LCOV - code coverage report
Current view: top level - src - gw_utils.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:2fce0f8) Lines: 1163 1252 92.9 %
Date: 2024-12-21 06:28:57 Functions: 43 46 93.5 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2024 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief
      10             : !> \author Jan Wilhelm
      11             : !> \date 07.2023
      12             : ! **************************************************************************************************
      13             : MODULE gw_utils
      14             :    USE atomic_kind_types,               ONLY: atomic_kind_type,&
      15             :                                               get_atomic_kind_set
      16             :    USE basis_set_types,                 ONLY: get_gto_basis_set,&
      17             :                                               gto_basis_set_type
      18             :    USE bibliography,                    ONLY: Graml2024,&
      19             :                                               cite_reference
      20             :    USE cell_types,                      ONLY: cell_type,&
      21             :                                               pbc
      22             :    USE cp_blacs_env,                    ONLY: cp_blacs_env_create,&
      23             :                                               cp_blacs_env_release,&
      24             :                                               cp_blacs_env_type
      25             :    USE cp_cfm_types,                    ONLY: cp_cfm_create,&
      26             :                                               cp_cfm_release,&
      27             :                                               cp_cfm_to_cfm,&
      28             :                                               cp_cfm_to_fm,&
      29             :                                               cp_cfm_type
      30             :    USE cp_control_types,                ONLY: dft_control_type
      31             :    USE cp_dbcsr_api,                    ONLY: &
      32             :         dbcsr_create, dbcsr_distribution_release, dbcsr_distribution_type, dbcsr_p_type, &
      33             :         dbcsr_release, dbcsr_set, dbcsr_type, dbcsr_type_no_symmetry, dbcsr_type_symmetric
      34             :    USE cp_dbcsr_operations,             ONLY: copy_dbcsr_to_fm,&
      35             :                                               copy_fm_to_dbcsr,&
      36             :                                               cp_dbcsr_dist2d_to_dist,&
      37             :                                               dbcsr_allocate_matrix_set,&
      38             :                                               dbcsr_deallocate_matrix_set
      39             :    USE cp_files,                        ONLY: close_file,&
      40             :                                               open_file
      41             :    USE cp_fm_basic_linalg,              ONLY: cp_fm_scale_and_add
      42             :    USE cp_fm_struct,                    ONLY: cp_fm_struct_create,&
      43             :                                               cp_fm_struct_release,&
      44             :                                               cp_fm_struct_type
      45             :    USE cp_fm_types,                     ONLY: cp_fm_create,&
      46             :                                               cp_fm_get_diag,&
      47             :                                               cp_fm_release,&
      48             :                                               cp_fm_set_all,&
      49             :                                               cp_fm_type
      50             :    USE cp_log_handling,                 ONLY: cp_get_default_logger,&
      51             :                                               cp_logger_type
      52             :    USE cp_output_handling,              ONLY: cp_print_key_generate_filename
      53             :    USE dbt_api,                         ONLY: &
      54             :         dbt_clear, dbt_create, dbt_destroy, dbt_filter, dbt_iterator_blocks_left, &
      55             :         dbt_iterator_next_block, dbt_iterator_start, dbt_iterator_stop, dbt_iterator_type, &
      56             :         dbt_mp_environ_pgrid, dbt_pgrid_create, dbt_pgrid_destroy, dbt_pgrid_type, dbt_type
      57             :    USE distribution_2d_types,           ONLY: distribution_2d_type
      58             :    USE gw_communication,                ONLY: fm_to_local_array
      59             :    USE gw_integrals,                    ONLY: build_3c_integral_block
      60             :    USE gw_kp_to_real_space_and_back,    ONLY: trafo_rs_to_ikp
      61             :    USE input_constants,                 ONLY: do_potential_truncated,&
      62             :                                               large_cell_Gamma,&
      63             :                                               ri_rpa_g0w0_crossing_newton,&
      64             :                                               rtp_method_bse,&
      65             :                                               small_cell_full_kp,&
      66             :                                               xc_none
      67             :    USE input_section_types,             ONLY: section_vals_get,&
      68             :                                               section_vals_get_subs_vals,&
      69             :                                               section_vals_type,&
      70             :                                               section_vals_val_get,&
      71             :                                               section_vals_val_set
      72             :    USE kinds,                           ONLY: default_string_length,&
      73             :                                               dp,&
      74             :                                               int_8
      75             :    USE kpoint_methods,                  ONLY: kpoint_init_cell_index
      76             :    USE kpoint_types,                    ONLY: get_kpoint_info,&
      77             :                                               kpoint_create,&
      78             :                                               kpoint_type
      79             :    USE libint_2c_3c,                    ONLY: libint_potential_type
      80             :    USE libint_wrapper,                  ONLY: cp_libint_static_cleanup,&
      81             :                                               cp_libint_static_init
      82             :    USE machine,                         ONLY: m_memory,&
      83             :                                               m_walltime
      84             :    USE mathconstants,                   ONLY: gaussi,&
      85             :                                               z_one,&
      86             :                                               z_zero
      87             :    USE mathlib,                         ONLY: gcd
      88             :    USE message_passing,                 ONLY: mp_cart_type,&
      89             :                                               mp_para_env_type
      90             :    USE minimax_exp,                     ONLY: get_exp_minimax_coeff
      91             :    USE minimax_exp_gw,                  ONLY: get_exp_minimax_coeff_gw
      92             :    USE minimax_rpa,                     ONLY: get_rpa_minimax_coeff,&
      93             :                                               get_rpa_minimax_coeff_larger_grid
      94             :    USE mp2_gpw,                         ONLY: create_mat_munu
      95             :    USE mp2_grids,                       ONLY: get_l_sq_wghts_cos_tf_t_to_w,&
      96             :                                               get_l_sq_wghts_cos_tf_w_to_t,&
      97             :                                               get_l_sq_wghts_sin_tf_t_to_w
      98             :    USE mp2_ri_2c,                       ONLY: trunc_coulomb_for_exchange
      99             :    USE parallel_gemm_api,               ONLY: parallel_gemm
     100             :    USE particle_methods,                ONLY: get_particle_set
     101             :    USE particle_types,                  ONLY: particle_type
     102             :    USE physcon,                         ONLY: angstrom,&
     103             :                                               evolt
     104             :    USE post_scf_bandstructure_types,    ONLY: post_scf_bandstructure_type
     105             :    USE post_scf_bandstructure_utils,    ONLY: rsmat_to_kp
     106             :    USE qs_energy_types,                 ONLY: qs_energy_type
     107             :    USE qs_environment_types,            ONLY: get_qs_env,&
     108             :                                               qs_env_part_release,&
     109             :                                               qs_environment_type
     110             :    USE qs_integral_utils,               ONLY: basis_set_list_setup
     111             :    USE qs_interactions,                 ONLY: init_interaction_radii_orb_basis
     112             :    USE qs_kind_types,                   ONLY: get_qs_kind,&
     113             :                                               qs_kind_type
     114             :    USE qs_ks_methods,                   ONLY: qs_ks_build_kohn_sham_matrix
     115             :    USE qs_neighbor_list_types,          ONLY: neighbor_list_set_p_type,&
     116             :                                               release_neighbor_list_sets
     117             :    USE qs_tensors,                      ONLY: build_2c_integrals,&
     118             :                                               build_2c_neighbor_lists,&
     119             :                                               build_3c_integrals,&
     120             :                                               build_3c_neighbor_lists,&
     121             :                                               get_tensor_occupancy,&
     122             :                                               neighbor_list_3c_destroy
     123             :    USE qs_tensors_types,                ONLY: create_2c_tensor,&
     124             :                                               create_3c_tensor,&
     125             :                                               distribution_3d_create,&
     126             :                                               distribution_3d_type,&
     127             :                                               neighbor_list_3c_type
     128             :    USE rpa_gw,                          ONLY: continuation_pade
     129             : #include "base/base_uses.f90"
     130             : 
     131             :    IMPLICIT NONE
     132             : 
     133             :    PRIVATE
     134             : 
     135             :    PUBLIC :: create_and_init_bs_env_for_gw, de_init_bs_env, get_i_j_atoms, &
     136             :              kpoint_init_cell_index_simple, compute_xkp, time_to_freq, analyt_conti_and_print, &
     137             :              add_R, is_cell_in_index_to_cell, get_V_tr_R, power
     138             : 
     139             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'gw_utils'
     140             : 
     141             : CONTAINS
     142             : 
     143             : ! **************************************************************************************************
     144             : !> \brief ...
     145             : !> \param qs_env ...
     146             : !> \param bs_env ...
     147             : !> \param bs_sec ...
     148             : ! **************************************************************************************************
     149          34 :    SUBROUTINE create_and_init_bs_env_for_gw(qs_env, bs_env, bs_sec)
     150             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     151             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
     152             :       TYPE(section_vals_type), POINTER                   :: bs_sec
     153             : 
     154             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'create_and_init_bs_env_for_gw'
     155             : 
     156             :       INTEGER                                            :: handle
     157             : 
     158          34 :       CALL timeset(routineN, handle)
     159             : 
     160          34 :       CALL cite_reference(Graml2024)
     161             : 
     162          34 :       CALL read_gw_input_parameters(bs_env, bs_sec)
     163             : 
     164          34 :       CALL print_header_and_input_parameters(bs_env)
     165             : 
     166          34 :       CALL setup_AO_and_RI_basis_set(qs_env, bs_env)
     167             : 
     168          34 :       CALL get_RI_basis_and_basis_function_indices(qs_env, bs_env)
     169             : 
     170          34 :       CALL set_heuristic_parameters(bs_env, qs_env)
     171             : 
     172          34 :       CALL cp_libint_static_init()
     173             : 
     174          34 :       CALL setup_kpoints_chi_eps_W(bs_env, bs_env%kpoints_chi_eps_W)
     175             : 
     176          34 :       IF (bs_env%small_cell_full_kp_or_large_cell_Gamma == small_cell_full_kp) THEN
     177           6 :          CALL setup_cells_3c(qs_env, bs_env)
     178             :       END IF
     179             : 
     180          34 :       CALL set_parallelization_parameters(qs_env, bs_env)
     181             : 
     182          34 :       CALL allocate_matrices(qs_env, bs_env)
     183             : 
     184          34 :       CALL compute_V_xc(qs_env, bs_env)
     185             : 
     186          34 :       CALL create_tensors(qs_env, bs_env)
     187             : 
     188          62 :       SELECT CASE (bs_env%small_cell_full_kp_or_large_cell_Gamma)
     189             :       CASE (large_cell_Gamma)
     190             : 
     191          28 :          CALL allocate_GW_eigenvalues(bs_env)
     192             : 
     193          28 :          CALL check_sparsity_3c(qs_env, bs_env)
     194             : 
     195          28 :          CALL set_sparsity_parallelization_parameters(bs_env)
     196             : 
     197          28 :          CALL check_for_restart_files(qs_env, bs_env)
     198             : 
     199             :       CASE (small_cell_full_kp)
     200             : 
     201           6 :          CALL compute_3c_integrals(qs_env, bs_env)
     202             : 
     203           6 :          CALL setup_cells_Delta_R(bs_env)
     204             : 
     205           6 :          CALL setup_parallelization_Delta_R(bs_env)
     206             : 
     207           6 :          CALL allocate_matrices_small_cell_full_kp(qs_env, bs_env)
     208             : 
     209           6 :          CALL trafo_V_xc_R_to_kp(qs_env, bs_env)
     210             : 
     211          40 :          CALL heuristic_RI_regularization(qs_env, bs_env)
     212             : 
     213             :       END SELECT
     214             : 
     215          34 :       CALL setup_time_and_frequency_minimax_grid(bs_env)
     216             : 
     217             :       ! free memory in qs_env; only if one is not calculating the LDOS because
     218             :       ! we need real-space grid operations in pw_env, task_list for the LDOS
     219             :       ! Recommendation in case of memory issues: first perform GW calculation without calculating
     220             :       !                                          LDOS (to safe memor). Then, use GW restart files
     221             :       !                                          in a subsequent calculation to calculate the LDOS
     222             :       ! Marek : TODO - boolean that does not interfere with RTP init but sets this to correct value
     223             :       IF (.NOT. bs_env%do_ldos .AND. .FALSE.) THEN
     224             :          CALL qs_env_part_release(qs_env)
     225             :       END IF
     226             : 
     227          34 :       CALL timestop(handle)
     228             : 
     229          34 :    END SUBROUTINE create_and_init_bs_env_for_gw
     230             : 
     231             : ! **************************************************************************************************
     232             : !> \brief ...
