Line data Source code
1 : !--------------------------------------------------------------------------------------------------!
2 : ! CP2K: A general program to perform molecular dynamics simulations !
3 : ! Copyright 2000-2025 CP2K developers group <https://cp2k.org> !
4 : ! !
5 : ! SPDX-License-Identifier: GPL-2.0-or-later !
6 : !--------------------------------------------------------------------------------------------------!
7 :
8 : ! **************************************************************************************************
9 : !> \brief Routines needed for EMD
10 : !> \author Florian Schiffmann (02.09)
11 : ! **************************************************************************************************
12 :
13 : MODULE rt_propagation_utils
14 : USE atomic_kind_types, ONLY: atomic_kind_type
15 : USE cell_types, ONLY: cell_type
16 : USE cp_blacs_env, ONLY: cp_blacs_env_type
17 : USE cp_control_types, ONLY: dft_control_type,&
18 : rtp_control_type
19 : USE cp_dbcsr_api, ONLY: &
20 : dbcsr_add, dbcsr_binary_read, dbcsr_checksum, dbcsr_copy, dbcsr_create, &
21 : dbcsr_deallocate_matrix, dbcsr_desymmetrize, dbcsr_distribution_type, dbcsr_filter, &
22 : dbcsr_get_info, dbcsr_iterator_blocks_left, dbcsr_iterator_next_block, &
23 : dbcsr_iterator_start, dbcsr_iterator_stop, dbcsr_iterator_type, dbcsr_p_type, dbcsr_scale, &
24 : dbcsr_set, dbcsr_type
25 : USE cp_dbcsr_operations, ONLY: cp_dbcsr_plus_fm_fm_t,&
26 : dbcsr_deallocate_matrix_set
27 : USE cp_fm_basic_linalg, ONLY: cp_fm_column_scale
28 : USE cp_fm_types, ONLY: cp_fm_create,&
29 : cp_fm_get_info,&
30 : cp_fm_release,&
31 : cp_fm_set_all,&
32 : cp_fm_to_fm,&
33 : cp_fm_type
34 : USE cp_log_handling, ONLY: cp_get_default_logger,&
35 : cp_logger_get_default_io_unit,&
36 : cp_logger_get_default_unit_nr,&
37 : cp_logger_type
38 : USE cp_output_handling, ONLY: cp_p_file,&
39 : cp_print_key_finished_output,&
40 : cp_print_key_should_output,&
41 : cp_print_key_unit_nr
42 : USE cp_realspace_grid_cube, ONLY: cp_pw_to_cube
43 : USE input_constants, ONLY: use_restart_wfn,&
44 : use_rt_restart
45 : USE input_section_types, ONLY: section_get_ival,&
46 : section_get_ivals,&
47 : section_get_lval,&
48 : section_vals_get_subs_vals,&
49 : section_vals_type,&
50 : section_vals_val_get
51 : USE kinds, ONLY: default_path_length,&
52 : default_string_length,&
53 : dp
54 : USE mathconstants, ONLY: zero
55 : USE memory_utilities, ONLY: reallocate
56 : USE message_passing, ONLY: mp_para_env_type
57 : USE orbital_pointers, ONLY: ncoset
58 : USE particle_list_types, ONLY: particle_list_type
59 : USE particle_types, ONLY: particle_type
60 : USE pw_env_types, ONLY: pw_env_get,&
61 : pw_env_type
62 : USE pw_methods, ONLY: pw_multiply,&
63 : pw_zero
64 : USE pw_pool_types, ONLY: pw_pool_p_type,&
65 : pw_pool_type
66 : USE pw_types, ONLY: pw_c1d_gs_type,&
67 : pw_r3d_rs_type
68 : USE qs_collocate_density, ONLY: calculate_wavefunction
69 : USE qs_density_matrices, ONLY: calculate_density_matrix
70 : USE qs_dftb_matrices, ONLY: build_dftb_overlap
71 : USE qs_environment_types, ONLY: get_qs_env,&
72 : qs_environment_type
73 : USE qs_kind_types, ONLY: qs_kind_type
74 : USE qs_ks_types, ONLY: qs_ks_did_change,&
75 : qs_ks_env_type
76 : USE qs_mo_io, ONLY: read_mo_set_from_restart,&
77 : read_rt_mos_from_restart,&
78 : write_mo_set_to_output_unit
79 : USE qs_mo_types, ONLY: allocate_mo_set,&
80 : deallocate_mo_set,&
81 : get_mo_set,&
82 : init_mo_set,&
83 : mo_set_type
84 : USE qs_neighbor_list_types, ONLY: neighbor_list_set_p_type
85 : USE qs_overlap, ONLY: build_overlap_matrix
86 : USE qs_rho_methods, ONLY: qs_rho_update_rho
87 : USE qs_rho_types, ONLY: qs_rho_get,&
88 : qs_rho_set,&
89 : qs_rho_type
90 : USE qs_scf_wfn_mix, ONLY: wfn_mix
91 : USE qs_subsys_types, ONLY: qs_subsys_get,&
92 : qs_subsys_type
93 : USE rt_propagation_types, ONLY: get_rtp,&
94 : rt_prop_type
95 : #include "../base/base_uses.f90"
96 :
97 : IMPLICIT NONE
98 : PRIVATE
99 :
100 : PUBLIC :: get_restart_wfn, &
101 : calc_S_derivs, &
102 : calc_update_rho, &
103 : calc_update_rho_sparse, &
104 : calculate_P_imaginary, &
105 : write_rtp_mos_to_output_unit, &
106 : write_rtp_mo_cubes
107 :
108 : CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'rt_propagation_utils'
109 :
110 : CONTAINS
111 :
112 : ! **************************************************************************************************
113 : !> \brief Calculates dS/dR respectily the velocity weighted derivatves
114 : !> only needed for ehrenfest MD.
