LCOV - code coverage report
Current view: top level - src - gw_large_cell_gamma.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:422ac0d) Lines: 686 740 92.7 %
Date: 2025-04-02 06:58:30 Functions: 39 40 97.5 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2025 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief Routines from paper [Graml2024]
      10             : !> \author Jan Wilhelm
      11             : !> \date 07.2023
      12             : ! **************************************************************************************************
      13             : MODULE gw_large_cell_gamma
      14             :    USE atomic_kind_types,               ONLY: atomic_kind_type
      15             :    USE cell_types,                      ONLY: cell_type,&
      16             :                                               get_cell,&
      17             :                                               pbc
      18             :    USE constants_operator,              ONLY: operator_coulomb
      19             :    USE cp_cfm_basic_linalg,             ONLY: cp_cfm_uplo_to_full
      20             :    USE cp_cfm_cholesky,                 ONLY: cp_cfm_cholesky_decompose,&
      21             :                                               cp_cfm_cholesky_invert
      22             :    USE cp_cfm_diag,                     ONLY: cp_cfm_geeig
      23             :    USE cp_cfm_types,                    ONLY: cp_cfm_create,&
      24             :                                               cp_cfm_get_info,&
      25             :                                               cp_cfm_release,&
      26             :                                               cp_cfm_to_cfm,&
      27             :                                               cp_cfm_to_fm,&
      28             :                                               cp_cfm_type,&
      29             :                                               cp_fm_to_cfm
      30             :    USE cp_dbcsr_api,                    ONLY: &
      31             :         dbcsr_add, dbcsr_copy, dbcsr_create, dbcsr_deallocate_matrix, dbcsr_get_block_p, &
      32             :         dbcsr_iterator_blocks_left, dbcsr_iterator_next_block, dbcsr_iterator_start, &
      33             :         dbcsr_iterator_stop, dbcsr_iterator_type, dbcsr_p_type, dbcsr_release, dbcsr_set, &
      34             :         dbcsr_type
      35             :    USE cp_dbcsr_contrib,                ONLY: dbcsr_reserve_all_blocks
      36             :    USE cp_dbcsr_operations,             ONLY: copy_dbcsr_to_fm,&
      37             :                                               copy_fm_to_dbcsr,&
      38             :                                               dbcsr_deallocate_matrix_set
      39             :    USE cp_files,                        ONLY: close_file,&
      40             :                                               open_file
      41             :    USE cp_fm_basic_linalg,              ONLY: cp_fm_scale_and_add
      42             :    USE cp_fm_diag,                      ONLY: cp_fm_power
      43             :    USE cp_fm_types,                     ONLY: &
      44             :         cp_fm_create, cp_fm_get_diag, cp_fm_get_info, cp_fm_read_unformatted, cp_fm_release, &
      45             :         cp_fm_set_all, cp_fm_to_fm, cp_fm_type, cp_fm_write_unformatted
      46             :    USE cp_log_handling,                 ONLY: cp_get_default_logger,&
      47             :                                               cp_logger_type
      48             :    USE cp_output_handling,              ONLY: cp_p_file,&
      49             :                                               cp_print_key_should_output,&
      50             :                                               cp_print_key_unit_nr
      51             :    USE dbt_api,                         ONLY: dbt_clear,&
      52             :                                               dbt_contract,&
      53             :                                               dbt_copy,&
      54             :                                               dbt_create,&
      55             :                                               dbt_destroy,&
      56             :                                               dbt_type
      57             :    USE gw_communication,                ONLY: fm_to_local_tensor,&
      58             :                                               local_dbt_to_global_mat
      59             :    USE gw_utils,                        ONLY: analyt_conti_and_print,&
      60             :                                               de_init_bs_env,&
      61             :                                               time_to_freq
      62             :    USE input_constants,                 ONLY: rtp_method_bse
      63             :    USE input_section_types,             ONLY: section_vals_type
      64             :    USE kinds,                           ONLY: default_string_length,&
      65             :                                               dp,&
      66             :                                               int_8
      67             :    USE kpoint_coulomb_2c,               ONLY: build_2c_coulomb_matrix_kp
      68             :    USE kpoint_types,                    ONLY: kpoint_type
      69             :    USE machine,                         ONLY: m_walltime
      70             :    USE mathconstants,                   ONLY: twopi,&
      71             :                                               z_one,&
      72             :                                               z_zero
      73             :    USE message_passing,                 ONLY: mp_file_delete
      74             :    USE mp2_ri_2c,                       ONLY: RI_2c_integral_mat
      75             :    USE parallel_gemm_api,               ONLY: parallel_gemm
      76             :    USE particle_types,                  ONLY: particle_type
      77             :    USE post_scf_bandstructure_types,    ONLY: post_scf_bandstructure_type
      78             :    USE post_scf_bandstructure_utils,    ONLY: MIC_contribution_from_ikp,&
      79             :                                               cfm_ikp_from_fm_Gamma,&
      80             :                                               get_all_VBM_CBM_bandgaps
      81             :    USE qs_environment_types,            ONLY: get_qs_env,&
      82             :                                               qs_environment_type
      83             :    USE qs_kind_types,                   ONLY: qs_kind_type
      84             :    USE qs_tensors,                      ONLY: build_3c_integrals
      85             :    USE rpa_gw_kpoints_util,             ONLY: cp_cfm_power
      86             : #include "./base/base_uses.f90"
      87             : 
      88             :    IMPLICIT NONE
      89             : 
      90             :    PRIVATE
      91             : 
      92             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'gw_large_cell_gamma'
      93             : 
      94             :    PUBLIC :: gw_calc_large_cell_Gamma, &
      95             :              compute_3c_integrals
      96             : 
      97             : CONTAINS
      98             : 
      99             : ! **************************************************************************************************
     100             : !> \brief Perform GW band structure calculation
     101             : !> \param qs_env ...
     102             : !> \param bs_env ...
     103             : !> \par History
     104             : !>    * 07.2023 created [Jan Wilhelm]
     105             : ! **************************************************************************************************
     106          22 :    SUBROUTINE gw_calc_large_cell_Gamma(qs_env, bs_env)
     107             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     108             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
     109             : 
     110             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'gw_calc_large_cell_Gamma'
     111             : 
     112             :       INTEGER                                            :: handle
     113          22 :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: fm_Sigma_x_Gamma, fm_W_MIC_time
     114          22 :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:, :, :)  :: fm_Sigma_c_Gamma_time
     115             : 
     116          22 :       CALL timeset(routineN, handle)
     117             : 
     118             :       ! G^occ_µλ(i|τ|,k=0) = sum_n^occ C_µn(k=0) e^(-|(ϵ_nk=0-ϵ_F)τ|) C_λn(k=0)
     119             :       ! G^vir_µλ(i|τ|,k=0) = sum_n^vir C_µn(k=0) e^(-|(ϵ_nk=0-ϵ_F)τ|) C_λn(k=0)
     120             :       ! χ_PQ(iτ,k=0) = sum_λν [sum_µ (µν|P) G^occ_µλ(i|τ|)] [sum_σ (σλ|Q) G^vir_σν(i|τ|)]
     121          22 :       CALL get_mat_chi_Gamma_tau(bs_env, qs_env, bs_env%mat_chi_Gamma_tau)
     122             : 
     123             :       ! χ_PQ(iτ,k=0) -> χ_PQ(iω,k) -> ε_PQ(iω,k) -> W_PQ(iω,k) -> W^MIC_PQ(iτ) -> M^-1*W^MIC*M^-1
     124          22 :       CALL get_W_MIC(bs_env, qs_env, bs_env%mat_chi_Gamma_tau, fm_W_MIC_time)
     125             : 
     126             :       ! D_µν = sum_n^occ C_µn(k=0) C_νn(k=0), V^trunc_PQ = sum_cell_R <phi_P,0|V^trunc|phi_Q,R>
     127             :       ! Σ^x_λσ(k=0) = sum_νQ [sum_P (νσ|P) V^trunc_PQ] [sum_µ (λµ|Q) D_µν)]
     128          22 :       CALL get_Sigma_x(bs_env, qs_env, fm_Sigma_x_Gamma)
     129             : 
     130             :       ! Σ^c_λσ(iτ,k=0) = sum_νQ [sum_P (νσ|P) W^MIC_PQ(iτ)] [sum_µ (λµ|Q) G^occ_µν(i|τ|)], τ < 0
     131             :       ! Σ^c_λσ(iτ,k=0) = sum_νQ [sum_P (νσ|P) W^MIC_PQ(iτ)] [sum_µ (λµ|Q) G^vir_µν(i|τ|)], τ > 0
     132          22 :       CALL get_Sigma_c(bs_env, qs_env, fm_W_MIC_time, fm_Sigma_c_Gamma_time)
     133             : 
     134             :       ! Σ^c_λσ(iτ,k=0) -> Σ^c_nn(ϵ,k); ϵ_nk^GW = ϵ_nk^DFT + Σ^c_nn(ϵ,k) + Σ^x_nn(k) - v^xc_nn(k)
     135          22 :       CALL compute_QP_energies(bs_env, qs_env, fm_Sigma_x_Gamma, fm_Sigma_c_Gamma_time)
     136             : 
     137          22 :       CALL de_init_bs_env(bs_env)
     138             : 
     139          22 :       CALL timestop(handle)
     140             : 
     141          22 :    END SUBROUTINE gw_calc_large_cell_Gamma
     142             : 
     143             : ! **************************************************************************************************
     144             : !> \brief ...
     145             : !> \param bs_env ...
     146             : !> \param qs_env ...
     147             : !> \param mat_chi_Gamma_tau ...
     148             : ! **************************************************************************************************
     149          22 :    SUBROUTINE get_mat_chi_Gamma_tau(bs_env, qs_env, mat_chi_Gamma_tau)
     150             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
     151             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     152             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: mat_chi_Gamma_tau
     153             : 
     154             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'get_mat_chi_Gamma_tau'
     155             : 
     156             :       INTEGER :: handle, i_intval_idx, i_t, inner_loop_atoms_interval_index, ispin, j_intval_idx
     157             :       INTEGER, DIMENSION(2)                              :: i_atoms, IL_atoms, j_atoms
     158             :       LOGICAL                                            :: dist_too_long_i, dist_too_long_j
     159             :       REAL(KIND=dp)                                      :: t1, tau
     160         550 :       TYPE(dbt_type)                                     :: t_2c_Gocc, t_2c_Gvir, t_3c_for_Gocc, &
     161         374 :                                                             t_3c_for_Gvir, t_3c_x_Gocc, &
     162         374 :                                                             t_3c_x_Gocc_2, t_3c_x_Gvir, &
     163         198 :                                                             t_3c_x_Gvir_2
     164             : 
     165          22 :       CALL timeset(routineN, handle)
     166             : 
     167         346 :       DO i_t = 1, bs_env%num_time_freq_points
     168             : 
     169         324 :          t1 = m_walltime()
     170             : 
     171         324 :          IF (bs_env%read_chi(i_t)) THEN
     172             : 
     173           0 :             CALL fm_read(bs_env%fm_RI_RI, bs_env, bs_env%chi_name, i_t)
     174             : 
     175             :             CALL copy_fm_to_dbcsr(bs_env%fm_RI_RI, mat_chi_Gamma_tau(i_t)%matrix, &
     176           0 :                                   keep_sparsity=.FALSE.)
     177             : 
     178           0 :             IF (bs_env%unit_nr > 0) THEN
     179             :                WRITE (bs_env%unit_nr, '(T2,A,I5,A,I3,A,F7.1,A)') &
     180           0 :                   'Read χ(iτ,k=0) from file for time point  ', i_t, ' /', &
     181           0 :                   bs_env%num_time_freq_points, &
     182           0 :                   ',    Execution time', m_walltime() - t1, ' s'
     183             :             END IF
     184             : 
     185             :             CYCLE
     186             : 
     187             :          END IF
     188             : 
     189         324 :          IF (.NOT. bs_env%calc_chi(i_t)) CYCLE
     190             : 
     191             :          CALL create_tensors_chi(t_2c_Gocc, t_2c_Gvir, t_3c_for_Gocc, t_3c_for_Gvir, &
     192         224 :                                  t_3c_x_Gocc, t_3c_x_Gvir, t_3c_x_Gocc_2, t_3c_x_Gvir_2, bs_env)
     193             : 
     194             :          ! 1. compute G^occ and G^vir
     195             :          !    Background: G^σ(iτ) = G^occ,σ(iτ) * Θ(-τ) + G^vir,σ(iτ) * Θ(τ), σ ∈ {↑,↓}
     196             :          !    G^occ,σ_µλ(i|τ|,k=0) = sum_n^occ C^σ_µn(k=0) e^(-|(ϵ^σ_nk=0-ϵ_F)τ|) C^σ_λn(k=0)
     197             :          !    G^vir,σ_µλ(i|τ|,k=0) = sum_n^vir C^σ_µn(k=0) e^(-|(ϵ^σ_nk=0-ϵ_F)τ|) C^σ_λn(k=0)
     198         224 :          tau = bs_env%imag_time_points(i_t)
     199             : 
     200         468 :          DO ispin = 1, bs_env%n_spin
     201         244 :             CALL G_occ_vir(bs_env, tau, bs_env%fm_Gocc, ispin, occ=.TRUE., vir=.FALSE.)
     202         244 :             CALL G_occ_vir(bs_env, tau, bs_env%fm_Gvir, ispin, occ=.FALSE., vir=.TRUE.)
     203             : 
     204             :             CALL fm_to_local_tensor(bs_env%fm_Gocc, bs_env%mat_ao_ao%matrix, &
     205             :                                     bs_env%mat_ao_ao_tensor%matrix, t_2c_Gocc, bs_env, &
     206         244 :                                     bs_env%atoms_j_t_group)
     207             :             CALL fm_to_local_tensor(bs_env%fm_Gvir, bs_env%mat_ao_ao%matrix, &
     208             :                                     bs_env%mat_ao_ao_tensor%matrix, t_2c_Gvir, bs_env, &
     209         244 :                                     bs_env%atoms_i_t_group)
     210             : 
     211             :             ! every group has its own range of i_atoms and j_atoms; only deal with a
     212             :             ! limited number of i_atom-j_atom pairs simultaneously in a group to save memory
     213         712 :             DO i_intval_idx = 1, bs_env%n_intervals_i
     214         732 :                DO j_intval_idx = 1, bs_env%n_intervals_j
     215         732 :                   i_atoms = bs_env%i_atom_intervals(1:2, i_intval_idx)
     216         732 :                   j_atoms = bs_env%j_atom_intervals(1:2, j_intval_idx)
     217             : 
     218         488 :                   DO inner_loop_atoms_interval_index = 1, bs_env%n_intervals_inner_loop_atoms
     219             : 
     220         732 :                      IL_atoms = bs_env%inner_loop_atom_intervals(1:2, inner_loop_atoms_interval_index)
     221             : 
     222         244 :                      CALL check_dist(i_atoms, IL_atoms, qs_env, bs_env, dist_too_long_i)
     223         244 :                      CALL check_dist(j_atoms, IL_atoms, qs_env, bs_env, dist_too_long_j)
     224         244 :                      IF (dist_too_long_i .OR. dist_too_long_j) CYCLE
     225             : 
     226             :                      ! 2. compute 3-center integrals (µν|P) ("|": truncated Coulomb operator)
     227         244 :                      CALL compute_3c_integrals(qs_env, bs_env, t_3c_for_Gocc, i_atoms, IL_atoms)
     228             : 
     229             :                      ! 3. tensor operation M_λνP(iτ) = sum_µ (µν|P) G^occ_µλ(i|τ|,k=0)
     230             :                      CALL G_times_3c(t_3c_for_Gocc, t_2c_Gocc, t_3c_x_Gocc, bs_env, &
     231         244 :                                      j_atoms, i_atoms, IL_atoms)
     232             : 
     233             :                      ! 4. compute 3-center integrals (σλ|Q) ("|": truncated Coulomb operator)
     234         244 :                      CALL compute_3c_integrals(qs_env, bs_env, t_3c_for_Gvir, j_atoms, IL_atoms)
     235             : 
     236             :                      ! 5. tensor operation N_νλQ(iτ) = sum_σ (σλ|Q) G^vir_σν(i|τ|,k=0)
     237             :                      CALL G_times_3c(t_3c_for_Gvir, t_2c_Gvir, t_3c_x_Gvir, bs_env, &
     238         488 :                                      i_atoms, j_atoms, IL_atoms)
     239             : 
     240             :                   END DO ! IL_atoms
     241             : 
     242             :                   ! 6. reorder tensors
     243         244 :                   CALL dbt_copy(t_3c_x_Gocc, t_3c_x_Gocc_2, move_data=.TRUE., order=[1, 3, 2])
     244         244 :                   CALL dbt_copy(t_3c_x_Gvir, t_3c_x_Gvir_2, move_data=.TRUE.)
     245             : 
     246             :                   ! 7. tensor operation χ_PQ(iτ,k=0) = sum_λν M_λνP(iτ) N_νλQ(iτ),
     247             :                   CALL dbt_contract(alpha=bs_env%spin_degeneracy, &
     248             :                                     tensor_1=t_3c_x_Gocc_2, tensor_2=t_3c_x_Gvir_2, &
     249             :                                     beta=1.0_dp, tensor_3=bs_env%t_chi, &
     250             :                                     contract_1=[2, 3], notcontract_1=[1], map_1=[1], &
     251             :                                     contract_2=[2, 3], notcontract_2=[1], map_2=[2], &
     252         488 :                                     filter_eps=bs_env%eps_filter, move_data=.TRUE.)