     233             : !> \param bs_env ...
     234             : ! **************************************************************************************************
     235          34 :    SUBROUTINE de_init_bs_env(bs_env)
     236             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
     237             : 
     238             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'de_init_bs_env'
     239             : 
     240             :       INTEGER                                            :: handle
     241             : 
     242          34 :       CALL timeset(routineN, handle)
     243             :       ! deallocate quantities here which:
     244             :       ! 1. cannot be deallocated in bs_env_release due to circular dependencies
     245             :       ! 2. consume a lot of memory and should not be kept until the quantity is
     246             :       !    deallocated in bs_env_release
     247             : 
     248          34 :       IF (ASSOCIATED(bs_env%nl_3c%ij_list) .AND. (bs_env%rtp_method == rtp_method_bse)) THEN
     249          12 :          IF (bs_env%unit_nr > 0) WRITE (bs_env%unit_nr, *) "Retaining nl_3c for RTBSE"
     250             :       ELSE
     251          22 :          CALL neighbor_list_3c_destroy(bs_env%nl_3c)
     252             :       END IF
     253             : 
     254          34 :       CALL cp_libint_static_cleanup()
     255             : 
     256          34 :       CALL timestop(handle)
     257             : 
     258          34 :    END SUBROUTINE de_init_bs_env
     259             : 
     260             : ! **************************************************************************************************
     261             : !> \brief ...
     262             : !> \param bs_env ...
     263             : !> \param bs_sec ...
     264             : ! **************************************************************************************************
     265          34 :    SUBROUTINE read_gw_input_parameters(bs_env, bs_sec)
     266             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
     267             :       TYPE(section_vals_type), POINTER                   :: bs_sec
     268             : 
     269             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'read_gw_input_parameters'
     270             : 
     271             :       INTEGER                                            :: handle
     272             :       TYPE(section_vals_type), POINTER                   :: gw_sec
     273             : 
     274          34 :       CALL timeset(routineN, handle)
     275             : 
     276          34 :       NULLIFY (gw_sec)
     277          34 :       gw_sec => section_vals_get_subs_vals(bs_sec, "GW")
     278             : 
     279          34 :       CALL section_vals_val_get(gw_sec, "NUM_TIME_FREQ_POINTS", i_val=bs_env%num_time_freq_points)
     280          34 :       CALL section_vals_val_get(gw_sec, "EPS_FILTER", r_val=bs_env%eps_filter)
     281          34 :       CALL section_vals_val_get(gw_sec, "REGULARIZATION_RI", r_val=bs_env%input_regularization_RI)
     282          34 :       CALL section_vals_val_get(gw_sec, "CUTOFF_RADIUS_RI", r_val=bs_env%ri_metric%cutoff_radius)
     283          34 :       CALL section_vals_val_get(gw_sec, "MEMORY_PER_PROC", r_val=bs_env%input_memory_per_proc_GB)
     284          34 :       CALL section_vals_val_get(gw_sec, "APPROX_KP_EXTRAPOL", l_val=bs_env%approx_kp_extrapol)
     285          34 :       CALL section_vals_val_get(gw_sec, "HEDIN_SHIFT", l_val=bs_env%do_hedin_shift)
     286             : 
     287          34 :       CALL timestop(handle)
     288             : 
     289          34 :    END SUBROUTINE read_gw_input_parameters
     290             : 
     291             : ! **************************************************************************************************
     292             : !> \brief ...
     293             : !> \param qs_env ...
     294             : !> \param bs_env ...
     295             : ! **************************************************************************************************
     296          34 :    SUBROUTINE setup_AO_and_RI_basis_set(qs_env, bs_env)
     297             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     298             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
     299             : 
     300             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'setup_AO_and_RI_basis_set'
     301             : 
     302             :       INTEGER                                            :: handle, natom, nkind
     303          34 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     304          34 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     305             : 
     306          34 :       CALL timeset(routineN, handle)
     307             : 
     308             :       CALL get_qs_env(qs_env, &
     309             :                       qs_kind_set=qs_kind_set, &
     310             :                       particle_set=particle_set, &
     311          34 :                       natom=natom, nkind=nkind)
     312             : 
     313             :       ! set up basis
     314         170 :       ALLOCATE (bs_env%sizes_RI(natom), bs_env%sizes_AO(natom))
     315         282 :       ALLOCATE (bs_env%basis_set_RI(nkind), bs_env%basis_set_AO(nkind))
     316             : 
     317          34 :       CALL basis_set_list_setup(bs_env%basis_set_RI, "RI_AUX", qs_kind_set)
     318          34 :       CALL basis_set_list_setup(bs_env%basis_set_AO, "ORB", qs_kind_set)
     319             : 
     320             :       CALL get_particle_set(particle_set, qs_kind_set, nsgf=bs_env%sizes_RI, &
     321          34 :                             basis=bs_env%basis_set_RI)
     322             :       CALL get_particle_set(particle_set, qs_kind_set, nsgf=bs_env%sizes_AO, &
     323          34 :                             basis=bs_env%basis_set_AO)
     324             : 
     325          34 :       CALL timestop(handle)
     326             : 
     327          34 :    END SUBROUTINE setup_AO_and_RI_basis_set
     328             : 
     329             : ! **************************************************************************************************
     330             : !> \brief ...
     331             : !> \param qs_env ...
     332             : !> \param bs_env ...
     333             : ! **************************************************************************************************
     334          34 :    SUBROUTINE get_RI_basis_and_basis_function_indices(qs_env, bs_env)
     335             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     336             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
     337             : 
     338             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'get_RI_basis_and_basis_function_indices'
     339             : 
     340             :       INTEGER                                            :: handle, i_RI, iatom, ikind, iset, &
     341             :                                                             max_AO_bf_per_atom, n_ao_test, n_atom, &
     342             :                                                             n_kind, n_RI, nset, nsgf, u
     343          34 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: kind_of
     344          34 :       INTEGER, DIMENSION(:), POINTER                     :: l_max, l_min, nsgf_set
     345          34 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
     346             :       TYPE(gto_basis_set_type), POINTER                  :: basis_set_a
     347          34 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     348             : 
     349          34 :       CALL timeset(routineN, handle)
     350             : 
     351             :       ! determine RI basis set size
     352          34 :       CALL get_qs_env(qs_env, atomic_kind_set=atomic_kind_set, qs_kind_set=qs_kind_set)
     353             : 
     354          34 :       n_kind = SIZE(qs_kind_set)
     355          34 :       n_atom = bs_env%n_atom
     356             : 
     357          34 :       CALL get_atomic_kind_set(atomic_kind_set, kind_of=kind_of)
     358             : 
     359          90 :       DO ikind = 1, n_kind
     360             :          CALL get_qs_kind(qs_kind=qs_kind_set(ikind), basis_set=basis_set_a, &
     361          56 :                           basis_type="RI_AUX")
     362          90 :          CPASSERT(ASSOCIATED(basis_set_a))
     363             :       END DO
     364             : 
     365         102 :       ALLOCATE (bs_env%i_RI_start_from_atom(n_atom))
     366          68 :       ALLOCATE (bs_env%i_RI_end_from_atom(n_atom))
     367          68 :       ALLOCATE (bs_env%i_ao_start_from_atom(n_atom))
     368          68 :       ALLOCATE (bs_env%i_ao_end_from_atom(n_atom))
     369             : 
     370          34 :       n_RI = 0
     371         108 :       DO iatom = 1, n_atom
     372          74 :          bs_env%i_RI_start_from_atom(iatom) = n_RI + 1
     373          74 :          ikind = kind_of(iatom)
     374          74 :          CALL get_qs_kind(qs_kind=qs_kind_set(ikind), nsgf=nsgf, basis_type="RI_AUX")
     375          74 :          n_RI = n_RI + nsgf
     376         108 :          bs_env%i_RI_end_from_atom(iatom) = n_RI
     377             :       END DO
     378          34 :       bs_env%n_RI = n_RI
     379             : 
     380          34 :       max_AO_bf_per_atom = 0
     381          34 :       n_ao_test = 0
     382         108 :       DO iatom = 1, n_atom
     383          74 :          bs_env%i_ao_start_from_atom(iatom) = n_ao_test + 1
     384          74 :          ikind = kind_of(iatom)
     385          74 :          CALL get_qs_kind(qs_kind=qs_kind_set(ikind), nsgf=nsgf, basis_type="ORB")
     386          74 :          n_ao_test = n_ao_test + nsgf
     387          74 :          bs_env%i_ao_end_from_atom(iatom) = n_ao_test
     388         108 :          max_AO_bf_per_atom = MAX(max_AO_bf_per_atom, nsgf)
     389             :       END DO
     390          34 :       CPASSERT(n_ao_test == bs_env%n_ao)
     391          34 :       bs_env%max_AO_bf_per_atom = max_AO_bf_per_atom
     392             : 
     393         102 :       ALLOCATE (bs_env%l_RI(n_RI))
     394          34 :       i_RI = 0
     395         108 :       DO iatom = 1, n_atom
     396          74 :          ikind = kind_of(iatom)
     397             : 
     398          74 :          nset = bs_env%basis_set_RI(ikind)%gto_basis_set%nset
     399          74 :          l_max => bs_env%basis_set_RI(ikind)%gto_basis_set%lmax
     400          74 :          l_min => bs_env%basis_set_RI(ikind)%gto_basis_set%lmin
     401          74 :          nsgf_set => bs_env%basis_set_RI(ikind)%gto_basis_set%nsgf_set
     402             : 
     403         300 :          DO iset = 1, nset
     404         192 :             CPASSERT(l_max(iset) == l_min(iset))
     405         580 :             bs_env%l_RI(i_RI + 1:i_RI + nsgf_set(iset)) = l_max(iset)
     406         266 :             i_RI = i_RI + nsgf_set(iset)
     407             :          END DO
     408             : 
     409             :       END DO
     410          34 :       CPASSERT(i_RI == n_RI)
     411             : 
     412          34 :       u = bs_env%unit_nr
     413             : 
     414          34 :       IF (u > 0) THEN
     415          17 :          WRITE (u, FMT="(T2,A)") " "
     416          17 :          WRITE (u, FMT="(T2,2A,T75,I8)") "Number of auxiliary Gaussian basis functions ", &
     417          34 :             "for χ, ε, W", n_RI
     418             :       END IF
     419             : 
     420          34 :       CALL timestop(handle)
     421             : 
     422          68 :    END SUBROUTINE get_RI_basis_and_basis_function_indices
     423             : 
     424             : ! **************************************************************************************************
     425             : !> \brief ...
