LCOV - code coverage report
Current view: top level - src/eri_mme - eri_mme_error_control.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:4dc10b3) Lines: 151 172 87.8 %
Date: 2024-11-21 06:45:46 Functions: 5 5 100.0 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2024 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief Methods aiming for error estimate and automatic cutoff calibration.
      10             : !>        integrals.
      11             : !> \par History
      12             : !>       2015 09 created
      13             : !> \author Patrick Seewald
      14             : ! **************************************************************************************************
      15             : 
      16             : MODULE eri_mme_error_control
      17             :    USE ao_util,                         ONLY: exp_radius
      18             :    USE eri_mme_gaussian,                ONLY: get_minimax_coeff_v_gspace,&
      19             :                                               hermite_gauss_norm
      20             :    USE eri_mme_lattice_summation,       ONLY: pgf_sum_2c_gspace_1d_deltal
      21             :    USE kinds,                           ONLY: dp
      22             :    USE mathconstants,                   ONLY: pi,&
      23             :                                               twopi
      24             :    USE message_passing,                 ONLY: mp_para_env_type
      25             : #include "../base/base_uses.f90"
      26             : 
      27             :    IMPLICIT NONE
      28             : 
      29             :    PRIVATE
      30             : 
      31             :    LOGICAL, PRIVATE, PARAMETER :: debug_this_module = .FALSE.
      32             : 
      33             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'eri_mme_error_control'
      34             : 
      35             :    PUBLIC :: calibrate_cutoff, cutoff_minimax_error, minimax_error, cutoff_error
      36             : CONTAINS
      37             : 
      38             : ! **************************************************************************************************
      39             : !> \brief Find optimal cutoff minimizing errors due to minimax approximation and
      40             : !>        due to finite cutoff using bisection on the difference of the errors
      41             : !> \param hmat ...
      42             : !> \param h_inv ...
      43             : !> \param G_min ...
      44             : !> \param vol ...
      45             : !> \param zet_min   Minimum exponent
      46             : !> \param l_mm      Total ang. mom. quantum number
      47             : !> \param zet_max     Max. exponents to estimate cutoff error
      48             : !> \param l_max_zet       Max. total ang. mom. quantum numbers to estimate cutoff error
      49             : !> \param n_minimax Number of terms in minimax approximation
      50             : !> \param cutoff_l  Initial guess of lower bound for cutoff
      51             : !> \param cutoff_r  Initial guess of upper bound for cutoff
      52             : !> \param tol       Tolerance (cutoff precision)
      53             : !> \param delta     to modify initial guess interval
      54             : !> \param cutoff    Best cutoff
      55             : !> \param err_mm    Minimax error
      56             : !> \param err_c     Cutoff error
      57             : !> \param C_mm      Scaling constant to generalize AM-GM upper bound estimate to
      58             : !>                  minimax approx.
      59             : !> \param para_env ...
      60             : !> \param print_calib ...
      61             : !> \param unit_nr ...
      62             : ! **************************************************************************************************
      63          84 :    SUBROUTINE calibrate_cutoff(hmat, h_inv, G_min, vol, zet_min, l_mm, zet_max, l_max_zet, &
      64             :                                n_minimax, cutoff_l, cutoff_r, tol, delta, &
      65             :                                cutoff, err_mm, err_c, C_mm, para_env, print_calib, unit_nr)
      66             :       REAL(KIND=dp), DIMENSION(3, 3), INTENT(IN)         :: hmat, h_inv
      67             :       REAL(KIND=dp), INTENT(IN)                          :: G_min
      68             :       REAL(KIND=dp)                                      :: vol
      69             :       REAL(KIND=dp), INTENT(IN)                          :: zet_min
      70             :       INTEGER, INTENT(IN)                                :: l_mm
      71             :       REAL(KIND=dp), INTENT(IN)                          :: zet_max
