LCOV - code coverage report
Current view: top level - src/grpp - grpp_spin_orbit_integrals.c (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:b4bd748) Lines: 0 145 0.0 %
Date: 2025-03-09 07:56:22 Functions: 0 2 0.0 %

          Line data    Source code
       1             : /*----------------------------------------------------------------------------*/
       2             : /*  CP2K: A general program to perform molecular dynamics simulations         */
       3             : /*  Copyright 2000-2025 CP2K developers group <https://cp2k.org>              */
       4             : /*                                                                            */
       5             : /*  SPDX-License-Identifier: MIT                                              */
       6             : /*----------------------------------------------------------------------------*/
       7             : 
       8             : /*
       9             :  *  libgrpp - a library for the evaluation of integrals over
      10             :  *            generalized relativistic pseudopotentials.
      11             :  *
      12             :  *  Copyright (C) 2021-2023 Alexander Oleynichenko
      13             :  */
      14             : 
      15             : #include <assert.h>
      16             : #include <math.h>
      17             : #include <stdlib.h>
      18             : #include <string.h>
      19             : 
      20             : #ifndef M_PI
      21             : #define M_PI 3.14159265358979323846
      22             : #endif
      23             : 
      24             : #include "grpp_angular_integrals.h"
      25             : #include "grpp_binomial.h"
      26             : #include "grpp_lmatrix.h"
      27             : #include "grpp_radial_type2_integral.h"
      28             : #include "grpp_spherical_harmonics.h"
      29             : #include "grpp_utils.h"
      30             : #include "libgrpp.h"
      31             : 
      32             : #define LMAX (2 * LIBGRPP_MAX_BASIS_L + LIBGRPP_MAX_RPP_L)
      33             : 
      34             : static void type3_angular_sum(int L, double *Lx_matrix, double *Ly_matrix,
      35             :                               double *Lz_matrix, int lambda_1, int a, int b,
      36             :                               int c, double *rsh_values_kA, int lambda_2, int d,
      37             :                               int e, int f, double *rsh_values_kB,
      38             :                               double *sum_angular_x, double *sum_angular_y,
      39             :                               double *sum_angular_z);
      40             : 
      41             : /**
      42             :  * Evaluation of spin-orbit ("type 3") RPP integrals.
      43             :  *
      44             :  * The theoretical outline is given in the paper:
      45             :  * R. M. Pitzer, N. W. Winter. Spin-orbit (core) and core potential integrals.
      46             :  * Int. J. Quantum Chem. 40(6), 773 (1991). doi: 10.1002/qua.560400606
      47             :  * However, the formula on page 776 of Pitzer & Winter is not reproduced in the
      48             :  * code exactly.
      49             :  */
      50           0 : void libgrpp_spin_orbit_integrals(libgrpp_shell_t *shell_A,
      51             :                                   libgrpp_shell_t *shell_B, double *rpp_origin,
      52             :                                   libgrpp_potential_t *potential,
      53             :                                   double *so_x_matrix, double *so_y_matrix,
      54             :                                   double *so_z_matrix) {
      55           0 :   assert(libgrpp_is_initialized());
      56             : 
      57           0 :   int size_A = libgrpp_get_shell_size(shell_A);
      58           0 :   int size_B = libgrpp_get_shell_size(shell_B);
      59             : 
      60           0 :   memset(so_x_matrix, 0, size_A * size_B * sizeof(double));
      61           0 :   memset(so_y_matrix, 0, size_A * size_B * sizeof(double));
      62           0 :   memset(so_z_matrix, 0, size_A * size_B * sizeof(double));
      63             : 
      64           0 :   int L = potential->L;
      65           0 :   int L_A =
      66           0 :       shell_A->cart_list[0] + shell_A->cart_list[1] + shell_A->cart_list[2];
      67           0 :   int L_B =
      68           0 :       shell_B->cart_list[0] + shell_B->cart_list[1] + shell_B->cart_list[2];