115 : !>
116 : !> \param qs_env the qs environment
117 : !> \par History
118 : !> 02.2009 created [Manuel Guidon]
119 : !> 02.2014 switched to dbcsr matrices [Samuel Andermatt]
120 : !> \author Florian Schiffmann
121 : ! **************************************************************************************************
122 1222 : SUBROUTINE calc_S_derivs(qs_env)
123 : TYPE(qs_environment_type), POINTER :: qs_env
124 :
125 : CHARACTER(LEN=*), PARAMETER :: routineN = 'calc_S_derivs'
126 : REAL(KIND=dp), PARAMETER :: one = 1.0_dp, zero = 0.0_dp
127 :
128 : INTEGER :: col_atom, handle, i, j, m, maxder, n, &
129 : nder, row_atom
130 : INTEGER, DIMENSION(6, 2) :: c_map_mat
131 : LOGICAL :: return_s_derivatives
132 1222 : REAL(dp), DIMENSION(:), POINTER :: block_values
133 : TYPE(dbcsr_iterator_type) :: iter
134 1222 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: C_mat, S_der, s_derivs
135 : TYPE(dbcsr_type), POINTER :: B_mat, tmp_mat, tmp_mat2
136 : TYPE(dft_control_type), POINTER :: dft_control
137 : TYPE(neighbor_list_set_p_type), DIMENSION(:), &
138 1222 : POINTER :: sab_orb
139 1222 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
140 : TYPE(qs_ks_env_type), POINTER :: ks_env
141 : TYPE(rt_prop_type), POINTER :: rtp
142 :
143 1222 : CALL timeset(routineN, handle)
144 :
145 1222 : return_s_derivatives = .TRUE.
146 :
147 1222 : NULLIFY (particle_set)
148 1222 : NULLIFY (rtp)
149 1222 : NULLIFY (s_derivs)
150 1222 : NULLIFY (dft_control)
151 1222 : NULLIFY (ks_env)
152 :
153 : CALL get_qs_env(qs_env=qs_env, &
154 : rtp=rtp, &
155 : particle_set=particle_set, &
156 : sab_orb=sab_orb, &
157 : dft_control=dft_control, &
158 1222 : ks_env=ks_env)
159 :
160 1222 : CALL get_rtp(rtp=rtp, B_mat=B_mat, C_mat=C_mat, S_der=S_der)
161 :
162 1222 : nder = 2
163 1222 : maxder = ncoset(nder)
164 :
165 : NULLIFY (tmp_mat)
166 1222 : ALLOCATE (tmp_mat)
167 1222 : CALL dbcsr_create(tmp_mat, template=S_der(1)%matrix, matrix_type="N")
168 :
169 1222 : IF (rtp%iter < 2) THEN
170 : ! calculate the overlap derivative matrices
171 342 : IF (dft_control%qs_control%dftb) THEN
172 84 : CALL build_dftb_overlap(qs_env, nder, s_derivs)
173 : ELSE
174 : CALL build_overlap_matrix(ks_env, nderivative=nder, matrix_s=s_derivs, &
175 258 : basis_type_a="ORB", basis_type_b="ORB", sab_nl=sab_orb)
176 : END IF
177 :
178 : NULLIFY (tmp_mat2)
179 342 : ALLOCATE (tmp_mat2)
180 342 : CALL dbcsr_create(tmp_mat2, template=S_der(1)%matrix, matrix_type="S")
181 3420 : DO m = 1, 9
182 3078 : CALL dbcsr_copy(tmp_mat2, s_derivs(m + 1)%matrix)
183 3078 : CALL dbcsr_desymmetrize(tmp_mat2, S_der(m)%matrix)
184 3078 : CALL dbcsr_scale(S_der(m)%matrix, -one)
185 3078 : CALL dbcsr_filter(S_der(m)%matrix, rtp%filter_eps)
186 : !The diagonal should be zero
187 3078 : CALL dbcsr_iterator_start(iter, S_der(m)%matrix)
188 15038 : DO WHILE (dbcsr_iterator_blocks_left(iter))
189 11960 : CALL dbcsr_iterator_next_block(iter, row_atom, col_atom, block_values)
190 168110 : IF (row_atom == col_atom) block_values = 0.0_dp
191 : END DO
192 6498 : CALL dbcsr_iterator_stop(iter)
193 : END DO
194 342 : CALL dbcsr_deallocate_matrix_set(s_derivs)
195 342 : CALL dbcsr_deallocate_matrix(tmp_mat2)
196 : END IF
197 :
198 : !calculate scalar product v(Rb)*<alpha|d/dRb beta> (B_mat), and store the first derivatives
199 :
200 1222 : CALL dbcsr_set(B_mat, zero)
201 4888 : DO m = 1, 3
202 3666 : CALL dbcsr_copy(tmp_mat, S_der(m)%matrix)
203 3666 : CALL dbcsr_iterator_start(iter, tmp_mat)
204 18814 : DO WHILE (dbcsr_iterator_blocks_left(iter))
205 15148 : CALL dbcsr_iterator_next_block(iter, row_atom, col_atom, block_values)
206 198595 : IF (row_atom == col_atom) block_values = 0.0_dp
207 392627 : block_values = block_values*particle_set(col_atom)%v(m)
208 : END DO
209 3666 : CALL dbcsr_iterator_stop(iter)
210 8554 : CALL dbcsr_add(B_mat, tmp_mat, one, one)
211 : END DO
212 1222 : CALL dbcsr_filter(B_mat, rtp%filter_eps)
213 : !calculate C matrix: v(Rb)*<d/dRa alpha| d/dRb beta>
214 :
215 1222 : c_map_mat = 0
216 1222 : n = 0
217 4888 : DO j = 1, 3
218 12220 : DO m = j, 3
219 7332 : n = n + 1
220 7332 : c_map_mat(n, 1) = j
221 7332 : IF (m == j) CYCLE
222 10998 : c_map_mat(n, 2) = m
223 : END DO
224 : END DO
225 :
226 4888 : DO i = 1, 3
227 4888 : CALL dbcsr_set(C_mat(i)%matrix, zero)
228 : END DO
229 8554 : DO m = 1, 6
230 7332 : CALL dbcsr_copy(tmp_mat, S_der(m + 3)%matrix)
231 23218 : DO j = 1, 2
232 14664 : IF (c_map_mat(m, j) == 0) CYCLE
233 21996 : CALL dbcsr_add(C_mat(c_map_mat(m, j))%matrix, tmp_mat, one, one)
234 : END DO
235 : END DO
236 :
237 4888 : DO m = 1, 3
238 3666 : CALL dbcsr_iterator_start(iter, C_mat(m)%matrix)
239 17746 : DO WHILE (dbcsr_iterator_blocks_left(iter))
240 14080 : CALL dbcsr_iterator_next_block(iter, row_atom, col_atom, block_values)
241 387587 : block_values = block_values*particle_set(row_atom)%v(m)
242 : END DO
243 3666 : CALL dbcsr_iterator_stop(iter)
244 8554 : CALL dbcsr_filter(C_mat(m)%matrix, rtp%filter_eps)
245 : END DO
246 :
247 1222 : CALL dbcsr_deallocate_matrix(tmp_mat)
248 1222 : CALL timestop(handle)
249 1222 : END SUBROUTINE
250 :
251 : ! **************************************************************************************************
252 : !> \brief reads the restart file. At the moment only SCF (means only real)
253 : !> \param qs_env ...