      72             :       INTEGER, INTENT(IN)                                :: l_max_zet, n_minimax
      73             :       REAL(KIND=dp), INTENT(IN)                          :: cutoff_l, cutoff_r, tol, delta
      74             :       REAL(KIND=dp), INTENT(OUT)                         :: cutoff, err_mm, err_c, C_mm
      75             :       TYPE(mp_para_env_type), INTENT(IN)                 :: para_env
      76             :       LOGICAL, INTENT(IN)                                :: print_calib
      77             :       INTEGER, INTENT(IN)                                :: unit_nr
      78             : 
      79             :       INTEGER                                            :: i, iter1, iter2, max_iter
      80             :       LOGICAL                                            :: do_print, valid_initial
      81             :       REAL(KIND=dp)                                      :: cutoff_mid, delta_c_mid, delta_mm_mid
      82          84 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: minimax_aw
      83             :       REAL(KIND=dp), DIMENSION(2)                        :: cutoff_lr, delta_c, delta_mm
      84             : 
      85          84 :       do_print = unit_nr > 0 .AND. print_calib
      86             :       IF (do_print) THEN
      87           0 :          WRITE (unit_nr, '(/T2, A)') "ERI_MME| Basis set parameters for estimating minimax error"
      88           0 :          WRITE (unit_nr, '(T2, A, T67, ES12.2, 1X, I1)') "ERI_MME|   exp, l:", zet_min, l_mm
      89           0 :          WRITE (unit_nr, '(T2, A)') "ERI_MME| Basis set parameters for estimating cutoff error"
      90           0 :          WRITE (unit_nr, '(T2, A, T67, ES12.2, 1X, I1)') "ERI_MME|   exp, l:", zet_max, l_max_zet
      91             :       END IF
      92             : 
      93          84 :       max_iter = 100
      94             : 
      95          84 :       IF ((cutoff_r - cutoff_l)/(0.5_dp*(cutoff_r + cutoff_l)) .LE. tol) &
      96             :          CALL cp_abort(__LOCATION__, "difference of boundaries for cutoff "// &
      97           0 :                        "(MAX - MIN) must be greater than cutoff precision.")
      98             : 
      99          84 :       IF ((delta .GE. 1.0_dp) .OR. (delta .LE. 0.0_dp)) &
     100             :          CALL cp_abort(__LOCATION__, &
     101           0 :                        "relative delta to modify initial cutoff interval (DELTA) must be in (0, 1)")
     102             : 
     103          84 :       cutoff_lr(1) = cutoff_l
     104          84 :       cutoff_lr(2) = cutoff_r
     105             : 
     106         252 :       ALLOCATE (minimax_aw(2*n_minimax))
     107             : 
     108          84 :       IF (do_print) THEN
     109           0 :          WRITE (unit_nr, '(/T2, A)') "ERI_MME| Calibrating cutoff by bisecting error(minimax) - error(cutoff)"
     110           0 :          WRITE (unit_nr, '(T2, A, T72, ES9.2)') "ERI_MME| Rel. cutoff precision", tol
     111           0 :          WRITE (unit_nr, '(T2, A, T77, F4.1)') "ERI_MME| Rel. cutoff delta to modify initial interval", delta
     112             :       END IF
     113             : 
     114             :       ! 1) find valid initial values for bisection
     115          84 :       DO iter1 = 1, max_iter + 1
     116          84 :          IF (iter1 .GT. max_iter) &
     117             :             CALL cp_abort(__LOCATION__, &
     118             :                           "Maximum number of iterations in bisection to determine initial "// &
     119           0 :                           "cutoff interval has been exceeded.")
     120             : 
     121          84 :          cutoff_lr(1) = MAX(cutoff_lr(1), 0.5_dp*G_min**2)
     122             :          ! approx.) is hit
     123             : 
     124         252 :          DO i = 1, 2
     125             :             CALL cutoff_minimax_error(cutoff_lr(i), hmat, h_inv, vol, G_min, zet_min, l_mm, zet_max, l_max_zet, &
     126         252 :                                       n_minimax, minimax_aw, delta_mm(i), delta_c(i), C_mm, para_env)
     127             :          END DO
     128             : 
     129          84 :          valid_initial = .TRUE.
     130          84 :          IF ((delta_mm(1) - delta_c(1)) .GT. 0) THEN
     131           0 :             cutoff_lr(1) = cutoff_lr(1)*(1.0_dp - ABS(delta))
     132           0 :             valid_initial = .FALSE.
     133             :          END IF
     134          84 :          IF ((delta_mm(2) - delta_c(2)) .LT. 0) THEN
     135           0 :             cutoff_lr(2) = cutoff_lr(2)*(1.0_dp + ABS(delta))
     136             :             valid_initial = .FALSE.