     253             : 
     254             :                END DO ! j_atoms
     255             :             END DO ! i_atoms
     256             :          END DO ! ispin
     257             : 
     258             :          ! 8. communicate data of χ_PQ(iτ,k=0) in tensor bs_env%t_chi (which local in the
     259             :          !    subgroup) to the global dbcsr matrix mat_chi_Gamma_tau (which stores
     260             :          !    χ_PQ(iτ,k=0) for all time points)
     261             :          CALL local_dbt_to_global_mat(bs_env%t_chi, bs_env%mat_RI_RI_tensor%matrix, &
     262         224 :                                       mat_chi_Gamma_tau(i_t)%matrix, bs_env%para_env)
     263             : 
     264             :          CALL write_matrix(mat_chi_Gamma_tau(i_t)%matrix, i_t, bs_env%chi_name, &
     265         224 :                            bs_env%fm_RI_RI, qs_env)
     266             : 
     267             :          CALL destroy_tensors_chi(t_2c_Gocc, t_2c_Gvir, t_3c_for_Gocc, t_3c_for_Gvir, &
     268         224 :                                   t_3c_x_Gocc, t_3c_x_Gvir, t_3c_x_Gocc_2, t_3c_x_Gvir_2)
     269             : 
     270         246 :          IF (bs_env%unit_nr > 0) THEN
     271             :             WRITE (bs_env%unit_nr, '(T2,A,I13,A,I3,A,F7.1,A)') &
     272         112 :                'Computed χ(iτ,k=0) for time point', i_t, ' /', bs_env%num_time_freq_points, &
     273         224 :                ',    Execution time', m_walltime() - t1, ' s'
     274             :          END IF
     275             : 
     276             :       END DO ! i_t
     277             : 
     278          22 :       IF (bs_env%unit_nr > 0) WRITE (bs_env%unit_nr, '(A)') ' '
     279             : 
     280          22 :       CALL timestop(handle)
     281             : 
     282          22 :    END SUBROUTINE get_mat_chi_Gamma_tau
     283             : 
     284             : ! **************************************************************************************************
     285             : !> \brief ...
     286             : !> \param fm ...
     287             : !> \param bs_env ...
     288             : !> \param mat_name ...
     289             : !> \param idx ...
     290             : ! **************************************************************************************************
     291         352 :    SUBROUTINE fm_read(fm, bs_env, mat_name, idx)
     292             :       TYPE(cp_fm_type)                                   :: fm
     293             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
     294             :       CHARACTER(LEN=*)                                   :: mat_name
     295             :       INTEGER                                            :: idx
     296             : 
     297             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'fm_read'
     298             : 
     299             :       CHARACTER(LEN=default_string_length)               :: f_chi
     300             :       INTEGER                                            :: handle, unit_nr
     301             : 
     302         352 :       CALL timeset(routineN, handle)
     303             : 
     304         352 :       unit_nr = -1
     305         352 :       IF (bs_env%para_env%is_source()) THEN
     306             : 
     307         176 :          IF (idx < 10) THEN
     308          87 :             WRITE (f_chi, '(3A,I1,A)') TRIM(bs_env%prefix), TRIM(mat_name), "_0", idx, ".matrix"
     309          89 :          ELSE IF (idx < 100) THEN
     310          89 :             WRITE (f_chi, '(3A,I2,A)') TRIM(bs_env%prefix), TRIM(mat_name), "_", idx, ".matrix"
     311             :          ELSE
     312           0 :             CPABORT('Please implement more than 99 time/frequency points.')
     313             :          END IF
     314             : 
     315             :          CALL open_file(file_name=TRIM(f_chi), file_action="READ", file_form="UNFORMATTED", &
     316         176 :                         file_position="REWIND", file_status="OLD", unit_number=unit_nr)
     317             : 
     318             :       END IF
     319             : 
     320         352 :       CALL cp_fm_read_unformatted(fm, unit_nr)
     321             : 
     322         352 :       IF (bs_env%para_env%is_source()) CALL close_file(unit_number=unit_nr)
     323             : 
     324         352 :       CALL timestop(handle)
     325             : 
     326         352 :    END SUBROUTINE fm_read
     327             : 
     328             : ! **************************************************************************************************
     329             : !> \brief ...
     330             : !> \param t_2c_Gocc ...
     331             : !> \param t_2c_Gvir ...
     332             : !> \param t_3c_for_Gocc ...
     333             : !> \param t_3c_for_Gvir ...
     334             : !> \param t_3c_x_Gocc ...
     335             : !> \param t_3c_x_Gvir ...
     336             : !> \param t_3c_x_Gocc_2 ...
     337             : !> \param t_3c_x_Gvir_2 ...
     338             : !> \param bs_env ...
     339             : ! **************************************************************************************************
     340         224 :    SUBROUTINE create_tensors_chi(t_2c_Gocc, t_2c_Gvir, t_3c_for_Gocc, t_3c_for_Gvir, &
     341             :                                  t_3c_x_Gocc, t_3c_x_Gvir, t_3c_x_Gocc_2, t_3c_x_Gvir_2, bs_env)
     342             : 
     343             :       TYPE(dbt_type)                                     :: t_2c_Gocc, t_2c_Gvir, t_3c_for_Gocc, &
     344             :                                                             t_3c_for_Gvir, t_3c_x_Gocc, &
     345             :                                                             t_3c_x_Gvir, t_3c_x_Gocc_2, &
     346             :                                                             t_3c_x_Gvir_2
     347             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
     348             : 
     349             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'create_tensors_chi'
     350             : 
     351             :       INTEGER                                            :: handle
     352             : 
     353         224 :       CALL timeset(routineN, handle)
     354             : 
     355         224 :       CALL dbt_create(bs_env%t_G, t_2c_Gocc)
     356         224 :       CALL dbt_create(bs_env%t_G, t_2c_Gvir)
     357         224 :       CALL dbt_create(bs_env%t_RI_AO__AO, t_3c_for_Gocc)
     358         224 :       CALL dbt_create(bs_env%t_RI_AO__AO, t_3c_for_Gvir)
     359         224 :       CALL dbt_create(bs_env%t_RI_AO__AO, t_3c_x_Gocc)
     360         224 :       CALL dbt_create(bs_env%t_RI_AO__AO, t_3c_x_Gvir)
     361         224 :       CALL dbt_create(bs_env%t_RI__AO_AO, t_3c_x_Gocc_2)
     362         224 :       CALL dbt_create(bs_env%t_RI__AO_AO, t_3c_x_Gvir_2)
     363             : 
     364         224 :       CALL timestop(handle)
     365             : 
     366         224 :    END SUBROUTINE create_tensors_chi
     367             : 
     368             : ! **************************************************************************************************
     369             : !> \brief ...
     370             : !> \param t_2c_Gocc ...
     371             : !> \param t_2c_Gvir ...
     372             : !> \param t_3c_for_Gocc ...
     373             : !> \param t_3c_for_Gvir ...
     374             : !> \param t_3c_x_Gocc ...
     375             : !> \param t_3c_x_Gvir ...
     376             : !> \param t_3c_x_Gocc_2 ...
     377             : !> \param t_3c_x_Gvir_2 ...
     378             : ! **************************************************************************************************
     379         224 :    SUBROUTINE destroy_tensors_chi(t_2c_Gocc, t_2c_Gvir, t_3c_for_Gocc, t_3c_for_Gvir, &
     380             :                                   t_3c_x_Gocc, t_3c_x_Gvir, t_3c_x_Gocc_2, t_3c_x_Gvir_2)
     381             :       TYPE(dbt_type)                                     :: t_2c_Gocc, t_2c_Gvir, t_3c_for_Gocc, &
     382             :                                                             t_3c_for_Gvir, t_3c_x_Gocc, &
     383             :                                                             t_3c_x_Gvir, t_3c_x_Gocc_2, &
     384             :                                                             t_3c_x_Gvir_2
     385             : 
     386             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'destroy_tensors_chi'
     387             : 
     388             :       INTEGER                                            :: handle
     389             : 
     390         224 :       CALL timeset(routineN, handle)
     391             : 
     392         224 :       CALL dbt_destroy(t_2c_Gocc)
     393         224 :       CALL dbt_destroy(t_2c_Gvir)
     394         224 :       CALL dbt_destroy(t_3c_for_Gocc)
     395         224 :       CALL dbt_destroy(t_3c_for_Gvir)
     396         224 :       CALL dbt_destroy(t_3c_x_Gocc)
     397         224 :       CALL dbt_destroy(t_3c_x_Gvir)
     398         224 :       CALL dbt_destroy(t_3c_x_Gocc_2)
     399         224 :       CALL dbt_destroy(t_3c_x_Gvir_2)
     400             : 
     401         224 :       CALL timestop(handle)
     402             : 
     403         224 :    END SUBROUTINE destroy_tensors_chi
     404             : 
     405             : ! **************************************************************************************************
     406             : !> \brief ...
     407             : !> \param matrix ...
     408             : !> \param matrix_index ...
     409             : !> \param matrix_name ...
     410             : !> \param fm ...
     411             : !> \param qs_env ...
     412             : ! **************************************************************************************************
     413         730 :    SUBROUTINE write_matrix(matrix, matrix_index, matrix_name, fm, qs_env)
     414             :       TYPE(dbcsr_type)                                   :: matrix
     415             :       INTEGER                                            :: matrix_index
     416             :       CHARACTER(LEN=*)                                   :: matrix_name
     417             :       TYPE(cp_fm_type), INTENT(IN), POINTER              :: fm
     418             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     419             : 
     420             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'write_matrix'
     421             : 
     422             :       INTEGER                                            :: handle
     423             : 
     424         730 :       CALL timeset(routineN, handle)
     425             : 
     426         730 :       CALL cp_fm_set_all(fm, 0.0_dp)
     427             : 
     428         730 :       CALL copy_dbcsr_to_fm(matrix, fm)
     429             : 
     430         730 :       CALL fm_write(fm, matrix_index, matrix_name, qs_env)
     431             : 
     432         730 :       CALL timestop(handle)
     433             : 
     434         730 :    END SUBROUTINE write_matrix
     435             : 
     436             : ! **************************************************************************************************
     437             : !> \brief ...
     438             : !> \param fm ...
     439             : !> \param matrix_index ...
     440             : !> \param matrix_name ...
     441             : !> \param qs_env ...
     442             : ! **************************************************************************************************
     443         962 :    SUBROUTINE fm_write(fm, matrix_index, matrix_name, qs_env)
     444             :       TYPE(cp_fm_type)                                   :: fm
     445             :       INTEGER                                            :: matrix_index
     446             :       CHARACTER(LEN=*)                                   :: matrix_name
     447             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     448             : 
     449             :       CHARACTER(LEN=*), PARAMETER :: key = 'PROPERTIES%BANDSTRUCTURE%GW%PRINT%RESTART', &
     450             :          routineN = 'fm_write'
     451             : 
     452             :       CHARACTER(LEN=default_string_length)               :: filename
     453             :       INTEGER                                            :: handle, unit_nr
     454             :       TYPE(cp_logger_type), POINTER                      :: logger
     455             :       TYPE(section_vals_type), POINTER                   :: input
     456             : 
     457         962 :       CALL timeset(routineN, handle)
     458             : 
     459         962 :       CALL get_qs_env(qs_env, input=input)
     460             : 
     461         962 :       logger => cp_get_default_logger()
     462             : 
     463         962 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, input, key), cp_p_file)) THEN
     464             : 
     465         780 :          IF (matrix_index < 10) THEN
     466         380 :             WRITE (filename, '(3A,I1)') "RESTART_", matrix_name, "_0", matrix_index
     467         400 :          ELSE IF (matrix_index < 100) THEN
     468         400 :             WRITE (filename, '(3A,I2)') "RESTART_", matrix_name, "_", matrix_index
     469             :          ELSE
     470           0 :             CPABORT('Please implement more than 99 time/frequency points.')
     471             :          END IF
     472             : 
     473             :          unit_nr = cp_print_key_unit_nr(logger, input, key, extension=".matrix", &
     474             :                                         file_form="UNFORMATTED", middle_name=TRIM(filename), &
     475         780 :                                         file_position="REWIND", file_action="WRITE")
     476             : 
     477         780 :          CALL cp_fm_write_unformatted(fm, unit_nr)
     478         780 :          IF (unit_nr > 0) THEN
     479         390 :             CALL close_file(unit_nr)
     480             :          END IF
     481             :       END IF
     482             : 
     483         962 :       CALL timestop(handle)
     484             : 
     485         962 :    END SUBROUTINE fm_write
     486             : 
     487             : ! **************************************************************************************************
     488             : !> \brief ...
     489             : !> \param bs_env ...
     490             : !> \param tau ...
     491             : !> \param fm_G_Gamma ...
     492             : !> \param ispin ...
     493             : !> \param occ ...
     494             : !> \param vir ...
     495             : ! **************************************************************************************************
     496        1988 :    SUBROUTINE G_occ_vir(bs_env, tau, fm_G_Gamma, ispin, occ, vir)
     497             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
     498             :       REAL(KIND=dp)                                      :: tau
     499             :       TYPE(cp_fm_type)                                   :: fm_G_Gamma
     500             :       INTEGER                                            :: ispin
     501             :       LOGICAL                                            :: occ, vir
     502             : 
     503             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'G_occ_vir'
     504             : 
     505             :       INTEGER                                            :: handle, homo, i_row_local, j_col, &
     506             :                                                             j_col_local, n_mo, ncol_local, &
     507             :                                                             nrow_local
     508         994 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices
     509             :       REAL(KIND=dp)                                      :: tau_E
     510             : 
     511         994 :       CALL timeset(routineN, handle)
     512             : 
     513         994 :       CPASSERT(occ .NEQV. vir)
     514             : 
     515             :       CALL cp_fm_get_info(matrix=bs_env%fm_work_mo(1), &
     516             :                           nrow_local=nrow_local, &
     517             :                           ncol_local=ncol_local, &
     518         994 :                           col_indices=col_indices)
     519             : 
     520         994 :       n_mo = bs_env%n_ao
     521         994 :       homo = bs_env%n_occ(ispin)
     522             : 
     523         994 :       CALL cp_fm_to_fm(bs_env%fm_mo_coeff_Gamma(ispin), bs_env%fm_work_mo(1))
     524             : 
     525        3899 :       DO i_row_local = 1, nrow_local
     526       41608 :          DO j_col_local = 1, ncol_local
     527             : 
     528       37709 :             j_col = col_indices(j_col_local)
     529             : 
     530       37709 :             tau_E = ABS(tau*0.5_dp*(bs_env%eigenval_scf_Gamma(j_col, ispin) - bs_env%e_fermi(ispin)))
     531             : 
     532       37709 :             IF (tau_E < bs_env%stabilize_exp) THEN
     533             :                bs_env%fm_work_mo(1)%local_data(i_row_local, j_col_local) = &
     534       36917 :                   bs_env%fm_work_mo(1)%local_data(i_row_local, j_col_local)*EXP(-tau_E)
     535             :             ELSE
     536         792 :                bs_env%fm_work_mo(1)%local_data(i_row_local, j_col_local) = 0.0_dp
     537             :             END IF
     538             : 
     539       40614 :             IF ((occ .AND. j_col > homo) .OR. (vir .AND. j_col <= homo)) THEN
     540       19222 :                bs_env%fm_work_mo(1)%local_data(i_row_local, j_col_local) = 0.0_dp
     541             :             END IF
     542             : 
     543             :          END DO
     544             :       END DO
     545             : 
     546             :       CALL parallel_gemm(transa="N", transb="T", m=n_mo, n=n_mo, k=n_mo, alpha=1.0_dp, &
     547             :                          matrix_a=bs_env%fm_work_mo(1), matrix_b=bs_env%fm_work_mo(1), &
     548         994 :                          beta=0.0_dp, matrix_c=fm_G_Gamma)
     549             : 
     550         994 :       CALL timestop(handle)
     551             : 
     552         994 :    END SUBROUTINE G_occ_vir
     553             : 
     554             : ! **************************************************************************************************
     555             : !> \brief ...
     556             : !> \param qs_env ...
     557             : !> \param bs_env ...
     558             : !> \param t_3c ...
     559             : !> \param atoms_AO_1 ...
     560             : !> \param atoms_AO_2 ...
     561             : !> \param atoms_RI ...
     562             : ! **************************************************************************************************
     563        1214 :    SUBROUTINE compute_3c_integrals(qs_env, bs_env, t_3c, atoms_AO_1, atoms_AO_2, atoms_RI)
     564             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     565             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
     566             :       TYPE(dbt_type)                                     :: t_3c
     567             :       INTEGER, DIMENSION(2), OPTIONAL                    :: atoms_AO_1, atoms_AO_2, atoms_RI
     568             : 
     569             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_3c_integrals'
     570             : 
     571             :       INTEGER                                            :: handle
     572             :       INTEGER, DIMENSION(2)                              :: my_atoms_AO_1, my_atoms_AO_2, my_atoms_RI
     573        1214 :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:, :)       :: t_3c_array
     574             : 
     575        1214 :       CALL timeset(routineN, handle)
     576             : 
     577             :       ! free memory (not clear whether memory has been freed previously)
     578        1214 :       CALL dbt_clear(t_3c)
     579             : 
     580       13354 :       ALLOCATE (t_3c_array(1, 1))
     581        1214 :       CALL dbt_create(t_3c, t_3c_array(1, 1))
     582             : 
     583        1214 :       IF (PRESENT(atoms_AO_1)) THEN
     584             :          my_atoms_AO_1 = atoms_AO_1
     585             :       ELSE
     586        1446 :          my_atoms_AO_1 = [1, bs_env%n_atom]
     587             :       END IF
     588        1214 :       IF (PRESENT(atoms_AO_2)) THEN
     589             :          my_atoms_AO_2 = atoms_AO_2
     590             :       ELSE
     591         768 :          my_atoms_AO_2 = [1, bs_env%n_atom]
     592             :       END IF
     593        1214 :       IF (PRESENT(atoms_RI)) THEN
     594             :          my_atoms_RI = atoms_RI
     595             :       ELSE
     596        1500 :          my_atoms_RI = [1, bs_env%n_atom]
     597             :       END IF
     598             : 
     599             :       CALL build_3c_integrals(t_3c_array, &
     600             :                               bs_env%eps_filter, &
     601             :                               qs_env, &
     602             :                               bs_env%nl_3c, &
     603             :                               int_eps=bs_env%eps_filter, &
     604             :                               basis_i=bs_env%basis_set_RI, &
     605             :                               basis_j=bs_env%basis_set_AO, &
     606             :                               basis_k=bs_env%basis_set_AO, &
     607             :                               potential_parameter=bs_env%ri_metric, &
     608             :                               bounds_i=atoms_RI, &
     609             :                               bounds_j=atoms_AO_1, &
     610             :                               bounds_k=atoms_AO_2, &
     611        1214 :                               desymmetrize=.FALSE.)
     612             : 
     613        1214 :       CALL dbt_copy(t_3c_array(1, 1), t_3c, move_data=.TRUE.)
     614             : 
     615        1214 :       CALL dbt_destroy(t_3c_array(1, 1))
     616        2428 :       DEALLOCATE (t_3c_array)
     617             : 
     618        1214 :       CALL timestop(handle)
     619             : 
     620        2428 :    END SUBROUTINE compute_3c_integrals
     621             : 
     622             : ! **************************************************************************************************
     623             : !> \brief ...
     624             : !> \param t_3c_for_G ...
     625             : !> \param t_G ...