     426             : !> \param bs_env ...
     427             : !> \param kpoints ...
     428             : ! **************************************************************************************************
     429          34 :    SUBROUTINE setup_kpoints_chi_eps_W(bs_env, kpoints)
     430             : 
     431             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
     432             :       TYPE(kpoint_type), POINTER                         :: kpoints
     433             : 
     434             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'setup_kpoints_chi_eps_W'
     435             : 
     436             :       INTEGER                                            :: handle, i_dim, n_dim, nkp, nkp_extra, &
     437             :                                                             nkp_orig, u
     438             :       INTEGER, DIMENSION(3)                              :: nkp_grid, nkp_grid_extra, periodic
     439             :       REAL(KIND=dp)                                      :: exp_s_p, n_dim_inv
     440             : 
     441          34 :       CALL timeset(routineN, handle)
     442             : 
     443             :       ! routine adapted from mp2_integrals.F
     444          34 :       NULLIFY (kpoints)
     445          34 :       CALL kpoint_create(kpoints)
     446             : 
     447          34 :       kpoints%kp_scheme = "GENERAL"
     448             : 
     449         136 :       periodic(1:3) = bs_env%periodic(1:3)
     450             : 
     451         136 :       DO i_dim = 1, 3
     452             : 
     453         102 :          CPASSERT(periodic(i_dim) == 0 .OR. periodic(i_dim) == 1)
     454             : 
     455          34 :          SELECT CASE (periodic(i_dim))
     456             :          CASE (0)
     457             : 
     458          58 :             nkp_grid(i_dim) = 1
     459          58 :             nkp_grid_extra(i_dim) = 1
     460             : 
     461             :          CASE (1)
     462             : 
     463          44 :             SELECT CASE (bs_env%small_cell_full_kp_or_large_cell_Gamma)
     464             :             CASE (large_cell_Gamma)
     465             : 
     466          32 :                nkp_grid(i_dim) = 4
     467          32 :                nkp_grid_extra(i_dim) = 6
     468             : 
     469             :             CASE (small_cell_full_kp)
     470             : 
     471          12 :                nkp_grid(i_dim) = bs_env%kpoints_scf_desymm%nkp_grid(i_dim)*4
     472          12 :                nkp_grid_extra(i_dim) = bs_env%kpoints_scf_desymm%nkp_grid(i_dim)*8
     473             : 
     474             :             END SELECT
     475             : 
     476             :          CASE DEFAULT
     477             : 
     478         102 :             CPABORT("Error in periodicity.")
     479             : 
     480             :          END SELECT
     481             : 
     482             :       END DO
     483             : 
     484          34 :       nkp_orig = MAX(nkp_grid(1)*nkp_grid(2)*nkp_grid(3)/2, 1)
     485             : 
     486          34 :       nkp_extra = nkp_grid_extra(1)*nkp_grid_extra(2)*nkp_grid_extra(3)/2
     487             : 
     488          34 :       nkp = nkp_orig + nkp_extra
     489             : 
     490         136 :       kpoints%nkp_grid(1:3) = nkp_grid(1:3)
     491          34 :       kpoints%nkp = nkp
     492             : 
     493         136 :       bs_env%nkp_grid_chi_eps_W_orig(1:3) = nkp_grid(1:3)
     494         136 :       bs_env%nkp_grid_chi_eps_W_extra(1:3) = nkp_grid_extra(1:3)
     495          34 :       bs_env%nkp_chi_eps_W_orig = nkp_orig
     496          34 :       bs_env%nkp_chi_eps_W_extra = nkp_extra
     497          34 :       bs_env%nkp_chi_eps_W_orig_plus_extra = nkp
     498             : 
     499         170 :       ALLOCATE (kpoints%xkp(3, nkp), kpoints%wkp(nkp))
     500         170 :       ALLOCATE (bs_env%wkp_no_extra(nkp), bs_env%wkp_s_p(nkp))
     501             : 
     502          34 :       CALL compute_xkp(kpoints%xkp, 1, nkp_orig, nkp_grid)
     503          34 :       CALL compute_xkp(kpoints%xkp, nkp_orig + 1, nkp, nkp_grid_extra)
     504             : 
     505         136 :       n_dim = SUM(periodic)
     506          34 :       IF (n_dim == 0) THEN
     507             :          ! molecules
     508          12 :          kpoints%wkp(1) = 1.0_dp
     509          12 :          bs_env%wkp_s_p(1) = 1.0_dp
     510          12 :          bs_env%wkp_no_extra(1) = 1.0_dp
     511             :       ELSE
     512             : 
     513          22 :          n_dim_inv = 1.0_dp/REAL(n_dim, KIND=dp)
     514             : 
     515             :          ! k-point weights are chosen to automatically extrapolate the k-point mesh
     516          22 :          CALL compute_wkp(kpoints%wkp(1:nkp_orig), nkp_orig, nkp_extra, n_dim_inv)
     517          22 :          CALL compute_wkp(kpoints%wkp(nkp_orig + 1:nkp), nkp_extra, nkp_orig, n_dim_inv)
     518             : 
     519         918 :          bs_env%wkp_no_extra(1:nkp_orig) = 0.0_dp
     520        3382 :          bs_env%wkp_no_extra(nkp_orig + 1:nkp) = 1.0_dp/REAL(nkp_extra, KIND=dp)
     521             : 
     522          22 :          IF (n_dim == 3) THEN
     523             :             ! W_PQ(k) for an s-function P and a p-function Q diverges as 1/k at k=0
     524             :             ! (instead of 1/k^2 for P and Q both being s-functions).
     525           0 :             exp_s_p = 2.0_dp*n_dim_inv
     526           0 :             CALL compute_wkp(bs_env%wkp_s_p(1:nkp_orig), nkp_orig, nkp_extra, exp_s_p)
     527           0 :             CALL compute_wkp(bs_env%wkp_s_p(nkp_orig + 1:nkp), nkp_extra, nkp_orig, exp_s_p)
     528             :          ELSE
     529        4278 :             bs_env%wkp_s_p(1:nkp) = bs_env%wkp_no_extra(1:nkp)
     530             :          END IF
     531             : 
     532             :       END IF
     533             : 
     534          34 :       IF (bs_env%approx_kp_extrapol) THEN
     535           2 :          bs_env%wkp_orig = 1.0_dp/REAL(nkp_orig, KIND=dp)
     536             :       END IF
     537             : 
     538             :       ! heuristic parameter: how many k-points for χ, ε, and W are used simultaneously
     539             :       ! (less simultaneous k-points: less memory, but more computational effort because of
     540             :       !  recomputation of V(k))
     541          34 :       bs_env%nkp_chi_eps_W_batch = 4
     542             : 
     543             :       bs_env%num_chi_eps_W_batches = (bs_env%nkp_chi_eps_W_orig_plus_extra - 1)/ &
     544          34 :                                      bs_env%nkp_chi_eps_W_batch + 1
     545             : 
     546          34 :       u = bs_env%unit_nr
     547             : 
     548          34 :       IF (u > 0) THEN
     549          17 :          WRITE (u, FMT="(T2,A)") " "
     550          17 :          WRITE (u, FMT="(T2,1A,T71,3I4)") "K-point mesh 1 for χ, ε, W", nkp_grid(1:3)
     551          17 :          WRITE (u, FMT="(T2,2A,T71,3I4)") "K-point mesh 2 for χ, ε, W ", &
     552          34 :             "(for k-point extrapolation of W)", nkp_grid_extra(1:3)
     553          17 :          WRITE (u, FMT="(T2,A,T80,L)") "Approximate the k-point extrapolation", &
     554          34 :             bs_env%approx_kp_extrapol
     555             :       END IF
     556             : 
     557          34 :       CALL timestop(handle)
     558             : 
     559          34 :    END SUBROUTINE setup_kpoints_chi_eps_W
     560             : 
     561             : ! **************************************************************************************************
     562             : !> \brief ...
     563             : !> \param kpoints ...
     564             : !> \param qs_env ...
     565             : ! **************************************************************************************************
     566           0 :    SUBROUTINE kpoint_init_cell_index_simple(kpoints, qs_env)
     567             : 
     568             :       TYPE(kpoint_type), POINTER                         :: kpoints
     569             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     570             : 
     571             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'kpoint_init_cell_index_simple'
     572             : 
     573             :       INTEGER                                            :: handle
     574             :       TYPE(dft_control_type), POINTER                    :: dft_control
     575             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     576             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
     577           0 :          POINTER                                         :: sab_orb
     578             : 
     579           0 :       CALL timeset(routineN, handle)
     580             : 
     581           0 :       NULLIFY (dft_control, para_env, sab_orb)
     582           0 :       CALL get_qs_env(qs_env=qs_env, para_env=para_env, dft_control=dft_control, sab_orb=sab_orb)
     583           0 :       CALL kpoint_init_cell_index(kpoints, sab_orb, para_env, dft_control)
     584             : 
     585           0 :       CALL timestop(handle)
     586             : 
     587           0 :    END SUBROUTINE kpoint_init_cell_index_simple
     588             : 
     589             : ! **************************************************************************************************
     590             : !> \brief ...
     591             : !> \param xkp ...
     592             : !> \param ikp_start ...
     593             : !> \param ikp_end ...
     594             : !> \param grid ...
     595             : ! **************************************************************************************************
     596          68 :    SUBROUTINE compute_xkp(xkp, ikp_start, ikp_end, grid)
     597             : 
     598             :       REAL(KIND=dp), DIMENSION(:, :), POINTER            :: xkp
     599             :       INTEGER                                            :: ikp_start, ikp_end
     600             :       INTEGER, DIMENSION(3)                              :: grid
     601             : 
     602             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'compute_xkp'
     603             : 
     604             :       INTEGER                                            :: handle, i, ix, iy, iz
     605             : 
     606          68 :       CALL timeset(routineN, handle)
     607             : 
     608          68 :       i = ikp_start
     609         384 :       DO ix = 1, grid(1)
     610        6120 :          DO iy = 1, grid(2)
     611       14588 :             DO iz = 1, grid(3)
     612             : 
     613        8536 :                IF (i > ikp_end) CYCLE
     614             : 
     615        4268 :                xkp(1, i) = REAL(2*ix - grid(1) - 1, KIND=dp)/(2._dp*REAL(grid(1), KIND=dp))
     616        4268 :                xkp(2, i) = REAL(2*iy - grid(2) - 1, KIND=dp)/(2._dp*REAL(grid(2), KIND=dp))
     617        4268 :                xkp(3, i) = REAL(2*iz - grid(3) - 1, KIND=dp)/(2._dp*REAL(grid(3), KIND=dp))
     618       14272 :                i = i + 1
     619             : 
     620             :             END DO
     621             :          END DO
     622             :       END DO
     623             : 
     624          68 :       CALL timestop(handle)
     625             : 
     626          68 :    END SUBROUTINE compute_xkp
     627             : 
     628             : ! **************************************************************************************************
     629             : !> \brief ...