     137             :          END IF
     138             : 
     139          84 :          IF (valid_initial) EXIT
     140             :       END DO
     141             : 
     142             :       ! 2) bisection to find cutoff s.t. err_minimax(cutoff) - err_cutoff(cutoff) = 0
     143          84 :       IF (do_print) WRITE (unit_nr, '(/T2, A)') &
     144           0 :          "ERI_MME| Step, cutoff (min, max, mid), err(minimax), err(cutoff), err diff"
     145             : 
     146        1190 :       DO iter2 = 1, max_iter + 1
     147        1190 :          IF (iter2 .GT. max_iter) &
     148             :             CALL cp_abort(__LOCATION__, &
     149           0 :                           "Maximum number of iterations in bisection to determine cutoff has been exceeded")
     150             : 
     151        1190 :          cutoff_mid = 0.5_dp*(cutoff_lr(1) + cutoff_lr(2))
     152             :          CALL cutoff_minimax_error(cutoff_mid, hmat, h_inv, vol, G_min, zet_min, l_mm, zet_max, l_max_zet, &
     153        1190 :                                    n_minimax, minimax_aw, delta_mm_mid, delta_c_mid, C_mm, para_env)
     154        1190 :          IF (do_print) WRITE (unit_nr, '(T11, I2, F11.1, F11.1, F11.1, 3X, ES9.2, 3X, ES9.2, 3X, ES9.2)') &
     155           0 :             iter2, cutoff_lr(1), cutoff_lr(2), cutoff_mid, &
     156           0 :             delta_mm_mid, delta_c_mid, delta_mm_mid - delta_c_mid
     157             : 
     158        1190 :          IF ((cutoff_lr(2) - cutoff_lr(1))/cutoff_mid .LT. tol) EXIT
     159        2380 :          IF (delta_mm_mid - delta_c_mid .GT. 0) THEN
     160         776 :             cutoff_lr(2) = cutoff_mid
     161         776 :             delta_mm(2) = delta_mm_mid
     162         776 :             delta_c(2) = delta_c_mid
     163             :          ELSE
     164         330 :             cutoff_lr(1) = cutoff_mid
     165         330 :             delta_mm(1) = delta_mm_mid
     166         330 :             delta_c(1) = delta_c_mid
     167             :          END IF
     168             :       END DO
     169          84 :       err_mm = delta_mm_mid
     170          84 :       err_c = delta_c_mid
     171          84 :       cutoff = cutoff_mid
     172             : 
     173          84 :       IF (do_print) THEN
     174           0 :          WRITE (unit_nr, '(/T2, A)') "ERI_MME| Cutoff calibration number of steps:"
     175           0 :          WRITE (unit_nr, '(T2, A, T79, I2)') "ERI_MME|   Steps for initial interval", iter1 - 1
     176           0 :          WRITE (unit_nr, '(T2, A, T79, I2/)') "ERI_MME|   Bisection iteration steps", iter2 - 1
     177             :       END IF
     178             : 
     179          84 :    END SUBROUTINE calibrate_cutoff
     180             : 
     181             : ! **************************************************************************************************
     182             : !> \brief Compute upper bounds for the errors of 2-center ERI's (P|P) due
     183             : !>        to minimax approximation and due to finite cutoff, where P is a
     184             : !>        normalized Hermite Gaussian.
     185             : !> \param cutoff ...
     186             : !> \param hmat ...
     187             : !> \param h_inv ...
     188             : !> \param vol ...
     189             : !> \param G_min ...
     190             : !> \param zet_min     Exponent of P to estimate minimax error
     191             : !> \param l_mm       total ang. mom. quantum number of P to estimate minimax error
     192             : !> \param zet_max   Max. exponents of P to estimate cutoff error
     193             : !> \param l_max_zet     Max. total ang. mom. quantum numbers of P to estimate cutoff error
     194             : !> \param n_minimax  Number of terms in minimax approximation
     195             : !> \param minimax_aw Minimax coefficients
     196             : !> \param err_mm     Minimax error
     197             : !> \param err_ctff   Cutoff error
     198             : !> \param C_mm       Scaling constant to generalize AM-GM upper bound estimate to
     199             : !>                   minimax approx.
     200             : !> \param para_env ...