254 : !> \author Florian Schiffmann (02.09)
255 : ! **************************************************************************************************
256 :
257 36 : SUBROUTINE get_restart_wfn(qs_env)
258 : TYPE(qs_environment_type), POINTER :: qs_env
259 :
260 : CHARACTER(LEN=default_path_length) :: file_name, project_name
261 : INTEGER :: i, id_nr, im, ispin, ncol, nspin, &
262 : output_unit, re, unit_nr
263 : REAL(KIND=dp) :: alpha, cs_pos
264 36 : TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
265 : TYPE(cp_fm_type) :: mos_occ
266 36 : TYPE(cp_fm_type), DIMENSION(:), POINTER :: mos_old
267 : TYPE(cp_logger_type), POINTER :: logger
268 : TYPE(dbcsr_distribution_type) :: dist
269 36 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: p_rmpv, rho_new, rho_old
270 : TYPE(dft_control_type), POINTER :: dft_control
271 36 : TYPE(mo_set_type), DIMENSION(:), POINTER :: mo_array
272 : TYPE(mp_para_env_type), POINTER :: para_env
273 36 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
274 36 : TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
275 : TYPE(qs_rho_type), POINTER :: rho_struct
276 : TYPE(rt_prop_type), POINTER :: rtp
277 : TYPE(section_vals_type), POINTER :: dft_section, input
278 :
279 36 : NULLIFY (atomic_kind_set, qs_kind_set, mo_array, particle_set, rho_struct, para_env)
280 :
281 : CALL get_qs_env(qs_env, &
282 : qs_kind_set=qs_kind_set, &
283 : atomic_kind_set=atomic_kind_set, &
284 : particle_set=particle_set, &
285 : mos=mo_array, &
286 : input=input, &
287 : rtp=rtp, &
288 : dft_control=dft_control, &
289 : rho=rho_struct, &
290 36 : para_env=para_env)
291 36 : logger => cp_get_default_logger()
292 36 : output_unit = cp_logger_get_default_io_unit(logger)
293 :
294 36 : IF (logger%para_env%is_source()) THEN
295 18 : unit_nr = cp_logger_get_default_unit_nr(logger, local=.TRUE.)
296 : ELSE
297 : unit_nr = -1
298 : END IF
299 :
300 36 : id_nr = 0
301 36 : nspin = SIZE(mo_array)
302 36 : CALL qs_rho_get(rho_struct, rho_ao=p_rmpv)
303 36 : dft_section => section_vals_get_subs_vals(input, "DFT")
304 62 : SELECT CASE (dft_control%rtp_control%initial_wfn)
305 : CASE (use_restart_wfn)
306 : CALL read_mo_set_from_restart(mo_array, atomic_kind_set, qs_kind_set, particle_set, para_env, &
307 26 : id_nr=id_nr, multiplicity=dft_control%multiplicity, dft_section=dft_section)
308 26 : CALL set_uniform_occupation_mo_array(mo_array, nspin)
309 :
310 26 : IF (dft_control%rtp_control%apply_wfn_mix_init_restart) &
311 : CALL wfn_mix(mo_array, particle_set, dft_section, qs_kind_set, para_env, output_unit, &
312 4 : for_rtp=.TRUE.)
313 :
314 70 : DO ispin = 1, nspin
315 70 : CALL calculate_density_matrix(mo_array(ispin), p_rmpv(ispin)%matrix)
316 : END DO
317 26 : IF (rtp%linear_scaling) THEN
318 14 : CALL get_rtp(rtp=rtp, rho_old=rho_old, rho_new=rho_new)
319 34 : DO ispin = 1, nspin
320 20 : re = 2*ispin - 1
321 20 : im = 2*ispin
322 20 : CALL cp_fm_get_info(mo_array(ispin)%mo_coeff, ncol_global=ncol)
323 : CALL cp_fm_create(mos_occ, &
324 : matrix_struct=mo_array(ispin)%mo_coeff%matrix_struct, &
325 20 : name="mos_occ")
326 20 : CALL cp_fm_to_fm(mo_array(ispin)%mo_coeff, mos_occ)
327 20 : IF (mo_array(ispin)%uniform_occupation) THEN
328 16 : alpha = 3.0_dp - REAL(nspin, dp)
329 78 : CALL cp_fm_column_scale(mos_occ, mo_array(ispin)%occupation_numbers/alpha)
330 : CALL cp_dbcsr_plus_fm_fm_t(sparse_matrix=rho_old(re)%matrix, &
331 : matrix_v=mos_occ, &
332 : ncol=ncol, &
333 16 : alpha=alpha, keep_sparsity=.FALSE.)