     630             : !> \param wkp ...
     631             : !> \param nkp_1 ...
     632             : !> \param nkp_2 ...
     633             : !> \param exponent ...
     634             : ! **************************************************************************************************
     635          44 :    SUBROUTINE compute_wkp(wkp, nkp_1, nkp_2, exponent)
     636             :       REAL(KIND=dp), DIMENSION(:)                        :: wkp
     637             :       INTEGER                                            :: nkp_1, nkp_2
     638             :       REAL(KIND=dp)                                      :: exponent
     639             : 
     640             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'compute_wkp'
     641             : 
     642             :       INTEGER                                            :: handle
     643             :       REAL(KIND=dp)                                      :: nkp_ratio
     644             : 
     645          44 :       CALL timeset(routineN, handle)
     646             : 
     647          44 :       nkp_ratio = REAL(nkp_2, KIND=dp)/REAL(nkp_1, KIND=dp)
     648             : 
     649        4300 :       wkp(:) = 1.0_dp/REAL(nkp_1, KIND=dp)/(1.0_dp - nkp_ratio**exponent)
     650             : 
     651          44 :       CALL timestop(handle)
     652             : 
     653          44 :    END SUBROUTINE compute_wkp
     654             : 
     655             : ! **************************************************************************************************
     656             : !> \brief ...
     657             : !> \param qs_env ...
     658             : !> \param bs_env ...
     659             : ! **************************************************************************************************
     660          34 :    SUBROUTINE allocate_matrices(qs_env, bs_env)
     661             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     662             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
     663             : 
     664             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'allocate_matrices'
     665             : 
     666             :       INTEGER                                            :: handle, i_t
     667             :       TYPE(cp_blacs_env_type), POINTER                   :: blacs_env, blacs_env_tensor
     668             :       TYPE(cp_fm_struct_type), POINTER                   :: fm_struct, fm_struct_RI_global
     669             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     670             : 
     671          34 :       CALL timeset(routineN, handle)
     672             : 
     673          34 :       CALL get_qs_env(qs_env, para_env=para_env, blacs_env=blacs_env)
     674             : 
     675          34 :       fm_struct => bs_env%fm_ks_Gamma(1)%matrix_struct
     676             : 
     677          34 :       CALL cp_fm_create(bs_env%fm_Gocc, fm_struct)
     678          34 :       CALL cp_fm_create(bs_env%fm_Gvir, fm_struct)
     679             : 
     680          34 :       NULLIFY (fm_struct_RI_global)
     681             :       CALL cp_fm_struct_create(fm_struct_RI_global, context=blacs_env, nrow_global=bs_env%n_RI, &
     682          34 :                                ncol_global=bs_env%n_RI, para_env=para_env)
     683          34 :       CALL cp_fm_create(bs_env%fm_RI_RI, fm_struct_RI_global)
     684          34 :       CALL cp_fm_create(bs_env%fm_chi_Gamma_freq, fm_struct_RI_global)
     685          34 :       CALL cp_fm_create(bs_env%fm_W_MIC_freq, fm_struct_RI_global)
     686          34 :       IF (bs_env%approx_kp_extrapol) THEN
     687           2 :          CALL cp_fm_create(bs_env%fm_W_MIC_freq_1_extra, fm_struct_RI_global)
     688           2 :          CALL cp_fm_create(bs_env%fm_W_MIC_freq_1_no_extra, fm_struct_RI_global)
     689           2 :          CALL cp_fm_set_all(bs_env%fm_W_MIC_freq_1_extra, 0.0_dp)
     690           2 :          CALL cp_fm_set_all(bs_env%fm_W_MIC_freq_1_no_extra, 0.0_dp)
     691             :       END IF
     692          34 :       CALL cp_fm_struct_release(fm_struct_RI_global)
     693             : 
     694             :       ! create blacs_env for subgroups of tensor operations
     695          34 :       NULLIFY (blacs_env_tensor)
     696          34 :       CALL cp_blacs_env_create(blacs_env=blacs_env_tensor, para_env=bs_env%para_env_tensor)
     697             : 
     698             :       ! allocate dbcsr matrices in the tensor subgroup; actually, one only needs a small
     699             :       ! subset of blocks in the tensor subgroup, however, all atomic blocks are allocated.
     700             :       ! One might think of creating a dbcsr matrix with only the blocks that are needed
     701             :       ! in the tensor subgroup
     702             :       CALL create_mat_munu(bs_env%mat_ao_ao_tensor, qs_env, bs_env%eps_atom_grid_2d_mat, &
     703          34 :                            blacs_env_tensor, do_ri_aux_basis=.FALSE.)
     704             : 
     705             :       CALL create_mat_munu(bs_env%mat_RI_RI_tensor, qs_env, bs_env%eps_atom_grid_2d_mat, &
     706          34 :                            blacs_env_tensor, do_ri_aux_basis=.TRUE.)
     707             : 
     708             :       CALL create_mat_munu(bs_env%mat_RI_RI, qs_env, bs_env%eps_atom_grid_2d_mat, &
     709          34 :                            blacs_env, do_ri_aux_basis=.TRUE.)
     710             : 
     711          34 :       CALL cp_blacs_env_release(blacs_env_tensor)
     712             : 
     713          34 :       NULLIFY (bs_env%mat_chi_Gamma_tau)
     714          34 :       CALL dbcsr_allocate_matrix_set(bs_env%mat_chi_Gamma_tau, bs_env%num_time_freq_points)
     715             : 
     716         470 :       DO i_t = 1, bs_env%num_time_freq_points
     717         436 :          ALLOCATE (bs_env%mat_chi_Gamma_tau(i_t)%matrix)
     718         470 :          CALL dbcsr_create(bs_env%mat_chi_Gamma_tau(i_t)%matrix, template=bs_env%mat_RI_RI%matrix)
     719             :       END DO
     720             : 
     721          34 :       CALL timestop(handle)
     722             : 
     723          34 :    END SUBROUTINE allocate_matrices
     724             : 
     725             : ! **************************************************************************************************
     726             : !> \brief ...
     727             : !> \param bs_env ...
     728             : ! **************************************************************************************************
     729          28 :    SUBROUTINE allocate_GW_eigenvalues(bs_env)
     730             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
     731             : 
     732             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'allocate_GW_eigenvalues'
     733             : 
     734             :       INTEGER                                            :: handle
     735             : 
     736          28 :       CALL timeset(routineN, handle)
     737             : 
     738         140 :       ALLOCATE (bs_env%eigenval_G0W0(bs_env%n_ao, bs_env%nkp_bs_and_DOS, bs_env%n_spin))
     739         140 :       ALLOCATE (bs_env%eigenval_HF(bs_env%n_ao, bs_env%nkp_bs_and_DOS, bs_env%n_spin))
     740             : 
     741          28 :       CALL timestop(handle)
     742             : 
     743          28 :    END SUBROUTINE allocate_GW_eigenvalues
     744             : 
     745             : ! **************************************************************************************************
     746             : !> \brief ...
     747             : !> \param qs_env ...
     748             : !> \param bs_env ...
     749             : ! **************************************************************************************************
     750          34 :    SUBROUTINE create_tensors(qs_env, bs_env)
     751             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     752             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
     753             : 
     754             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'create_tensors'
     755             : 
     756             :       INTEGER                                            :: handle
     757             : 
     758          34 :       CALL timeset(routineN, handle)
     759             : 
     760          34 :       CALL init_interaction_radii(bs_env)
     761             : 
     762             :       ! split blocks does not improve load balancing/efficienfy for tensor contraction, so we go
     763             :       ! with the standard atomic blocks
     764             :       CALL create_3c_t(bs_env%t_RI_AO__AO, bs_env%para_env_tensor, "(RI AO | AO)", [1, 2], [3], &
     765             :                        bs_env%sizes_RI, bs_env%sizes_AO, &
     766          34 :                        create_nl_3c=.TRUE., nl_3c=bs_env%nl_3c, qs_env=qs_env)
     767             :       CALL create_3c_t(bs_env%t_RI__AO_AO, bs_env%para_env_tensor, "(RI | AO AO)", [1], [2, 3], &
     768          34 :                        bs_env%sizes_RI, bs_env%sizes_AO)
     769             : 
     770          34 :       CALL create_2c_t(bs_env, bs_env%sizes_RI, bs_env%sizes_AO)
     771             : 
     772          34 :       CALL timestop(handle)
     773             : 
     774          34 :    END SUBROUTINE create_tensors
     775             : 
     776             : ! **************************************************************************************************
     777             : !> \brief ...
     778             : !> \param qs_env ...
     779             : !> \param bs_env ...
     780             : ! **************************************************************************************************
     781          28 :    SUBROUTINE check_sparsity_3c(qs_env, bs_env)
     782             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     783             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
     784             : 
     785             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'check_sparsity_3c'
     786             : 
     787             :       INTEGER                                            :: handle, n_atom_step, RI_atom
     788             :       INTEGER(int_8)                                     :: mem, non_zero_elements_sum, nze
     789             :       REAL(dp)                                           :: max_dist_AO_atoms, occ, occupation_sum
     790             :       REAL(KIND=dp)                                      :: t1, t2
     791         196 :       TYPE(dbt_type)                                     :: t_3c_global
     792          28 :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:, :)       :: t_3c_global_array
     793             :       TYPE(neighbor_list_3c_type)                        :: nl_3c_global
     794             : 
     795          28 :       CALL timeset(routineN, handle)
     796             : 
     797             :       ! check the sparsity of 3c integral tensor (µν|P); calculate maximum distance between
     798             :       ! AO atoms µ, ν where at least a single integral (µν|P) is larger than the filter threshold
     799             :       CALL create_3c_t(t_3c_global, bs_env%para_env, "(RI AO | AO)", [1, 2], [3], &
     800             :                        bs_env%sizes_RI, bs_env%sizes_AO, &
     801          28 :                        create_nl_3c=.TRUE., nl_3c=nl_3c_global, qs_env=qs_env)
     802             : 
     803          28 :       CALL m_memory(mem)
     804          28 :       CALL bs_env%para_env%max(mem)
     805             : 
     806         252 :       ALLOCATE (t_3c_global_array(1, 1))
     807          28 :       CALL dbt_create(t_3c_global, t_3c_global_array(1, 1))
     808             : 
     809          28 :       CALL bs_env%para_env%sync()
     810          28 :       t1 = m_walltime()
     811             : 
     812          28 :       occupation_sum = 0.0_dp
     813          28 :       non_zero_elements_sum = 0
     814          28 :       max_dist_AO_atoms = 0.0_dp
     815          28 :       n_atom_step = INT(SQRT(REAL(bs_env%n_atom, KIND=dp)))
     816             :       ! do not compute full 3c integrals at once because it may cause out of memory
     817          88 :       DO RI_atom = 1, bs_env%n_atom, n_atom_step
     818             : 
     819             :          CALL build_3c_integrals(t_3c_global_array, &
     820             :                                  bs_env%eps_filter, &
     821             :                                  qs_env, &
     822             :                                  nl_3c_global, &
     823             :                                  int_eps=bs_env%eps_filter, &
     824             :                                  basis_i=bs_env%basis_set_RI, &
     825             :                                  basis_j=bs_env%basis_set_AO, &
     826             :                                  basis_k=bs_env%basis_set_AO, &
     827             :                                  bounds_i=[RI_atom, MIN(RI_atom + n_atom_step - 1, bs_env%n_atom)], &
     828             :                                  potential_parameter=bs_env%ri_metric, &
     829         180 :                                  desymmetrize=.FALSE.)