      69             : 
      70           0 :   double *A = shell_A->origin;
      71           0 :   double *B = shell_B->origin;
      72           0 :   double *C = rpp_origin;
      73             : 
      74           0 :   double CA_x = C[0] - A[0];
      75           0 :   double CA_y = C[1] - A[1];
      76           0 :   double CA_z = C[2] - A[2];
      77           0 :   double CB_x = C[0] - B[0];
      78           0 :   double CB_y = C[1] - B[1];
      79           0 :   double CB_z = C[2] - B[2];
      80           0 :   double CA_2 = CA_x * CA_x + CA_y * CA_y + CA_z * CA_z;
      81           0 :   double CB_2 = CB_x * CB_x + CB_y * CB_y + CB_z * CB_z;
      82             : 
      83           0 :   double alpha_A = shell_A->alpha[0];
      84           0 :   double alpha_B = shell_B->alpha[0];
      85           0 :   double kA_x = -2.0 * (alpha_A * CA_x);
      86           0 :   double kA_y = -2.0 * (alpha_A * CA_y);
      87           0 :   double kA_z = -2.0 * (alpha_A * CA_z);
      88           0 :   double kB_x = -2.0 * (alpha_B * CB_x);
      89           0 :   double kB_y = -2.0 * (alpha_B * CB_y);
      90           0 :   double kB_z = -2.0 * (alpha_B * CB_z);
      91           0 :   double kA_vec[3];
      92           0 :   kA_vec[0] = kA_x;
      93           0 :   kA_vec[1] = kA_y;
      94           0 :   kA_vec[2] = kA_z;
      95           0 :   double kB_vec[3];
      96           0 :   kB_vec[0] = kB_x;
      97           0 :   kB_vec[1] = kB_y;
      98           0 :   kB_vec[2] = kB_z;
      99             : 
     100           0 :   int lambda1_max = L + L_A;
     101           0 :   int lambda2_max = L + L_B;
     102           0 :   int N_max = L_A + L_B; // + n_RPP;
     103             : 
     104             :   /*
     105             :    * pre-compute matrices of the Lx, Ly, Lz operators
     106             :    */
     107           0 :   double *Lx_matrix = calloc((2 * L + 1) * (2 * L + 1), sizeof(double));
     108           0 :   double *Ly_matrix = calloc((2 * L + 1) * (2 * L + 1), sizeof(double));
     109           0 :   double *Lz_matrix = calloc((2 * L + 1) * (2 * L + 1), sizeof(double));
     110           0 :   libgrpp_construct_angular_momentum_matrices_rsh(L, Lx_matrix, Ly_matrix,
     111             :                                                   Lz_matrix);
     112             : 
     113             :   /*
     114             :    * for further evaluation of angular integrals
     115             :    */
     116           0 :   int lmax = int_max3(lambda1_max, lambda2_max, L);
     117             :   // create_real_spherical_harmonic_coeffs_tables(lmax);
     118             : 
     119             :   /*
     120             :    * pre-calculate values of real spherical harmonics for different L
     121             :    */
     122           0 :   double rsh_values_kA[LMAX][2 * LMAX + 1];
     123           0 :   double rsh_values_kB[LMAX][2 * LMAX + 1];
     124             : 
     125           0 :   for (int lambda = 0; lambda <= lmax; lambda++) {
     126           0 :     libgrpp_evaluate_real_spherical_harmonics_array(lambda, kA_vec,
     127           0 :                                                     rsh_values_kA[lambda]);
     128           0 :     libgrpp_evaluate_real_spherical_harmonics_array(lambda, kB_vec,
     129           0 :                                                     rsh_values_kB[lambda]);
     130             :   }
     131             : 
     132             :   /*
     133             :    * pre-compute radial integrals
     134             :    */
     135           0 :   radial_type2_table_t *radial_table = libgrpp_tabulate_radial_type2_integrals(
     136             :       lambda1_max, lambda2_max, N_max, CA_2, CB_2, potential, shell_A, shell_B);
     137             : 
     138             :   /*
     139             :    * loop over shell pairs
     140             :    */
     141           0 :   for (int icart = 0; icart < size_A; icart++) {
     142           0 :     for (int jcart = 0; jcart < size_B; jcart++) {
     143             : 
     144           0 :       double SO_x = 0.0;
     145           0 :       double SO_y = 0.0;
     146           0 :       double SO_z = 0.0;
     147             : 
     148           0 :       int n_A = shell_A->cart_list[3 * icart + 0];
     149           0 :       int l_A = shell_A->cart_list[3 * icart + 1];
     150           0 :       int m_A = shell_A->cart_list[3 * icart + 2];
