LCOV - code coverage report
Current view: top level - src - fermi_utils.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:4dc10b3) Lines: 135 168 80.4 %
Date: 2024-11-21 06:45:46 Functions: 5 6 83.3 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2024 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief deal with the Fermi distribution, compute it, fix mu, get derivs
      10             : !> \author Joost VandeVondele
      11             : !> \date 09.2008
      12             : ! **************************************************************************************************
      13             : MODULE fermi_utils
      14             : 
      15             :    USE kahan_sum,                       ONLY: accurate_sum
      16             :    USE kinds,                           ONLY: dp
      17             : #include "base/base_uses.f90"
      18             : 
      19             :    IMPLICIT NONE
      20             : 
      21             :    PRIVATE
      22             : 
      23             :    PUBLIC :: Fermi, FermiFixed, FermiFixedDeriv, Fermikp, Fermikp2
      24             : 
      25             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'fermi_utils'
      26             :    INTEGER, PARAMETER, PRIVATE          :: BISECT_MAX_ITER = 400
      27             : 
      28             : CONTAINS
      29             : ! **************************************************************************************************
      30             : !> \brief   returns occupations according to Fermi-Dirac statistics
      31             : !>          for a given set of energies and fermi level.
      32             : !>          Note that singly occupied orbitals are assumed
      33             : !> \param   f occupations
      34             : !> \param   N total number of electrons (output)
      35             : !> \param kTS ...
      36             : !> \param   e eigenvalues
      37             : !> \param   mu Fermi level (input)
      38             : !> \param   T  electronic temperature
      39             : !> \param   maxocc maximum occupation of an orbital
      40             : !> \param   estate excited state in core level spectroscopy
      41             : !> \param   festate occupation of the excited state in core level spectroscopy
      42             : !> \date    09.2008
      43             : !> \par History
      44             : !>          - Made estate and festate optional (LT, 2014/02/26)
      45             : !> \author  Joost VandeVondele
      46             : ! **************************************************************************************************
      47      378934 :    SUBROUTINE Fermi(f, N, kTS, e, mu, T, maxocc, estate, festate)
      48             : 
      49             :       REAL(KIND=dp), INTENT(out)                         :: f(:), N, kTS
      50             :       REAL(KIND=dp), INTENT(IN)                          :: e(:), mu, T, maxocc
      51             :       INTEGER, INTENT(IN), OPTIONAL                      :: estate
      52             :       REAL(KIND=dp), INTENT(IN), OPTIONAL                :: festate
      53             : 
      54             :       INTEGER                                            :: I, Nstate
      55             :       REAL(KIND=dp)                                      :: arg, occupation, term1, term2, tmp, &
      56             :                                                             tmp2, tmp3, tmp4, tmplog
      57             : 
      58      378934 :       Nstate = SIZE(e)
      59      378934 :       kTS = 0.0_dp
      60             :       ! kTS is the entropic contribution to the energy i.e. -TS
      61             :       ! kTS= kT*[f ln f + (1-f) ln (1-f)]
      62             : 
      63     5465208 :       DO i = 1, Nstate
      64     5086274 :          IF (PRESENT(estate) .AND. PRESENT(festate)) THEN
      65     5052994 :             IF (i == estate) THEN
      66        3304 :                occupation = festate
      67             :             ELSE
      68     5049690 :                occupation = maxocc
      69             :             END IF
      70             :          ELSE
      71       33280 :             occupation = maxocc
      72             :          END IF
      73             :          ! have the result of exp go to zero instead of overflowing
      74     5086274 :          IF (e(i) > mu) THEN
      75     2823581 :             arg = -(e(i) - mu)/T
      76             :             ! tmp is smaller than 1
      77     2823581 :             tmp = EXP(arg)
      78     2823581 :             tmp4 = tmp + 1.0_dp
      79     2823581 :             tmp2 = tmp/tmp4
      80     2823581 :             tmp3 = 1.0_dp/tmp4
      81             :             ! log(1+eps), might need to be written more accurately
      82     2823581 :             tmplog = -LOG(tmp4)
      83     2823581 :             term1 = tmp2*(arg + tmplog)
      84     2823581 :             term2 = tmp3*tmplog
      85             :          ELSE
      86     2262693 :             arg = (e(i) - mu)/T
      87             :             ! tmp is smaller than 1
      88     2262693 :             tmp = EXP(arg)
      89     2262693 :             tmp4 = tmp + 1.0_dp
      90     2262693 :             tmp2 = 1.0_dp/tmp4
      91     2262693 :             tmp3 = tmp/tmp4