     830             : 
     831          60 :          CALL dbt_filter(t_3c_global_array(1, 1), bs_env%eps_filter)
     832             : 
     833          60 :          CALL bs_env%para_env%sync()
     834             : 
     835          60 :          CALL get_tensor_occupancy(t_3c_global_array(1, 1), nze, occ)
     836          60 :          non_zero_elements_sum = non_zero_elements_sum + nze
     837          60 :          occupation_sum = occupation_sum + occ
     838             : 
     839          60 :          CALL get_max_dist_AO_atoms(t_3c_global_array(1, 1), max_dist_AO_atoms, qs_env)
     840             : 
     841         148 :          CALL dbt_clear(t_3c_global_array(1, 1))
     842             : 
     843             :       END DO
     844             : 
     845          28 :       t2 = m_walltime()
     846             : 
     847          28 :       bs_env%occupation_3c_int = occupation_sum
     848          28 :       bs_env%max_dist_AO_atoms = max_dist_AO_atoms
     849             : 
     850          28 :       CALL dbt_destroy(t_3c_global)
     851          28 :       CALL dbt_destroy(t_3c_global_array(1, 1))
     852          56 :       DEALLOCATE (t_3c_global_array)
     853             : 
     854          28 :       CALL neighbor_list_3c_destroy(nl_3c_global)
     855             : 
     856          28 :       IF (bs_env%unit_nr > 0) THEN
     857          14 :          WRITE (bs_env%unit_nr, '(T2,A)') ''
     858             :          WRITE (bs_env%unit_nr, '(T2,A,F27.1,A)') &
     859          14 :             'Computed 3-center integrals (µν|P), execution time', t2 - t1, ' s'
     860          14 :          WRITE (bs_env%unit_nr, '(T2,A,F48.3,A)') 'Percentage of non-zero (µν|P)', &
     861          28 :             occupation_sum*100, ' %'
     862          14 :          WRITE (bs_env%unit_nr, '(T2,A,F33.1,A)') 'Max. distance between µ,ν in non-zero (µν|P)', &
     863          28 :             max_dist_AO_atoms*angstrom, ' A'
     864          14 :          WRITE (bs_env%unit_nr, '(T2,2A,I20,A)') 'Required memory if storing all 3-center ', &
     865          28 :             'integrals (µν|P)', INT(REAL(non_zero_elements_sum, KIND=dp)*8.0E-9_dp), ' GB'
     866             :       END IF
     867             : 
     868          28 :       CALL timestop(handle)
     869             : 
     870         112 :    END SUBROUTINE check_sparsity_3c
     871             : 
     872             : ! **************************************************************************************************
     873             : !> \brief ...
     874             : !> \param bs_env ...
     875             : !> \param sizes_RI ...
     876             : !> \param sizes_AO ...
     877             : ! **************************************************************************************************
     878          34 :    SUBROUTINE create_2c_t(bs_env, sizes_RI, sizes_AO)
     879             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
     880             :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: sizes_RI, sizes_AO
     881             : 
     882             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'create_2c_t'
     883             : 
     884             :       INTEGER                                            :: handle
     885          34 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: dist_1, dist_2
     886             :       INTEGER, DIMENSION(2)                              :: pdims_2d
     887         102 :       TYPE(dbt_pgrid_type)                               :: pgrid_2d
     888             : 
     889          34 :       CALL timeset(routineN, handle)
     890             : 
     891             :       ! inspired from rpa_im_time.F / hfx_types.F
     892             : 
     893          34 :       pdims_2d = 0
     894          34 :       CALL dbt_pgrid_create(bs_env%para_env_tensor, pdims_2d, pgrid_2d)
     895             : 
     896             :       CALL create_2c_tensor(bs_env%t_G, dist_1, dist_2, pgrid_2d, sizes_AO, sizes_AO, &
     897          34 :                             name="(AO | AO)")
     898          34 :       DEALLOCATE (dist_1, dist_2)
     899             :       CALL create_2c_tensor(bs_env%t_chi, dist_1, dist_2, pgrid_2d, sizes_RI, sizes_RI, &
     900          34 :                             name="(RI | RI)")
     901          34 :       DEALLOCATE (dist_1, dist_2)
     902             :       CALL create_2c_tensor(bs_env%t_W, dist_1, dist_2, pgrid_2d, sizes_RI, sizes_RI, &
     903          34 :                             name="(RI | RI)")
     904          34 :       DEALLOCATE (dist_1, dist_2)
     905          34 :       CALL dbt_pgrid_destroy(pgrid_2d)
     906             : 
     907          34 :       CALL timestop(handle)
     908             : 
     909          34 :    END SUBROUTINE create_2c_t
     910             : 
     911             : ! **************************************************************************************************
     912             : !> \brief ...
     913             : !> \param tensor ...
     914             : !> \param para_env ...
     915             : !> \param tensor_name ...
     916             : !> \param map1 ...
     917             : !> \param map2 ...
     918             : !> \param sizes_RI ...
     919             : !> \param sizes_AO ...
     920             : !> \param create_nl_3c ...
     921             : !> \param nl_3c ...
     922             : !> \param qs_env ...
     923             : ! **************************************************************************************************
     924          96 :    SUBROUTINE create_3c_t(tensor, para_env, tensor_name, map1, map2, sizes_RI, sizes_AO, &
     925             :                           create_nl_3c, nl_3c, qs_env)
     926             :       TYPE(dbt_type)                                     :: tensor
     927             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     928             :       CHARACTER(LEN=12)                                  :: tensor_name
     929             :       INTEGER, DIMENSION(:)                              :: map1, map2
     930             :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: sizes_RI, sizes_AO
     931             :       LOGICAL, OPTIONAL                                  :: create_nl_3c
     932             :       TYPE(neighbor_list_3c_type), OPTIONAL              :: nl_3c
     933             :       TYPE(qs_environment_type), OPTIONAL, POINTER       :: qs_env
     934             : 
     935             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'create_3c_t'
     936             : 
     937             :       INTEGER                                            :: handle, nkind
     938          96 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: dist_AO_1, dist_AO_2, dist_RI
     939             :       INTEGER, DIMENSION(3)                              :: pcoord, pdims, pdims_3d
     940             :       LOGICAL                                            :: my_create_nl_3c
     941         288 :       TYPE(dbt_pgrid_type)                               :: pgrid_3d
     942             :       TYPE(distribution_3d_type)                         :: dist_3d
     943          96 :       TYPE(mp_cart_type)                                 :: mp_comm_t3c_2
     944          96 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     945             : 
     946          96 :       CALL timeset(routineN, handle)
     947             : 
     948          96 :       pdims_3d = 0
     949          96 :       CALL dbt_pgrid_create(para_env, pdims_3d, pgrid_3d)
     950             :       CALL create_3c_tensor(tensor, dist_RI, dist_AO_1, dist_AO_2, &
     951             :                             pgrid_3d, sizes_RI, sizes_AO, sizes_AO, &
     952          96 :                             map1=map1, map2=map2, name=tensor_name)
     953             : 
     954          96 :       IF (PRESENT(create_nl_3c)) THEN
     955          62 :          my_create_nl_3c = create_nl_3c
     956             :       ELSE
     957             :          my_create_nl_3c = .FALSE.
     958             :       END IF
     959             : 
     960          62 :       IF (my_create_nl_3c) THEN
     961          62 :          CALL get_qs_env(qs_env, nkind=nkind, particle_set=particle_set)
     962          62 :          CALL dbt_mp_environ_pgrid(pgrid_3d, pdims, pcoord)
     963          62 :          CALL mp_comm_t3c_2%create(pgrid_3d%mp_comm_2d, 3, pdims)
     964             :          CALL distribution_3d_create(dist_3d, dist_RI, dist_AO_1, dist_AO_2, &
     965          62 :                                      nkind, particle_set, mp_comm_t3c_2, own_comm=.TRUE.)
     966             : 
     967             :          CALL build_3c_neighbor_lists(nl_3c, &
     968             :                                       qs_env%bs_env%basis_set_RI, &
     969             :                                       qs_env%bs_env%basis_set_AO, &
     970             :                                       qs_env%bs_env%basis_set_AO, &
     971             :                                       dist_3d, qs_env%bs_env%ri_metric, &
     972          62 :                                       "GW_3c_nl", qs_env, own_dist=.TRUE.)
     973             :       END IF
     974             : 
     975          96 :       DEALLOCATE (dist_RI, dist_AO_1, dist_AO_2)
     976          96 :       CALL dbt_pgrid_destroy(pgrid_3d)
     977             : 
     978          96 :       CALL timestop(handle)
     979             : 
     980         192 :    END SUBROUTINE create_3c_t
     981             : 
     982             : ! **************************************************************************************************
     983             : !> \brief ...
     984             : !> \param bs_env ...
     985             : ! **************************************************************************************************
     986          34 :    SUBROUTINE init_interaction_radii(bs_env)
     987             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
     988             : 
     989             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'init_interaction_radii'
     990             : 
     991             :       INTEGER                                            :: handle, ibasis
     992             :       TYPE(gto_basis_set_type), POINTER                  :: orb_basis, ri_basis
     993             : 
     994          34 :       CALL timeset(routineN, handle)
     995             : 
     996          90 :       DO ibasis = 1, SIZE(bs_env%basis_set_AO)
     997             : 
     998          56 :          orb_basis => bs_env%basis_set_AO(ibasis)%gto_basis_set
     999          56 :          CALL init_interaction_radii_orb_basis(orb_basis, bs_env%eps_filter)
    1000             : 
    1001          56 :          ri_basis => bs_env%basis_set_RI(ibasis)%gto_basis_set
    1002          90 :          CALL init_interaction_radii_orb_basis(ri_basis, bs_env%eps_filter)
    1003             : 
    1004             :       END DO
    1005             : 
    1006          34 :       CALL timestop(handle)
    1007             : 
    1008          34 :    END SUBROUTINE init_interaction_radii
    1009             : 
    1010             : ! **************************************************************************************************
    1011             : !> \brief ...
    1012             : !> \param t_3c_int ...
    1013             : !> \param max_dist_AO_atoms ...
    1014             : !> \param qs_env ...