334 : ELSE
335 4 : alpha = 1.0_dp
336 88 : CALL cp_fm_column_scale(mos_occ, mo_array(ispin)%occupation_numbers/alpha)
337 : CALL cp_dbcsr_plus_fm_fm_t(sparse_matrix=rho_old(re)%matrix, &
338 : matrix_v=mo_array(ispin)%mo_coeff, &
339 : matrix_g=mos_occ, &
340 : ncol=ncol, &
341 4 : alpha=alpha, keep_sparsity=.FALSE.)
342 : END IF
343 20 : CALL dbcsr_filter(rho_old(re)%matrix, rtp%filter_eps)
344 20 : CALL dbcsr_copy(rho_new(re)%matrix, rho_old(re)%matrix)
345 54 : CALL cp_fm_release(mos_occ)
346 : END DO
347 14 : CALL calc_update_rho_sparse(qs_env)
348 : ELSE
349 12 : CALL get_rtp(rtp=rtp, mos_old=mos_old)
350 36 : DO i = 1, SIZE(qs_env%mos)
351 24 : CALL cp_fm_to_fm(mo_array(i)%mo_coeff, mos_old(2*i - 1))
352 36 : CALL cp_fm_set_all(mos_old(2*i), zero, zero)
353 : END DO
354 : END IF
355 : CASE (use_rt_restart)
356 36 : IF (rtp%linear_scaling) THEN
357 2 : CALL get_rtp(rtp=rtp, rho_old=rho_old, rho_new=rho_new)
358 2 : project_name = logger%iter_info%project_name
359 4 : DO ispin = 1, nspin
360 2 : re = 2*ispin - 1
361 2 : im = 2*ispin
362 2 : WRITE (file_name, '(A,I0,A)') TRIM(project_name)//"_LS_DM_SPIN_RE", ispin, "_RESTART.dm"
363 2 : CALL dbcsr_get_info(rho_old(re)%matrix, distribution=dist)
364 2 : CALL dbcsr_binary_read(file_name, distribution=dist, matrix_new=rho_old(re)%matrix)
365 2 : cs_pos = dbcsr_checksum(rho_old(re)%matrix, pos=.TRUE.)
366 2 : IF (unit_nr > 0) THEN
367 1 : WRITE (unit_nr, '(T2,A,E20.8)') "Read restart DM "//TRIM(file_name)//" with checksum: ", cs_pos
368 : END IF
369 2 : WRITE (file_name, '(A,I0,A)') TRIM(project_name)//"_LS_DM_SPIN_IM", ispin, "_RESTART.dm"
370 2 : CALL dbcsr_get_info(rho_old(im)%matrix, distribution=dist)
371 2 : CALL dbcsr_binary_read(file_name, distribution=dist, matrix_new=rho_old(im)%matrix)
372 2 : cs_pos = dbcsr_checksum(rho_old(im)%matrix, pos=.TRUE.)
373 8 : IF (unit_nr > 0) THEN
374 1 : WRITE (unit_nr, '(T2,A,E20.8)') "Read restart DM "//TRIM(file_name)//" with checksum: ", cs_pos
375 : END IF
376 : END DO
377 6 : DO i = 1, SIZE(rho_new)
378 6 : CALL dbcsr_copy(rho_new(i)%matrix, rho_old(i)%matrix)
379 : END DO
380 2 : CALL calc_update_rho_sparse(qs_env)
381 : ELSE
382 8 : CALL get_rtp(rtp=rtp, mos_old=mos_old)
383 : CALL read_rt_mos_from_restart(mo_array, mos_old, atomic_kind_set, qs_kind_set, particle_set, para_env, &
384 8 : id_nr, dft_control%multiplicity, dft_section)
385 8 : CALL set_uniform_occupation_mo_array(mo_array, nspin)
386 16 : DO ispin = 1, nspin
387 : CALL calculate_density_matrix(mo_array(ispin), &
388 16 : p_rmpv(ispin)%matrix)
389 : END DO
390 : END IF
391 : END SELECT
392 :
393 36 : END SUBROUTINE get_restart_wfn
394 :
395 : ! **************************************************************************************************
396 : !> \brief Set mo_array(ispin)%uniform_occupation after a restart
397 : !> \param mo_array ...
398 : !> \param nspin ...
399 : !> \author Guillaume Le Breton (03.23)
400 : ! **************************************************************************************************
401 :
402 34 : SUBROUTINE set_uniform_occupation_mo_array(mo_array, nspin)
403 :
404 : TYPE(mo_set_type), DIMENSION(:), POINTER :: mo_array
405 : INTEGER :: nspin
406 :
407 : INTEGER :: ispin, mo
408 : LOGICAL :: is_uniform
409 :
410 86 : DO ispin = 1, nspin
411 52 : is_uniform = .TRUE.
412 274 : DO mo = 1, mo_array(ispin)%nmo
413 : IF (mo_array(ispin)%occupation_numbers(mo) /= 0.0 .AND. &
414 222 : mo_array(ispin)%occupation_numbers(mo) /= 1.0 .AND. &
415 : mo_array(ispin)%occupation_numbers(mo) /= 2.0) &
416 92 : is_uniform = .FALSE.
417 : END DO
418 86 : mo_array(ispin)%uniform_occupation = is_uniform
419 : END DO
420 :
421 34 : END SUBROUTINE set_uniform_occupation_mo_array
422 :
423 : ! **************************************************************************************************
424 : !> \brief calculates the density from the complex MOs and passes the density to
425 : !> qs_env.
426 : !> \param qs_env ...
