2479          32 :       DO i = 1, SIZE(qs_control%ddapc_restraint_control)
    2480             : 
    2481          18 :          CALL ddapc_control_create(qs_control%ddapc_restraint_control(i))
    2482          18 :          ddapc_restraint_control => qs_control%ddapc_restraint_control(i)
    2483             : 
    2484             :          CALL section_vals_val_get(ddapc_section, "STRENGTH", i_rep_section=i, &
    2485          18 :                                    r_val=ddapc_restraint_control%strength)
    2486             :          CALL section_vals_val_get(ddapc_section, "TARGET", i_rep_section=i, &
    2487          18 :                                    r_val=ddapc_restraint_control%target)
    2488             :          CALL section_vals_val_get(ddapc_section, "FUNCTIONAL_FORM", i_rep_section=i, &
    2489          18 :                                    i_val=ddapc_restraint_control%functional_form)
    2490             :          CALL section_vals_val_get(ddapc_section, "ATOMS", i_rep_section=i, &
    2491          18 :                                    n_rep_val=n_rep)
    2492             :          CALL section_vals_val_get(ddapc_section, "TYPE_OF_DENSITY", i_rep_section=i, &
    2493          18 :                                    i_val=ddapc_restraint_control%density_type)
    2494             : 
    2495          18 :          jj = 0
    2496          36 :          DO k = 1, n_rep
    2497             :             CALL section_vals_val_get(ddapc_section, "ATOMS", i_rep_section=i, &
    2498          18 :                                       i_rep_val=k, i_vals=tmplist)
    2499          56 :             DO j = 1, SIZE(tmplist)
    2500          38 :                jj = jj + 1
    2501             :             END DO
    2502             :          END DO
    2503          18 :          IF (jj < 1) CPABORT("Need at least 1 atom to use ddapc constraints")
    2504          18 :          ddapc_restraint_control%natoms = jj
    2505          18 :          IF (ASSOCIATED(ddapc_restraint_control%atoms)) &
    2506           0 :             DEALLOCATE (ddapc_restraint_control%atoms)
    2507          54 :          ALLOCATE (ddapc_restraint_control%atoms(ddapc_restraint_control%natoms))
    2508          18 :          jj = 0
    2509          36 :          DO k = 1, n_rep
    2510             :             CALL section_vals_val_get(ddapc_section, "ATOMS", i_rep_section=i, &
    2511          18 :                                       i_rep_val=k, i_vals=tmplist)
    2512          56 :             DO j = 1, SIZE(tmplist)
    2513          20 :                jj = jj + 1
    2514          38 :                ddapc_restraint_control%atoms(jj) = tmplist(j)
    2515             :             END DO
    2516             :          END DO
    2517             : 
    2518          18 :          IF (ASSOCIATED(ddapc_restraint_control%coeff)) &
    2519           0 :             DEALLOCATE (ddapc_restraint_control%coeff)
    2520          54 :          ALLOCATE (ddapc_restraint_control%coeff(ddapc_restraint_control%natoms))
    2521          38 :          ddapc_restraint_control%coeff = 1.0_dp
    2522             : 
    2523             :          CALL section_vals_val_get(ddapc_section, "COEFF", i_rep_section=i, &
    2524          18 :                                    n_rep_val=n_rep)
    2525          18 :          jj = 0
    2526          20 :          DO k = 1, n_rep
    2527             :             CALL section_vals_val_get(ddapc_section, "COEFF", i_rep_section=i, &
    2528           2 :                                       i_rep_val=k, r_vals=rtmplist)
    2529          22 :             DO j = 1, SIZE(rtmplist)
    2530           2 :                jj = jj + 1
    2531           2 :                IF (jj > ddapc_restraint_control%natoms) &
    2532           0 :                   CPABORT("Need the same number of coeff as there are atoms ")
    2533           4 :                ddapc_restraint_control%coeff(jj) = rtmplist(j)
    2534             :             END DO
    2535             :          END DO
    2536          18 :          IF (jj < ddapc_restraint_control%natoms .AND. jj .NE. 0) &
    2537          50 :             CPABORT("Need no or the same number of coeff as there are atoms.")
    2538             :       END DO
    2539          14 :       k = 0
    2540          32 :       DO i = 1, SIZE(qs_control%ddapc_restraint_control)
    2541          18 :          IF (qs_control%ddapc_restraint_control(i)%functional_form == &
    2542          24 :              do_ddapc_constraint) k = k + 1
    2543             :       END DO
    2544          14 :       IF (k == 2) CALL cp_abort(__LOCATION__, &
    2545           0 :                                 "Only a single constraint possible yet, try to use restraints instead ")
    2546             : 
    2547          14 :    END SUBROUTINE read_ddapc_section
    2548             : 
    2549             : ! **************************************************************************************************
    2550             : !> \brief ...