      92     2262693 :             tmplog = -LOG(tmp4)
      93     2262693 :             term1 = tmp2*tmplog
      94     2262693 :             term2 = tmp3*(arg + tmplog)
      95             :          END IF
      96             : 
      97     5086274 :          f(i) = occupation*tmp2
      98     5465208 :          kTS = kTS + T*occupation*(term1 + term2)
      99             :       END DO
     100             : 
     101      378934 :       N = accurate_sum(f)
     102             : 
     103      378934 :    END SUBROUTINE Fermi
     104             : 
     105             : ! **************************************************************************************************
     106             : !> \brief Fermi function for KP cases
     107             : !> \param f   Occupation numbers
     108             : !> \param nel Number of electrons (total)
     109             : !> \param kTS Entropic energy contribution
     110             : !> \param e   orbital (band) energies
     111             : !> \param mu  chemical potential
     112             : !> \param wk  kpoint weights
     113             : !> \param t   Temperature
     114             : !> \param maxocc Maximum occupation
     115             : ! **************************************************************************************************
     116       41866 :    SUBROUTINE Fermi2(f, nel, kTS, e, mu, wk, t, maxocc)
     117             : 
     118             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(OUT)        :: f
     119             :       REAL(KIND=dp), INTENT(OUT)                         :: nel, kTS
     120             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(IN)         :: e
     121             :       REAL(KIND=dp), INTENT(IN)                          :: mu
     122             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: wk
     123             :       REAL(KIND=dp), INTENT(IN)                          :: t, maxocc
     124             : 
     125             :       INTEGER                                            :: ik, is, nkp, nmo
     126             :       REAL(KIND=dp)                                      :: arg, beta, term1, term2, tmp, tmp2, &
     127             :                                                             tmp3, tmp4, tmplog
     128             : 
     129       41866 :       nmo = SIZE(e, 1)
     130       41866 :       nkp = SIZE(e, 2)
     131       41866 :       kTS = 0.0_dp
     132             :       ! kTS is the entropic contribution to the energy i.e. -TS
     133             :       ! kTS= kT*[f ln f + (1-f) ln (1-f)]
     134       41866 :       IF (t > 1.0e-14_dp) THEN
     135       25034 :          beta = 1.0_dp/t
     136      223188 :          DO ik = 1, nkp
     137     9099632 :             DO is = 1, nmo
     138     8876444 :                IF (e(is, ik) > mu) THEN
     139     5306160 :                   arg = -(e(is, ik) - mu)*beta
     140     5306160 :                   tmp = EXP(arg)
     141     5306160 :                   tmp4 = tmp + 1.0_dp
     142     5306160 :                   tmp2 = tmp/tmp4
     143     5306160 :                   tmp3 = 1.0_dp/tmp4
     144     5306160 :                   tmplog = -LOG(tmp4)
     145     5306160 :                   term1 = tmp2*(arg + tmplog)
     146     5306160 :                   term2 = tmp3*tmplog
     147             :                ELSE
     148     3570284 :                   arg = (e(is, ik) - mu)*beta
     149     3570284 :                   tmp = EXP(arg)
     150     3570284 :                   tmp4 = tmp + 1.0_dp
     151     3570284 :                   tmp2 = 1.0_dp/tmp4
     152     3570284 :                   tmp3 = tmp/tmp4
     153     3570284 :                   tmplog = -LOG(tmp4)
     154     3570284 :                   term1 = tmp2*tmplog
     155     3570284 :                   term2 = tmp3*(arg + tmplog)
     156             :                END IF
     157             : 
     158     8876444 :                f(is, ik) = maxocc*tmp2
     159     9074598 :                kTS = kTS + t*maxocc*(term1 + term2)*wk(ik)
     160             :             END DO
     161             :          END DO
     162             :       ELSE
     163       71902 :          DO ik = 1, nkp
     164      563022 :             DO is = 1, nmo
     165      546190 :                IF (e(is, ik) <= mu) THEN
     166      301422 :                   f(is, ik) = maxocc
     167             :                ELSE
     168      189698 :                   f(is, ik) = 0.0_dp
     169             :                END IF
     170             :             END DO
     171             :          END DO
     172             :       END IF
     173             : 
     174       41866 :       nel = 0.0_dp
     175      295090 :       DO ik = 1, nkp
     176      295090 :          nel = nel + accurate_sum(f(1:nmo, ik))*wk(ik)
     177             :       END DO
     178             : 
     179       41866 :    END SUBROUTINE Fermi2
     180             : 
     181             : ! **************************************************************************************************
     182             : !> \brief   returns occupations according to Fermi-Dirac statistics
     183             : !>          for a given set of energies and number of electrons.