     201             : ! **************************************************************************************************
     202        1396 :    SUBROUTINE cutoff_minimax_error(cutoff, hmat, h_inv, vol, G_min, zet_min, l_mm, zet_max, l_max_zet, &
     203        1396 :                                    n_minimax, minimax_aw, err_mm, err_ctff, C_mm, para_env)
     204             :       REAL(KIND=dp), INTENT(IN)                          :: cutoff
     205             :       REAL(KIND=dp), DIMENSION(3, 3), INTENT(IN)         :: hmat, h_inv
     206             :       REAL(KIND=dp), INTENT(IN)                          :: vol, G_min, zet_min
     207             :       INTEGER, INTENT(IN)                                :: l_mm
     208             :       REAL(KIND=dp), INTENT(IN)                          :: zet_max
     209             :       INTEGER, INTENT(IN)                                :: l_max_zet, n_minimax
     210             :       REAL(KIND=dp), DIMENSION(:), INTENT(OUT)           :: minimax_aw
     211             :       REAL(KIND=dp), INTENT(OUT)                         :: err_mm, err_ctff, C_mm
     212             :       TYPE(mp_para_env_type), INTENT(IN)                 :: para_env
     213             : 
     214             :       REAL(KIND=dp)                                      :: delta_mm
     215             : 
     216             :       CALL minimax_error(cutoff, hmat, vol, G_min, zet_min, l_mm, &
     217        1396 :                          n_minimax, minimax_aw, err_mm, delta_mm)
     218             :       CALL cutoff_error(cutoff, h_inv, G_min, zet_max, l_max_zet, &
     219        1396 :                         n_minimax, minimax_aw, err_ctff, C_mm, para_env)
     220             : 
     221        1396 :    END SUBROUTINE cutoff_minimax_error
     222             : 
     223             : ! **************************************************************************************************
     224             : !> \brief   Minimax error, simple analytical formula
     225             : !>          Note minimax error may blow up for small exponents. This is also observed numerically,
     226             : !>          but in this case, error estimate is no upper bound.
     227             : !> \param cutoff ...
     228             : !> \param hmat ...
     229             : !> \param vol ...
     230             : !> \param G_min ...
     231             : !> \param zet_min    Exponent of P to estimate minimax error
     232             : !> \param l_mm       total ang. mom. quantum number of P to estimate minimax error
     233             : !> \param n_minimax  Number of terms in minimax approximation
     234             : !> \param minimax_aw Minimax coefficients
     235             : !> \param err_mm     Minimax error
     236             : !> \param delta_mm ...
     237             : !> \param potential ...
     238             : !> \param pot_par ...
     239             : ! **************************************************************************************************
     240       86888 :    SUBROUTINE minimax_error(cutoff, hmat, vol, G_min, zet_min, l_mm, &
     241       86888 :                             n_minimax, minimax_aw, err_mm, delta_mm, potential, pot_par)
     242             :       REAL(KIND=dp), INTENT(IN)                          :: cutoff
     243             :       REAL(KIND=dp), DIMENSION(3, 3), INTENT(IN)         :: hmat
     244             :       REAL(KIND=dp), INTENT(IN)                          :: vol, G_min, zet_min
     245             :       INTEGER, INTENT(IN)                                :: l_mm, n_minimax
     246             :       REAL(KIND=dp), DIMENSION(:), INTENT(OUT)           :: minimax_aw
     247             :       REAL(KIND=dp), INTENT(OUT)                         :: err_mm, delta_mm
     248             :       INTEGER, INTENT(IN), OPTIONAL                      :: potential
     249             :       REAL(KIND=dp), INTENT(IN), OPTIONAL                :: pot_par
     250             : 
     251             :       INTEGER                                            :: i_xyz
     252             :       REAL(KIND=dp)                                      :: prod_mm_k
     253             : 
     254             :       CALL get_minimax_coeff_v_gspace(n_minimax, cutoff, G_min, minimax_aw(:), &
     255       86888 :                                       potential=potential, pot_par=pot_par, err_minimax=delta_mm)
     256             : 
     257       86888 :       prod_mm_k = 1.0_dp
     258      347552 :       DO i_xyz = 1, 3
     259             :          prod_mm_k = prod_mm_k*(ABS(hmat(i_xyz, i_xyz))/twopi + &
     260      348032 :                                 MERGE(SQRT(2.0_dp/(zet_min*pi))*EXP(-1.0_dp), 0.0_dp, l_mm .GT. 0))
     261             :       END DO
     262       86888 :       err_mm = 32*pi**4/vol*delta_mm*prod_mm_k
     263             : 
     264       86888 :    END SUBROUTINE
     265             : 
     266             : ! **************************************************************************************************
     267             : !> \brief Cutoff error, estimating G > G_c part of Ewald sum by using C/3 * 1/(Gx^2*Gy^2*Gz^2)^1/3 as an
     268             : !>        upper bound for 1/G^2 (AM-GM inequality) and its minimax approximation (factor C).