427 : !> \author Florian Schiffmann (02.09)
428 : ! **************************************************************************************************
429 :
430 2018 : SUBROUTINE calc_update_rho(qs_env)
431 :
432 : TYPE(qs_environment_type), POINTER :: qs_env
433 :
434 : CHARACTER(len=*), PARAMETER :: routineN = 'calc_update_rho'
435 : REAL(KIND=dp), PARAMETER :: one = 1.0_dp, zero = 0.0_dp
436 :
437 : INTEGER :: handle, i, im, ncol, re
438 : REAL(KIND=dp) :: alpha
439 : TYPE(cp_fm_type) :: mos_occ
440 2018 : TYPE(cp_fm_type), DIMENSION(:), POINTER :: mos_new
441 2018 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: rho_ao, rho_ao_im
442 2018 : TYPE(mo_set_type), DIMENSION(:), POINTER :: mos
443 : TYPE(qs_ks_env_type), POINTER :: ks_env
444 : TYPE(qs_rho_type), POINTER :: rho
445 : TYPE(rt_prop_type), POINTER :: rtp
446 :
447 2018 : CALL timeset(routineN, handle)
448 :
449 2018 : NULLIFY (rho, ks_env, mos_new, rtp)
450 : CALL get_qs_env(qs_env, &
451 : ks_env=ks_env, &
452 : rho=rho, &
453 : rtp=rtp, &
454 2018 : mos=mos)
455 2018 : CALL get_rtp(rtp=rtp, mos_new=mos_new)
456 2018 : CALL qs_rho_get(rho_struct=rho, rho_ao=rho_ao)
457 4580 : DO i = 1, SIZE(mos_new)/2
458 2562 : re = 2*i - 1; im = 2*i
459 2562 : CALL dbcsr_set(rho_ao(i)%matrix, zero)
460 2562 : CALL cp_fm_get_info(mos_new(re), ncol_global=ncol)
461 : CALL cp_fm_create(mos_occ, &
462 : matrix_struct=mos(i)%mo_coeff%matrix_struct, &
463 2562 : name="mos_occ")
464 2562 : CALL cp_fm_to_fm(mos_new(re), mos_occ)
465 2562 : IF (mos(i)%uniform_occupation) THEN
466 2462 : alpha = 3*one - REAL(SIZE(mos_new)/2, dp)
467 10286 : CALL cp_fm_column_scale(mos_occ, mos(i)%occupation_numbers/alpha)
468 : CALL cp_dbcsr_plus_fm_fm_t(sparse_matrix=rho_ao(i)%matrix, &
469 : matrix_v=mos_occ, &
470 : ncol=ncol, &
471 2462 : alpha=alpha)
472 : ELSE
473 100 : alpha = 1.0_dp
474 660 : CALL cp_fm_column_scale(mos_occ, mos(i)%occupation_numbers/alpha)
475 : CALL cp_dbcsr_plus_fm_fm_t(sparse_matrix=rho_ao(i)%matrix, &
476 : matrix_v=mos_new(re), &
477 : matrix_g=mos_occ, &
478 : ncol=ncol, &
479 100 : alpha=alpha)
480 : END IF
481 :
482 : ! It is actually complex conjugate but i*i=-1 therefore it must be added
483 2562 : CALL cp_fm_to_fm(mos_new(im), mos_occ)
484 2562 : IF (mos(i)%uniform_occupation) THEN
485 2462 : alpha = 3*one - REAL(SIZE(mos_new)/2, dp)
486 10286 : CALL cp_fm_column_scale(mos_occ, mos(i)%occupation_numbers/alpha)
487 : CALL cp_dbcsr_plus_fm_fm_t(sparse_matrix=rho_ao(i)%matrix, &
488 : matrix_v=mos_occ, &
489 : ncol=ncol, &
490 2462 : alpha=alpha)
491 : ELSE
492 100 : alpha = 1.0_dp
493 660 : CALL cp_fm_column_scale(mos_occ, mos(i)%occupation_numbers/alpha)
494 : CALL cp_dbcsr_plus_fm_fm_t(sparse_matrix=rho_ao(i)%matrix, &
495 : matrix_v=mos_new(im), &
496 : matrix_g=mos_occ, &
497 : ncol=ncol, &
498 100 : alpha=alpha)
499 : END IF
500 7142 : CALL cp_fm_release(mos_occ)
501 : END DO
502 2018 : CALL qs_rho_update_rho(rho, qs_env)
503 :
504 2018 : IF (rtp%track_imag_density) THEN
505 1358 : CALL qs_rho_get(rho_struct=rho, rho_ao_im=rho_ao_im)
506 1358 : CALL calculate_P_imaginary(qs_env, rtp, rho_ao_im, keep_sparsity=.TRUE.)
507 1358 : CALL qs_rho_set(rho, rho_ao_im=rho_ao_im)
508 : END IF
509 :
510 2018 : CALL qs_ks_did_change(ks_env, rho_changed=.TRUE.)
511 :
512 2018 : CALL timestop(handle)
513 :
514 2018 : END SUBROUTINE calc_update_rho
515 :
516 : ! **************************************************************************************************
517 : !> \brief Copies the density matrix back into the qs_env%rho%rho_ao
518 : !> \param qs_env ...
519 : !> \author Samuel Andermatt (3.14)
520 : ! **************************************************************************************************
521 :
522 1264 : SUBROUTINE calc_update_rho_sparse(qs_env)
523 :
524 : TYPE(qs_environment_type), POINTER :: qs_env
525 :
526 : CHARACTER(len=*), PARAMETER :: routineN = 'calc_update_rho_sparse'
527 : REAL(KIND=dp), PARAMETER :: zero = 0.0_dp
528 :
529 : INTEGER :: handle, ispin
530 1264 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: rho_ao, rho_ao_im, rho_new
531 : TYPE(dft_control_type), POINTER :: dft_control
532 : TYPE(qs_ks_env_type), POINTER :: ks_env
533 : TYPE(qs_rho_type), POINTER :: rho
534 : TYPE(rt_prop_type), POINTER :: rtp
535 : TYPE(rtp_control_type), POINTER :: rtp_control
536 :
537 1264 : NULLIFY (rho, ks_env, rtp, dft_control)
538 1264 : CALL timeset(routineN, handle)
539 : CALL get_qs_env(qs_env, &
540 : ks_env=ks_env, &
541 : rho=rho, &
542 : rtp=rtp, &
543 1264 : dft_control=dft_control)
544 1264 : rtp_control => dft_control%rtp_control
545 1264 : CALL get_rtp(rtp=rtp, rho_new=rho_new)
546 1264 : CALL qs_rho_get(rho_struct=rho, rho_ao=rho_ao)
547 1264 : IF (rtp%track_imag_density) CALL qs_rho_get(rho_struct=rho, rho_ao_im=rho_ao_im)
548 2946 : DO ispin = 1, SIZE(rho_ao)
549 1682 : CALL dbcsr_set(rho_ao(ispin)%matrix, zero)
550 1682 : CALL dbcsr_copy(rho_ao(ispin)%matrix, rho_new(ispin*2 - 1)%matrix, keep_sparsity=.TRUE.)