     184             : !>          Note that singly occupied orbitals are assumed.
     185             : !>          could fail if the fermi level lies out of the range of eigenvalues
     186             : !>          (to be fixed)
     187             : !> \param   f occupations
     188             : !> \param   mu Fermi level (output)
     189             : !> \param kTS ...
     190             : !> \param   e eigenvalues
     191             : !> \param   N total number of electrons (input)
     192             : !> \param   T  electronic temperature
     193             : !> \param   maxocc maximum occupation of an orbital
     194             : !> \param   estate excited state in core level spectroscopy
     195             : !> \param   festate occupation of the excited state in core level spectroscopy
     196             : !> \date    09.2008
     197             : !> \par History
     198             : !>          - Made estate and festate optional (LT, 2014/02/26)
     199             : !> \author  Joost VandeVondele
     200             : ! **************************************************************************************************
     201        6794 :    SUBROUTINE FermiFixed(f, mu, kTS, e, N, T, maxocc, estate, festate)
     202             :       REAL(KIND=dp), INTENT(OUT)                         :: f(:), mu, kTS
     203             :       REAL(KIND=dp), INTENT(IN)                          :: e(:), N, T, maxocc
     204             :       INTEGER, INTENT(IN), OPTIONAL                      :: estate
     205             :       REAL(KIND=dp), INTENT(IN), OPTIONAL                :: festate
     206             : 
     207             :       INTEGER                                            :: iter, my_estate
     208             :       REAL(KIND=dp)                                      :: mu_max, mu_min, mu_now, my_festate, &
     209             :                                                             N_max, N_min, N_now
     210             : 
     211        6794 :       IF (PRESENT(estate) .AND. PRESENT(festate)) THEN
     212        6754 :          my_estate = estate
     213        6754 :          my_festate = festate
     214             :       ELSE
     215          40 :          my_estate = NINT(maxocc)
     216          40 :          my_festate = my_estate
     217             :       END IF
     218             : 
     219             : ! bisection search to find N
     220             : ! first bracket
     221             : 
     222      104254 :       mu_min = MINVAL(e)
     223        6794 :       iter = 0
     224           0 :       DO
     225        6794 :          iter = iter + 1
     226        6794 :          CALL Fermi(f, N_min, kTS, e, mu_min, T, maxocc, my_estate, my_festate)
     227        6794 :          IF (N_min > N .OR. iter > 20) THEN
     228           0 :             mu_min = mu_min - T
     229             :          ELSE
     230             :             EXIT
     231             :          END IF
     232             :       END DO
     233             : 
     234      104254 :       mu_max = MAXVAL(e)
     235        6794 :       iter = 0
     236           0 :       DO
     237        6794 :          iter = iter + 1
     238        6794 :          CALL Fermi(f, N_max, kTS, e, mu_max, T, maxocc, my_estate, my_festate)
     239        6794 :          IF (N_max < N .OR. iter > 20) THEN
     240           0 :             mu_max = mu_max + T
     241             :          ELSE
     242             :             EXIT
     243             :          END IF
     244             :       END DO
     245             : 
     246             :       ! now bisect
     247             :       iter = 0
     248      365026 :       DO WHILE (mu_max - mu_min > EPSILON(mu)*MAX(1.0_dp, ABS(mu_max), ABS(mu_min)))
     249      358232 :          iter = iter + 1
     250      358232 :          mu_now = (mu_max + mu_min)/2.0_dp
     251      358232 :          CALL Fermi(f, N_now, kTS, e, mu_now, T, maxocc, my_estate, my_festate)
     252      358232 :          iter = iter + 1
     253             : 
     254      358232 :          IF (N_now <= N) THEN
     255      175618 :             mu_min = mu_now