     626             : !> \param t_M ...
     627             : !> \param bs_env ...
     628             : !> \param atoms_AO_1 ...
     629             : !> \param atoms_AO_2 ...
     630             : !> \param atoms_IL ...
     631             : ! **************************************************************************************************
     632         488 :    SUBROUTINE G_times_3c(t_3c_for_G, t_G, t_M, bs_env, atoms_AO_1, atoms_AO_2, atoms_IL)
     633             :       TYPE(dbt_type)                                     :: t_3c_for_G, t_G, t_M
     634             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
     635             :       INTEGER, DIMENSION(2)                              :: atoms_AO_1, atoms_AO_2, atoms_IL
     636             : 
     637             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'G_times_3c'
     638             : 
     639             :       INTEGER                                            :: handle
     640             :       INTEGER, DIMENSION(2)                              :: bounds_IL, bounds_l
     641             :       INTEGER, DIMENSION(2, 2)                           :: bounds_k
     642             : 
     643         488 :       CALL timeset(routineN, handle)
     644             : 
     645             :       ! JW bounds_IL and bounds_k do not safe any operations, but maybe communication
     646             :       !    maybe remove "bounds_1=bounds_IL, &" and "bounds_2=bounds_k, &" later and
     647             :       !    check whether performance improves
     648             : 
     649             :       bounds_IL(1:2) = [bs_env%i_ao_start_from_atom(atoms_IL(1)), &
     650        1464 :                         bs_env%i_ao_end_from_atom(atoms_IL(2))]
     651        1464 :       bounds_k(1:2, 1) = [1, bs_env%n_RI]
     652             :       bounds_k(1:2, 2) = [bs_env%i_ao_start_from_atom(atoms_AO_2(1)), &
     653        1464 :                           bs_env%i_ao_end_from_atom(atoms_AO_2(2))]
     654             :       bounds_l(1:2) = [bs_env%i_ao_start_from_atom(atoms_AO_1(1)), &
     655        1464 :                        bs_env%i_ao_end_from_atom(atoms_AO_1(2))]
     656             : 
     657             :       CALL dbt_contract(alpha=1.0_dp, &
     658             :                         tensor_1=t_3c_for_G, &
     659             :                         tensor_2=t_G, &
     660             :                         beta=1.0_dp, &
     661             :                         tensor_3=t_M, &
     662             :                         contract_1=[3], notcontract_1=[1, 2], map_1=[1, 2], &
     663             :                         contract_2=[2], notcontract_2=[1], map_2=[3], &
     664             :                         bounds_1=bounds_IL, &
     665             :                         bounds_2=bounds_k, &
     666             :                         bounds_3=bounds_l, &
     667         488 :                         filter_eps=bs_env%eps_filter)
     668             : 
     669         488 :       CALL dbt_clear(t_3c_for_G)
     670             : 
     671         488 :       CALL timestop(handle)
     672             : 
     673         488 :    END SUBROUTINE G_times_3c
     674             : 
     675             : ! **************************************************************************************************
     676             : !> \brief ...
     677             : !> \param atoms_1 ...
     678             : !> \param atoms_2 ...
     679             : !> \param qs_env ...
     680             : !> \param bs_env ...
     681             : !> \param dist_too_long ...
     682             : ! **************************************************************************************************
     683         488 :    SUBROUTINE check_dist(atoms_1, atoms_2, qs_env, bs_env, dist_too_long)
     684             :       INTEGER, DIMENSION(2)                              :: atoms_1, atoms_2
     685             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     686             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
     687             :       LOGICAL                                            :: dist_too_long
     688             : 
     689             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'check_dist'
     690             : 
     691             :       INTEGER                                            :: atom_1, atom_2, handle
     692             :       REAL(dp)                                           :: abs_rab, min_dist_AO_atoms
     693             :       REAL(KIND=dp), DIMENSION(3)                        :: rab
     694             :       TYPE(cell_type), POINTER                           :: cell
     695         488 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     696             : 
     697         488 :       CALL timeset(routineN, handle)
     698             : 
     699         488 :       CALL get_qs_env(qs_env, cell=cell, particle_set=particle_set)
     700             : 
     701         488 :       min_dist_AO_atoms = 1.0E5_dp
     702        1512 :       DO atom_1 = atoms_1(1), atoms_1(2)
     703        3704 :          DO atom_2 = atoms_2(1), atoms_2(2)
     704             : 
     705        2192 :             rab = pbc(particle_set(atom_1)%r(1:3), particle_set(atom_2)%r(1:3), cell)
     706             : 
     707        2192 :             abs_rab = SQRT(rab(1)**2 + rab(2)**2 + rab(3)**2)
     708             : 
     709        3216 :             min_dist_AO_atoms = MIN(min_dist_AO_atoms, abs_rab)
     710             : 
     711             :          END DO
     712             :       END DO
     713             : 
     714         488 :       dist_too_long = (min_dist_AO_atoms > bs_env%max_dist_AO_atoms)
     715             : 
     716         488 :       CALL timestop(handle)
     717             : 
     718         488 :    END SUBROUTINE check_dist
     719             : 
     720             : ! **************************************************************************************************
     721             : !> \brief ...
     722             : !> \param bs_env ...
     723             : !> \param qs_env ...
     724             : !> \param mat_chi_Gamma_tau ...
     725             : !> \param fm_W_MIC_time ...
     726             : ! **************************************************************************************************
     727          22 :    SUBROUTINE get_W_MIC(bs_env, qs_env, mat_chi_Gamma_tau, fm_W_MIC_time)
     728             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
     729             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     730             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: mat_chi_Gamma_tau
     731             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: fm_W_MIC_time
     732             : 
     733             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'get_W_MIC'
     734             : 
     735             :       INTEGER                                            :: handle
     736             : 
     737          22 :       CALL timeset(routineN, handle)
     738             : 
     739          22 :       IF (bs_env%all_W_exist) THEN
     740           6 :          CALL read_W_MIC_time(bs_env, mat_chi_Gamma_tau, fm_W_MIC_time)
     741             :       ELSE
     742          16 :          CALL compute_W_MIC(bs_env, qs_env, mat_chi_Gamma_tau, fm_W_MIC_time)
     743             :       END IF
     744             : 
     745          22 :       CALL timestop(handle)
     746             : 
     747          22 :    END SUBROUTINE get_W_MIC
     748             : 
     749             : ! **************************************************************************************************
     750             : !> \brief ...
     751             : !> \param bs_env ...
     752             : !> \param qs_env ...
     753             : !> \param fm_V_kp ...
     754             : !> \param ikp_batch ...
     755             : ! **************************************************************************************************
     756          64 :    SUBROUTINE compute_V_k_by_lattice_sum(bs_env, qs_env, fm_V_kp, ikp_batch)
     757             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
     758             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     759             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:, :)     :: fm_V_kp
     760             :       INTEGER                                            :: ikp_batch
     761             : 
     762             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_V_k_by_lattice_sum'
     763             : 
     764             :       INTEGER                                            :: handle, ikp, ikp_end, ikp_start, &
     765             :                                                             nkp_chi_eps_W_batch, re_im
     766          64 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
     767             :       TYPE(cell_type), POINTER                           :: cell
     768          64 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: mat_V_kp
     769          64 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     770          64 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     771             : 
     772          64 :       CALL timeset(routineN, handle)
     773             : 
     774          64 :       nkp_chi_eps_W_batch = bs_env%nkp_chi_eps_W_batch
     775             : 
     776          64 :       ikp_start = (ikp_batch - 1)*bs_env%nkp_chi_eps_W_batch + 1
     777          64 :       ikp_end = MIN(ikp_batch*bs_env%nkp_chi_eps_W_batch, bs_env%kpoints_chi_eps_W%nkp)
     778             : 
     779          64 :       NULLIFY (mat_V_kp)
     780         816 :       ALLOCATE (mat_V_kp(ikp_start:ikp_end, 2))
     781             : 
     782         280 :       DO ikp = ikp_start, ikp_end
     783         712 :          DO re_im = 1, 2
     784         432 :             NULLIFY (mat_V_kp(ikp, re_im)%matrix)
     785         432 :             ALLOCATE (mat_V_kp(ikp, re_im)%matrix)
     786         432 :             CALL dbcsr_create(mat_V_kp(ikp, re_im)%matrix, template=bs_env%mat_RI_RI%matrix)
     787         432 :             CALL dbcsr_reserve_all_blocks(mat_V_kp(ikp, re_im)%matrix)
     788         648 :             CALL dbcsr_set(mat_V_kp(ikp, re_im)%matrix, 0.0_dp)
     789             : 
     790             :          END DO ! re_im
     791             :       END DO ! ikp
     792             : 
     793             :       CALL get_qs_env(qs_env=qs_env, &
     794             :                       particle_set=particle_set, &
     795             :                       cell=cell, &
     796             :                       qs_kind_set=qs_kind_set, &
     797          64 :                       atomic_kind_set=atomic_kind_set)
     798             : 
     799          64 :       IF (ikp_end .LE. bs_env%nkp_chi_eps_W_orig) THEN
     800             : 
     801             :          ! 1. 2c Coulomb integrals for the first "original" k-point grid
     802          96 :          bs_env%kpoints_chi_eps_W%nkp_grid = bs_env%nkp_grid_chi_eps_W_orig
     803             : 
     804          40 :       ELSE IF (ikp_start > bs_env%nkp_chi_eps_W_orig .AND. &
     805             :                ikp_end .LE. bs_env%nkp_chi_eps_W_orig_plus_extra) THEN
     806             : 
     807             :          ! 2. 2c Coulomb integrals for the second "extrapolation" k-point grid
     808         160 :          bs_env%kpoints_chi_eps_W%nkp_grid = bs_env%nkp_grid_chi_eps_W_extra
     809             : 
     810             :       ELSE
     811             : 
     812           0 :          CPABORT("Error with k-point parallelization.")
     813             : 
     814             :       END IF
     815             : 
     816             :       CALL build_2c_coulomb_matrix_kp(mat_V_kp, &
     817             :                                       bs_env%kpoints_chi_eps_W, &
     818             :                                       basis_type="RI_AUX", &
     819             :                                       cell=cell, &
     820             :                                       particle_set=particle_set, &
     821             :                                       qs_kind_set=qs_kind_set, &
     822             :                                       atomic_kind_set=atomic_kind_set, &
     823             :                                       size_lattice_sum=bs_env%size_lattice_sum_V, &
     824             :                                       operator_type=operator_coulomb, &
     825             :                                       ikp_start=ikp_start, &
     826          64 :                                       ikp_end=ikp_end)
     827             : 
     828         256 :       bs_env%kpoints_chi_eps_W%nkp_grid = bs_env%nkp_grid_chi_eps_W_orig
     829             : 
     830         816 :       ALLOCATE (fm_V_kp(ikp_start:ikp_end, 2))
     831         280 :       DO ikp = ikp_start, ikp_end
     832         712 :          DO re_im = 1, 2
     833         432 :             CALL cp_fm_create(fm_V_kp(ikp, re_im), bs_env%fm_RI_RI%matrix_struct)
     834         432 :             CALL copy_dbcsr_to_fm(mat_V_kp(ikp, re_im)%matrix, fm_V_kp(ikp, re_im))
     835         648 :             CALL dbcsr_deallocate_matrix(mat_V_kp(ikp, re_im)%matrix)
     836             :          END DO
     837             :       END DO
     838          64 :       DEALLOCATE (mat_V_kp)
     839             : 
     840          64 :       CALL timestop(handle)
     841             : 
     842          64 :    END SUBROUTINE compute_V_k_by_lattice_sum
     843             : 
     844             : ! **************************************************************************************************
     845             : !> \brief ...
     846             : !> \param bs_env ...
     847             : !> \param qs_env ...
     848             : !> \param fm_V_kp ...
     849             : !> \param cfm_V_sqrt_ikp ...
     850             : !> \param cfm_M_inv_V_sqrt_ikp ...
     851             : !> \param ikp ...
     852             : ! **************************************************************************************************
     853         216 :    SUBROUTINE compute_MinvVsqrt_Vsqrt(bs_env, qs_env, fm_V_kp, cfm_V_sqrt_ikp, &
     854             :                                       cfm_M_inv_V_sqrt_ikp, ikp)
     855             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
     856             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     857             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:, :)     :: fm_V_kp
     858             :       TYPE(cp_cfm_type)                                  :: cfm_V_sqrt_ikp, cfm_M_inv_V_sqrt_ikp
     859             :       INTEGER                                            :: ikp
     860             : 
     861             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_MinvVsqrt_Vsqrt'
     862             : 
     863             :       INTEGER                                            :: handle, info, n_RI
     864             :       TYPE(cp_cfm_type)                                  :: cfm_M_inv_ikp, cfm_work
     865         216 :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:, :)     :: fm_M_ikp
     866             : 
     867         216 :       CALL timeset(routineN, handle)
     868             : 
     869         216 :       n_RI = bs_env%n_RI
     870             : 
     871             :       ! get here M(k) and write it to fm_M_ikp
     872             :       CALL RI_2c_integral_mat(qs_env, fm_M_ikp, fm_V_kp(ikp, 1), &
     873             :                               n_RI, bs_env%ri_metric, do_kpoints=.TRUE., &
     874             :                               kpoints=bs_env%kpoints_chi_eps_W, &
     875             :                               regularization_RI=bs_env%regularization_RI, ikp_ext=ikp, &
     876         216 :                               do_build_cell_index=(ikp == 1))
     877             : 
     878         216 :       IF (ikp == 1) THEN
     879          16 :          CALL cp_cfm_create(cfm_V_sqrt_ikp, fm_V_kp(ikp, 1)%matrix_struct)
     880          16 :          CALL cp_cfm_create(cfm_M_inv_V_sqrt_ikp, fm_V_kp(ikp, 1)%matrix_struct)
     881             :       END IF
     882         216 :       CALL cp_cfm_create(cfm_M_inv_ikp, fm_V_kp(ikp, 1)%matrix_struct)
     883             : 
     884         216 :       CALL cp_fm_to_cfm(fm_M_ikp(1, 1), fm_M_ikp(1, 2), cfm_M_inv_ikp)
     885         216 :       CALL cp_fm_to_cfm(fm_V_kp(ikp, 1), fm_V_kp(ikp, 2), cfm_V_sqrt_ikp)
     886             : 
     887         216 :       CALL cp_fm_release(fm_M_ikp)
     888             : 
     889         216 :       CALL cp_cfm_create(cfm_work, fm_V_kp(ikp, 1)%matrix_struct)
     890             : 
     891             :       ! M(k) -> M^-1(k)
     892         216 :       CALL cp_cfm_to_cfm(cfm_M_inv_ikp, cfm_work)
     893         216 :       CALL cp_cfm_cholesky_decompose(matrix=cfm_M_inv_ikp, n=n_RI, info_out=info)
     894         216 :       IF (info == 0) THEN
     895             :          ! successful Cholesky decomposition
     896         216 :          CALL cp_cfm_cholesky_invert(cfm_M_inv_ikp)
     897             :          ! symmetrize the result
     898         216 :          CALL cp_cfm_uplo_to_full(cfm_M_inv_ikp)
     899             :       ELSE
     900             :          ! Cholesky decomposition not successful: use expensive diagonalization
     901           0 :          CALL cp_cfm_power(cfm_work, threshold=bs_env%eps_eigval_mat_RI, exponent=-1.0_dp)
     902           0 :          CALL cp_cfm_to_cfm(cfm_work, cfm_M_inv_ikp)
     903             :       END IF
     904             : 
     905             :       ! V(k) -> L(k) with L^H(k)*L(k) = V(k) [L(k) can be just considered to be V^0.5(k)]
     906         216 :       CALL cp_cfm_to_cfm(cfm_V_sqrt_ikp, cfm_work)
     907         216 :       CALL cp_cfm_cholesky_decompose(matrix=cfm_V_sqrt_ikp, n=n_RI, info_out=info)
     908         216 :       IF (info == 0) THEN
     909             :          ! successful Cholesky decomposition
     910         216 :          CALL clean_lower_part(cfm_V_sqrt_ikp)
     911             :       ELSE
     912             :          ! Cholesky decomposition not successful: use expensive diagonalization
     913           0 :          CALL cp_cfm_power(cfm_work, threshold=0.0_dp, exponent=0.5_dp)
     914           0 :          CALL cp_cfm_to_cfm(cfm_work, cfm_V_sqrt_ikp)
     915             :       END IF
     916         216 :       CALL cp_cfm_release(cfm_work)
     917             : 
     918             :       ! get M^-1(k)*V^0.5(k)
     919             :       CALL parallel_gemm("N", "C", n_RI, n_RI, n_RI, z_one, cfm_M_inv_ikp, cfm_V_sqrt_ikp, &
     920         216 :                          z_zero, cfm_M_inv_V_sqrt_ikp)
     921             : 
     922         216 :       CALL cp_cfm_release(cfm_M_inv_ikp)
     923             : 
     924         216 :       CALL timestop(handle)
     925             : 
     926         432 :    END SUBROUTINE compute_MinvVsqrt_Vsqrt
     927             : 
     928             : ! **************************************************************************************************
     929             : !> \brief ...
     930             : !> \param bs_env ...
     931             : !> \param mat_chi_Gamma_tau ...
     932             : !> \param fm_W_MIC_time ...
     933             : ! **************************************************************************************************
     934           6 :    SUBROUTINE read_W_MIC_time(bs_env, mat_chi_Gamma_tau, fm_W_MIC_time)
     935             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
     936             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: mat_chi_Gamma_tau
     937             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: fm_W_MIC_time
     938             : 
     939             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'read_W_MIC_time'
     940             : 
     941             :       INTEGER                                            :: handle, i_t
     942             :       REAL(KIND=dp)                                      :: t1
     943             : 
     944           6 :       CALL timeset(routineN, handle)
     945             : 
     946           6 :       CALL dbcsr_deallocate_matrix_set(mat_chi_Gamma_tau)
     947           6 :       CALL create_fm_W_MIC_time(bs_env, fm_W_MIC_time)
     948             : 
     949         106 :       DO i_t = 1, bs_env%num_time_freq_points
     950             : 
     951         100 :          t1 = m_walltime()
     952             : 
     953         100 :          CALL fm_read(fm_W_MIC_time(i_t), bs_env, bs_env%W_time_name, i_t)
     954             : 
     955         106 :          IF (bs_env%unit_nr > 0) THEN
     956             :             WRITE (bs_env%unit_nr, '(T2,A,I5,A,I3,A,F7.1,A)') &
     957          50 :                'Read W^MIC(iτ) from file for time point  ', i_t, ' /', bs_env%num_time_freq_points, &
     958         100 :                ',    Execution time', m_walltime() - t1, ' s'
     959             :          END IF
     960             : 
     961             :       END DO
     962             : 
     963           6 :       IF (bs_env%unit_nr > 0) WRITE (bs_env%unit_nr, '(A)') ' '
     964             : 
     965             :       ! Marek : Reading of the W(w=0) potential for RTP
     966             :       ! TODO : is the condition bs_env%all_W_exist sufficient for reading?