551 2946 : IF (rtp%track_imag_density) THEN
552 488 : CALL dbcsr_copy(rho_ao_im(ispin)%matrix, rho_new(ispin*2)%matrix, keep_sparsity=.TRUE.)
553 : END IF
554 : END DO
555 :
556 1264 : CALL qs_rho_update_rho(rho, qs_env)
557 1264 : CALL qs_ks_did_change(ks_env, rho_changed=.TRUE.)
558 :
559 1264 : CALL timestop(handle)
560 :
561 1264 : END SUBROUTINE calc_update_rho_sparse
562 :
563 : ! **************************************************************************************************
564 : !> \brief ...
565 : !> \param qs_env ...
566 : !> \param rtp ...
567 : !> \param matrix_p_im ...
568 : !> \param keep_sparsity ...
569 : ! **************************************************************************************************
570 1370 : SUBROUTINE calculate_P_imaginary(qs_env, rtp, matrix_p_im, keep_sparsity)
571 : TYPE(qs_environment_type), POINTER :: qs_env
572 : TYPE(rt_prop_type), POINTER :: rtp
573 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_p_im
574 : LOGICAL, OPTIONAL :: keep_sparsity
575 :
576 : INTEGER :: i, im, ncol, re
577 : LOGICAL :: my_keep_sparsity
578 : REAL(KIND=dp) :: alpha
579 1370 : TYPE(cp_fm_type), DIMENSION(:), POINTER :: mos_new, mos_occ
580 1370 : TYPE(mo_set_type), DIMENSION(:), POINTER :: mos
581 :
582 1370 : CALL get_rtp(rtp=rtp, mos_new=mos_new)
583 :
584 1370 : my_keep_sparsity = .FALSE.
585 1370 : IF (PRESENT(keep_sparsity)) my_keep_sparsity = keep_sparsity
586 1370 : CALL get_qs_env(qs_env, mos=mos)
587 7482 : ALLOCATE (mos_occ(SIZE(mos)*2))
588 :
589 3056 : DO i = 1, SIZE(mos_new)/2
590 1686 : re = 2*i - 1; im = 2*i
591 1686 : alpha = 3.0_dp - REAL(SIZE(matrix_p_im), dp)
592 : CALL cp_fm_create(mos_occ(re), &
593 : matrix_struct=mos(i)%mo_coeff%matrix_struct, &
594 1686 : name="mos_occ")
595 : CALL cp_fm_create(mos_occ(im), &
596 : matrix_struct=mos(i)%mo_coeff%matrix_struct, &
597 1686 : name="mos_occ")
598 1686 : CALL dbcsr_set(matrix_p_im(i)%matrix, 0.0_dp)
599 1686 : CALL cp_fm_get_info(mos_new(re), ncol_global=ncol)
600 1686 : CALL cp_fm_to_fm(mos_new(re), mos_occ(re))
601 7152 : CALL cp_fm_column_scale(mos_occ(re), mos(i)%occupation_numbers/alpha)
602 1686 : CALL cp_fm_to_fm(mos_new(im), mos_occ(im))
603 7152 : CALL cp_fm_column_scale(mos_occ(im), mos(i)%occupation_numbers/alpha)
604 : CALL cp_dbcsr_plus_fm_fm_t(sparse_matrix=matrix_p_im(i)%matrix, &
605 : matrix_v=mos_occ(im), &
606 : matrix_g=mos_occ(re), &
607 : ncol=ncol, &
608 : keep_sparsity=my_keep_sparsity, &
609 : alpha=2.0_dp*alpha, &
610 4742 : symmetry_mode=-1)
611 : END DO
612 1370 : CALL cp_fm_release(mos_occ)
613 :
614 1370 : END SUBROUTINE calculate_P_imaginary
615 :
616 : ! **************************************************************************************************
617 : !> \brief ...
618 : !> \param qs_env ...
619 : !> \param rtp ...