    2551             : !> \param dft_control ...
    2552             : !> \param efield_section ...
    2553             : ! **************************************************************************************************
    2554         252 :    SUBROUTINE read_efield_sections(dft_control, efield_section)
    2555             :       TYPE(dft_control_type), POINTER                    :: dft_control
    2556             :       TYPE(section_vals_type), POINTER                   :: efield_section
    2557             : 
    2558             :       CHARACTER(len=default_path_length)                 :: file_name
    2559             :       INTEGER                                            :: i, io, j, n, unit_nr
    2560         252 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: tmp_vals
    2561             :       TYPE(efield_type), POINTER                         :: efield
    2562             :       TYPE(section_vals_type), POINTER                   :: tmp_section
    2563             : 
    2564         504 :       DO i = 1, SIZE(dft_control%efield_fields)
    2565         252 :          NULLIFY (dft_control%efield_fields(i)%efield)
    2566        1260 :          ALLOCATE (dft_control%efield_fields(i)%efield)
    2567         252 :          efield => dft_control%efield_fields(i)%efield
    2568         252 :          NULLIFY (efield%envelop_i_vars, efield%envelop_r_vars)
    2569             :          CALL section_vals_val_get(efield_section, "INTENSITY", i_rep_section=i, &
    2570         252 :                                    r_val=efield%strength)
    2571             : 
    2572             :          CALL section_vals_val_get(efield_section, "POLARISATION", i_rep_section=i, &
    2573         252 :                                    r_vals=tmp_vals)
    2574         756 :          ALLOCATE (efield%polarisation(SIZE(tmp_vals)))
    2575        2016 :          efield%polarisation = tmp_vals
    2576             :          CALL section_vals_val_get(efield_section, "PHASE", i_rep_section=i, &
    2577         252 :                                    r_val=efield%phase_offset)
    2578             :          CALL section_vals_val_get(efield_section, "ENVELOP", i_rep_section=i, &
    2579         252 :                                    i_val=efield%envelop_id)
    2580             :          CALL section_vals_val_get(efield_section, "WAVELENGTH", i_rep_section=i, &
    2581         252 :                                    r_val=efield%wavelength)
    2582             :          CALL section_vals_val_get(efield_section, "VEC_POT_INITIAL", i_rep_section=i, &
    2583         252 :                                    r_vals=tmp_vals)
    2584        2016 :          efield%vec_pot_initial = tmp_vals
    2585             : 
    2586         504 :          IF (efield%envelop_id == constant_env) THEN
    2587         240 :             ALLOCATE (efield%envelop_i_vars(2))
    2588         240 :             tmp_section => section_vals_get_subs_vals(efield_section, "CONSTANT_ENV", i_rep_section=i)
    2589             :             CALL section_vals_val_get(tmp_section, "START_STEP", &
    2590         240 :                                       i_val=efield%envelop_i_vars(1))
    2591             :             CALL section_vals_val_get(tmp_section, "END_STEP", &
    2592         240 :                                       i_val=efield%envelop_i_vars(2))
    2593          12 :          ELSE IF (efield%envelop_id == gaussian_env) THEN
    2594           8 :             ALLOCATE (efield%envelop_r_vars(2))
    2595           8 :             tmp_section => section_vals_get_subs_vals(efield_section, "GAUSSIAN_ENV", i_rep_section=i)
    2596             :             CALL section_vals_val_get(tmp_section, "T0", &
    2597           8 :                                       r_val=efield%envelop_r_vars(1))
    2598             :             CALL section_vals_val_get(tmp_section, "SIGMA", &
    2599           8 :                                       r_val=efield%envelop_r_vars(2))
    2600           4 :          ELSE IF (efield%envelop_id == ramp_env) THEN
    2601           2 :             ALLOCATE (efield%envelop_i_vars(4))
    2602           2 :             tmp_section => section_vals_get_subs_vals(efield_section, "RAMP_ENV", i_rep_section=i)
    2603             :             CALL section_vals_val_get(tmp_section, "START_STEP_IN", &
    2604           2 :                                       i_val=efield%envelop_i_vars(1))
    2605             :             CALL section_vals_val_get(tmp_section, "END_STEP_IN", &
    2606           2 :                                       i_val=efield%envelop_i_vars(2))
    2607             :             CALL section_vals_val_get(tmp_section, "START_STEP_OUT", &
    2608           2 :                                       i_val=efield%envelop_i_vars(3))
    2609             :             CALL section_vals_val_get(tmp_section, "END_STEP_OUT", &
    2610           2 :                                       i_val=efield%envelop_i_vars(4))
    2611           2 :          ELSE IF (efield%envelop_id == custom_env) THEN
    2612           2 :             tmp_section => section_vals_get_subs_vals(efield_section, "CUSTOM_ENV", i_rep_section=i)
    2613           2 :             CALL section_vals_val_get(tmp_section, "EFIELD_FILE_NAME", c_val=file_name)
    2614           2 :             CALL open_file(file_name=TRIM(file_name), file_action="READ", file_status="OLD", unit_number=unit_nr)
    2615             :             !Determine the number of lines in file
    2616           2 :             n = 0
    2617          10 :             DO WHILE (.TRUE.)