     967           6 :       IF (bs_env%rtp_method == rtp_method_bse) THEN
     968           4 :          CALL cp_fm_create(bs_env%fm_W_MIC_freq_zero, bs_env%fm_W_MIC_freq%matrix_struct)
     969           4 :          t1 = m_walltime()
     970           4 :          CALL fm_read(bs_env%fm_W_MIC_freq_zero, bs_env, "W_freq_rtp", 0)
     971           4 :          IF (bs_env%unit_nr > 0) THEN
     972             :             WRITE (bs_env%unit_nr, '(T2,A,I3,A,I3,A,F7.1,A)') &
     973           2 :                'Read W^MIC(f=0) from file for freq. point  ', 1, ' /', 1, &
     974           4 :                ',    Execution time', m_walltime() - t1, ' s'
     975             :          END IF
     976             :       END IF
     977             : 
     978           6 :       CALL timestop(handle)
     979             : 
     980           6 :    END SUBROUTINE read_W_MIC_time
     981             : 
     982             : ! **************************************************************************************************
     983             : !> \brief ...
     984             : !> \param bs_env ...
     985             : !> \param qs_env ...
     986             : !> \param mat_chi_Gamma_tau ...
     987             : !> \param fm_W_MIC_time ...
     988             : ! **************************************************************************************************
     989          16 :    SUBROUTINE compute_W_MIC(bs_env, qs_env, mat_chi_Gamma_tau, fm_W_MIC_time)
     990             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
     991             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     992             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: mat_chi_Gamma_tau
     993             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: fm_W_MIC_time
     994             : 
     995             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'compute_W_MIC'
     996             : 
     997             :       INTEGER                                            :: handle, i_t, ikp, ikp_batch, &
     998             :                                                             ikp_in_batch, j_w
     999             :       REAL(KIND=dp)                                      :: t1
    1000             :       TYPE(cp_cfm_type)                                  :: cfm_M_inv_V_sqrt_ikp, cfm_V_sqrt_ikp
    1001          16 :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:, :)     :: fm_V_kp
    1002             : 
    1003          16 :       CALL timeset(routineN, handle)
    1004             : 
    1005          16 :       CALL create_fm_W_MIC_time(bs_env, fm_W_MIC_time)
    1006             : 
    1007          80 :       DO ikp_batch = 1, bs_env%num_chi_eps_W_batches
    1008             : 
    1009          64 :          t1 = m_walltime()
    1010             : 
    1011             :          ! Compute V_PQ(k) = sum_R e^(ikR) <phi_P, cell 0 | 1/r | phi_Q, cell R>
    1012          64 :          CALL compute_V_k_by_lattice_sum(bs_env, qs_env, fm_V_kp, ikp_batch)
    1013             : 
    1014         320 :          DO ikp_in_batch = 1, bs_env%nkp_chi_eps_W_batch
    1015             : 
    1016         256 :             ikp = (ikp_batch - 1)*bs_env%nkp_chi_eps_W_batch + ikp_in_batch
    1017             : 
    1018         256 :             IF (ikp > bs_env%nkp_chi_eps_W_orig_plus_extra) CYCLE
    1019             : 
    1020             :             CALL compute_MinvVsqrt_Vsqrt(bs_env, qs_env, fm_V_kp, &
    1021         216 :                                          cfm_V_sqrt_ikp, cfm_M_inv_V_sqrt_ikp, ikp)
    1022             : 
    1023         216 :             CALL bs_env%para_env%sync()
    1024             : 
    1025        2040 :             DO j_w = 1, bs_env%num_time_freq_points
    1026             : 
    1027             :                ! check if we need this (ikp, ω_j) combination for approximate k-point extrapolation
    1028        1824 :                IF (bs_env%approx_kp_extrapol .AND. j_w > 1 .AND. &
    1029             :                    ikp > bs_env%nkp_chi_eps_W_orig) CYCLE
    1030             : 
    1031             :                CALL compute_fm_W_MIC_freq_j(bs_env, qs_env, bs_env%fm_W_MIC_freq, j_w, ikp, &
    1032             :                                             mat_chi_Gamma_tau, cfm_M_inv_V_sqrt_ikp, &
    1033        1500 :                                             cfm_V_sqrt_ikp)
    1034             : 
    1035             :                ! Fourier trafo from W_PQ^MIC(iω_j) to W_PQ^MIC(iτ)
    1036        2040 :                CALL Fourier_transform_w_to_t(bs_env, fm_W_MIC_time, bs_env%fm_W_MIC_freq, j_w)
    1037             : 
    1038             :             END DO ! ω_j
    1039             : 
    1040         216 :             CALL cp_fm_release(fm_V_kp(ikp, 1))
    1041         320 :             CALL cp_fm_release(fm_V_kp(ikp, 2))
    1042             : 
    1043             :          END DO ! ikp_in_batch
    1044             : 
    1045          64 :          DEALLOCATE (fm_V_kp)
    1046             : 
    1047          80 :          IF (bs_env%unit_nr > 0) THEN
    1048             :             WRITE (bs_env%unit_nr, '(T2,A,I12,A,I3,A,F7.1,A)') &
    1049          32 :                'Computed W(iτ,k) for k-point batch', &
    1050          32 :                ikp_batch, ' /', bs_env%num_chi_eps_W_batches, &
    1051          64 :                ',    Execution time', m_walltime() - t1, ' s'
    1052             :          END IF
    1053             : 
    1054             :       END DO ! ikp_batch
    1055             : 
    1056          16 :       IF (bs_env%approx_kp_extrapol) THEN
    1057           2 :          CALL apply_extrapol_factor(bs_env, fm_W_MIC_time)
    1058             :       END IF
    1059             : 
    1060             :       ! M^-1(k=0)*W^MIC(iτ)*M^-1(k=0)
    1061          16 :       CALL multiply_fm_W_MIC_time_with_Minv_Gamma(bs_env, qs_env, fm_W_MIC_time)
    1062             : 
    1063         240 :       DO i_t = 1, bs_env%num_time_freq_points
    1064         240 :          CALL fm_write(fm_W_MIC_time(i_t), i_t, bs_env%W_time_name, qs_env)
    1065             :       END DO
    1066             : 
    1067          16 :       CALL cp_cfm_release(cfm_M_inv_V_sqrt_ikp)
    1068          16 :       CALL cp_cfm_release(cfm_V_sqrt_ikp)
    1069          16 :       CALL dbcsr_deallocate_matrix_set(mat_chi_Gamma_tau)
    1070             : 
    1071             :       ! Marek : Fourier transform W^MIC(itau) back to get it at a specific im.frequency point - iomega = 0
    1072          16 :       IF (bs_env%rtp_method == rtp_method_bse) THEN
    1073           8 :          t1 = m_walltime()
    1074           8 :          CALL cp_fm_create(bs_env%fm_W_MIC_freq_zero, bs_env%fm_W_MIC_freq%matrix_struct)
    1075             :          ! Set to zero
    1076           8 :          CALL cp_fm_set_all(bs_env%fm_W_MIC_freq_zero, 0.0_dp)
    1077             :          ! Sum over all times
    1078         168 :          DO i_t = 1, bs_env%num_time_freq_points
    1079             :             ! Add the relevant structure with correct weight
    1080             :             CALL cp_fm_scale_and_add(1.0_dp, bs_env%fm_W_MIC_freq_zero, &
    1081         168 :                                      bs_env%imag_time_weights_freq_zero(i_t), fm_W_MIC_time(i_t))
    1082             :          END DO
    1083             :          ! Done, save to file
    1084           8 :          CALL fm_write(bs_env%fm_W_MIC_freq_zero, 0, "W_freq_rtp", qs_env)
    1085             :          ! Report calculation
    1086           8 :          IF (bs_env%unit_nr > 0) THEN
    1087             :             WRITE (bs_env%unit_nr, '(T2,A,I11,A,I3,A,F7.1,A)') &
    1088           4 :                'Computed W(f=0,k) for k-point batch', &
    1089           4 :                1, ' /', 1, &
    1090           8 :                ',    Execution time', m_walltime() - t1, ' s'
    1091             :          END IF
    1092             :       END IF
    1093             : 
    1094          16 :       IF (bs_env%unit_nr > 0) WRITE (bs_env%unit_nr, '(A)') ' '
    1095             : 
    1096          16 :       CALL timestop(handle)
    1097             : 
    1098          32 :    END SUBROUTINE compute_W_MIC
    1099             : 
    1100             : ! **************************************************************************************************
    1101             : !> \brief ...
    1102             : !> \param bs_env ...
    1103             : !> \param qs_env ...
    1104             : !> \param fm_W_MIC_freq_j ...
    1105             : !> \param j_w ...
    1106             : !> \param ikp ...
    1107             : !> \param mat_chi_Gamma_tau ...
    1108             : !> \param cfm_M_inv_V_sqrt_ikp ...
    1109             : !> \param cfm_V_sqrt_ikp ...
    1110             : ! **************************************************************************************************
    1111        1500 :    SUBROUTINE compute_fm_W_MIC_freq_j(bs_env, qs_env, fm_W_MIC_freq_j, j_w, ikp, mat_chi_Gamma_tau, &
    1112             :                                       cfm_M_inv_V_sqrt_ikp, cfm_V_sqrt_ikp)
    1113             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    1114             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1115             :       TYPE(cp_fm_type)                                   :: fm_W_MIC_freq_j
    1116             :       INTEGER                                            :: j_w, ikp
    1117             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: mat_chi_Gamma_tau
    1118             :       TYPE(cp_cfm_type)                                  :: cfm_M_inv_V_sqrt_ikp, cfm_V_sqrt_ikp
    1119             : 
    1120             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_fm_W_MIC_freq_j'
    1121             : 
    1122             :       INTEGER                                            :: handle
    1123             :       TYPE(cp_cfm_type)                                  :: cfm_chi_ikp_freq_j, cfm_W_ikp_freq_j
    1124             : 
    1125        1500 :       CALL timeset(routineN, handle)
    1126             : 
    1127             :       ! 1. Fourier transformation of χ_PQ(iτ,k=0) to χ_PQ(iω_j,k=0)
    1128        1500 :       CALL compute_fm_chi_Gamma_freq(bs_env, bs_env%fm_chi_Gamma_freq, j_w, mat_chi_Gamma_tau)
    1129             : 
    1130        1500 :       CALL cp_fm_set_all(fm_W_MIC_freq_j, 0.0_dp)
    1131             : 
    1132             :       ! 2. Get χ_PQ(iω_j,k_i) from χ_PQ(iω_j,k=0) using the minimum image convention
    1133             :       CALL cfm_ikp_from_fm_Gamma(cfm_chi_ikp_freq_j, bs_env%fm_chi_Gamma_freq, &
    1134        1500 :                                  ikp, qs_env, bs_env%kpoints_chi_eps_W, "RI_AUX")
    1135             : 
    1136             :       ! 3. Remove all negative eigenvalues from χ_PQ(iω_j,k_i)
    1137        1500 :       CALL cp_cfm_power(cfm_chi_ikp_freq_j, threshold=0.0_dp, exponent=1.0_dp)
    1138             : 
    1139             :       ! 4. ε(iω_j,k_i) = Id - V^0.5(k_i)*M^-1(k_i)*χ(iω_j,k_i)*M^-1(k_i)*V^0.5(k_i)
    1140             :       !    W(iω_j,k_i) = V^0.5(k_i)*(ε^-1(iω_j,k_i)-Id)*V^0.5(k_i)
    1141             :       CALL compute_cfm_W_ikp_freq_j(bs_env, cfm_chi_ikp_freq_j, cfm_V_sqrt_ikp, &
    1142        1500 :                                     cfm_M_inv_V_sqrt_ikp, cfm_W_ikp_freq_j)
    1143             : 
    1144             :       ! 5. k-point integration W_PQ(iω_j, k_i) to W_PQ^MIC(iω_j)
    1145        1500 :       SELECT CASE (bs_env%approx_kp_extrapol)
    1146             :       CASE (.FALSE.)
    1147             :          ! default: standard k-point extrapolation
    1148             :          CALL MIC_contribution_from_ikp(bs_env, qs_env, fm_W_MIC_freq_j, cfm_W_ikp_freq_j, ikp, &
    1149        1500 :                                         bs_env%kpoints_chi_eps_W, "RI_AUX")
    1150             :       CASE (.TRUE.)
    1151             :          ! for approximate kpoint extrapolation: get W_PQ^MIC(iω_1) with and without k-point
    1152             :          ! extrapolation to compute the extrapolation factor f_PQ for every PQ-matrix element,
    1153             :          ! f_PQ = (W_PQ^MIC(iω_1) with extrapolation) / (W_PQ^MIC(iω_1) without extrapolation)
    1154             : 
    1155             :          ! for ω_1, we compute the k-point extrapolated result using all k-points
    1156         196 :          IF (j_w == 1) THEN
    1157             : 
    1158             :             ! k-point extrapolated
    1159             :             CALL MIC_contribution_from_ikp(bs_env, qs_env, bs_env%fm_W_MIC_freq_1_extra, &
    1160             :                                            cfm_W_ikp_freq_j, ikp, bs_env%kpoints_chi_eps_W, &
    1161          52 :                                            "RI_AUX")
    1162             :             ! non-kpoint extrapolated
    1163          52 :             IF (ikp .LE. bs_env%nkp_chi_eps_W_orig) THEN
    1164             :                CALL MIC_contribution_from_ikp(bs_env, qs_env, bs_env%fm_W_MIC_freq_1_no_extra, &
    1165             :                                               cfm_W_ikp_freq_j, ikp, bs_env%kpoints_chi_eps_W, &
    1166          16 :                                               "RI_AUX", wkp_ext=bs_env%wkp_orig)
    1167             :             END IF
    1168             : 
    1169             :          END IF
    1170             : 
    1171             :          ! for all ω_j, we need to compute W^MIC without k-point extrpolation
    1172         196 :          IF (ikp .LE. bs_env%nkp_chi_eps_W_orig) THEN
    1173             :             CALL MIC_contribution_from_ikp(bs_env, qs_env, fm_W_MIC_freq_j, cfm_W_ikp_freq_j, &
    1174             :                                            ikp, bs_env%kpoints_chi_eps_W, "RI_AUX", &
    1175         160 :                                            wkp_ext=bs_env%wkp_orig)
    1176             :          END IF
    1177             :       END SELECT
    1178             : 
    1179        1500 :       CALL cp_cfm_release(cfm_W_ikp_freq_j)
    1180             : 
    1181        1500 :       CALL timestop(handle)
    1182             : 
    1183        1500 :    END SUBROUTINE compute_fm_W_MIC_freq_j
    1184             : 
    1185             : ! **************************************************************************************************
    1186             : !> \brief ...
    1187             : !> \param cfm_mat ...
    1188             : ! **************************************************************************************************
    1189         432 :    SUBROUTINE clean_lower_part(cfm_mat)
    1190             :       TYPE(cp_cfm_type)                                  :: cfm_mat
    1191             : 
    1192             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'clean_lower_part'
    1193             : 
    1194             :       INTEGER                                            :: handle, i_global, i_row, j_col, &
    1195             :                                                             j_global, ncol_local, nrow_local
    1196         216 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices, row_indices
    1197             : 
    1198         216 :       CALL timeset(routineN, handle)
    1199             : 
    1200             :       CALL cp_cfm_get_info(matrix=cfm_mat, &
    1201             :                            nrow_local=nrow_local, ncol_local=ncol_local, &
    1202         216 :                            row_indices=row_indices, col_indices=col_indices)
    1203             : 
    1204         980 :       DO i_row = 1, nrow_local
    1205        7544 :          DO j_col = 1, ncol_local
    1206        6564 :             i_global = row_indices(i_row)
    1207        6564 :             j_global = col_indices(j_col)
    1208        7328 :             IF (j_global < i_global) cfm_mat%local_data(i_row, j_col) = z_zero
    1209             :          END DO
    1210             :       END DO
    1211             : 
    1212         216 :       CALL timestop(handle)
    1213             : 
    1214         216 :    END SUBROUTINE clean_lower_part
    1215             : 
    1216             : ! **************************************************************************************************
    1217             : !> \brief ...
    1218             : !> \param bs_env ...
    1219             : !> \param fm_W_MIC_time ...
    1220             : ! **************************************************************************************************
    1221           4 :    SUBROUTINE apply_extrapol_factor(bs_env, fm_W_MIC_time)
    1222             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    1223             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: fm_W_MIC_time
    1224             : 
    1225             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'apply_extrapol_factor'
    1226             : 
    1227             :       INTEGER                                            :: handle, i, i_t, j, ncol_local, nrow_local
    1228             :       REAL(KIND=dp)                                      :: extrapol_factor, W_extra_1, W_no_extra_1
    1229             : 
    1230           2 :       CALL timeset(routineN, handle)
    1231             : 
    1232           2 :       CALL cp_fm_get_info(matrix=fm_W_MIC_time(1), nrow_local=nrow_local, ncol_local=ncol_local)
    1233             : 
    1234          22 :       DO i_t = 1, bs_env%num_time_freq_points
    1235          72 :          DO i = 1, nrow_local
    1236         320 :             DO j = 1, ncol_local
    1237             : 
    1238         250 :                W_extra_1 = bs_env%fm_W_MIC_freq_1_extra%local_data(i, j)
    1239         250 :                W_no_extra_1 = bs_env%fm_W_MIC_freq_1_no_extra%local_data(i, j)
    1240             : 
    1241         250 :                IF (ABS(W_no_extra_1) > 1.0E-13) THEN
    1242         190 :                   extrapol_factor = W_extra_1/W_no_extra_1
    1243             :                ELSE
    1244             :                   extrapol_factor = 1.0_dp
    1245             :                END IF
    1246             : 
    1247             :                ! reset extrapolation factor if it is very large
    1248         250 :                IF (ABS(extrapol_factor) > 10.0_dp) extrapol_factor = 1.0_dp
    1249             : 
    1250             :                fm_W_MIC_time(i_t)%local_data(i, j) = fm_W_MIC_time(i_t)%local_data(i, j) &
    1251         300 :                                                      *extrapol_factor
    1252             :             END DO
    1253             :          END DO
    1254             :       END DO
    1255             : 
    1256           2 :       CALL timestop(handle)
    1257             : 
    1258           2 :    END SUBROUTINE apply_extrapol_factor
    1259             : 
    1260             : ! **************************************************************************************************
    1261             : !> \brief ...