    1015             : ! **************************************************************************************************
    1016          60 :    SUBROUTINE get_max_dist_AO_atoms(t_3c_int, max_dist_AO_atoms, qs_env)
    1017             :       TYPE(dbt_type)                                     :: t_3c_int
    1018             :       REAL(KIND=dp)                                      :: max_dist_AO_atoms
    1019             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1020             : 
    1021             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'get_max_dist_AO_atoms'
    1022             : 
    1023             :       INTEGER                                            :: atom_1, atom_2, handle, num_cells
    1024             :       INTEGER, DIMENSION(3)                              :: atom_ind
    1025          60 :       INTEGER, DIMENSION(:, :), POINTER                  :: index_to_cell
    1026             :       REAL(KIND=dp)                                      :: abs_rab
    1027             :       REAL(KIND=dp), DIMENSION(3)                        :: rab
    1028             :       TYPE(cell_type), POINTER                           :: cell
    1029             :       TYPE(dbt_iterator_type)                            :: iter
    1030             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    1031          60 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    1032             : 
    1033          60 :       CALL timeset(routineN, handle)
    1034             : 
    1035          60 :       NULLIFY (cell, particle_set, para_env)
    1036          60 :       CALL get_qs_env(qs_env, cell=cell, particle_set=particle_set, para_env=para_env)
    1037             : 
    1038             : !$OMP PARALLEL DEFAULT(NONE) &
    1039             : !$OMP SHARED(t_3c_int, max_dist_AO_atoms, num_cells, index_to_cell, particle_set, cell) &
    1040          60 : !$OMP PRIVATE(iter,atom_ind,rab, abs_rab, atom_1, atom_2)
    1041             :       CALL dbt_iterator_start(iter, t_3c_int)
    1042             :       DO WHILE (dbt_iterator_blocks_left(iter))
    1043             :          CALL dbt_iterator_next_block(iter, atom_ind)
    1044             : 
    1045             :          atom_1 = atom_ind(2)
    1046             :          atom_2 = atom_ind(3)
    1047             : 
    1048             :          rab = pbc(particle_set(atom_1)%r(1:3), particle_set(atom_2)%r(1:3), cell)
    1049             : 
    1050             :          abs_rab = SQRT(rab(1)**2 + rab(2)**2 + rab(3)**2)
    1051             : 
    1052             :          max_dist_AO_atoms = MAX(max_dist_AO_atoms, abs_rab)
    1053             : 
    1054             :       END DO
    1055             :       CALL dbt_iterator_stop(iter)
    1056             : !$OMP END PARALLEL
    1057             : 
    1058          60 :       CALL para_env%max(max_dist_AO_atoms)
    1059             : 
    1060          60 :       CALL timestop(handle)
    1061             : 
    1062          60 :    END SUBROUTINE get_max_dist_AO_atoms
    1063             : 
    1064             : ! **************************************************************************************************
    1065             : !> \brief ...
    1066             : !> \param bs_env ...
    1067             : ! **************************************************************************************************
    1068          28 :    SUBROUTINE set_sparsity_parallelization_parameters(bs_env)
    1069             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    1070             : 
    1071             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'set_sparsity_parallelization_parameters'
    1072             : 
    1073             :       INTEGER :: handle, i_ivl, IL_ivl, j_ivl, n_atom_per_IL_ivl, n_atom_per_ivl, n_intervals_i, &
    1074             :          n_intervals_inner_loop_atoms, n_intervals_j, u
    1075             :       INTEGER(KIND=int_8)                                :: input_memory_per_proc
    1076             : 
    1077          28 :       CALL timeset(routineN, handle)
    1078             : 
    1079             :       ! heuristic parameter to prevent out of memory
    1080          28 :       bs_env%safety_factor_memory = 0.10_dp
    1081             : 
    1082          28 :       input_memory_per_proc = INT(bs_env%input_memory_per_proc_GB*1.0E9_dp, KIND=int_8)
    1083             : 
    1084             :       ! choose atomic range for λ ("i_atom"), ν ("j_atom") in
    1085             :       ! M_λνP(iτ) = sum_µ (µν|P) G^occ_µλ(i|τ|,k=0)
    1086             :       ! N_νλQ(iτ) = sum_σ (σλ|Q) G^vir_σν(i|τ|,k=0)
    1087             :       ! such that M and N fit into the memory
    1088             :       n_atom_per_ivl = INT(SQRT(bs_env%safety_factor_memory*input_memory_per_proc &
    1089             :                                 *bs_env%group_size_tensor/24/bs_env%n_RI &
    1090          28 :                                 /SQRT(bs_env%occupation_3c_int)))/bs_env%max_AO_bf_per_atom
    1091             : 
    1092          28 :       n_intervals_i = (bs_env%n_atom_i - 1)/n_atom_per_ivl + 1
    1093          28 :       n_intervals_j = (bs_env%n_atom_j - 1)/n_atom_per_ivl + 1
    1094             : 
    1095          28 :       bs_env%n_atom_per_interval_ij = n_atom_per_ivl
    1096          28 :       bs_env%n_intervals_i = n_intervals_i
    1097          28 :       bs_env%n_intervals_j = n_intervals_j
    1098             : 
    1099          84 :       ALLOCATE (bs_env%i_atom_intervals(2, n_intervals_i))
    1100          84 :       ALLOCATE (bs_env%j_atom_intervals(2, n_intervals_j))
    1101             : 
    1102          56 :       DO i_ivl = 1, n_intervals_i
    1103          28 :          bs_env%i_atom_intervals(1, i_ivl) = (i_ivl - 1)*n_atom_per_ivl + bs_env%atoms_i(1)
    1104             :          bs_env%i_atom_intervals(2, i_ivl) = MIN(i_ivl*n_atom_per_ivl + bs_env%atoms_i(1) - 1, &
    1105          56 :                                                  bs_env%atoms_i(2))
    1106             :       END DO
    1107             : 
    1108          56 :       DO j_ivl = 1, n_intervals_j
    1109          28 :          bs_env%j_atom_intervals(1, j_ivl) = (j_ivl - 1)*n_atom_per_ivl + bs_env%atoms_j(1)
    1110             :          bs_env%j_atom_intervals(2, j_ivl) = MIN(j_ivl*n_atom_per_ivl + bs_env%atoms_j(1) - 1, &
    1111          56 :                                                  bs_env%atoms_j(2))
    1112             :       END DO
    1113             : 
    1114         112 :       ALLOCATE (bs_env%skip_Sigma_occ(n_intervals_i, n_intervals_j))
    1115          84 :       ALLOCATE (bs_env%skip_Sigma_vir(n_intervals_i, n_intervals_j))
    1116          84 :       bs_env%skip_Sigma_occ(:, :) = .FALSE.
    1117          84 :       bs_env%skip_Sigma_vir(:, :) = .FALSE.
    1118             : 
    1119             :       ! choose atomic range for µ and σ ("inner loop (IL) atom") in
    1120             :       ! M_λνP(iτ) = sum_µ (µν|P) G^occ_µλ(i|τ|,k=0)
    1121             :       ! N_νλQ(iτ) = sum_σ (σλ|Q) G^vir_σν(i|τ|,k=0)
    1122             :       n_atom_per_IL_ivl = MIN(INT(bs_env%safety_factor_memory*input_memory_per_proc &
    1123             :                                   *bs_env%group_size_tensor/n_atom_per_ivl &
    1124             :                                   /bs_env%max_AO_bf_per_atom &
    1125             :                                   /bs_env%n_RI/8/SQRT(bs_env%occupation_3c_int) &
    1126          28 :                                   /bs_env%max_AO_bf_per_atom), bs_env%n_atom)
    1127             : 
    1128          28 :       n_intervals_inner_loop_atoms = (bs_env%n_atom - 1)/n_atom_per_IL_ivl + 1
    1129             : 
    1130          28 :       bs_env%n_atom_per_IL_interval = n_atom_per_IL_ivl
    1131          28 :       bs_env%n_intervals_inner_loop_atoms = n_intervals_inner_loop_atoms
    1132             : 
    1133          84 :       ALLOCATE (bs_env%inner_loop_atom_intervals(2, n_intervals_inner_loop_atoms))
    1134          56 :       DO IL_ivl = 1, n_intervals_inner_loop_atoms
    1135          28 :          bs_env%inner_loop_atom_intervals(1, IL_ivl) = (IL_ivl - 1)*n_atom_per_IL_ivl + 1
    1136          56 :          bs_env%inner_loop_atom_intervals(2, IL_ivl) = MIN(IL_ivl*n_atom_per_IL_ivl, bs_env%n_atom)
    1137             :       END DO
    1138             : 
    1139          28 :       u = bs_env%unit_nr
    1140          28 :       IF (u > 0) THEN
    1141          14 :          WRITE (u, '(T2,A)') ''
    1142          14 :          WRITE (u, '(T2,A,I33)') 'Number of i and j atoms in M_λνP(τ), N_νλQ(τ):', n_atom_per_ivl
    1143          14 :          WRITE (u, '(T2,A,I18)') 'Number of inner loop atoms for µ in M_λνP = sum_µ (µν|P) G_µλ', &
    1144          28 :             n_atom_per_IL_ivl
    1145             :       END IF
    1146             : 
    1147          28 :       CALL timestop(handle)
    1148             : 
    1149          28 :    END SUBROUTINE set_sparsity_parallelization_parameters
    1150             : 
    1151             : ! **************************************************************************************************
    1152             : !> \brief ...
    1153             : !> \param qs_env ...
    1154             : !> \param bs_env ...
    1155             : ! **************************************************************************************************
    1156          28 :    SUBROUTINE check_for_restart_files(qs_env, bs_env)
    1157             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1158             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    1159             : 
    1160             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'check_for_restart_files'
    1161             : 
    1162             :       CHARACTER(LEN=9)                                   :: frmt
    1163             :       CHARACTER(LEN=default_string_length)               :: f_chi, f_S_n, f_S_p, f_S_x, f_W_t, &
    1164             :                                                             prefix, project_name
    1165             :       INTEGER                                            :: handle, i_spin, i_t_or_w, ind, n_spin, &
    1166             :                                                             num_time_freq_points
    1167             :       LOGICAL                                            :: chi_exists, Sigma_neg_time_exists, &
    1168             :                                                             Sigma_pos_time_exists, &
    1169             :                                                             Sigma_x_spin_exists, W_time_exists
    1170             :       TYPE(cp_logger_type), POINTER                      :: logger
    1171             :       TYPE(section_vals_type), POINTER                   :: input, print_key
    1172             : 
    1173          28 :       CALL timeset(routineN, handle)
    1174             : 
    1175          28 :       num_time_freq_points = bs_env%num_time_freq_points
    1176          28 :       n_spin = bs_env%n_spin
    1177             : 
    1178          84 :       ALLOCATE (bs_env%read_chi(num_time_freq_points))
    1179          56 :       ALLOCATE (bs_env%calc_chi(num_time_freq_points))
    1180         112 :       ALLOCATE (bs_env%Sigma_c_exists(num_time_freq_points, n_spin))
    1181             : 
    1182          28 :       CALL get_qs_env(qs_env, input=input)
    1183             : 
    1184          28 :       logger => cp_get_default_logger()
    1185          28 :       print_key => section_vals_get_subs_vals(input, 'PROPERTIES%BANDSTRUCTURE%GW%PRINT%RESTART')
    1186             :       project_name = cp_print_key_generate_filename(logger, print_key, extension="", &
    1187          28 :                                                     my_local=.FALSE.)
    1188          28 :       WRITE (prefix, '(2A)') TRIM(project_name), "-RESTART_"
    1189          28 :       bs_env%prefix = prefix
    1190             : 
    1191          28 :       bs_env%all_W_exist = .TRUE.