620 : ! **************************************************************************************************
621 624 : SUBROUTINE write_rtp_mos_to_output_unit(qs_env, rtp)
622 : TYPE(qs_environment_type), POINTER :: qs_env
623 : TYPE(rt_prop_type), POINTER :: rtp
624 :
625 : CHARACTER(len=*), PARAMETER :: routineN = 'write_rtp_mos_to_output_unit'
626 :
627 : CHARACTER(LEN=10) :: spin
628 : CHARACTER(LEN=2*default_string_length) :: name
629 : INTEGER :: handle, i, ispin, nao, nelectron, nmo, &
630 : nspins
631 : LOGICAL :: print_eigvecs, print_mo_info
632 : REAL(KIND=dp) :: flexible_electron_count, maxocc, n_el_f
633 312 : TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
634 312 : TYPE(cp_fm_type), DIMENSION(:), POINTER :: mos_new
635 : TYPE(cp_logger_type), POINTER :: logger
636 : TYPE(mo_set_type) :: mo_set_rtp
637 312 : TYPE(mo_set_type), DIMENSION(:), POINTER :: mos
638 312 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
639 312 : TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
640 : TYPE(section_vals_type), POINTER :: dft_section, input
641 :
642 312 : NULLIFY (atomic_kind_set, particle_set, qs_kind_set, input, mos, dft_section)
643 :
644 312 : CALL timeset(routineN, handle)
645 :
646 : CALL get_qs_env(qs_env, &
647 : atomic_kind_set=atomic_kind_set, &
648 : qs_kind_set=qs_kind_set, &
649 : particle_set=particle_set, &
650 : input=input, &
651 312 : mos=mos)
652 : ! Quick return, if no printout of MO information is requested
653 312 : dft_section => section_vals_get_subs_vals(input, "DFT")
654 312 : CALL section_vals_val_get(dft_section, "PRINT%MO%EIGENVECTORS", l_val=print_eigvecs)
655 :
656 312 : NULLIFY (logger)
657 312 : logger => cp_get_default_logger()
658 : print_mo_info = (cp_print_key_should_output(logger%iter_info, &
659 : dft_section, "PRINT%MO") /= 0) .OR. &
660 312 : (qs_env%sim_step == 1)
661 :
662 100 : IF ((.NOT. print_mo_info) .OR. (.NOT. print_eigvecs)) THEN
663 308 : CALL timestop(handle)
664 308 : RETURN
665 : END IF
666 :
667 4 : CALL get_rtp(rtp=rtp, mos_new=mos_new)
668 :
669 4 : nspins = SIZE(mos_new)/2
670 :
671 8 : DO ispin = 1, nspins
672 : ! initiate mo_set
673 : CALL get_mo_set(mo_set=mos(ispin), nao=nao, nmo=nmo, nelectron=nelectron, &
674 4 : n_el_f=n_el_f, maxocc=maxocc, flexible_electron_count=flexible_electron_count)
675 :
676 : CALL allocate_mo_set(mo_set_rtp, &
677 : nao=nao, &
678 : nmo=nmo, &
679 : nelectron=nelectron, &
680 : n_el_f=n_el_f, &
681 : maxocc=maxocc, &
682 4 : flexible_electron_count=flexible_electron_count)
683 :
684 4 : WRITE (name, FMT="(A,I6)") "RTP MO SET, SPIN ", ispin
685 4 : CALL init_mo_set(mo_set_rtp, fm_ref=mos_new(2*ispin - 1), name=name)
686 :
687 4 : IF (nspins > 1) THEN
688 0 : IF (ispin == 1) THEN
689 0 : spin = "ALPHA SPIN"
690 : ELSE
691 0 : spin = "BETA SPIN"
692 : END IF
693 : ELSE
694 4 : spin = ""
695 : END IF
696 :
697 8 : mo_set_rtp%occupation_numbers = mos(ispin)%occupation_numbers
698 :
699 : !loop for real (odd) and imaginary (even) parts
700 12 : DO i = 1, 0, -1
701 8 : CALL cp_fm_to_fm(mos_new(2*ispin - i), mo_set_rtp%mo_coeff)
702 : CALL write_mo_set_to_output_unit(mo_set_rtp, atomic_kind_set, qs_kind_set, particle_set, &
703 12 : dft_section, 4, 0, rtp=.TRUE., spin=TRIM(spin), cpart=MOD(i, 2), sim_step=qs_env%sim_step)
704 : END DO
705 :
706 12 : CALL deallocate_mo_set(mo_set_rtp)
707 : END DO
708 :
709 4 : CALL timestop(handle)
710 :
711 312 : END SUBROUTINE write_rtp_mos_to_output_unit
712 :
713 : ! **************************************************************************************************
714 : !> \brief Write the time dependent amplitude of the MOs in real grid.
715 : !> Very close to qs_scf_post_gpw/qs_scf_post_occ_cubes subroutine.
716 : !> \param qs_env ...
717 : !> \param rtp ...
718 : !> \author Guillaume Le Breton (11.22)
719 : ! **************************************************************************************************
720 312 : SUBROUTINE write_rtp_mo_cubes(qs_env, rtp)
721 : TYPE(qs_environment_type), POINTER :: qs_env
722 : TYPE(rt_prop_type), POINTER :: rtp
723 :
724 : CHARACTER(LEN=*), PARAMETER :: routineN = 'write_rtp_mo_cubes'
725 :
726 : CHARACTER(LEN=default_path_length) :: filename, my_pos_cube, title
727 : INTEGER :: handle, homo, i, ir, ispin, ivector, &
728 : n_rep, nhomo, nlist, nspins, &
729 : rt_time_step, unit_nr
730 312 : INTEGER, DIMENSION(:), POINTER :: list, list_index
731 : LOGICAL :: append_cube, do_kpoints, mpi_io
732 312 : TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
733 : TYPE(cell_type), POINTER :: cell
734 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
735 312 : TYPE(cp_fm_type), DIMENSION(:), POINTER :: mos_new
736 : TYPE(cp_fm_type), POINTER :: mo_coeff
737 : TYPE(cp_logger_type), POINTER :: logger
738 : TYPE(dft_control_type), POINTER :: dft_control
739 312 : TYPE(mo_set_type), DIMENSION(:), POINTER :: mos
740 : TYPE(mp_para_env_type), POINTER :: para_env
741 : TYPE(particle_list_type), POINTER :: particles
742 312 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
743 : TYPE(pw_c1d_gs_type) :: wf_g