    1262             : !> \param bs_env ...
    1263             : !> \param fm_chi_Gamma_freq ...
    1264             : !> \param j_w ...
    1265             : !> \param mat_chi_Gamma_tau ...
    1266             : ! **************************************************************************************************
    1267        1500 :    SUBROUTINE compute_fm_chi_Gamma_freq(bs_env, fm_chi_Gamma_freq, j_w, mat_chi_Gamma_tau)
    1268             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    1269             :       TYPE(cp_fm_type)                                   :: fm_chi_Gamma_freq
    1270             :       INTEGER                                            :: j_w
    1271             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: mat_chi_Gamma_tau
    1272             : 
    1273             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_fm_chi_Gamma_freq'
    1274             : 
    1275             :       INTEGER                                            :: handle, i_t
    1276             :       REAL(KIND=dp)                                      :: freq_j, time_i, weight_ij
    1277             : 
    1278        1500 :       CALL timeset(routineN, handle)
    1279             : 
    1280        1500 :       CALL dbcsr_set(bs_env%mat_RI_RI%matrix, 0.0_dp)
    1281             : 
    1282        1500 :       freq_j = bs_env%imag_freq_points(j_w)
    1283             : 
    1284       15604 :       DO i_t = 1, bs_env%num_time_freq_points
    1285             : 
    1286       14104 :          time_i = bs_env%imag_time_points(i_t)
    1287       14104 :          weight_ij = bs_env%weights_cos_t_to_w(j_w, i_t)
    1288             : 
    1289             :          ! actual Fourier transform
    1290             :          CALL dbcsr_add(bs_env%mat_RI_RI%matrix, mat_chi_Gamma_tau(i_t)%matrix, &
    1291       15604 :                         1.0_dp, COS(time_i*freq_j)*weight_ij)
    1292             : 
    1293             :       END DO
    1294             : 
    1295        1500 :       CALL copy_dbcsr_to_fm(bs_env%mat_RI_RI%matrix, fm_chi_Gamma_freq)
    1296             : 
    1297        1500 :       CALL timestop(handle)
    1298             : 
    1299        1500 :    END SUBROUTINE compute_fm_chi_Gamma_freq
    1300             : 
    1301             : ! **************************************************************************************************
    1302             : !> \brief ...
    1303             : !> \param mat_ikp_re ...
    1304             : !> \param mat_ikp_im ...
    1305             : !> \param mat_Gamma ...
    1306             : !> \param kpoints ...
    1307             : !> \param ikp ...
    1308             : !> \param qs_env ...
    1309             : ! **************************************************************************************************
    1310           0 :    SUBROUTINE mat_ikp_from_mat_Gamma(mat_ikp_re, mat_ikp_im, mat_Gamma, kpoints, ikp, qs_env)
    1311             :       TYPE(dbcsr_type)                                   :: mat_ikp_re, mat_ikp_im, mat_Gamma
    1312             :       TYPE(kpoint_type), POINTER                         :: kpoints
    1313             :       INTEGER                                            :: ikp
    1314             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1315             : 
    1316             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'mat_ikp_from_mat_Gamma'
    1317             : 
    1318             :       INTEGER                                            :: col, handle, i_cell, j_cell, num_cells, &
    1319             :                                                             row
    1320           0 :       INTEGER, DIMENSION(:, :), POINTER                  :: index_to_cell
    1321             :       LOGICAL :: f, i_cell_is_the_minimum_image_cell
    1322             :       REAL(KIND=dp)                                      :: abs_rab_cell_i, abs_rab_cell_j, arg
    1323             :       REAL(KIND=dp), DIMENSION(3)                        :: cell_vector, cell_vector_j, rab_cell_i, &
    1324             :                                                             rab_cell_j
    1325             :       REAL(KIND=dp), DIMENSION(3, 3)                     :: hmat
    1326           0 :       REAL(KIND=dp), DIMENSION(:, :), POINTER            :: block_im, block_re, data_block
    1327             :       TYPE(cell_type), POINTER                           :: cell
    1328             :       TYPE(dbcsr_iterator_type)                          :: iter
    1329           0 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    1330             : 
    1331           0 :       CALL timeset(routineN, handle)
    1332             : 
    1333             :       ! get the same blocks in mat_ikp_re and mat_ikp_im as in mat_Gamma
    1334           0 :       CALL dbcsr_copy(mat_ikp_re, mat_Gamma)
    1335           0 :       CALL dbcsr_copy(mat_ikp_im, mat_Gamma)
    1336           0 :       CALL dbcsr_set(mat_ikp_re, 0.0_dp)
    1337           0 :       CALL dbcsr_set(mat_ikp_im, 0.0_dp)
    1338             : 
    1339           0 :       NULLIFY (cell, particle_set)
    1340           0 :       CALL get_qs_env(qs_env, cell=cell, particle_set=particle_set)
    1341           0 :       CALL get_cell(cell=cell, h=hmat)
    1342             : 
    1343           0 :       index_to_cell => kpoints%index_to_cell
    1344             : 
    1345           0 :       num_cells = SIZE(index_to_cell, 2)
    1346             : 
    1347           0 :       DO i_cell = 1, num_cells
    1348             : 
    1349           0 :          CALL dbcsr_iterator_start(iter, mat_Gamma)
    1350           0 :          DO WHILE (dbcsr_iterator_blocks_left(iter))
    1351           0 :             CALL dbcsr_iterator_next_block(iter, row, col, data_block)
    1352             : 
    1353           0 :             cell_vector(1:3) = MATMUL(hmat, REAL(index_to_cell(1:3, i_cell), dp))
    1354             : 
    1355             :             rab_cell_i(1:3) = pbc(particle_set(row)%r(1:3), cell) - &
    1356           0 :                               (pbc(particle_set(col)%r(1:3), cell) + cell_vector(1:3))
    1357           0 :             abs_rab_cell_i = SQRT(rab_cell_i(1)**2 + rab_cell_i(2)**2 + rab_cell_i(3)**2)
    1358             : 
    1359             :             ! minimum image convention
    1360           0 :             i_cell_is_the_minimum_image_cell = .TRUE.
    1361           0 :             DO j_cell = 1, num_cells
    1362           0 :                cell_vector_j(1:3) = MATMUL(hmat, REAL(index_to_cell(1:3, j_cell), dp))
    1363             :                rab_cell_j(1:3) = pbc(particle_set(row)%r(1:3), cell) - &
    1364           0 :                                  (pbc(particle_set(col)%r(1:3), cell) + cell_vector_j(1:3))
    1365           0 :                abs_rab_cell_j = SQRT(rab_cell_j(1)**2 + rab_cell_j(2)**2 + rab_cell_j(3)**2)
    1366             : 
    1367           0 :                IF (abs_rab_cell_i > abs_rab_cell_j + 1.0E-6_dp) THEN
    1368           0 :                   i_cell_is_the_minimum_image_cell = .FALSE.
    1369             :                END IF
    1370             :             END DO
    1371             : 
    1372           0 :             IF (i_cell_is_the_minimum_image_cell) THEN
    1373           0 :                NULLIFY (block_re, block_im)
    1374           0 :                CALL dbcsr_get_block_p(matrix=mat_ikp_re, row=row, col=col, block=block_re, found=f)
    1375           0 :                CALL dbcsr_get_block_p(matrix=mat_ikp_im, row=row, col=col, block=block_im, found=f)
    1376           0 :                CPASSERT(ALL(ABS(block_re) < 1.0E-10_dp))
    1377           0 :                CPASSERT(ALL(ABS(block_im) < 1.0E-10_dp))
    1378             : 
    1379             :                arg = REAL(index_to_cell(1, i_cell), dp)*kpoints%xkp(1, ikp) + &
    1380             :                      REAL(index_to_cell(2, i_cell), dp)*kpoints%xkp(2, ikp) + &
    1381           0 :                      REAL(index_to_cell(3, i_cell), dp)*kpoints%xkp(3, ikp)
    1382             : 
    1383           0 :                block_re(:, :) = COS(twopi*arg)*data_block(:, :)
    1384           0 :                block_im(:, :) = SIN(twopi*arg)*data_block(:, :)
    1385             :             END IF
    1386             : 
    1387             :          END DO
    1388           0 :          CALL dbcsr_iterator_stop(iter)
    1389             : 
    1390             :       END DO
    1391             : 
    1392           0 :       CALL timestop(handle)
    1393             : 
    1394           0 :    END SUBROUTINE mat_ikp_from_mat_Gamma
    1395             : 
    1396             : ! **************************************************************************************************
    1397             : !> \brief ...
    1398             : !> \param bs_env ...
    1399             : !> \param cfm_chi_ikp_freq_j ...
    1400             : !> \param cfm_V_sqrt_ikp ...
    1401             : !> \param cfm_M_inv_V_sqrt_ikp ...
    1402             : !> \param cfm_W_ikp_freq_j ...
    1403             : ! **************************************************************************************************
    1404        7500 :    SUBROUTINE compute_cfm_W_ikp_freq_j(bs_env, cfm_chi_ikp_freq_j, cfm_V_sqrt_ikp, &
    1405             :                                        cfm_M_inv_V_sqrt_ikp, cfm_W_ikp_freq_j)
    1406             : 
    1407             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    1408             :       TYPE(cp_cfm_type)                                  :: cfm_chi_ikp_freq_j, cfm_V_sqrt_ikp, &
    1409             :                                                             cfm_M_inv_V_sqrt_ikp, cfm_W_ikp_freq_j
    1410             : 
    1411             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_cfm_W_ikp_freq_j'
    1412             : 
    1413             :       INTEGER                                            :: handle, info, n_RI
    1414             :       TYPE(cp_cfm_type)                                  :: cfm_eps_ikp_freq_j, cfm_work
    1415             : 
    1416        1500 :       CALL timeset(routineN, handle)
    1417             : 
    1418        1500 :       CALL cp_cfm_create(cfm_work, cfm_chi_ikp_freq_j%matrix_struct)
    1419        1500 :       n_RI = bs_env%n_RI
    1420             : 
    1421             :       ! 1. ε(iω_j,k) = Id - V^0.5(k)*M^-1(k)*χ(iω_j,k)*M^-1(k)*V^0.5(k)
    1422             : 
    1423             :       ! 1. a) work = χ(iω_j,k)*M^-1(k)*V^0.5(k)
    1424             :       CALL parallel_gemm('N', 'N', n_RI, n_RI, n_RI, z_one, &
    1425        1500 :                          cfm_chi_ikp_freq_j, cfm_M_inv_V_sqrt_ikp, z_zero, cfm_work)
    1426        1500 :       CALL cp_cfm_release(cfm_chi_ikp_freq_j)
    1427             : 
    1428             :       ! 1. b) eps_work = V^0.5(k)*M^-1(k)*work
    1429        1500 :       CALL cp_cfm_create(cfm_eps_ikp_freq_j, cfm_work%matrix_struct)
    1430             :       CALL parallel_gemm('C', 'N', n_RI, n_RI, n_RI, z_one, &
    1431        1500 :                          cfm_M_inv_V_sqrt_ikp, cfm_work, z_zero, cfm_eps_ikp_freq_j)
    1432             : 
    1433             :       ! 1. c) ε(iω_j,k) = eps_work - Id
    1434        1500 :       CALL cfm_add_on_diag(cfm_eps_ikp_freq_j, z_one)
    1435             : 
    1436             :       ! 2. W(iω_j,k) = V^0.5(k)*(ε^-1(iω_j,k)-Id)*V^0.5(k)
    1437             : 
    1438             :       ! 2. a) Cholesky decomposition of ε(iω_j,k) as preparation for inversion
    1439        1500 :       CALL cp_cfm_cholesky_decompose(matrix=cfm_eps_ikp_freq_j, n=n_RI, info_out=info)
    1440        1500 :       CPASSERT(info == 0)
    1441             : 
    1442             :       ! 2. b) Inversion of ε(iω_j,k) using its Cholesky decomposition
    1443        1500 :       CALL cp_cfm_cholesky_invert(cfm_eps_ikp_freq_j)
    1444        1500 :       CALL cp_cfm_uplo_to_full(cfm_eps_ikp_freq_j)
    1445             : 
    1446             :       ! 2. c) ε^-1(iω_j,k)-Id
    1447        1500 :       CALL cfm_add_on_diag(cfm_eps_ikp_freq_j, -z_one)
    1448             : 
    1449             :       ! 2. d) work = (ε^-1(iω_j,k)-Id)*V^0.5(k)
    1450             :       CALL parallel_gemm('N', 'N', n_RI, n_RI, n_RI, z_one, cfm_eps_ikp_freq_j, cfm_V_sqrt_ikp, &
    1451        1500 :                          z_zero, cfm_work)
    1452             : 
    1453             :       ! 2. e) W(iw,k) = V^0.5(k)*work
    1454        1500 :       CALL cp_cfm_create(cfm_W_ikp_freq_j, cfm_work%matrix_struct)
    1455             :       CALL parallel_gemm('C', 'N', n_RI, n_RI, n_RI, z_one, cfm_V_sqrt_ikp, cfm_work, &
    1456        1500 :                          z_zero, cfm_W_ikp_freq_j)
    1457             : 
    1458        1500 :       CALL cp_cfm_release(cfm_work)
    1459        1500 :       CALL cp_cfm_release(cfm_eps_ikp_freq_j)
    1460             : 
    1461        1500 :       CALL timestop(handle)
    1462             : 
    1463        1500 :    END SUBROUTINE compute_cfm_W_ikp_freq_j
    1464             : 
    1465             : ! **************************************************************************************************
    1466             : !> \brief ...
    1467             : !> \param cfm ...
    1468             : !> \param alpha ...
    1469             : ! **************************************************************************************************
    1470        6000 :    SUBROUTINE cfm_add_on_diag(cfm, alpha)
    1471             : 
    1472             :       TYPE(cp_cfm_type)                                  :: cfm
    1473             :       COMPLEX(KIND=dp)                                   :: alpha
    1474             : 
    1475             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'cfm_add_on_diag'
    1476             : 
    1477             :       INTEGER                                            :: handle, i_global, i_row, j_col, &
    1478             :                                                             j_global, ncol_local, nrow_local
    1479        3000 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices, row_indices
    1480             : 
    1481        3000 :       CALL timeset(routineN, handle)
    1482             : 
    1483             :       CALL cp_cfm_get_info(matrix=cfm, &
    1484             :                            nrow_local=nrow_local, &
    1485             :                            ncol_local=ncol_local, &
    1486             :                            row_indices=row_indices, &
    1487        3000 :                            col_indices=col_indices)
    1488             : 
    1489             :       ! add 1 on the diagonal
    1490       27184 :       DO j_col = 1, ncol_local
    1491       24184 :          j_global = col_indices(j_col)
    1492      162460 :          DO i_row = 1, nrow_local
    1493      135276 :             i_global = row_indices(i_row)
    1494      159460 :             IF (j_global == i_global) THEN
    1495       12092 :                cfm%local_data(i_row, j_col) = cfm%local_data(i_row, j_col) + alpha
    1496             :             END IF
    1497             :          END DO
    1498             :       END DO
    1499             : 
    1500        3000 :       CALL timestop(handle)
    1501             : 
    1502        3000 :    END SUBROUTINE cfm_add_on_diag
    1503             : 
    1504             : ! **************************************************************************************************
    1505             : !> \brief ...
    1506             : !> \param bs_env ...
    1507             : !> \param fm_W_MIC_time ...
    1508             : ! **************************************************************************************************
    1509          22 :    SUBROUTINE create_fm_W_MIC_time(bs_env, fm_W_MIC_time)
    1510             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    1511             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: fm_W_MIC_time
    1512             : 
    1513             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'create_fm_W_MIC_time'
    1514             : 
    1515             :       INTEGER                                            :: handle, i_t
    1516             : 
    1517          22 :       CALL timeset(routineN, handle)
    1518             : 
    1519         390 :       ALLOCATE (fm_W_MIC_time(bs_env%num_time_freq_points))
    1520         346 :       DO i_t = 1, bs_env%num_time_freq_points
    1521         346 :          CALL cp_fm_create(fm_W_MIC_time(i_t), bs_env%fm_RI_RI%matrix_struct)
    1522             :       END DO
    1523             : 
    1524          22 :       CALL timestop(handle)
    1525             : 
    1526          22 :    END SUBROUTINE create_fm_W_MIC_time
    1527             : 
    1528             : ! **************************************************************************************************
    1529             : !> \brief ...
    1530             : !> \param bs_env ...
    1531             : !> \param fm_W_MIC_time ...
    1532             : !> \param fm_W_MIC_freq_j ...
    1533             : !> \param j_w ...
    1534             : ! **************************************************************************************************
    1535        1500 :    SUBROUTINE Fourier_transform_w_to_t(bs_env, fm_W_MIC_time, fm_W_MIC_freq_j, j_w)
    1536             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    1537             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: fm_W_MIC_time
    1538             :       TYPE(cp_fm_type)                                   :: fm_W_MIC_freq_j
    1539             :       INTEGER                                            :: j_w
    1540             : 
    1541             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'Fourier_transform_w_to_t'
    1542             : 
    1543             :       INTEGER                                            :: handle, i_t
    1544             :       REAL(KIND=dp)                                      :: freq_j, time_i, weight_ij
    1545             : 
    1546        1500 :       CALL timeset(routineN, handle)
    1547             : 
    1548        1500 :       freq_j = bs_env%imag_freq_points(j_w)
    1549             : 
    1550       15604 :       DO i_t = 1, bs_env%num_time_freq_points
    1551             : 
    1552       14104 :          time_i = bs_env%imag_time_points(i_t)
    1553       14104 :          weight_ij = bs_env%weights_cos_w_to_t(i_t, j_w)
    1554             : 
    1555             :          ! actual Fourier transform
    1556             :          CALL cp_fm_scale_and_add(alpha=1.0_dp, matrix_a=fm_W_MIC_time(i_t), &
    1557       15604 :                                   beta=weight_ij*COS(time_i*freq_j), matrix_b=fm_W_MIC_freq_j)
    1558             : 
    1559             :       END DO
    1560             : 
    1561        1500 :       CALL timestop(handle)
    1562             : 
    1563        1500 :    END SUBROUTINE Fourier_transform_w_to_t
    1564             : 
    1565             : ! **************************************************************************************************
    1566             : !> \brief ...