    1192             : 
    1193         412 :       DO i_t_or_w = 1, num_time_freq_points
    1194             : 
    1195         384 :          IF (i_t_or_w < 10) THEN
    1196         240 :             WRITE (frmt, '(A)') '(3A,I1,A)'
    1197         240 :             WRITE (f_chi, frmt) TRIM(prefix), bs_env%chi_name, "_0", i_t_or_w, ".matrix"
    1198         240 :             WRITE (f_W_t, frmt) TRIM(prefix), bs_env%W_time_name, "_0", i_t_or_w, ".matrix"
    1199         144 :          ELSE IF (i_t_or_w < 100) THEN
    1200         144 :             WRITE (frmt, '(A)') '(3A,I2,A)'
    1201         144 :             WRITE (f_chi, frmt) TRIM(prefix), bs_env%chi_name, "_", i_t_or_w, ".matrix"
    1202         144 :             WRITE (f_W_t, frmt) TRIM(prefix), bs_env%W_time_name, "_", i_t_or_w, ".matrix"
    1203             :          ELSE
    1204           0 :             CPABORT('Please implement more than 99 time/frequency points.')
    1205             :          END IF
    1206             : 
    1207         384 :          INQUIRE (file=TRIM(f_chi), exist=chi_exists)
    1208         384 :          INQUIRE (file=TRIM(f_W_t), exist=W_time_exists)
    1209             : 
    1210         384 :          bs_env%read_chi(i_t_or_w) = chi_exists
    1211         384 :          bs_env%calc_chi(i_t_or_w) = .NOT. chi_exists
    1212             : 
    1213         384 :          bs_env%all_W_exist = bs_env%all_W_exist .AND. W_time_exists
    1214             : 
    1215             :          ! the self-energy is spin-dependent
    1216         876 :          DO i_spin = 1, n_spin
    1217             : 
    1218         464 :             ind = i_t_or_w + (i_spin - 1)*num_time_freq_points
    1219             : 
    1220         464 :             IF (ind < 10) THEN
    1221         240 :                WRITE (frmt, '(A)') '(3A,I1,A)'
    1222         240 :                WRITE (f_S_p, frmt) TRIM(prefix), bs_env%Sigma_p_name, "_0", ind, ".matrix"
    1223         240 :                WRITE (f_S_n, frmt) TRIM(prefix), bs_env%Sigma_n_name, "_0", ind, ".matrix"
    1224         224 :             ELSE IF (i_t_or_w < 100) THEN
    1225         224 :                WRITE (frmt, '(A)') '(3A,I2,A)'
    1226         224 :                WRITE (f_S_p, frmt) TRIM(prefix), bs_env%Sigma_p_name, "_", ind, ".matrix"
    1227         224 :                WRITE (f_S_n, frmt) TRIM(prefix), bs_env%Sigma_n_name, "_", ind, ".matrix"
    1228             :             END IF
    1229             : 
    1230         464 :             INQUIRE (file=TRIM(f_S_p), exist=Sigma_pos_time_exists)
    1231         464 :             INQUIRE (file=TRIM(f_S_n), exist=Sigma_neg_time_exists)
    1232             : 
    1233             :             bs_env%Sigma_c_exists(i_t_or_w, i_spin) = Sigma_pos_time_exists .AND. &
    1234        1072 :                                                       Sigma_neg_time_exists
    1235             : 
    1236             :          END DO
    1237             : 
    1238             :       END DO
    1239             : 
    1240          28 :       IF (bs_env%all_W_exist) THEN
    1241         192 :          bs_env%read_chi(:) = .FALSE.
    1242         192 :          bs_env%calc_chi(:) = .FALSE.
    1243             :       END IF
    1244             : 
    1245          28 :       bs_env%Sigma_x_exists = .TRUE.
    1246          64 :       DO i_spin = 1, n_spin
    1247          36 :          WRITE (f_S_x, '(3A,I1,A)') TRIM(prefix), bs_env%Sigma_x_name, "_0", i_spin, ".matrix"
    1248          36 :          INQUIRE (file=TRIM(f_S_x), exist=Sigma_x_spin_exists)
    1249          82 :          bs_env%Sigma_x_exists = bs_env%Sigma_x_exists .AND. Sigma_x_spin_exists
    1250             :       END DO
    1251             : 
    1252          28 :       CALL timestop(handle)
    1253             : 
    1254          28 :    END SUBROUTINE check_for_restart_files
    1255             : 
    1256             : ! **************************************************************************************************
    1257             : !> \brief ...
    1258             : !> \param qs_env ...
    1259             : !> \param bs_env ...
    1260             : ! **************************************************************************************************
    1261          34 :    SUBROUTINE set_parallelization_parameters(qs_env, bs_env)
    1262             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1263             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    1264             : 
    1265             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'set_parallelization_parameters'
    1266             : 
    1267             :       INTEGER                                            :: color_sub, dummy_1, dummy_2, handle, &
    1268             :                                                             num_pe, num_t_groups, u
    1269             :       INTEGER(KIND=int_8)                                :: mem
    1270             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    1271             : 
    1272          34 :       CALL timeset(routineN, handle)
    1273             : 
    1274          34 :       CALL get_qs_env(qs_env, para_env=para_env)
    1275             : 
    1276          34 :       num_pe = para_env%num_pe
    1277             :       ! if not already set, use all processors for the group (for large-cell GW, performance
    1278             :       ! seems to be best for a single group with all MPI processes per group)
    1279          34 :       IF (bs_env%group_size_tensor < 0 .OR. bs_env%group_size_tensor > num_pe) &
    1280          28 :          bs_env%group_size_tensor = num_pe
    1281             : 
    1282             :       ! group_size_tensor must divide num_pe without rest; otherwise everything will be complicated
    1283          34 :       IF (MODULO(num_pe, bs_env%group_size_tensor) .NE. 0) THEN
    1284           0 :          CALL find_good_group_size(num_pe, bs_env%group_size_tensor)
    1285             :       END IF
    1286             : 
    1287             :       ! para_env_tensor for tensor subgroups
    1288          34 :       color_sub = para_env%mepos/bs_env%group_size_tensor
    1289          34 :       bs_env%tensor_group_color = color_sub
    1290             : 
    1291          34 :       ALLOCATE (bs_env%para_env_tensor)
    1292          34 :       CALL bs_env%para_env_tensor%from_split(para_env, color_sub)
    1293             : 
    1294          34 :       num_t_groups = para_env%num_pe/bs_env%group_size_tensor
    1295          34 :       bs_env%num_tensor_groups = num_t_groups
    1296             : 
    1297             :       CALL get_i_j_atoms(bs_env%atoms_i, bs_env%atoms_j, bs_env%n_atom_i, bs_env%n_atom_j, &
    1298          34 :                          color_sub, bs_env)
    1299             : 
    1300         102 :       ALLOCATE (bs_env%atoms_i_t_group(2, num_t_groups))
    1301         102 :       ALLOCATE (bs_env%atoms_j_t_group(2, num_t_groups))
    1302          74 :       DO color_sub = 0, num_t_groups - 1
    1303             :          CALL get_i_j_atoms(bs_env%atoms_i_t_group(1:2, color_sub + 1), &
    1304             :                             bs_env%atoms_j_t_group(1:2, color_sub + 1), &
    1305          74 :                             dummy_1, dummy_2, color_sub, bs_env)
    1306             :       END DO
    1307             : 
    1308          34 :       CALL m_memory(mem)
    1309          34 :       CALL bs_env%para_env%max(mem)
    1310             : 
    1311          34 :       u = bs_env%unit_nr
    1312          34 :       IF (u > 0) THEN
    1313          17 :          WRITE (u, '(T2,A,I47)') 'Group size for tensor operations', bs_env%group_size_tensor
    1314          17 :          IF (bs_env%group_size_tensor > 1 .AND. bs_env%n_atom < 5) THEN
    1315          14 :             WRITE (u, '(T2,A)') 'The requested group size is > 1 which can lead to bad performance.'
    1316          14 :             WRITE (u, '(T2,A)') 'Using more memory per MPI process might improve performance.'
    1317          14 :             WRITE (u, '(T2,A)') '(Also increase MEMORY_PER_PROC when using more memory per process.)'
    1318             :          END IF
    1319             :       END IF
    1320             : 
    1321          34 :       CALL timestop(handle)
    1322             : 
    1323          68 :    END SUBROUTINE set_parallelization_parameters
    1324             : 
    1325             : ! **************************************************************************************************
    1326             : !> \brief ...
    1327             : !> \param num_pe ...
    1328             : !> \param group_size ...
    1329             : ! **************************************************************************************************
    1330           0 :    SUBROUTINE find_good_group_size(num_pe, group_size)
    1331             : 
    1332             :       INTEGER                                            :: num_pe, group_size
    1333             : 
    1334             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'find_good_group_size'
    1335             : 
    1336             :       INTEGER                                            :: group_size_minus, group_size_orig, &
    1337             :                                                             group_size_plus, handle, i_diff
    1338             : 
    1339           0 :       CALL timeset(routineN, handle)
    1340             : 
    1341           0 :       group_size_orig = group_size
    1342             : 
    1343           0 :       DO i_diff = 1, num_pe
    1344             : 
    1345           0 :          group_size_minus = group_size - i_diff
    1346             : 
    1347           0 :          IF (MODULO(num_pe, group_size_minus) == 0 .AND. group_size_minus > 0) THEN
    1348           0 :             group_size = group_size_minus
    1349           0 :             EXIT
    1350             :          END IF
    1351             : 
    1352           0 :          group_size_plus = group_size + i_diff
    1353             : 
    1354           0 :          IF (MODULO(num_pe, group_size_plus) == 0 .AND. group_size_plus <= num_pe) THEN
    1355           0 :             group_size = group_size_plus
    1356           0 :             EXIT
    1357             :          END IF
    1358             : 
    1359             :       END DO
    1360             : 
    1361           0 :       IF (group_size_orig == group_size) CPABORT("Group size error")
    1362             : 
    1363           0 :       CALL timestop(handle)
    1364             : 
    1365           0 :    END SUBROUTINE find_good_group_size
    1366             : 
    1367             : ! **************************************************************************************************
    1368             : !> \brief ...
    1369             : !> \param atoms_i ...
    1370             : !> \param atoms_j ...
    1371             : !> \param n_atom_i ...
    1372             : !> \param n_atom_j ...
    1373             : !> \param color_sub ...
    1374             : !> \param bs_env ...