     256             :          ELSE
     257      182614 :             mu_max = mu_now
     258             :          END IF
     259             : 
     260      365026 :          IF (iter > BISECT_MAX_ITER) THEN
     261           0 :             CPWARN("Maximum number of iterations reached while finding the Fermi energy")
     262           0 :             EXIT
     263             :          END IF
     264             :       END DO
     265             : 
     266        6794 :       mu = (mu_max + mu_min)/2.0_dp
     267        6794 :       CALL Fermi(f, N_now, kTS, e, mu, T, maxocc, my_estate, my_festate)
     268             : 
     269        6794 :    END SUBROUTINE FermiFixed
     270             : 
     271             : ! **************************************************************************************************
     272             : !> \brief Bisection search to find mu for a given nel (kpoint case)
     273             : !> \param f   Occupation numbers
     274             : !> \param mu  chemical potential
     275             : !> \param kTS Entropic energy contribution
     276             : !> \param e   orbital (band) energies
     277             : !> \param nel Number of electrons (total)
     278             : !> \param wk  kpoint weights
     279             : !> \param t   Temperature
     280             : !> \param maxocc Maximum occupation
     281             : ! **************************************************************************************************
     282        5930 :    SUBROUTINE Fermikp(f, mu, kTS, e, nel, wk, t, maxocc)
     283             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(OUT)        :: f
     284             :       REAL(KIND=dp), INTENT(OUT)                         :: mu, kTS
     285             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(IN)         :: e
     286             :       REAL(KIND=dp), INTENT(IN)                          :: nel
     287             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: wk
     288             :       REAL(KIND=dp), INTENT(IN)                          :: t, maxocc
     289             : 
     290             :       REAL(KIND=dp), PARAMETER                           :: epsocc = 1.0e-12_dp
     291             : 
     292             :       INTEGER                                            :: iter
     293             :       REAL(KIND=dp)                                      :: de, mu_max, mu_min, N_now
     294             : 
     295             :       ! bisection search to find mu for a given nel
     296        5930 :       de = t*LOG((1.0_dp - epsocc)/epsocc)
     297        5930 :       de = MAX(de, 0.5_dp)
     298      426386 :       mu_min = MINVAL(e) - de
     299      426386 :       mu_max = MAXVAL(e) + de
     300        5930 :       iter = 0
     301       35088 :       DO WHILE (mu_max - mu_min > EPSILON(mu)*MAX(1.0_dp, ABS(mu_max), ABS(mu_min)))
     302       35088 :          iter = iter + 1
     303       35088 :          mu = (mu_max + mu_min)/2.0_dp
     304       35088 :          CALL Fermi2(f, N_now, kTS, e, mu, wk, t, maxocc)
     305             : 
     306       35088 :          IF (ABS(N_now - nel) < nel*epsocc) EXIT
     307             : 
     308       29158 :          IF (N_now <= nel) THEN
     309       16642 :             mu_min = mu
     310             :          ELSE
     311       12516 :             mu_max = mu
     312             :          END IF
     313             : 
     314       35088 :          IF (iter > BISECT_MAX_ITER) THEN
     315           0 :             CPWARN("Maximum number of iterations reached while finding the Fermi energy")
     316           0 :             EXIT
     317             :          END IF
     318             :       END DO
     319             : 
     320        5930 :       mu = (mu_max + mu_min)/2.0_dp
     321        5930 :       CALL Fermi2(f, N_now, kTS, e, mu, wk, t, maxocc)
     322             : 
     323        5930 :    END SUBROUTINE Fermikp
     324             : 
     325             : ! **************************************************************************************************
     326             : !> \brief Bisection search to find mu for a given nel (kpoint case)