     151           0 :       int n_B = shell_B->cart_list[3 * jcart + 0];
     152           0 :       int l_B = shell_B->cart_list[3 * jcart + 1];
     153           0 :       int m_B = shell_B->cart_list[3 * jcart + 2];
     154             : 
     155           0 :       for (int a = 0; a <= n_A; a++) {
     156             : 
     157           0 :         double C_nA_a = libgrpp_binomial(n_A, a);
     158           0 :         double pow_CA_x = pow(CA_x, n_A - a);
     159             : 
     160           0 :         for (int b = 0; b <= l_A; b++) {
     161             : 
     162           0 :           double C_lA_b = libgrpp_binomial(l_A, b);
     163           0 :           double pow_CA_y = pow(CA_y, l_A - b);
     164             : 
     165           0 :           for (int c = 0; c <= m_A; c++) {
     166             : 
     167           0 :             double C_mA_c = libgrpp_binomial(m_A, c);
     168           0 :             double pow_CA_z = pow(CA_z, m_A - c);
     169             : 
     170           0 :             for (int d = 0; d <= n_B; d++) {
     171             : 
     172           0 :               double C_nB_d = libgrpp_binomial(n_B, d);
     173           0 :               double pow_CB_x = pow(CB_x, n_B - d);
     174             : 
     175           0 :               for (int e = 0; e <= l_B; e++) {
     176             : 
     177           0 :                 double C_lB_e = libgrpp_binomial(l_B, e);
     178           0 :                 double pow_CB_y = pow(CB_y, l_B - e);
     179             : 
     180           0 :                 for (int f = 0; f <= m_B; f++) {
     181             : 
     182           0 :                   double C_mB_f = libgrpp_binomial(m_B, f);
     183           0 :                   double pow_CB_z = pow(CB_z, m_B - f);
     184             : 
     185           0 :                   int N = a + b + c + d + e + f;
     186           0 :                   double factor = C_nA_a * C_lA_b * C_mA_c * C_nB_d * C_lB_e *
     187           0 :                                   C_mB_f * pow_CA_x * pow_CA_y * pow_CA_z *
     188           0 :                                   pow_CB_x * pow_CB_y * pow_CB_z;
     189             : 
     190           0 :                   if (fabs(factor) < LIBGRPP_ZERO_THRESH) {
     191           0 :                     continue;
     192             :                   }
     193             : 
     194             :                   /*
     195             :                    * contraction of radial integrals with angular integrals
     196             :                    */
     197             : 
     198           0 :                   double sum_omega_Q_x = 0.0;
     199           0 :                   double sum_omega_Q_y = 0.0;
     200           0 :                   double sum_omega_Q_z = 0.0;
     201             : 
     202           0 :                   int lambda1_lower = int_max2(L - a - b - c, 0);
     203           0 :                   int lambda2_lower = int_max2(L - d - e - f, 0);
     204           0 :                   int lambda1_upper = L + a + b + c;
     205           0 :                   int lambda2_upper = L + d + e + f;
     206             : 
     207           0 :                   for (int lambda_1 = lambda1_lower; lambda_1 <= lambda1_upper;
     208           0 :                        lambda_1++) {
     209           0 :                     if ((L + a + b + c - lambda_1) % 2 != 0) {
     210           0 :                       continue;
     211             :                     }
     212             : 
     213             :                     for (int lambda_2 = lambda2_lower;
     214           0 :                          lambda_2 <= lambda2_upper; lambda_2++) {
     215           0 :                       if ((L + d + e + f - lambda_2) % 2 != 0) {
     216           0 :                         continue;
     217             :                       }
     218             : 
     219           0 :                       double QN = libgrpp_get_radial_type2_integral(
     220             :                           radial_table, lambda_1, lambda_2, N);
     221           0 :                       if (fabs(QN) < LIBGRPP_ZERO_THRESH) {
     222           0 :                         continue;
     223             :                       }
     224             : 
     225           0 :                       double sum_angular_x, sum_angular_y, sum_angular_z;