    2618          12 :                READ (unit_nr, *, iostat=io)
    2619          12 :                IF (io /= 0) EXIT
    2620          10 :                n = n + 1
    2621             :             END DO
    2622           2 :             REWIND (unit_nr)
    2623           6 :             ALLOCATE (efield%envelop_r_vars(n + 1))
    2624             :             !Store the timestep of the list in the first entry of the r_vars
    2625           2 :             CALL section_vals_val_get(tmp_section, "TIMESTEP", r_val=efield%envelop_r_vars(1))
    2626             :             !Read the file
    2627          12 :             DO j = 2, n + 1
    2628          10 :                READ (unit_nr, *) efield%envelop_r_vars(j)
    2629          12 :                efield%envelop_r_vars(j) = cp_unit_to_cp2k(efield%envelop_r_vars(j), "volt/m")
    2630             :             END DO
    2631           2 :             CALL close_file(unit_nr)
    2632             :          END IF
    2633             :       END DO
    2634         252 :    END SUBROUTINE read_efield_sections
    2635             : 
    2636             : ! **************************************************************************************************
    2637             : !> \brief reads the input parameters needed real time propagation
    2638             : !> \param dft_control ...
    2639             : !> \param rtp_section ...
    2640             : !> \author fschiff
    2641             : ! **************************************************************************************************
    2642         496 :    SUBROUTINE read_rtp_section(dft_control, rtp_section)
    2643             : 
    2644             :       TYPE(dft_control_type), INTENT(INOUT)              :: dft_control
    2645             :       TYPE(section_vals_type), POINTER                   :: rtp_section
    2646             : 
    2647         248 :       INTEGER, DIMENSION(:), POINTER                     :: tmp
    2648             :       LOGICAL                                            :: is_present
    2649             :       TYPE(section_vals_type), POINTER                   :: proj_mo_section
    2650             : 
    2651        2976 :       ALLOCATE (dft_control%rtp_control)
    2652             :       CALL section_vals_val_get(rtp_section, "MAX_ITER", &
    2653         248 :                                 i_val=dft_control%rtp_control%max_iter)
    2654             :       CALL section_vals_val_get(rtp_section, "MAT_EXP", &
    2655         248 :                                 i_val=dft_control%rtp_control%mat_exp)
    2656             :       CALL section_vals_val_get(rtp_section, "ASPC_ORDER", &
    2657         248 :                                 i_val=dft_control%rtp_control%aspc_order)
    2658             :       CALL section_vals_val_get(rtp_section, "EXP_ACCURACY", &
    2659         248 :                                 r_val=dft_control%rtp_control%eps_exp)
    2660             :       CALL section_vals_val_get(rtp_section, "RTP_METHOD", &
    2661         248 :                                 i_val=dft_control%rtp_control%rtp_method)
    2662             :       CALL section_vals_val_get(rtp_section, "RTBSE_HAMILTONIAN", &
    2663         248 :                                 i_val=dft_control%rtp_control%rtbse_ham)
    2664             :       CALL section_vals_val_get(rtp_section, "PROPAGATOR", &
    2665         248 :                                 i_val=dft_control%rtp_control%propagator)
    2666             :       CALL section_vals_val_get(rtp_section, "EPS_ITER", &
    2667         248 :                                 r_val=dft_control%rtp_control%eps_ener)
    2668             :       CALL section_vals_val_get(rtp_section, "INITIAL_WFN", &
    2669         248 :                                 i_val=dft_control%rtp_control%initial_wfn)
    2670             :       CALL section_vals_val_get(rtp_section, "HFX_BALANCE_IN_CORE", &
    2671         248 :                                 l_val=dft_control%rtp_control%hfx_redistribute)
    2672             :       CALL section_vals_val_get(rtp_section, "APPLY_WFN_MIX_INIT_RESTART", &
    2673         248 :                                 l_val=dft_control%rtp_control%apply_wfn_mix_init_restart)
    2674             :       CALL section_vals_val_get(rtp_section, "APPLY_DELTA_PULSE", &
    2675         248 :                                 l_val=dft_control%rtp_control%apply_delta_pulse)
    2676             :       CALL section_vals_val_get(rtp_section, "APPLY_DELTA_PULSE_MAG", &
    2677         248 :                                 l_val=dft_control%rtp_control%apply_delta_pulse_mag)
    2678             :       CALL section_vals_val_get(rtp_section, "VELOCITY_GAUGE", &
    2679         248 :                                 l_val=dft_control%rtp_control%velocity_gauge)