     327             : !> \param f   Occupation numbers
     328             : !> \param mu  chemical potential
     329             : !> \param kTS Entropic energy contribution
     330             : !> \param e   orbital (band) energies
     331             : !> \param nel Number of electrons (total)
     332             : !> \param wk  kpoint weights
     333             : !> \param t   Temperature
     334             : ! **************************************************************************************************
     335          10 :    SUBROUTINE Fermikp2(f, mu, kTS, e, nel, wk, t)
     336             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(OUT)     :: f
     337             :       REAL(KIND=dp), INTENT(OUT)                         :: mu, kTS
     338             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(IN)      :: e
     339             :       REAL(KIND=dp), INTENT(IN)                          :: nel
     340             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: wk
     341             :       REAL(KIND=dp), INTENT(IN)                          :: t
     342             : 
     343             :       REAL(KIND=dp), PARAMETER                           :: epsocc = 1.0e-12_dp
     344             : 
     345             :       INTEGER                                            :: iter
     346             :       REAL(KIND=dp)                                      :: de, kTSa, kTSb, mu_max, mu_min, N_now, &
     347             :                                                             na, nb
     348             : 
     349             :       ! only do spin polarized case
     350          10 :       CPASSERT(SIZE(f, 3) == 2 .AND. SIZE(e, 3) == 2)
     351             : 
     352             :       ! bisection search to find mu for a given nel
     353          10 :       de = t*LOG((1.0_dp - epsocc)/epsocc)
     354          10 :       de = MAX(de, 0.5_dp)
     355        2130 :       mu_min = MINVAL(e) - de
     356        2130 :       mu_max = MAXVAL(e) + de
     357          10 :       iter = 0
     358         414 :       DO WHILE (mu_max - mu_min > EPSILON(mu)*MAX(1.0_dp, ABS(mu_max), ABS(mu_min)))
     359         414 :          iter = iter + 1
     360         414 :          mu = (mu_max + mu_min)/2.0_dp
     361         414 :          CALL Fermi2(f(:, :, 1), na, kTSa, e(:, :, 1), mu, wk, t, 1.0_dp)
     362         414 :          CALL Fermi2(f(:, :, 2), nb, kTSb, e(:, :, 2), mu, wk, t, 1.0_dp)
     363         414 :          N_now = na + nb
     364             : 
     365         414 :          IF (ABS(N_now - nel) < nel*epsocc) EXIT
     366             : 
     367         404 :          IF (N_now <= nel) THEN
     368         198 :             mu_min = mu
     369             :          ELSE
     370         206 :             mu_max = mu
     371             :          END IF
     372             : 
     373         414 :          IF (iter > BISECT_MAX_ITER) THEN
     374           0 :             CPWARN("Maximum number of iterations reached while finding the Fermi energy")
     375           0 :             EXIT
     376             :          END IF
     377             :       END DO
     378             : 
     379          10 :       mu = (mu_max + mu_min)/2.0_dp
     380          10 :       CALL Fermi2(f(:, :, 1), na, kTSa, e(:, :, 1), mu, wk, t, 1.0_dp)
     381          10 :       CALL Fermi2(f(:, :, 2), nb, kTSb, e(:, :, 2), mu, wk, t, 1.0_dp)
     382          10 :       kTS = kTSa + kTSb
     383             : 
     384          10 :    END SUBROUTINE Fermikp2
     385             : 
     386             : ! **************************************************************************************************
     387             : !> \brief   returns f and dfde for a given set of energies and number of electrons
     388             : !>          it is a numerical derivative, trying to use a reasonable step length
     389             : !>          it ought to yield an accuracy of approximately EPSILON()^(2/3) (~10^-11)
     390             : !>          l ~ 10*T yields best accuracy
     391             : !>          Note that singly occupied orbitals are assumed.