    1567             : !> \param bs_env ...
    1568             : !> \param qs_env ...
    1569             : !> \param fm_W_MIC_time ...
    1570             : ! **************************************************************************************************
    1571          32 :    SUBROUTINE multiply_fm_W_MIC_time_with_Minv_Gamma(bs_env, qs_env, fm_W_MIC_time)
    1572             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    1573             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1574             :       TYPE(cp_fm_type), DIMENSION(:)                     :: fm_W_MIC_time
    1575             : 
    1576             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'multiply_fm_W_MIC_time_with_Minv_Gamma'
    1577             : 
    1578             :       INTEGER                                            :: handle, i_t, n_RI, ndep
    1579             :       TYPE(cp_fm_type)                                   :: fm_work
    1580          32 :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:, :)     :: fm_Minv_Gamma
    1581             : 
    1582          32 :       CALL timeset(routineN, handle)
    1583             : 
    1584          32 :       n_RI = bs_env%n_RI
    1585             : 
    1586          32 :       CALL cp_fm_create(fm_work, fm_W_MIC_time(1)%matrix_struct)
    1587             : 
    1588             :       ! compute Gamma-only RI-metric matrix M(k=0); no regularization
    1589             :       CALL RI_2c_integral_mat(qs_env, fm_Minv_Gamma, fm_W_MIC_time(1), n_RI, &
    1590          32 :                               bs_env%ri_metric, do_kpoints=.FALSE.)
    1591             : 
    1592          32 :       CALL cp_fm_power(fm_Minv_Gamma(1, 1), fm_work, -1.0_dp, 0.0_dp, ndep)
    1593             : 
    1594             :       ! M^-1(k=0)*W^MIC(iτ)*M^-1(k=0)
    1595         272 :       DO i_t = 1, SIZE(fm_W_MIC_time)
    1596             : 
    1597             :          CALL parallel_gemm('N', 'N', n_RI, n_RI, n_RI, 1.0_dp, fm_Minv_Gamma(1, 1), &
    1598         240 :                             fm_W_MIC_time(i_t), 0.0_dp, fm_work)
    1599             : 
    1600             :          CALL parallel_gemm('N', 'N', n_RI, n_RI, n_RI, 1.0_dp, fm_work, &
    1601         272 :                             fm_Minv_Gamma(1, 1), 0.0_dp, fm_W_MIC_time(i_t))
    1602             : 
    1603             :       END DO
    1604             : 
    1605          32 :       CALL cp_fm_release(fm_work)
    1606          32 :       CALL cp_fm_release(fm_Minv_Gamma)
    1607             : 
    1608          32 :       CALL timestop(handle)
    1609             : 
    1610          64 :    END SUBROUTINE multiply_fm_W_MIC_time_with_Minv_Gamma
    1611             : 
    1612             : ! **************************************************************************************************
    1613             : !> \brief ...
    1614             : !> \param bs_env ...
    1615             : !> \param qs_env ...
    1616             : !> \param fm_Sigma_x_Gamma ...
    1617             : ! **************************************************************************************************
    1618          22 :    SUBROUTINE get_Sigma_x(bs_env, qs_env, fm_Sigma_x_Gamma)
    1619             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    1620             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1621             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: fm_Sigma_x_Gamma
    1622             : 
    1623             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'get_Sigma_x'
    1624             : 
    1625             :       INTEGER                                            :: handle, ispin
    1626             : 
    1627          22 :       CALL timeset(routineN, handle)
    1628             : 
    1629          92 :       ALLOCATE (fm_Sigma_x_Gamma(bs_env%n_spin))
    1630          48 :       DO ispin = 1, bs_env%n_spin
    1631          48 :          CALL cp_fm_create(fm_Sigma_x_Gamma(ispin), bs_env%fm_s_Gamma%matrix_struct)
    1632             :       END DO
    1633             : 
    1634          22 :       IF (bs_env%Sigma_x_exists) THEN
    1635          14 :          DO ispin = 1, bs_env%n_spin
    1636          14 :             CALL fm_read(fm_Sigma_x_Gamma(ispin), bs_env, bs_env%Sigma_x_name, ispin)
    1637             :          END DO
    1638             :       ELSE
    1639          16 :          CALL compute_Sigma_x(bs_env, qs_env, fm_Sigma_x_Gamma)
    1640             :       END IF
    1641             : 
    1642          22 :       CALL timestop(handle)
    1643             : 
    1644          22 :    END SUBROUTINE get_Sigma_x
    1645             : 
    1646             : ! **************************************************************************************************
    1647             : !> \brief ...
    1648             : !> \param bs_env ...
    1649             : !> \param qs_env ...
    1650             : !> \param fm_Sigma_x_Gamma ...
    1651             : ! **************************************************************************************************
    1652          16 :    SUBROUTINE compute_Sigma_x(bs_env, qs_env, fm_Sigma_x_Gamma)
    1653             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    1654             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1655             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: fm_Sigma_x_Gamma
    1656             : 
    1657             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'compute_Sigma_x'
    1658             : 
    1659             :       INTEGER                                            :: handle, i_intval_idx, ispin, j_intval_idx
    1660             :       INTEGER, DIMENSION(2)                              :: i_atoms, j_atoms
    1661             :       REAL(KIND=dp)                                      :: t1
    1662          16 :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:, :)     :: fm_Vtr_Gamma
    1663             :       TYPE(dbcsr_type)                                   :: mat_Sigma_x_Gamma
    1664         528 :       TYPE(dbt_type)                                     :: t_2c_D, t_2c_Sigma_x, t_2c_V, t_3c_x_V
    1665             : 
    1666          16 :       CALL timeset(routineN, handle)
    1667             : 
    1668          16 :       t1 = m_walltime()
    1669             : 
    1670          16 :       CALL dbt_create(bs_env%t_G, t_2c_D)
    1671          16 :       CALL dbt_create(bs_env%t_W, t_2c_V)
    1672          16 :       CALL dbt_create(bs_env%t_G, t_2c_Sigma_x)
    1673          16 :       CALL dbt_create(bs_env%t_RI_AO__AO, t_3c_x_V)
    1674          16 :       CALL dbcsr_create(mat_Sigma_x_Gamma, template=bs_env%mat_ao_ao%matrix)
    1675             : 
    1676             :       ! 1. Compute truncated Coulomb operator matrix V^tr(k=0) (cutoff rad: cellsize/2)
    1677             :       CALL RI_2c_integral_mat(qs_env, fm_Vtr_Gamma, bs_env%fm_RI_RI, bs_env%n_RI, &
    1678          16 :                               bs_env%trunc_coulomb, do_kpoints=.FALSE.)
    1679             : 
    1680             :       ! 2. Compute M^-1(k=0) and get M^-1(k=0)*V^tr(k=0)*M^-1(k=0)
    1681          16 :       CALL multiply_fm_W_MIC_time_with_Minv_Gamma(bs_env, qs_env, fm_Vtr_Gamma(:, 1))
    1682             : 
    1683          34 :       DO ispin = 1, bs_env%n_spin
    1684             : 
    1685             :          ! 3. Compute density matrix D_µν
    1686          18 :          CALL G_occ_vir(bs_env, 0.0_dp, bs_env%fm_work_mo(2), ispin, occ=.TRUE., vir=.FALSE.)
    1687             : 
    1688             :          CALL fm_to_local_tensor(bs_env%fm_work_mo(2), bs_env%mat_ao_ao%matrix, &
    1689             :                                  bs_env%mat_ao_ao_tensor%matrix, t_2c_D, bs_env, &
    1690          18 :                                  bs_env%atoms_i_t_group)
    1691             : 
    1692             :          CALL fm_to_local_tensor(fm_Vtr_Gamma(1, 1), bs_env%mat_RI_RI%matrix, &
    1693             :                                  bs_env%mat_RI_RI_tensor%matrix, t_2c_V, bs_env, &
    1694          18 :                                  bs_env%atoms_j_t_group)
    1695             : 
    1696             :          ! every group has its own range of i_atoms and j_atoms; only deal with a
    1697             :          ! limited number of i_atom-j_atom pairs simultaneously in a group to save memory
    1698          36 :          DO i_intval_idx = 1, bs_env%n_intervals_i
    1699          54 :             DO j_intval_idx = 1, bs_env%n_intervals_j
    1700          54 :                i_atoms = bs_env%i_atom_intervals(1:2, i_intval_idx)
    1701          54 :                j_atoms = bs_env%j_atom_intervals(1:2, j_intval_idx)
    1702             : 
    1703             :                ! 4. compute 3-center integrals (µν|P) ("|": truncated Coulomb operator)
    1704             :                ! 5. M_νσQ(iτ) = sum_P (νσ|P) (M^-1(k=0)*V^tr(k=0)*M^-1(k=0))_PQ(iτ)
    1705          18 :                CALL compute_3c_and_contract_W(qs_env, bs_env, i_atoms, j_atoms, t_3c_x_V, t_2c_V)
    1706             : 
    1707             :                ! 6. tensor operations with D and computation of Σ^x
    1708             :                !    Σ^x_λσ(k=0) = sum_νQ M_νσQ(iτ) sum_µ (λµ|Q) D_µν
    1709             :                CALL contract_to_Sigma(t_2c_D, t_3c_x_V, t_2c_Sigma_x, i_atoms, j_atoms, &
    1710          36 :                                       qs_env, bs_env, occ=.TRUE., vir=.FALSE., clear_W=.TRUE.)
    1711             : 
    1712             :             END DO ! j_atoms
    1713             :          END DO ! i_atoms
    1714             : 
    1715             :          CALL local_dbt_to_global_mat(t_2c_Sigma_x, bs_env%mat_ao_ao_tensor%matrix, &
    1716          18 :                                       mat_Sigma_x_Gamma, bs_env%para_env)
    1717             : 
    1718             :          CALL write_matrix(mat_Sigma_x_Gamma, ispin, bs_env%Sigma_x_name, &
    1719          18 :                            bs_env%fm_work_mo(1), qs_env)
    1720             : 
    1721          34 :          CALL copy_dbcsr_to_fm(mat_Sigma_x_Gamma, fm_Sigma_x_Gamma(ispin))
    1722             : 
    1723             :       END DO ! ispin
    1724             : 
    1725          16 :       IF (bs_env%unit_nr > 0) THEN
    1726             :          WRITE (bs_env%unit_nr, '(T2,A,T58,A,F7.1,A)') &
    1727           8 :             'Computed Σ^x(k=0),', ' Execution time', m_walltime() - t1, ' s'
    1728           8 :          WRITE (bs_env%unit_nr, '(A)') ' '
    1729             :       END IF
    1730             : 
    1731          16 :       CALL dbcsr_release(mat_Sigma_x_Gamma)
    1732          16 :       CALL dbt_destroy(t_2c_D)
    1733          16 :       CALL dbt_destroy(t_2c_V)
    1734          16 :       CALL dbt_destroy(t_2c_Sigma_x)
    1735          16 :       CALL dbt_destroy(t_3c_x_V)
    1736          16 :       CALL cp_fm_release(fm_Vtr_Gamma)
    1737             : 
    1738          16 :       CALL timestop(handle)
    1739             : 
    1740          32 :    END SUBROUTINE compute_Sigma_x
    1741             : 
    1742             : ! **************************************************************************************************
    1743             : !> \brief ...
    1744             : !> \param bs_env ...
    1745             : !> \param qs_env ...
    1746             : !> \param fm_W_MIC_time ...
    1747             : !> \param fm_Sigma_c_Gamma_time ...
    1748             : ! **************************************************************************************************
    1749          22 :    SUBROUTINE get_Sigma_c(bs_env, qs_env, fm_W_MIC_time, fm_Sigma_c_Gamma_time)
    1750             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    1751             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1752             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: fm_W_MIC_time
    1753             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:, :, :)  :: fm_Sigma_c_Gamma_time
    1754             : 
    1755             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'get_Sigma_c'
    1756             : 
    1757             :       INTEGER                                            :: handle, i_intval_idx, i_t, ispin, &
    1758             :                                                             j_intval_idx, read_write_index
    1759             :       INTEGER, DIMENSION(2)                              :: i_atoms, j_atoms
    1760             :       REAL(KIND=dp)                                      :: t1, tau
    1761          22 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: mat_Sigma_neg_tau, mat_Sigma_pos_tau
    1762         374 :       TYPE(dbt_type)                                     :: t_2c_Gocc, t_2c_Gvir, &
    1763         198 :                                                             t_2c_Sigma_neg_tau, &
    1764         550 :                                                             t_2c_Sigma_pos_tau, t_2c_W, t_3c_x_W
    1765             : 
    1766          22 :       CALL timeset(routineN, handle)
    1767             : 
    1768             :       CALL create_mat_for_Sigma_c(bs_env, t_2c_Gocc, t_2c_Gvir, t_2c_W, t_2c_Sigma_neg_tau, &
    1769             :                                   t_2c_Sigma_pos_tau, t_3c_x_W, &
    1770          22 :                                   mat_Sigma_neg_tau, mat_Sigma_pos_tau)
    1771             : 
    1772         346 :       DO i_t = 1, bs_env%num_time_freq_points
    1773             : 
    1774         710 :          DO ispin = 1, bs_env%n_spin
    1775             : 
    1776         364 :             t1 = m_walltime()
    1777             : 
    1778         364 :             read_write_index = i_t + (ispin - 1)*bs_env%num_time_freq_points
    1779             : 
    1780             :             ! read self-energy from restart
    1781         364 :             IF (bs_env%Sigma_c_exists(i_t, ispin)) THEN
    1782         120 :                CALL fm_read(bs_env%fm_work_mo(1), bs_env, bs_env%Sigma_p_name, read_write_index)
    1783             :                CALL copy_fm_to_dbcsr(bs_env%fm_work_mo(1), mat_Sigma_pos_tau(i_t, ispin)%matrix, &
    1784         120 :                                      keep_sparsity=.FALSE.)
    1785         120 :                CALL fm_read(bs_env%fm_work_mo(1), bs_env, bs_env%Sigma_n_name, read_write_index)
    1786             :                CALL copy_fm_to_dbcsr(bs_env%fm_work_mo(1), mat_Sigma_neg_tau(i_t, ispin)%matrix, &
    1787         120 :                                      keep_sparsity=.FALSE.)
    1788         120 :                IF (bs_env%unit_nr > 0) THEN
    1789          60 :                   WRITE (bs_env%unit_nr, '(T2,2A,I3,A,I3,A,F7.1,A)') 'Read Σ^c(iτ,k=0) ', &
    1790          60 :                      'from file for time point  ', i_t, ' /', bs_env%num_time_freq_points, &
    1791         120 :                      ',    Execution time', m_walltime() - t1, ' s'
    1792             :                END IF
    1793             : 
    1794             :                CYCLE
    1795             : 
    1796             :             END IF
    1797             : 
    1798         244 :             tau = bs_env%imag_time_points(i_t)
    1799             : 
    1800         244 :             CALL G_occ_vir(bs_env, tau, bs_env%fm_Gocc, ispin, occ=.TRUE., vir=.FALSE.)
    1801         244 :             CALL G_occ_vir(bs_env, tau, bs_env%fm_Gvir, ispin, occ=.FALSE., vir=.TRUE.)