     269             : !>
     270             : !> Note: usually, minimax approx. falls off faster than 1/G**2, so C should be approximately 1.
     271             : !> The error is calculated for all l up to l_max and golden section search algorithm is
     272             : !> applied to find the exponent that maximizes cutoff error.
     273             : !> \param cutoff ...
     274             : !> \param h_inv ...
     275             : !> \param G_min ...
     276             : !> \param zet_max   Max. exponents of P to estimate cutoff error
     277             : !> \param l_max_zet     Max. total ang. mom. quantum numbers of P to estimate cutoff error
     278             : !> \param n_minimax  Number of terms in minimax approximation
     279             : !> \param minimax_aw Minimax coefficients
     280             : !> \param err_ctff   Cutoff error
     281             : !> \param C_mm       Scaling constant to generalize AM-GM upper bound estimate to
     282             : !>                   minimax approx.
     283             : !> \param para_env ...
     284             : ! **************************************************************************************************
     285        1396 :    SUBROUTINE cutoff_error(cutoff, h_inv, G_min, zet_max, l_max_zet, &
     286        1396 :                            n_minimax, minimax_aw, err_ctff, C_mm, para_env)
     287             :       REAL(KIND=dp), INTENT(IN)                          :: cutoff
     288             :       REAL(KIND=dp), DIMENSION(3, 3), INTENT(IN)         :: h_inv
     289             :       REAL(KIND=dp), INTENT(IN)                          :: G_min, zet_max
     290             :       INTEGER, INTENT(IN)                                :: l_max_zet, n_minimax
     291             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: minimax_aw
     292             :       REAL(KIND=dp), INTENT(OUT)                         :: err_ctff, C_mm
     293             :       TYPE(mp_para_env_type), INTENT(IN)                 :: para_env
     294             : 
     295             :       INTEGER                                            :: i_aw, iG, iter, max_iter, nG
     296             :       REAL(KIND=dp) :: C, dG, eps_zet, err0, err1, err_c, err_ctff_curr, err_ctff_prev, err_d, G, &
     297             :          G_1, G_c, gr, zet_a, zet_b, zet_c, zet_d, zet_div, zet_max_tmp
     298             : 
     299             :       ! parameters for finding exponent maximizing cutoff error
     300             : 
     301        1396 :       eps_zet = 1.0E-05_dp ! tolerance for exponent
     302        1396 :       zet_div = 2.0_dp ! sampling constant for finding initial values of exponents
     303        1396 :       max_iter = 100 ! maximum number of iterations in golden section search
     304        1396 :       G_c = SQRT(2.0*cutoff)
     305             : 
     306        1396 :       zet_max_tmp = zet_max
     307             : 
     308             :       ! 2) Cutoff error, estimating G > G_c part of Ewald sum by using C/3 * 1/(Gx^2*Gy^2*Gz^2)^1/3 as an
     309             :       !                  upper bound for 1/G^2 (AM-GM inequality) and its minimax approximation (factor C).
     310             :       !                  Note: usually, minimax approx. falls off faster than 1/G**2, so C should be approximately 1.
     311             :       !                  The error is calculated for all l up to l_max and golden section search algorithm is
     312             :       !                  applied to find the exponent that maximizes cutoff error.