     226           0 :                       type3_angular_sum(
     227             :                           L, Lx_matrix, Ly_matrix, Lz_matrix, lambda_1, a, b, c,
     228           0 :                           rsh_values_kA[lambda_1], lambda_2, d, e, f,
     229           0 :                           rsh_values_kB[lambda_2], &sum_angular_x,
     230             :                           &sum_angular_y, &sum_angular_z);
     231             : 
     232           0 :                       sum_omega_Q_x += QN * sum_angular_x;
     233           0 :                       sum_omega_Q_y += QN * sum_angular_y;
     234           0 :                       sum_omega_Q_z += QN * sum_angular_z;
     235             :                     }
     236             :                   }
     237             : 
     238           0 :                   SO_x += factor * sum_omega_Q_x;
     239           0 :                   SO_y += factor * sum_omega_Q_y;
     240           0 :                   SO_z += factor * sum_omega_Q_z;
     241             :                 }
     242             :               }
     243             :             }
     244             :           }
     245             :         }
     246             :       }
     247             : 
     248           0 :       so_x_matrix[icart * size_B + jcart] = SO_x * (16.0 * M_PI * M_PI);
     249           0 :       so_y_matrix[icart * size_B + jcart] = SO_y * (16.0 * M_PI * M_PI);
     250           0 :       so_z_matrix[icart * size_B + jcart] = SO_z * (16.0 * M_PI * M_PI);
     251             :     }
     252             :   }
     253             : 
     254           0 :   libgrpp_delete_radial_type2_integrals(radial_table);
     255           0 :   free(Lx_matrix);
     256           0 :   free(Ly_matrix);
     257           0 :   free(Lz_matrix);
     258           0 : }
     259             : 
     260             : /*
     261             :  * Double sum of products of type 2 angular integrals
     262             :  * (Pitzer, Winter, 1991, formula on the top of the page 776)
     263             :  */
     264           0 : static void type3_angular_sum(int L, double *Lx_matrix, double *Ly_matrix,
     265             :                               double *Lz_matrix, int lambda_1, int a, int b,
     266             :                               int c, double *rsh_values_kA, int lambda_2, int d,
     267             :                               int e, int f, double *rsh_values_kB,
     268             :                               double *sum_angular_x, double *sum_angular_y,
     269             :                               double *sum_angular_z) {
     270           0 :   *sum_angular_x = 0.0;
     271           0 :   *sum_angular_y = 0.0;
     272           0 :   *sum_angular_z = 0.0;
     273             : 
     274             :   /*
     275             :    * contract tensors with angular integrals
     276             :    */
     277           0 :   for (int m1 = -L; m1 <= L; m1++) {
     278           0 :     for (int m2 = -L; m2 <= L; m2++) {
     279             : 
     280           0 :       double lx = Lx_matrix[(2 * L + 1) * (m1 + L) + (m2 + L)];
     281           0 :       double ly = Ly_matrix[(2 * L + 1) * (m1 + L) + (m2 + L)];
     282           0 :       double lz = Lz_matrix[(2 * L + 1) * (m1 + L) + (m2 + L)];
     283           0 :       if (fabs(lx) < LIBGRPP_ZERO_THRESH && fabs(ly) < LIBGRPP_ZERO_THRESH &&
     284           0 :           fabs(lz) < LIBGRPP_ZERO_THRESH) {
     285           0 :         continue;
     286             :       }
     287             : 
     288           0 :       double omega_1 = libgrpp_angular_type2_integral(lambda_1, L, m1, a, b, c,
     289             :                                                       rsh_values_kA);
     290           0 :       if (fabs(omega_1) < LIBGRPP_ZERO_THRESH) {
     291           0 :         continue;
     292             :       }
     293             : 
     294           0 :       double omega_2 = libgrpp_angular_type2_integral(lambda_2, L, m2, d, e, f,
     295             :                                                       rsh_values_kB);
     296             : 
     297           0 :       *sum_angular_x += omega_1 * omega_2 * lx;
     298           0 :       *sum_angular_y += omega_1 * omega_2 * ly;
     299           0 :       *sum_angular_z += omega_1 * omega_2 * lz;
     300             :     }
     301             :   }
     302           0 : }

Generated by: LCOV version 1.15