    1802             : 
    1803             :             ! fm G^occ, G^vir and W to local tensor
    1804             :             CALL fm_to_local_tensor(bs_env%fm_Gocc, bs_env%mat_ao_ao%matrix, &
    1805             :                                     bs_env%mat_ao_ao_tensor%matrix, t_2c_Gocc, bs_env, &
    1806         244 :                                     bs_env%atoms_i_t_group)
    1807             :             CALL fm_to_local_tensor(bs_env%fm_Gvir, bs_env%mat_ao_ao%matrix, &
    1808             :                                     bs_env%mat_ao_ao_tensor%matrix, t_2c_Gvir, bs_env, &
    1809         244 :                                     bs_env%atoms_i_t_group)
    1810             :             CALL fm_to_local_tensor(fm_W_MIC_time(i_t), bs_env%mat_RI_RI%matrix, &
    1811             :                                     bs_env%mat_RI_RI_tensor%matrix, t_2c_W, bs_env, &
    1812         244 :                                     bs_env%atoms_j_t_group)
    1813             : 
    1814             :             ! every group has its own range of i_atoms and j_atoms; only deal with a
    1815             :             ! limited number of i_atom-j_atom pairs simultaneously in a group to save memory
    1816         488 :             DO i_intval_idx = 1, bs_env%n_intervals_i
    1817         732 :                DO j_intval_idx = 1, bs_env%n_intervals_j
    1818         732 :                   i_atoms = bs_env%i_atom_intervals(1:2, i_intval_idx)
    1819         732 :                   j_atoms = bs_env%j_atom_intervals(1:2, j_intval_idx)
    1820             : 
    1821         244 :                   IF (bs_env%skip_Sigma_occ(i_intval_idx, j_intval_idx) .AND. &
    1822             :                       bs_env%skip_Sigma_vir(i_intval_idx, j_intval_idx)) CYCLE
    1823             : 
    1824             :                   ! 1. compute 3-center integrals (µν|P) ("|": truncated Coulomb operator)
    1825             :                   ! 2. tensor operation M_νσQ(iτ) = sum_P (νσ|P) W^MIC_PQ(iτ)
    1826         226 :                   CALL compute_3c_and_contract_W(qs_env, bs_env, i_atoms, j_atoms, t_3c_x_W, t_2c_W)
    1827             : 
    1828             :                   ! 3. Σ_λσ(iτ,k=0) = sum_νQ M_νσQ(iτ) sum_µ (λµ|Q) G^occ_µν(i|τ|) for τ < 0
    1829             :                   !    (recall M_νσQ(iτ) = M_νσQ(-iτ) because W^MIC_PQ(iτ) = W^MIC_PQ(-iτ) )
    1830             :                   CALL contract_to_Sigma(t_2c_Gocc, t_3c_x_W, t_2c_Sigma_neg_tau, i_atoms, j_atoms, &
    1831             :                                          qs_env, bs_env, occ=.TRUE., vir=.FALSE., clear_W=.FALSE., &
    1832         226 :                                          can_skip=bs_env%skip_Sigma_occ(i_intval_idx, j_intval_idx))
    1833             : 
    1834             :                   !    Σ_λσ(iτ,k=0) = sum_νQ M_νσQ(iτ) sum_µ (λµ|Q) G^vir_µν(i|τ|) for τ > 0
    1835             :                   CALL contract_to_Sigma(t_2c_Gvir, t_3c_x_W, t_2c_Sigma_pos_tau, i_atoms, j_atoms, &
    1836             :                                          qs_env, bs_env, occ=.FALSE., vir=.TRUE., clear_W=.TRUE., &
    1837         488 :                                          can_skip=bs_env%skip_Sigma_vir(i_intval_idx, j_intval_idx))
    1838             : 
    1839             :                END DO ! j_atoms
    1840             :             END DO ! i_atoms
    1841             : 
    1842             :             ! 4. communicate data tensor t_2c_Sigma (which is local in the subgroup)
    1843             :             !    to the global dbcsr matrix mat_Sigma_pos/neg_tau (which stores Σ for all iτ)
    1844             :             CALL local_dbt_to_global_mat(t_2c_Sigma_neg_tau, bs_env%mat_ao_ao_tensor%matrix, &
    1845         244 :                                          mat_Sigma_neg_tau(i_t, ispin)%matrix, bs_env%para_env)
    1846             :             CALL local_dbt_to_global_mat(t_2c_Sigma_pos_tau, bs_env%mat_ao_ao_tensor%matrix, &
    1847         244 :                                          mat_Sigma_pos_tau(i_t, ispin)%matrix, bs_env%para_env)
    1848             : 
    1849             :             CALL write_matrix(mat_Sigma_pos_tau(i_t, ispin)%matrix, read_write_index, &
    1850         244 :                               bs_env%Sigma_p_name, bs_env%fm_work_mo(1), qs_env)
    1851             :             CALL write_matrix(mat_Sigma_neg_tau(i_t, ispin)%matrix, read_write_index, &
    1852         244 :                               bs_env%Sigma_n_name, bs_env%fm_work_mo(1), qs_env)
    1853             : 
    1854         568 :             IF (bs_env%unit_nr > 0) THEN
    1855             :                WRITE (bs_env%unit_nr, '(T2,A,I10,A,I3,A,F7.1,A)') &
    1856         122 :                   'Computed Σ^c(iτ,k=0) for time point ', i_t, ' /', bs_env%num_time_freq_points, &
    1857         244 :                   ',    Execution time', m_walltime() - t1, ' s'
    1858             :             END IF
    1859             : 
    1860             :          END DO ! ispin
    1861             : 
    1862             :       END DO ! i_t
    1863             : 
    1864          22 :       IF (bs_env%unit_nr > 0) WRITE (bs_env%unit_nr, '(A)') ' '
    1865             : 
    1866             :       CALL fill_fm_Sigma_c_Gamma_time(fm_Sigma_c_Gamma_time, bs_env, &
    1867          22 :                                       mat_Sigma_pos_tau, mat_Sigma_neg_tau)
    1868             : 
    1869          22 :       CALL print_skipping(bs_env)
    1870             : 
    1871             :       CALL destroy_mat_Sigma_c(t_2c_Gocc, t_2c_Gvir, t_2c_W, t_2c_Sigma_neg_tau, &
    1872             :                                t_2c_Sigma_pos_tau, t_3c_x_W, fm_W_MIC_time, &
    1873          22 :                                mat_Sigma_neg_tau, mat_Sigma_pos_tau)
    1874             : 
    1875          22 :       CALL delete_unnecessary_files(bs_env)
    1876             : 
    1877          22 :       CALL timestop(handle)
    1878             : 
    1879          44 :    END SUBROUTINE get_Sigma_c
    1880             : 
    1881             : ! **************************************************************************************************
    1882             : !> \brief ...
    1883             : !> \param bs_env ...
    1884             : !> \param t_2c_Gocc ...
    1885             : !> \param t_2c_Gvir ...
    1886             : !> \param t_2c_W ...
    1887             : !> \param t_2c_Sigma_neg_tau ...
    1888             : !> \param t_2c_Sigma_pos_tau ...
    1889             : !> \param t_3c_x_W ...
    1890             : !> \param mat_Sigma_neg_tau ...
    1891             : !> \param mat_Sigma_pos_tau ...
    1892             : ! **************************************************************************************************
    1893          22 :    SUBROUTINE create_mat_for_Sigma_c(bs_env, t_2c_Gocc, t_2c_Gvir, t_2c_W, t_2c_Sigma_neg_tau, &
    1894             :                                      t_2c_Sigma_pos_tau, t_3c_x_W, &
    1895             :                                      mat_Sigma_neg_tau, mat_Sigma_pos_tau)
    1896             : 
    1897             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    1898             :       TYPE(dbt_type)                                     :: t_2c_Gocc, t_2c_Gvir, t_2c_W, &
    1899             :                                                             t_2c_Sigma_neg_tau, &
    1900             :                                                             t_2c_Sigma_pos_tau, t_3c_x_W
    1901             :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: mat_Sigma_neg_tau, mat_Sigma_pos_tau
    1902             : 
    1903             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'create_mat_for_Sigma_c'
    1904             : 
    1905             :       INTEGER                                            :: handle, i_t, ispin
    1906             : 
    1907          22 :       CALL timeset(routineN, handle)
    1908             : 
    1909          22 :       CALL dbt_create(bs_env%t_G, t_2c_Gocc)
    1910          22 :       CALL dbt_create(bs_env%t_G, t_2c_Gvir)
    1911          22 :       CALL dbt_create(bs_env%t_W, t_2c_W)
    1912          22 :       CALL dbt_create(bs_env%t_G, t_2c_Sigma_neg_tau)
    1913          22 :       CALL dbt_create(bs_env%t_G, t_2c_Sigma_pos_tau)
    1914          22 :       CALL dbt_create(bs_env%t_RI_AO__AO, t_3c_x_W)
    1915             : 
    1916          22 :       NULLIFY (mat_Sigma_neg_tau, mat_Sigma_pos_tau)
    1917         478 :       ALLOCATE (mat_Sigma_neg_tau(bs_env%num_time_freq_points, bs_env%n_spin))
    1918         478 :       ALLOCATE (mat_Sigma_pos_tau(bs_env%num_time_freq_points, bs_env%n_spin))
    1919             : 
    1920         346 :       DO i_t = 1, bs_env%num_time_freq_points
    1921         710 :          DO ispin = 1, bs_env%n_spin
    1922         364 :             ALLOCATE (mat_Sigma_neg_tau(i_t, ispin)%matrix)
    1923         364 :             ALLOCATE (mat_Sigma_pos_tau(i_t, ispin)%matrix)
    1924         364 :             CALL dbcsr_create(mat_Sigma_neg_tau(i_t, ispin)%matrix, template=bs_env%mat_ao_ao%matrix)
    1925         688 :             CALL dbcsr_create(mat_Sigma_pos_tau(i_t, ispin)%matrix, template=bs_env%mat_ao_ao%matrix)
    1926             :          END DO
    1927             :       END DO
    1928             : 
    1929          22 :       CALL timestop(handle)
    1930             : 
    1931          22 :    END SUBROUTINE create_mat_for_Sigma_c
    1932             : 
    1933             : ! **************************************************************************************************
    1934             : !> \brief ...
    1935             : !> \param qs_env ...
    1936             : !> \param bs_env ...
    1937             : !> \param i_atoms ...
    1938             : !> \param j_atoms ...
    1939             : !> \param t_3c_x_W ...
    1940             : !> \param t_2c_W ...
    1941             : ! **************************************************************************************************
    1942         244 :    SUBROUTINE compute_3c_and_contract_W(qs_env, bs_env, i_atoms, j_atoms, t_3c_x_W, t_2c_W)
    1943             : 
    1944             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1945             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    1946             :       INTEGER, DIMENSION(2)                              :: i_atoms, j_atoms
    1947             :       TYPE(dbt_type)                                     :: t_3c_x_W, t_2c_W
    1948             : 
    1949             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_3c_and_contract_W'
    1950             : 
    1951             :       INTEGER                                            :: handle, RI_intval_idx
    1952             :       INTEGER, DIMENSION(2)                              :: bounds_j, RI_atoms
    1953        4148 :       TYPE(dbt_type)                                     :: t_3c_for_W, t_3c_x_W_tmp
    1954             : 
    1955         244 :       CALL timeset(routineN, handle)
    1956             : 
    1957         244 :       CALL dbt_create(bs_env%t_RI__AO_AO, t_3c_x_W_tmp)
    1958         244 :       CALL dbt_create(bs_env%t_RI__AO_AO, t_3c_for_W)
    1959             : 
    1960             :       bounds_j(1:2) = [bs_env%i_RI_start_from_atom(j_atoms(1)), &
    1961         732 :                        bs_env%i_RI_end_from_atom(j_atoms(2))]
    1962             : 
    1963         488 :       DO RI_intval_idx = 1, bs_env%n_intervals_inner_loop_atoms
    1964         732 :          RI_atoms = bs_env%inner_loop_atom_intervals(1:2, RI_intval_idx)
    1965             : 
    1966             :          ! 1. compute 3-center integrals (µν|P) ("|": truncated Coulomb operator)
    1967             :          CALL compute_3c_integrals(qs_env, bs_env, t_3c_for_W, &
    1968         244 :                                    atoms_AO_1=i_atoms, atoms_RI=RI_atoms)
    1969             : 
    1970             :          ! 2. tensor operation M_νσQ(iτ) = sum_P (νσ|P) W^MIC_PQ(iτ)
    1971             :          CALL dbt_contract(alpha=1.0_dp, &
    1972             :                            tensor_1=t_2c_W, &
    1973             :                            tensor_2=t_3c_for_W, &
    1974             :                            beta=1.0_dp, &
    1975             :                            tensor_3=t_3c_x_W_tmp, &
    1976             :                            contract_1=[2], notcontract_1=[1], map_1=[1], &
    1977             :                            contract_2=[1], notcontract_2=[2, 3], map_2=[2, 3], &
    1978             :                            bounds_2=bounds_j, &
    1979         488 :                            filter_eps=bs_env%eps_filter)
    1980             : 
    1981             :       END DO ! RI_atoms
    1982             : 
    1983             :       ! 3. reorder tensor
    1984         244 :       CALL dbt_copy(t_3c_x_W_tmp, t_3c_x_W, order=[1, 2, 3], move_data=.TRUE.)
    1985             : 
    1986         244 :       CALL dbt_destroy(t_3c_x_W_tmp)
    1987         244 :       CALL dbt_destroy(t_3c_for_W)
    1988             : 
    1989         244 :       CALL timestop(handle)
    1990             : 
    1991         244 :    END SUBROUTINE compute_3c_and_contract_W
    1992             : 
    1993             : ! **************************************************************************************************
    1994             : !> \brief ...
    1995             : !> \param t_2c_G ...
    1996             : !> \param t_3c_x_W ...
    1997             : !> \param t_2c_Sigma ...
    1998             : !> \param i_atoms ...
    1999             : !> \param j_atoms ...
    2000             : !> \param qs_env ...
    2001             : !> \param bs_env ...
    2002             : !> \param occ ...
    2003             : !> \param vir ...
    2004             : !> \param clear_W ...
    2005             : !> \param can_skip ...
    2006             : ! **************************************************************************************************
    2007         470 :    SUBROUTINE contract_to_Sigma(t_2c_G, t_3c_x_W, t_2c_Sigma, i_atoms, j_atoms, qs_env, bs_env, &
    2008             :                                 occ, vir, clear_W, can_skip)
    2009             :       TYPE(dbt_type)                                     :: t_2c_G, t_3c_x_W, t_2c_Sigma
    2010             :       INTEGER, DIMENSION(2)                              :: i_atoms, j_atoms
    2011             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2012             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    2013             :       LOGICAL                                            :: occ, vir, clear_W
    2014             :       LOGICAL, OPTIONAL                                  :: can_skip
    2015             : 
    2016             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'contract_to_Sigma'
    2017             : 
    2018             :       INTEGER :: handle, inner_loop_atoms_interval_index
    2019             :       INTEGER(KIND=int_8)                                :: flop
    2020             :       INTEGER, DIMENSION(2)                              :: bounds_i, IL_atoms
    2021             :       REAL(KIND=dp)                                      :: sign_Sigma
    2022       11750 :       TYPE(dbt_type)                                     :: t_3c_for_G, t_3c_x_G, t_3c_x_G_2
    2023             : 
    2024         470 :       CALL timeset(routineN, handle)
    2025             : 
    2026         470 :       CPASSERT(occ .EQV. (.NOT. vir))
    2027         470 :       IF (occ) sign_Sigma = -1.0_dp
    2028         470 :       IF (vir) sign_Sigma = 1.0_dp
    2029             : 
    2030         470 :       CALL dbt_create(bs_env%t_RI_AO__AO, t_3c_for_G)
    2031         470 :       CALL dbt_create(bs_env%t_RI_AO__AO, t_3c_x_G)
    2032         470 :       CALL dbt_create(bs_env%t_RI_AO__AO, t_3c_x_G_2)
    2033             : 
    2034             :       bounds_i(1:2) = [bs_env%i_ao_start_from_atom(i_atoms(1)), &
    2035        1410 :                        bs_env%i_ao_end_from_atom(i_atoms(2))]
    2036             : 
    2037         940 :       DO inner_loop_atoms_interval_index = 1, bs_env%n_intervals_inner_loop_atoms
    2038        1410 :          IL_atoms = bs_env%inner_loop_atom_intervals(1:2, inner_loop_atoms_interval_index)
    2039             : 
    2040             :          CALL compute_3c_integrals(qs_env, bs_env, t_3c_for_G, &
    2041         470 :                                    atoms_RI=j_atoms, atoms_AO_2=IL_atoms)
    2042             : 
    2043             :          CALL dbt_contract(alpha=1.0_dp, &
    2044             :                            tensor_1=t_2c_G, &
    2045             :                            tensor_2=t_3c_for_G, &
    2046             :                            beta=1.0_dp, &
    2047             :                            tensor_3=t_3c_x_G, &
    2048             :                            contract_1=[2], notcontract_1=[1], map_1=[3], &
    2049             :                            contract_2=[3], notcontract_2=[1, 2], map_2=[1, 2], &
    2050             :                            bounds_2=bounds_i, &
    2051         940 :                            filter_eps=bs_env%eps_filter)
    2052             : 
    2053             :       END DO ! IL_atoms
    2054             : 
    2055         470 :       CALL dbt_copy(t_3c_x_G, t_3c_x_G_2, order=[1, 3, 2], move_data=.TRUE.)
    2056             : 
    2057             :       CALL dbt_contract(alpha=sign_Sigma, &
    2058             :                         tensor_1=t_3c_x_W, &
    2059             :                         tensor_2=t_3c_x_G_2, &
    2060             :                         beta=1.0_dp, &
    2061             :                         tensor_3=t_2c_Sigma, &
    2062             :                         contract_1=[1, 2], notcontract_1=[3], map_1=[1], &
    2063             :                         contract_2=[1, 2], notcontract_2=[3], map_2=[2], &
    2064         470 :                         filter_eps=bs_env%eps_filter, move_data=clear_W, flop=flop)
    2065             : 
    2066         470 :       IF (PRESENT(can_skip)) THEN
    2067         452 :          IF (flop == 0_int_8) can_skip = .TRUE.
    2068             :       END IF
    2069             : 
    2070         470 :       CALL dbt_destroy(t_3c_for_G)
    2071         470 :       CALL dbt_destroy(t_3c_x_G)
    2072         470 :       CALL dbt_destroy(t_3c_x_G_2)
    2073             : 
    2074         470 :       CALL timestop(handle)
    2075             : 
    2076         470 :    END SUBROUTINE contract_to_Sigma
    2077             : 
    2078             : ! **************************************************************************************************
    2079             : !> \brief ...
    2080             : !> \param fm_Sigma_c_Gamma_time ...
    2081             : !> \param bs_env ...
    2082             : !> \param mat_Sigma_pos_tau ...
    2083             : !> \param mat_Sigma_neg_tau ...
    2084             : ! **************************************************************************************************
    2085          22 :    SUBROUTINE fill_fm_Sigma_c_Gamma_time(fm_Sigma_c_Gamma_time, bs_env, &
    2086             :                                          mat_Sigma_pos_tau, mat_Sigma_neg_tau)
    2087             : 
    2088             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:, :, :)  :: fm_Sigma_c_Gamma_time
    2089             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    2090             :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: mat_Sigma_pos_tau, mat_Sigma_neg_tau
    2091             : 
    2092             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'fill_fm_Sigma_c_Gamma_time'
    2093             : 
    2094             :       INTEGER                                            :: handle, i_t, ispin, pos_neg
    2095             : 
    2096          22 :       CALL timeset(routineN, handle)
    2097             : 
    2098         894 :       ALLOCATE (fm_Sigma_c_Gamma_time(bs_env%num_time_freq_points, 2, bs_env%n_spin))
    2099         346 :       DO i_t = 1, bs_env%num_time_freq_points
    2100         710 :          DO ispin = 1, bs_env%n_spin
    2101        1092 :             DO pos_neg = 1, 2
    2102             :                CALL cp_fm_create(fm_Sigma_c_Gamma_time(i_t, pos_neg, ispin), &
    2103        1092 :                                  bs_env%fm_s_Gamma%matrix_struct)
    2104             :             END DO
    2105             :             CALL copy_dbcsr_to_fm(mat_Sigma_pos_tau(i_t, ispin)%matrix, &
    2106         364 :                                   fm_Sigma_c_Gamma_time(i_t, 1, ispin))
    2107             :             CALL copy_dbcsr_to_fm(mat_Sigma_neg_tau(i_t, ispin)%matrix, &
    2108         688 :                                   fm_Sigma_c_Gamma_time(i_t, 2, ispin))
    2109             :          END DO
    2110             :       END DO
    2111             : 
    2112          22 :       CALL timestop(handle)
    2113             : 
    2114          22 :    END SUBROUTINE fill_fm_Sigma_c_Gamma_time
    2115             : 
    2116             : ! **************************************************************************************************
    2117             : !> \brief ...
    2118             : !> \param bs_env ...