    2680             :       CALL section_vals_val_get(rtp_section, "VG_COM_NL", &
    2681         248 :                                 l_val=dft_control%rtp_control%nl_gauge_transform)
    2682             :       CALL section_vals_val_get(rtp_section, "PERIODIC", &
    2683         248 :                                 l_val=dft_control%rtp_control%periodic)
    2684             :       CALL section_vals_val_get(rtp_section, "DENSITY_PROPAGATION", &
    2685         248 :                                 l_val=dft_control%rtp_control%linear_scaling)
    2686             :       CALL section_vals_val_get(rtp_section, "MCWEENY_MAX_ITER", &
    2687         248 :                                 i_val=dft_control%rtp_control%mcweeny_max_iter)
    2688             :       CALL section_vals_val_get(rtp_section, "ACCURACY_REFINEMENT", &
    2689         248 :                                 i_val=dft_control%rtp_control%acc_ref)
    2690             :       CALL section_vals_val_get(rtp_section, "MCWEENY_EPS", &
    2691         248 :                                 r_val=dft_control%rtp_control%mcweeny_eps)
    2692             :       CALL section_vals_val_get(rtp_section, "DELTA_PULSE_SCALE", &
    2693         248 :                                 r_val=dft_control%rtp_control%delta_pulse_scale)
    2694             :       CALL section_vals_val_get(rtp_section, "DELTA_PULSE_DIRECTION", &
    2695         248 :                                 i_vals=tmp)
    2696         992 :       dft_control%rtp_control%delta_pulse_direction = tmp
    2697             :       CALL section_vals_val_get(rtp_section, "SC_CHECK_START", &
    2698         248 :                                 i_val=dft_control%rtp_control%sc_check_start)
    2699         248 :       proj_mo_section => section_vals_get_subs_vals(rtp_section, "PRINT%PROJECTION_MO")
    2700         248 :       CALL section_vals_get(proj_mo_section, explicit=is_present)
    2701         248 :       IF (is_present) THEN
    2702           4 :          IF (dft_control%rtp_control%linear_scaling) &
    2703             :             CALL cp_abort(__LOCATION__, &
    2704             :                           "You have defined a time dependent projection of mos, but "// &
    2705             :                           "only the density matrix is propagated (DENSITY_PROPAGATION "// &
    2706             :                           ".TRUE.). Please either use MO-based real time DFT or do not "// &
    2707           0 :                           "define any PRINT%PROJECTION_MO section")
    2708           4 :          dft_control%rtp_control%is_proj_mo = .TRUE.
    2709             :       ELSE
    2710         244 :          dft_control%rtp_control%is_proj_mo = .FALSE.
    2711             :       END IF
    2712             : 
    2713         248 :    END SUBROUTINE read_rtp_section
    2714             : 
    2715             : ! **************************************************************************************************
    2716             : !> \brief Parses the BLOCK_LIST keywords from the ADMM section
    2717             : !> \param admm_control ...
    2718             : !> \param dft_section ...
    2719             : ! **************************************************************************************************
    2720         442 :    SUBROUTINE read_admm_block_list(admm_control, dft_section)
    2721             :       TYPE(admm_control_type), POINTER                   :: admm_control
    2722             :       TYPE(section_vals_type), POINTER                   :: dft_section
    2723             : 
    2724             :       INTEGER                                            :: irep, list_size, n_rep
    2725         442 :       INTEGER, DIMENSION(:), POINTER                     :: tmplist
    2726             : 
    2727         442 :       NULLIFY (tmplist)
    2728             : 
    2729             :       CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%BLOCK_LIST", &
    2730         442 :                                 n_rep_val=n_rep)
    2731             : 
    2732         938 :       ALLOCATE (admm_control%blocks(n_rep))
    2733             : 
    2734         478 :       DO irep = 1, n_rep
    2735             :          CALL section_vals_val_get(dft_section, "AUXILIARY_DENSITY_MATRIX_METHOD%BLOCK_LIST", &
    2736          36 :                                    i_rep_val=irep, i_vals=tmplist)
    2737          36 :          list_size = SIZE(tmplist)
    2738         108 :          ALLOCATE (admm_control%blocks(irep)%list(list_size))
    2739         650 :          admm_control%blocks(irep)%list(:) = tmplist(:)
    2740             :       END DO
    2741             : 
    2742         442 :    END SUBROUTINE read_admm_block_list
    2743             : 
    2744             : END MODULE cp_control_utils

Generated by: LCOV version 1.15