     313       25586 :       G_1 = SQRT(1.0_dp/(3.0_dp*MINVAL(minimax_aw(1:n_minimax))))
     314             : 
     315        1396 :       C_mm = 0.0_dp
     316        1396 :       IF (G_1 .GT. G_c) THEN
     317         762 :          nG = 1000
     318         762 :          dG = (G_1 - G_c)/nG
     319         762 :          G = G_c
     320      762762 :          DO iG = 1, nG
     321      762000 :             G = MIN(G, G_c)
     322      762000 :             C = 0.0_dp
     323    20478000 :             DO i_aw = 1, n_minimax
     324    20478000 :                C = C + 3.0_dp*minimax_aw(n_minimax + i_aw)*EXP(-3.0_dp*minimax_aw(i_aw)*G**2)*G**2
     325             :             END DO
     326      762000 :             C_mm = MAX(C, C_mm)
     327      762762 :             G = G + dG
     328             :          END DO
     329             :       ELSE
     330        3712 :          DO i_aw = 1, n_minimax
     331        3712 :             C_mm = C_mm + 3.0_dp*minimax_aw(n_minimax + i_aw)*EXP(-3.0_dp*minimax_aw(i_aw)*G_c**2)*G_c**2
     332             :          END DO
     333             :       END IF
     334        1396 :       C = MAX(1.0_dp, C_mm)
     335             : 
     336        1396 :       err_ctff_prev = 0.0_dp
     337        1396 :       gr = 0.5_dp*(SQRT(5.0_dp) - 1.0_dp) ! golden ratio
     338             :       ! Find valid starting values for golden section search
     339        2754 :       DO iter = 1, max_iter + 1
     340        2754 :          IF (iter .GT. max_iter) &
     341             :             CALL cp_abort(__LOCATION__, "Maximum number of iterations for finding "// &
     342           0 :                           "exponent maximizing cutoff error has been exceeded.")
     343             : 
     344        2754 :          CALL cutoff_error_fixed_exp(cutoff, h_inv, G_min, l_max_zet, zet_max_tmp, C, err_ctff_curr, para_env)
     345        2754 :          IF (err_ctff_prev .GE. err_ctff_curr) THEN
     346        1396 :             zet_a = zet_max_tmp
     347        1396 :             zet_b = MIN(zet_max_tmp*zet_div**2, zet_max)
     348        1396 :             EXIT
     349             :          ELSE
     350        1358 :             err_ctff_prev = err_ctff_curr
     351             :          END IF
     352        4112 :          zet_max_tmp = zet_max_tmp/zet_div
     353             :       END DO
     354             : 
     355             :       ! Golden section search
     356        1396 :       zet_c = zet_b - gr*(zet_b - zet_a)
     357        1396 :       zet_d = zet_a + gr*(zet_b - zet_a)
     358       23210 :       DO iter = 1, max_iter + 1
     359       23210 :          IF (ABS(zet_c - zet_d) .LT. eps_zet*(zet_a + zet_b)) THEN
     360        1396 :             CALL cutoff_error_fixed_exp(cutoff, h_inv, G_min, l_max_zet, zet_a, C, err0, para_env)
     361        1396 :             CALL cutoff_error_fixed_exp(cutoff, h_inv, G_min, l_max_zet, zet_b, C, err1, para_env)
     362        1396 :             err_ctff_curr = MAX(err0, err1)
     363        1396 :             EXIT
     364             :          END IF
     365       21814 :          CALL cutoff_error_fixed_exp(cutoff, h_inv, G_min, l_max_zet, zet_c, C, err_c, para_env)
     366       21814 :          CALL cutoff_error_fixed_exp(cutoff, h_inv, G_min, l_max_zet, zet_d, C, err_d, para_env)
     367       21814 :          IF (err_c .GT. err_d) THEN
     368        2132 :             zet_b = zet_d
     369        2132 :             zet_d = zet_c
     370        2132 :             zet_c = zet_b - gr*(zet_b - zet_a)
     371             :          ELSE
     372       19682 :             zet_a = zet_c
     373       19682 :             zet_c = zet_d
     374       19682 :             zet_d = zet_a + gr*(zet_b - zet_a)
     375             :          END IF
     376             :       END DO
     377        1396 :       err_ctff = err_ctff_curr
     378             : 
     379        1396 :    END SUBROUTINE
     380             : 
     381             : ! **************************************************************************************************
     382             : !> \brief Calculate cutoff error estimate by using C_mm/3 * 1/(Gx^2*Gy^2*Gz^2)^1/3
     383             : !>        as an upper bound for 1/G^2 (and its minimax approximation) for |G| > G_c.