    2119             : ! **************************************************************************************************
    2120          22 :    SUBROUTINE print_skipping(bs_env)
    2121             : 
    2122             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    2123             : 
    2124             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'print_skipping'
    2125             : 
    2126             :       INTEGER                                            :: handle, i_intval_idx, j_intval_idx, &
    2127             :                                                             n_skip
    2128             : 
    2129          22 :       CALL timeset(routineN, handle)
    2130             : 
    2131          22 :       n_skip = 0
    2132             : 
    2133          44 :       DO i_intval_idx = 1, bs_env%n_intervals_i
    2134          66 :          DO j_intval_idx = 1, bs_env%n_intervals_j
    2135          22 :             IF (bs_env%skip_Sigma_occ(i_intval_idx, j_intval_idx) .AND. &
    2136          22 :                 bs_env%skip_Sigma_vir(i_intval_idx, j_intval_idx)) THEN
    2137           2 :                n_skip = n_skip + 1
    2138             :             END IF
    2139             :          END DO
    2140             :       END DO
    2141             : 
    2142          22 :       IF (bs_env%unit_nr > 0) THEN
    2143             :          WRITE (bs_env%unit_nr, '(T2,A,T74,F7.1,A)') &
    2144          11 :             'Sparsity of Σ^c(iτ,k=0): Percentage of skipped atom pairs:', &
    2145          22 :             REAL(100*n_skip, KIND=dp)/REAL(i_intval_idx*j_intval_idx, KIND=dp), ' %'
    2146             :       END IF
    2147             : 
    2148          22 :       CALL timestop(handle)
    2149             : 
    2150          22 :    END SUBROUTINE print_skipping
    2151             : 
    2152             : ! **************************************************************************************************
    2153             : !> \brief ...
    2154             : !> \param t_2c_Gocc ...
    2155             : !> \param t_2c_Gvir ...
    2156             : !> \param t_2c_W ...
    2157             : !> \param t_2c_Sigma_neg_tau ...
    2158             : !> \param t_2c_Sigma_pos_tau ...
    2159             : !> \param t_3c_x_W ...
    2160             : !> \param fm_W_MIC_time ...
    2161             : !> \param mat_Sigma_neg_tau ...
    2162             : !> \param mat_Sigma_pos_tau ...
    2163             : ! **************************************************************************************************
    2164          22 :    SUBROUTINE destroy_mat_Sigma_c(t_2c_Gocc, t_2c_Gvir, t_2c_W, t_2c_Sigma_neg_tau, &
    2165             :                                   t_2c_Sigma_pos_tau, t_3c_x_W, fm_W_MIC_time, &
    2166             :                                   mat_Sigma_neg_tau, mat_Sigma_pos_tau)
    2167             : 
    2168             :       TYPE(dbt_type)                                     :: t_2c_Gocc, t_2c_Gvir, t_2c_W, &
    2169             :                                                             t_2c_Sigma_neg_tau, &
    2170             :                                                             t_2c_Sigma_pos_tau, t_3c_x_W
    2171             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: fm_W_MIC_time
    2172             :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: mat_Sigma_neg_tau, mat_Sigma_pos_tau
    2173             : 
    2174             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'destroy_mat_Sigma_c'
    2175             : 
    2176             :       INTEGER                                            :: handle
    2177             : 
    2178          22 :       CALL timeset(routineN, handle)
    2179             : 
    2180          22 :       CALL dbt_destroy(t_2c_Gocc)
    2181          22 :       CALL dbt_destroy(t_2c_Gvir)
    2182          22 :       CALL dbt_destroy(t_2c_W)
    2183          22 :       CALL dbt_destroy(t_2c_Sigma_neg_tau)
    2184          22 :       CALL dbt_destroy(t_2c_Sigma_pos_tau)
    2185          22 :       CALL dbt_destroy(t_3c_x_W)
    2186          22 :       CALL cp_fm_release(fm_W_MIC_time)
    2187          22 :       CALL dbcsr_deallocate_matrix_set(mat_Sigma_neg_tau)
    2188          22 :       CALL dbcsr_deallocate_matrix_set(mat_Sigma_pos_tau)
    2189             : 
    2190          22 :       CALL timestop(handle)
    2191             : 
    2192          22 :    END SUBROUTINE destroy_mat_Sigma_c
    2193             : 
    2194             : ! **************************************************************************************************
    2195             : !> \brief ...
    2196             : !> \param bs_env ...
    2197             : ! **************************************************************************************************
    2198          22 :    SUBROUTINE delete_unnecessary_files(bs_env)
    2199             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    2200             : 
    2201             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'delete_unnecessary_files'
    2202             : 
    2203             :       CHARACTER(LEN=default_string_length)               :: f_chi, f_W_t, prefix
    2204             :       INTEGER                                            :: handle, i_t
    2205             : 
    2206          22 :       CALL timeset(routineN, handle)
    2207             : 
    2208          22 :       prefix = bs_env%prefix
    2209             : 
    2210         346 :       DO i_t = 1, bs_env%num_time_freq_points
    2211             : 
    2212         324 :          IF (i_t < 10) THEN
    2213         186 :             WRITE (f_chi, '(3A,I1,A)') TRIM(prefix), bs_env%chi_name, "_00", i_t, ".matrix"
    2214         186 :             WRITE (f_W_t, '(3A,I1,A)') TRIM(prefix), bs_env%W_time_name, "_00", i_t, ".matrix"
    2215         138 :          ELSE IF (i_t < 100) THEN
    2216         138 :             WRITE (f_chi, '(3A,I2,A)') TRIM(prefix), bs_env%chi_name, "_0", i_t, ".matrix"
    2217         138 :             WRITE (f_W_t, '(3A,I2,A)') TRIM(prefix), bs_env%W_time_name, "_0", i_t, ".matrix"
    2218             :          ELSE
    2219           0 :             CPABORT('Please implement more than 99 time/frequency points.')
    2220             :          END IF
    2221             : 
    2222         324 :          CALL safe_delete(f_chi, bs_env)
    2223         346 :          CALL safe_delete(f_W_t, bs_env)
    2224             : 
    2225             :       END DO
    2226             : 
    2227          22 :       CALL timestop(handle)
    2228             : 
    2229          22 :    END SUBROUTINE delete_unnecessary_files
    2230             : 
    2231             : ! **************************************************************************************************
    2232             : !> \brief ...
    2233             : !> \param filename ...
    2234             : !> \param bs_env ...
    2235             : ! **************************************************************************************************
    2236         648 :    SUBROUTINE safe_delete(filename, bs_env)
    2237             :       CHARACTER(LEN=*)                                   :: filename
    2238             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    2239             : 
    2240             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'safe_delete'
    2241             : 
    2242             :       INTEGER                                            :: handle
    2243             :       LOGICAL                                            :: file_exists
    2244             : 
    2245         648 :       CALL timeset(routineN, handle)
    2246             : 
    2247         648 :       IF (bs_env%para_env%mepos == 0) THEN
    2248             : 
    2249         324 :          INQUIRE (file=TRIM(filename), exist=file_exists)
    2250         324 :          IF (file_exists) CALL mp_file_delete(TRIM(filename))
    2251             : 
    2252             :       END IF
    2253             : 
    2254         648 :       CALL timestop(handle)
    2255             : 
    2256         648 :    END SUBROUTINE safe_delete
    2257             : 
    2258             : ! **************************************************************************************************
    2259             : !> \brief ...
    2260             : !> \param bs_env ...
    2261             : !> \param qs_env ...
    2262             : !> \param fm_Sigma_x_Gamma ...
    2263             : !> \param fm_Sigma_c_Gamma_time ...
    2264             : ! **************************************************************************************************
    2265          22 :    SUBROUTINE compute_QP_energies(bs_env, qs_env, fm_Sigma_x_Gamma, fm_Sigma_c_Gamma_time)
    2266             : 
    2267             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    2268             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2269             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: fm_Sigma_x_Gamma
    2270             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:, :, :)  :: fm_Sigma_c_Gamma_time
    2271             : 
    2272             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_QP_energies'
    2273             : 
    2274             :       INTEGER                                            :: handle, ikp, ispin, j_t
    2275             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: Sigma_x_ikp_n, V_xc_ikp_n
    2276             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :)     :: Sigma_c_ikp_n_freq, Sigma_c_ikp_n_time
    2277             :       TYPE(cp_cfm_type)                                  :: cfm_ks_ikp, cfm_mos_ikp, cfm_s_ikp, &
    2278             :                                                             cfm_Sigma_x_ikp, cfm_work_ikp
    2279             : 
    2280          22 :       CALL timeset(routineN, handle)
    2281             : 
    2282          22 :       CALL cp_cfm_create(cfm_mos_ikp, bs_env%fm_s_Gamma%matrix_struct)
    2283          22 :       CALL cp_cfm_create(cfm_work_ikp, bs_env%fm_s_Gamma%matrix_struct)
    2284             :       ! JW TODO: fully distribute these arrays at given time; also eigenvalues in bs_env
    2285         110 :       ALLOCATE (V_xc_ikp_n(bs_env%n_ao), Sigma_x_ikp_n(bs_env%n_ao))
    2286         110 :       ALLOCATE (Sigma_c_ikp_n_time(bs_env%n_ao, bs_env%num_time_freq_points, 2))
    2287          88 :       ALLOCATE (Sigma_c_ikp_n_freq(bs_env%n_ao, bs_env%num_time_freq_points, 2))
    2288             : 
    2289          48 :       DO ispin = 1, bs_env%n_spin
    2290             : 
    2291          86 :          DO ikp = 1, bs_env%nkp_bs_and_DOS
    2292             : 
    2293             :             ! 1. get H^KS_µν(k_i) from H^KS_µν(k=0)
    2294             :             CALL cfm_ikp_from_fm_Gamma(cfm_ks_ikp, bs_env%fm_ks_Gamma(ispin), &
    2295          38 :                                        ikp, qs_env, bs_env%kpoints_DOS, "ORB")
    2296             : 
    2297             :             ! 2. get S_µν(k_i) from S_µν(k=0)
    2298             :             CALL cfm_ikp_from_fm_Gamma(cfm_s_ikp, bs_env%fm_s_Gamma, &
    2299          38 :                                        ikp, qs_env, bs_env%kpoints_DOS, "ORB")
    2300             : 
    2301             :             ! 3. Diagonalize (Roothaan-Hall): H_KS(k_i)*C(k_i) = S(k_i)*C(k_i)*ϵ(k_i)
    2302             :             CALL cp_cfm_geeig(cfm_ks_ikp, cfm_s_ikp, cfm_mos_ikp, &
    2303          38 :                               bs_env%eigenval_scf(:, ikp, ispin), cfm_work_ikp)
    2304             : 
    2305             :             ! 4. V^xc_µν(k=0) -> V^xc_µν(k_i) -> V^xc_nn(k_i)
    2306             :             CALL to_ikp_and_mo(V_xc_ikp_n, bs_env%fm_V_xc_Gamma(ispin), &
    2307          38 :                                ikp, qs_env, bs_env, cfm_mos_ikp)
    2308             : 
    2309             :             ! 5. Σ^x_µν(k=0) -> Σ^x_µν(k_i) -> Σ^x_nn(k_i)
    2310             :             CALL to_ikp_and_mo(Sigma_x_ikp_n, fm_Sigma_x_Gamma(ispin), &
    2311          38 :                                ikp, qs_env, bs_env, cfm_mos_ikp)
    2312             : 
    2313             :             ! 6. Σ^c_µν(k=0,+/-i|τ_j|) -> Σ^c_µν(k_i,+/-i|τ_j|) -> Σ^c_nn(k_i,+/-i|τ_j|)
    2314         506 :             DO j_t = 1, bs_env%num_time_freq_points
    2315             :                CALL to_ikp_and_mo(Sigma_c_ikp_n_time(:, j_t, 1), &
    2316             :                                   fm_Sigma_c_Gamma_time(j_t, 1, ispin), &
    2317         468 :                                   ikp, qs_env, bs_env, cfm_mos_ikp)
    2318             :                CALL to_ikp_and_mo(Sigma_c_ikp_n_time(:, j_t, 2), &
    2319             :                                   fm_Sigma_c_Gamma_time(j_t, 2, ispin), &
    2320         506 :                                   ikp, qs_env, bs_env, cfm_mos_ikp)
    2321             :             END DO
    2322             : 
    2323             :             ! 7. Σ^c_nn(k_i,iτ) -> Σ^c_nn(k_i,iω)
    2324          38 :             CALL time_to_freq(bs_env, Sigma_c_ikp_n_time, Sigma_c_ikp_n_freq, ispin)
    2325             : 
    2326             :             ! 8. Analytic continuation Σ^c_nn(k_i,iω) -> Σ^c_nn(k_i,ϵ) and
    2327             :             !    ϵ_nk_i^GW = ϵ_nk_i^DFT + Σ^c_nn(k_i,ϵ) + Σ^x_nn(k_i) - v^xc_nn(k_i)
    2328             :             CALL analyt_conti_and_print(bs_env, Sigma_c_ikp_n_freq, Sigma_x_ikp_n, V_xc_ikp_n, &
    2329          64 :                                         bs_env%eigenval_scf(:, ikp, ispin), ikp, ispin)
    2330             : 
    2331             :          END DO ! ikp_DOS
    2332             : 
    2333             :       END DO ! ispin
    2334             : 
    2335          22 :       CALL get_all_VBM_CBM_bandgaps(bs_env)
    2336             : 
    2337          22 :       CALL cp_fm_release(fm_Sigma_x_Gamma)
    2338          22 :       CALL cp_fm_release(fm_Sigma_c_Gamma_time)
    2339          22 :       CALL cp_cfm_release(cfm_ks_ikp)
    2340          22 :       CALL cp_cfm_release(cfm_s_ikp)
    2341          22 :       CALL cp_cfm_release(cfm_mos_ikp)
    2342          22 :       CALL cp_cfm_release(cfm_work_ikp)
    2343          22 :       CALL cp_cfm_release(cfm_Sigma_x_ikp)
    2344             : 
    2345          22 :       CALL timestop(handle)
    2346             : 
    2347          44 :    END SUBROUTINE compute_QP_energies
    2348             : 
    2349             : ! **************************************************************************************************
    2350             : !> \brief ...
    2351             : !> \param array_ikp_n ...
    2352             : !> \param fm_Gamma ...
    2353             : !> \param ikp ...
    2354             : !> \param qs_env ...
    2355             : !> \param bs_env ...
    2356             : !> \param cfm_mos_ikp ...
    2357             : ! **************************************************************************************************
    2358        1012 :    SUBROUTINE to_ikp_and_mo(array_ikp_n, fm_Gamma, ikp, qs_env, bs_env, cfm_mos_ikp)
    2359             : 
    2360             :       REAL(KIND=dp), DIMENSION(:)                        :: array_ikp_n
    2361             :       TYPE(cp_fm_type)                                   :: fm_Gamma
    2362             :       INTEGER                                            :: ikp
    2363             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2364             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    2365             :       TYPE(cp_cfm_type)                                  :: cfm_mos_ikp
    2366             : 
    2367             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'to_ikp_and_mo'
    2368             : 
    2369             :       INTEGER                                            :: handle
    2370             :       TYPE(cp_fm_type)                                   :: fm_ikp_mo_re
    2371             : 
    2372        1012 :       CALL timeset(routineN, handle)
    2373             : 
    2374        1012 :       CALL cp_fm_create(fm_ikp_mo_re, fm_Gamma%matrix_struct)
    2375             : 
    2376        1012 :       CALL fm_Gamma_ao_to_cfm_ikp_mo(fm_Gamma, fm_ikp_mo_re, ikp, qs_env, bs_env, cfm_mos_ikp)
    2377             : 
    2378        1012 :       CALL cp_fm_get_diag(fm_ikp_mo_re, array_ikp_n)
    2379             : 
    2380        1012 :       CALL cp_fm_release(fm_ikp_mo_re)
    2381             : 
    2382        1012 :       CALL timestop(handle)
    2383             : 
    2384        1012 :    END SUBROUTINE to_ikp_and_mo
    2385             : 
    2386             : ! **************************************************************************************************
    2387             : !> \brief ...
    2388             : !> \param fm_Gamma ...
    2389             : !> \param fm_ikp_mo_re ...
    2390             : !> \param ikp ...
    2391             : !> \param qs_env ...
    2392             : !> \param bs_env ...
    2393             : !> \param cfm_mos_ikp ...
    2394             : ! **************************************************************************************************
    2395        4048 :    SUBROUTINE fm_Gamma_ao_to_cfm_ikp_mo(fm_Gamma, fm_ikp_mo_re, ikp, qs_env, bs_env, cfm_mos_ikp)
    2396             :       TYPE(cp_fm_type)                                   :: fm_Gamma, fm_ikp_mo_re
    2397             :       INTEGER                                            :: ikp
    2398             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2399             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    2400             :       TYPE(cp_cfm_type)                                  :: cfm_mos_ikp
    2401             : 
    2402             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'fm_Gamma_ao_to_cfm_ikp_mo'
    2403             : 
    2404             :       INTEGER                                            :: handle, nmo
    2405             :       TYPE(cp_cfm_type)                                  :: cfm_ikp_ao, cfm_ikp_mo, cfm_tmp
    2406             : 
    2407        1012 :       CALL timeset(routineN, handle)
    2408             : 
    2409        1012 :       CALL cp_cfm_create(cfm_ikp_ao, fm_Gamma%matrix_struct)
    2410        1012 :       CALL cp_cfm_create(cfm_ikp_mo, fm_Gamma%matrix_struct)
    2411        1012 :       CALL cp_cfm_create(cfm_tmp, fm_Gamma%matrix_struct)
    2412             : 
    2413             :       ! get cfm_µν(k_i) from fm_µν(k=0)
    2414        1012 :       CALL cfm_ikp_from_fm_Gamma(cfm_ikp_ao, fm_Gamma, ikp, qs_env, bs_env%kpoints_DOS, "ORB")
    2415             : 
    2416        1012 :       nmo = bs_env%n_ao
    2417        1012 :       CALL parallel_gemm('N', 'N', nmo, nmo, nmo, z_one, cfm_ikp_ao, cfm_mos_ikp, z_zero, cfm_tmp)
    2418        1012 :       CALL parallel_gemm('C', 'N', nmo, nmo, nmo, z_one, cfm_mos_ikp, cfm_tmp, z_zero, cfm_ikp_mo)
    2419             : 
    2420        1012 :       CALL cp_cfm_to_fm(cfm_ikp_mo, fm_ikp_mo_re)
    2421             : 
    2422        1012 :       CALL cp_cfm_release(cfm_ikp_mo)
    2423        1012 :       CALL cp_cfm_release(cfm_ikp_ao)
    2424        1012 :       CALL cp_cfm_release(cfm_tmp)
    2425             : 
    2426        1012 :       CALL timestop(handle)
    2427             : 
    2428        1012 :    END SUBROUTINE fm_Gamma_ao_to_cfm_ikp_mo
    2429             : 
    2430             : END MODULE gw_large_cell_gamma

Generated by: LCOV version 1.15