     392             : !>          To be fixed: this could be parallellized for better efficiency
     393             : !> \param   dfde derivatives of the occupation numbers with respect to the eigenvalues
     394             : !>               the ith column is the derivative of f wrt to e_i
     395             : !> \param   f occupations
     396             : !> \param   mu Fermi level (input)
     397             : !> \param kTS ...
     398             : !> \param   e eigenvalues
     399             : !> \param   N total number of electrons (output)
     400             : !> \param   T  electronic temperature
     401             : !> \param maxocc ...
     402             : !> \param   l  typical length scale (~ 10 * T)
     403             : !> \param estate ...
     404             : !> \param festate ...
     405             : !> \date    09.2008
     406             : !> \par   History
     407             : !>          - Made estate and festate optional (LT, 2014/02/26)
     408             : !>          - Changed order of input, so l is before the two optional variables
     409             : !>            (LT, 2014/02/26)
     410             : !> \author  Joost VandeVondele
     411             : ! **************************************************************************************************
     412           0 :    SUBROUTINE FermiFixedDeriv(dfde, f, mu, kTS, e, N, T, maxocc, l, estate, festate)
     413             :       REAL(KIND=dp), INTENT(OUT)                         :: dfde(:, :), f(:), mu, kTS
     414             :       REAL(KIND=dp), INTENT(IN)                          :: e(:), N, T, maxocc, l
     415             :       INTEGER, INTENT(IN), OPTIONAL                      :: estate
     416             :       REAL(KIND=dp), INTENT(IN), OPTIONAL                :: festate
     417             : 
     418             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'FermiFixedDeriv'
     419             : 
     420             :       INTEGER                                            :: handle, I, my_estate, Nstate
     421             :       REAL(KIND=dp)                                      :: h, mux, my_festate
     422             :       REAL(KIND=dp), ALLOCATABLE                         :: ex(:), fx(:)
     423             : 
     424           0 :       CALL timeset(routineN, handle)
     425             : 
     426           0 :       Nstate = SIZE(e)
     427           0 :       ALLOCATE (ex(Nstate), fx(Nstate))
     428             : 
     429           0 :       IF (PRESENT(estate) .AND. PRESENT(festate)) THEN
     430           0 :          my_estate = estate
     431           0 :          my_festate = festate
     432             :       ELSE
     433           0 :          my_estate = NINT(maxocc)
     434           0 :          my_festate = my_estate
     435             :       END IF
     436             : 
     437           0 :       DO I = 1, Nstate
     438             :          ! NR 5.7.8
     439             :          ! the problem here is that each f_i 'seems to have' a different length scale
     440             :          ! and it would be to expensive to compute each single df_i/de_i using a finite difference
     441           0 :          h = (EPSILON(h)**(1.0_dp/3.0_dp))*l
     442             :          ! get an exact machine representable number close to this h
     443           0 :          h = 2.0_dp**EXPONENT(h)
     444             :          ! this should write three times the same number
     445             :          ! write(*,*) h,(e(i)+h)-e(i),(e(i)-h)-e(i)
     446             :          ! and the symmetric finite difference
     447           0 :          ex(:) = e
     448           0 :          ex(i) = e(i) + h
     449           0 :          CALL FermiFixed(fx, mux, kTS, ex, N, T, maxocc, my_estate, my_festate)
     450           0 :          dfde(:, I) = fx
     451           0 :          ex(i) = e(i) - h
     452           0 :          CALL FermiFixed(fx, mux, kTS, ex, N, T, maxocc, my_estate, my_festate)
     453           0 :          dfde(:, I) = (dfde(:, I) - fx)/(2.0_dp*h)
     454             :       END DO
     455           0 :       DEALLOCATE (ex, fx)
     456             : 
     457           0 :       CALL FermiFixed(f, mu, kTS, e, N, T, maxocc, my_estate, my_festate)
     458             : 
     459           0 :       CALL timestop(handle)
     460             : 
     461           0 :    END SUBROUTINE FermiFixedDeriv
     462             : 
     463             : END MODULE fermi_utils

Generated by: LCOV version 1.15