     384             : !>        Error is referring to a basis function P with fixed exponent zet_max and
     385             : !>        max. angular momentum l_max_zet.
     386             : !> \param cutoff ...
     387             : !> \param h_inv ...
     388             : !> \param G_min ...
     389             : !> \param l_max_zet ...
     390             : !> \param zet_max ...
     391             : !> \param C_mm ...
     392             : !> \param err_c ...
     393             : !> \param para_env ...
     394             : ! **************************************************************************************************
     395       49174 :    SUBROUTINE cutoff_error_fixed_exp(cutoff, h_inv, G_min, l_max_zet, zet_max, C_mm, err_c, para_env)
     396             :       REAL(KIND=dp), INTENT(IN)                          :: cutoff
     397             :       REAL(KIND=dp), DIMENSION(3, 3), INTENT(IN)         :: h_inv
     398             :       REAL(KIND=dp), INTENT(IN)                          :: G_min
     399             :       INTEGER, INTENT(IN)                                :: l_max_zet
     400             :       REAL(KIND=dp), INTENT(IN)                          :: zet_max, C_mm
     401             :       REAL(KIND=dp), INTENT(OUT)                         :: err_c
     402             :       TYPE(mp_para_env_type), INTENT(IN)                 :: para_env
     403             : 
     404             :       INTEGER                                            :: ax, ay, az, G_l, G_u, Gl_first, Gl_last, &
     405             :                                                             Gu_first, Gu_last, i_xyz, l, my_p, &
     406             :                                                             n_Gl, n_Gl_left, n_Gl_p, n_Gu, &
     407             :                                                             n_Gu_left, n_Gu_p, n_p
     408             :       REAL(KIND=dp)                                      :: alpha_G, eps_G, err_c_l, G_c, G_rad, &
     409             :                                                             G_res, inv_lgth, prefactor, sum_G_diff
     410             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :)        :: S_G_l, S_G_u
     411             : 
     412       49174 :       G_c = SQRT(2.0_dp*cutoff)
     413       49174 :       eps_G = TINY(eps_G) ! sum up to machine precision
     414       49174 :       G_res = 0.5_dp*G_min ! resolution for screening
     415             : 
     416       49174 :       err_c = 0.0_dp
     417       49174 :       alpha_G = 1.0_dp/(2.0_dp*zet_max)
     418       49174 :       prefactor = 1.0_dp/zet_max
     419             : 
     420      196696 :       ALLOCATE (S_G_l(0:2*l_max_zet, 3))
     421       98348 :       ALLOCATE (S_G_u(0:2*l_max_zet, 3))
     422             : 
     423       49174 :       G_rad = exp_radius(2*l_max_zet, alpha_G, eps_G, prefactor, epsabs=G_res)
     424             : 
     425             :       ! Parallelization of sum over G vectors
     426       49174 :       my_p = para_env%mepos ! mpi rank
     427       49174 :       n_p = para_env%num_pe ! total number of processes
     428             : 
     429      196696 :       DO i_xyz = 1, 3
     430      147522 :          inv_lgth = ABS(h_inv(i_xyz, i_xyz))
     431             : 
     432      147522 :          G_l = FLOOR(G_c/(inv_lgth*twopi))
     433      147522 :          G_u = FLOOR(G_rad/(inv_lgth*twopi))
     434             : 
     435      147522 :          IF (G_u .LT. G_l) G_u = G_l
     436             : 
     437             :          ! Serial code:
     438             :          ! !Sum |G| <= G_c
     439             :          ! CALL pgf_sum_2c_gspace_1d_deltal(S_G_l(:, i_xyz), alpha_G, inv_lgth, -G_l, G_l, &
     440             :          !                               2.0_dp/3.0_dp, prefactor)
     441             :          ! !Sum |G| > G_c
     442             :          ! CALL pgf_sum_2c_gspace_1d_deltal(S_G_u(:, i_xyz), alpha_G, inv_lgth, G_l + 1, G_u, &