744 : TYPE(pw_env_type), POINTER :: pw_env
745 312 : TYPE(pw_pool_p_type), DIMENSION(:), POINTER :: pw_pools
746 : TYPE(pw_pool_type), POINTER :: auxbas_pw_pool
747 : TYPE(pw_r3d_rs_type) :: density_r, wf_r
748 312 : TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
749 : TYPE(qs_subsys_type), POINTER :: subsys
750 : TYPE(section_vals_type), POINTER :: dft_section, input
751 :
752 312 : CALL timeset(routineN, handle)
753 :
754 312 : NULLIFY (logger, auxbas_pw_pool, pw_pools, pw_env)
755 :
756 : ! Get all the info from qs:
757 : CALL get_qs_env(qs_env, do_kpoints=do_kpoints, &
758 312 : input=input)
759 :
760 : ! Kill the run in the case of K points
761 312 : IF (do_kpoints) THEN
762 0 : CPABORT("K points not handled yet for printing MO_CUBE")
763 : END IF
764 :
765 312 : dft_section => section_vals_get_subs_vals(input, "DFT")
766 312 : logger => cp_get_default_logger()
767 :
768 : ! Quick return if no print required
769 312 : IF (.NOT. BTEST(cp_print_key_should_output(logger%iter_info, dft_section, &
770 : "PRINT%MO_CUBES"), cp_p_file)) THEN
771 288 : CALL timestop(handle)
772 288 : RETURN
773 : END IF
774 :
775 : CALL get_qs_env(qs_env, atomic_kind_set=atomic_kind_set, &
776 : mos=mos, &
777 : blacs_env=blacs_env, &
778 : qs_kind_set=qs_kind_set, &
779 : pw_env=pw_env, &
780 : subsys=subsys, &
781 : para_env=para_env, &
782 : particle_set=particle_set, &
783 24 : dft_control=dft_control)
784 24 : CALL qs_subsys_get(subsys, particles=particles)
785 :
786 24 : nspins = dft_control%nspins
787 24 : rt_time_step = qs_env%sim_step
788 :
789 : ! Setup the grids needed to compute a wavefunction given a vector
790 : CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, &
791 24 : pw_pools=pw_pools)
792 24 : CALL auxbas_pw_pool%create_pw(wf_r)
793 24 : CALL auxbas_pw_pool%create_pw(wf_g)
794 24 : CALL auxbas_pw_pool%create_pw(density_r)
795 24 : CALL get_rtp(rtp=rtp, mos_new=mos_new)
796 :
797 70 : DO ispin = 1, nspins
798 46 : CALL get_mo_set(mo_set=mos(ispin), homo=homo)
799 :
800 46 : nhomo = section_get_ival(dft_section, "PRINT%MO_CUBES%NHOMO")
801 46 : append_cube = section_get_lval(dft_section, "PRINT%MO_CUBES%APPEND")
802 46 : my_pos_cube = "REWIND"
803 46 : IF (append_cube) THEN
804 0 : my_pos_cube = "APPEND"
805 : END IF
806 46 : CALL section_vals_val_get(dft_section, "PRINT%MO_CUBES%HOMO_LIST", n_rep_val=n_rep)
807 46 : IF (n_rep > 0) THEN ! write the cubes of the list
808 0 : nlist = 0
809 0 : DO ir = 1, n_rep
810 0 : NULLIFY (list)
811 : CALL section_vals_val_get(dft_section, "PRINT%MO_CUBES%HOMO_LIST", i_rep_val=ir, &
812 0 : i_vals=list)
813 0 : IF (ASSOCIATED(list)) THEN
814 0 : CALL reallocate(list_index, 1, nlist + SIZE(list))
815 0 : DO i = 1, SIZE(list)
816 0 : list_index(i + nlist) = list(i)
817 : END DO
818 0 : nlist = nlist + SIZE(list)
819 : END IF
820 : END DO
821 : ELSE
822 :
823 46 : IF (nhomo == -1) nhomo = homo
824 46 : nlist = homo - MAX(1, homo - nhomo + 1) + 1
825 138 : ALLOCATE (list_index(nlist))
826 224 : DO i = 1, nlist
827 224 : list_index(i) = MAX(1, homo - nhomo + 1) + i - 1
828 : END DO
829 : END IF
830 224 : DO i = 1, nlist
831 178 : ivector = list_index(i)
832 : CALL get_qs_env(qs_env=qs_env, &
833 : atomic_kind_set=atomic_kind_set, &
834 : qs_kind_set=qs_kind_set, &
835 : cell=cell, &
836 : particle_set=particle_set, &
837 178 : pw_env=pw_env)
838 :
839 : ! density_r contains the density of the MOs
840 178 : CALL pw_zero(density_r)
841 178 : mo_coeff => mos_new(2*ispin - 1)!Real coeff
842 : CALL calculate_wavefunction(mo_coeff, ivector, wf_r, wf_g, atomic_kind_set, qs_kind_set, &
843 178 : cell, dft_control, particle_set, pw_env)
844 : ! Adding the real part
845 178 : CALL pw_multiply(density_r, wf_r, wf_r, 1.0_dp)
846 :
847 178 : mo_coeff => mos_new(2*ispin) !Im coeff
848 : CALL calculate_wavefunction(mo_coeff, ivector, wf_r, wf_g, atomic_kind_set, qs_kind_set, &
849 178 : cell, dft_control, particle_set, pw_env)
850 : ! Adding the im part
851 178 : CALL pw_multiply(density_r, wf_r, wf_r, 1.0_dp)
852 :
853 178 : WRITE (filename, '(a4,I5.5,a1,I1.1)') "WFN_", ivector, "_", ispin
854 178 : mpi_io = .TRUE.
855 : unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%MO_CUBES", extension=".cube", &
856 : middle_name=TRIM(filename), file_position=my_pos_cube, log_filename=.FALSE., &
857 178 : mpi_io=mpi_io)
858 178 : WRITE (title, *) "DENSITY ", ivector, " spin ", ispin, " i.e. HOMO - ", ivector - homo
859 : CALL cp_pw_to_cube(density_r, unit_nr, title, particles=particles, &
860 178 : stride=section_get_ivals(dft_section, "PRINT%MO_CUBES%STRIDE"), mpi_io=mpi_io)
861 224 : CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%PRINT%MO_CUBES", mpi_io=mpi_io)
862 : END DO
863 162 : IF (ASSOCIATED(list_index)) DEALLOCATE (list_index)
864 : END DO
865 :
866 : ! Deallocate grids needed to compute wavefunctions
867 24 : CALL auxbas_pw_pool%give_back_pw(wf_r)
868 24 : CALL auxbas_pw_pool%give_back_pw(wf_g)
869 24 : CALL auxbas_pw_pool%give_back_pw(density_r)
870 :
871 24 : CALL timestop(handle)
872 :
873 312 : END SUBROUTINE write_rtp_mo_cubes
874 :
875 : END MODULE rt_propagation_utils
|