     443             :          !                               2.0_dp/3.0_dp, prefactor)
     444             : 
     445             :          ! Parallel code:
     446      147522 :          n_Gu = MAX((G_u - G_l), 0)
     447      147522 :          n_Gl = 2*G_l + 1
     448      147522 :          n_Gu_p = n_Gu/n_p
     449      147522 :          n_Gl_p = n_Gl/n_p
     450      147522 :          n_Gu_left = MOD(n_Gu, n_p)
     451      147522 :          n_Gl_left = MOD(n_Gl, n_p)
     452             : 
     453      147522 :          IF (my_p .LT. n_Gu_left) THEN
     454       34831 :             Gu_first = G_l + 1 + (n_Gu_p + 1)*my_p
     455       34831 :             Gu_last = G_l + 1 + (n_Gu_p + 1)*(my_p + 1) - 1
     456             :          ELSE
     457      112691 :             Gu_first = G_l + 1 + n_Gu_left + n_Gu_p*my_p
     458      112691 :             Gu_last = G_l + 1 + n_Gu_left + n_Gu_p*(my_p + 1) - 1
     459             :          END IF
     460             : 
     461      147522 :          IF (my_p .LT. n_Gl_left) THEN
     462       73761 :             Gl_first = -G_l + (n_Gl_p + 1)*my_p
     463       73761 :             Gl_last = -G_l + (n_Gl_p + 1)*(my_p + 1) - 1
     464             :          ELSE
     465       73761 :             Gl_first = -G_l + n_Gl_left + n_Gl_p*my_p
     466       73761 :             Gl_last = -G_l + n_Gl_left + n_Gl_p*(my_p + 1) - 1
     467             :          END IF
     468             : 
     469             :          ! Sum |G| <= G_c
     470             :          CALL pgf_sum_2c_gspace_1d_deltal(S_G_l(:, i_xyz), alpha_G, inv_lgth, Gl_first, Gl_last, &
     471      147522 :                                           2.0_dp/3.0_dp, prefactor)
     472             : 
     473             :          ! Sum |G| > G_c
     474             :          CALL pgf_sum_2c_gspace_1d_deltal(S_G_u(:, i_xyz), alpha_G, inv_lgth, Gu_first, Gu_last, &
     475      196696 :                                           2.0_dp/3.0_dp, prefactor)
     476             :       END DO
     477             : 
     478       49174 :       CALL para_env%sum(S_G_l)
     479       49174 :       CALL para_env%sum(S_G_u)
     480             : 
     481      879226 :       S_G_u = S_G_u*2.0_dp ! to include negative values of G
     482             : 
     483      187516 :       DO l = 0, l_max_zet
     484      482956 :       DO ax = 0, l
     485      994330 :       DO ay = 0, l - ax
     486      560548 :          az = l - ax - ay
     487             : 
     488             :          ! Compute prod_k (S_G_l(l_k,k) + S_G_u(l_k,k)) - prod_k (S_G_l(l_k,k)) with k in {x, y, z}
     489             :          ! Note: term by term multiplication to avoid subtraction for numerical stability
     490             :          sum_G_diff = S_G_u(2*ax, 1)*S_G_u(2*ay, 2)*S_G_u(2*az, 3) + &
     491             :                       S_G_u(2*ax, 1)*S_G_u(2*ay, 2)*S_G_l(2*az, 3) + &
     492             :                       S_G_u(2*ax, 1)*S_G_l(2*ay, 2)*S_G_u(2*az, 3) + &
     493             :                       S_G_l(2*ax, 1)*S_G_u(2*ay, 2)*S_G_u(2*az, 3) + &
     494             :                       S_G_u(2*ax, 1)*S_G_l(2*ay, 2)*S_G_l(2*az, 3) + &
     495             :                       S_G_l(2*ax, 1)*S_G_u(2*ay, 2)*S_G_l(2*az, 3) + &
     496      560548 :                       S_G_l(2*ax, 1)*S_G_l(2*ay, 2)*S_G_u(2*az, 3)
     497             : 
     498             :          err_c_l = 4.0_dp*pi**4*hermite_gauss_norm(zet_max, [ax, ay, az])**2* &
     499     2242192 :                    C_mm/3.0_dp*sum_G_diff
     500             : 
     501      855988 :          err_c = MAX(err_c, err_c_l)
     502             :       END DO
     503             :       END DO
     504             :       END DO
     505             : 
     506       49174 :       DEALLOCATE (S_G_u, S_G_l)
     507             : 
     508       49174 :    END SUBROUTINE cutoff_error_fixed_exp
     509             : 
     510             : END MODULE eri_mme_error_control

Generated by: LCOV version 1.15