    1375             : ! **************************************************************************************************
    1376          74 :    SUBROUTINE get_i_j_atoms(atoms_i, atoms_j, n_atom_i, n_atom_j, color_sub, bs_env)
    1377             : 
    1378             :       INTEGER, DIMENSION(2)                              :: atoms_i, atoms_j
    1379             :       INTEGER                                            :: n_atom_i, n_atom_j, color_sub
    1380             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    1381             : 
    1382             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'get_i_j_atoms'
    1383             : 
    1384             :       INTEGER                                            :: handle, i_atoms_per_group, i_group, &
    1385             :                                                             ipcol, ipcol_loop, iprow, iprow_loop, &
    1386             :                                                             j_atoms_per_group, npcol, nprow
    1387             : 
    1388          74 :       CALL timeset(routineN, handle)
    1389             : 
    1390             :       ! create a square mesh of tensor groups for iatom and jatom; code from blacs_env_create
    1391          74 :       CALL square_mesh(nprow, npcol, bs_env%num_tensor_groups)
    1392             : 
    1393          74 :       i_group = 0
    1394         148 :       DO ipcol_loop = 0, npcol - 1
    1395         240 :          DO iprow_loop = 0, nprow - 1
    1396          92 :             IF (i_group == color_sub) THEN
    1397          74 :                iprow = iprow_loop
    1398          74 :                ipcol = ipcol_loop
    1399             :             END IF
    1400         166 :             i_group = i_group + 1
    1401             :          END DO
    1402             :       END DO
    1403             : 
    1404          74 :       IF (MODULO(bs_env%n_atom, nprow) == 0) THEN
    1405          68 :          i_atoms_per_group = bs_env%n_atom/nprow
    1406             :       ELSE
    1407           6 :          i_atoms_per_group = bs_env%n_atom/nprow + 1
    1408             :       END IF
    1409             : 
    1410          74 :       IF (MODULO(bs_env%n_atom, npcol) == 0) THEN
    1411          74 :          j_atoms_per_group = bs_env%n_atom/npcol
    1412             :       ELSE
    1413           0 :          j_atoms_per_group = bs_env%n_atom/npcol + 1
    1414             :       END IF
    1415             : 
    1416          74 :       atoms_i(1) = iprow*i_atoms_per_group + 1
    1417          74 :       atoms_i(2) = MIN((iprow + 1)*i_atoms_per_group, bs_env%n_atom)
    1418          74 :       n_atom_i = atoms_i(2) - atoms_i(1) + 1
    1419             : 
    1420          74 :       atoms_j(1) = ipcol*j_atoms_per_group + 1
    1421          74 :       atoms_j(2) = MIN((ipcol + 1)*j_atoms_per_group, bs_env%n_atom)
    1422          74 :       n_atom_j = atoms_j(2) - atoms_j(1) + 1
    1423             : 
    1424          74 :       CALL timestop(handle)
    1425             : 
    1426          74 :    END SUBROUTINE get_i_j_atoms
    1427             : 
    1428             : ! **************************************************************************************************
    1429             : !> \brief ...
    1430             : !> \param nprow ...
    1431             : !> \param npcol ...
    1432             : !> \param nproc ...
    1433             : ! **************************************************************************************************
    1434          74 :    SUBROUTINE square_mesh(nprow, npcol, nproc)
    1435             :       INTEGER                                            :: nprow, npcol, nproc
    1436             : 
    1437             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'square_mesh'
    1438             : 
    1439             :       INTEGER                                            :: gcd_max, handle, ipe, jpe
    1440             : 
    1441          74 :       CALL timeset(routineN, handle)
    1442             : 
    1443          74 :       gcd_max = -1
    1444         166 :       DO ipe = 1, CEILING(SQRT(REAL(nproc, dp)))
    1445          92 :          jpe = nproc/ipe
    1446          92 :          IF (ipe*jpe .NE. nproc) CYCLE
    1447         166 :          IF (gcd(ipe, jpe) >= gcd_max) THEN
    1448          92 :             nprow = ipe
    1449          92 :             npcol = jpe
    1450          92 :             gcd_max = gcd(ipe, jpe)
    1451             :          END IF
    1452             :       END DO
    1453             : 
    1454          74 :       CALL timestop(handle)
    1455             : 
    1456          74 :    END SUBROUTINE square_mesh
    1457             : 
    1458             : ! **************************************************************************************************
    1459             : !> \brief ...
    1460             : !> \param bs_env ...
    1461             : !> \param qs_env ...
    1462             : ! **************************************************************************************************
    1463          34 :    SUBROUTINE set_heuristic_parameters(bs_env, qs_env)
    1464             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    1465             :       TYPE(qs_environment_type), OPTIONAL, POINTER       :: qs_env
    1466             : 
    1467             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'set_heuristic_parameters'
    1468             : 
    1469             :       INTEGER                                            :: handle, u
    1470             :       LOGICAL                                            :: do_BvK_cell
    1471             : 
    1472          34 :       CALL timeset(routineN, handle)
    1473             : 
    1474             :       ! Determines number of cells used for summing the cells R in the Coulomb matrix,
    1475             :       ! V_PQ(k) = \sum_R <P,cell=0 | 1/r | Q,cell=R>. SIZE_LATTICE_SUM_V 3 gives
    1476             :       ! good convergence
    1477          34 :       bs_env%size_lattice_sum_V = 3
    1478             : 
    1479             :       ! for generating numerically stable minimax Fourier integration weights
    1480          34 :       bs_env%num_points_per_magnitude = 200
    1481             : 
    1482             :       ! for periodic systems and for 20 minimax points, we use a regularized minimax mesh
    1483             :       ! (from experience: regularized minimax meshes converges faster for periodic systems
    1484             :       !  and for 20 pts)
    1485         136 :       IF (SUM(bs_env%periodic) .NE. 0 .OR. bs_env%num_time_freq_points == 20) THEN
    1486          34 :          bs_env%regularization_minimax = 1.0E-6_dp
    1487             :       ELSE
    1488           0 :          bs_env%regularization_minimax = 0.0_dp
    1489             :       END IF
    1490             : 
    1491          34 :       bs_env%stabilize_exp = 70.0_dp
    1492          34 :       bs_env%eps_atom_grid_2d_mat = 1.0E-50_dp
    1493             : 
    1494             :       ! only use interval ω in [0, 1 Ha] (1 Hartree = 27.211 eV) for virt, and ω in [-1 Ha, 0]
    1495             :       ! for occ for use in analytic continuation of self-energy Σ^c_n(iω,k) -> Σ^c_n(ϵ,k)
    1496          34 :       bs_env%freq_max_fit = 1.0_dp
    1497             : 
    1498             :       ! use a 16-parameter Padé fit
    1499          34 :       bs_env%nparam_pade = 16
    1500             : 
    1501             :       ! resolution of the identity with the truncated Coulomb metric, cutoff radius 3 Angström
    1502          34 :       bs_env%ri_metric%potential_type = do_potential_truncated
    1503          34 :       bs_env%ri_metric%omega = 0.0_dp
    1504             :       ! cutoff radius is specified in the input
    1505          34 :       bs_env%ri_metric%filename = "t_c_g.dat"
    1506             : 
    1507          34 :       bs_env%eps_eigval_mat_RI = 0.0_dp
    1508             : 
    1509          34 :       IF (bs_env%input_regularization_RI > -1.0E-12_dp) THEN
    1510           0 :          bs_env%regularization_RI = bs_env%input_regularization_RI
    1511             :       ELSE
    1512             :          ! default case:
    1513             : 
    1514             :          ! 1. for periodic systems, we use the regularized resolution of the identity per default
    1515          34 :          bs_env%regularization_RI = 1.0E-2_dp
    1516             : 
    1517             :          ! 2. for molecules, no regularization is necessary
    1518         136 :          IF (SUM(bs_env%periodic) == 0) bs_env%regularization_RI = 0.0_dp
    1519             : 
    1520             :       END IF
    1521             : 
    1522             :       ! truncated Coulomb operator for exchange self-energy
    1523             :       ! (see details in Guidon, VandeVondele, Hutter, JCTC 5, 3010 (2009) and references therein)
    1524          34 :       do_BvK_cell = bs_env%small_cell_full_kp_or_large_cell_Gamma == small_cell_full_kp
    1525             :       CALL trunc_coulomb_for_exchange(qs_env, bs_env%trunc_coulomb, &
    1526             :                                       rel_cutoff_trunc_coulomb_ri_x=0.5_dp, &
    1527             :                                       cell_grid=bs_env%cell_grid_scf_desymm, &
    1528          34 :                                       do_BvK_cell=do_BvK_cell)
    1529             : 
    1530             :       ! for small-cell GW, we need more cells than normally used by the filter bs_env%eps_filter
    1531             :       ! (in particular for computing the self-energy because of higher number of cells needed)
    1532          34 :       bs_env%heuristic_filter_factor = 1.0E-4
    1533             : 
    1534          34 :       u = bs_env%unit_nr
    1535          34 :       IF (u > 0) THEN
    1536          17 :          WRITE (u, FMT="(T2,2A,F21.1,A)") "Cutoff radius for the truncated Coulomb ", &
    1537          34 :             "operator in Σ^x:", bs_env%trunc_coulomb%cutoff_radius*angstrom, " Å"
    1538          17 :          WRITE (u, FMT="(T2,2A,F15.1,A)") "Cutoff radius for the truncated Coulomb ", &
    1539          34 :             "operator in RI metric:", bs_env%ri_metric%cutoff_radius*angstrom, " Å"
    1540          17 :          WRITE (u, FMT="(T2,A,ES48.1)") "Regularization parameter of RI ", bs_env%regularization_RI
    1541          17 :          WRITE (u, FMT="(T2,A,I53)") "Lattice sum size for V(k):", bs_env%size_lattice_sum_V
    1542             :       END IF
    1543             : 
    1544          34 :       CALL timestop(handle)
    1545             : 
    1546          34 :    END SUBROUTINE set_heuristic_parameters
    1547             : 
    1548             : ! **************************************************************************************************
    1549             : !> \brief ...
    1550             : !> \param bs_env ...
    1551             : ! **************************************************************************************************
    1552          34 :    SUBROUTINE print_header_and_input_parameters(bs_env)
    1553             : 
    1554             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    1555             : 
    1556             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'print_header_and_input_parameters'
    1557             : 
    1558             :       INTEGER                                            :: handle, u
    1559             : 
    1560          34 :       CALL timeset(routineN, handle)
    1561             : 
    1562          34 :       u = bs_env%unit_nr
    1563             : 
    1564          34 :       IF (u > 0) THEN
    1565          17 :          WRITE (u, *) ' '
    1566          17 :          WRITE (u, '(T2,2A)') '------------------------------------------------', &
    1567          34 :             '-------------------------------'
    1568          17 :          WRITE (u, '(T2,2A)') '-                                               ', &
    1569          34 :             '                              -'
    1570          17 :          WRITE (u, '(T2,2A)') '-                              GW CALCULATION   ', &
    1571          34 :             '                              -'
    1572          17 :          WRITE (u, '(T2,2A)') '-                                               ', &
    1573          34 :             '                              -'
    1574          17 :          WRITE (u, '(T2,2A)') '------------------------------------------------', &
    1575          34 :             '-------------------------------'
    1576          17 :          WRITE (u, '(T2,A)') ' '
    1577          17 :          WRITE (u, '(T2,A,I45)') 'Input: Number of time/freq. points', bs_env%num_time_freq_points
    1578          17 :          WRITE (u, '(T2,A,ES27.1)') 'Input: Filter threshold for sparse tensor operations', &
    1579          34 :             bs_env%eps_filter
    1580          17 :          WRITE (bs_env%unit_nr, FMT="(T2,A,L62)") "Apply Hedin shift", bs_env%do_hedin_shift
    1581             :       END IF
    1582             : 
    1583          34 :       CALL timestop(handle)
    1584             : 
    1585          34 :    END SUBROUTINE print_header_and_input_parameters
    1586             : 
    1587             : ! **************************************************************************************************
    1588             : !> \brief ...
    1589             : !> \param qs_env ...
    1590             : !> \param bs_env ...
    1591             : ! **************************************************************************************************
    1592          68 :    SUBROUTINE compute_V_xc(qs_env, bs_env)
    1593             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1594             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    1595             : 
    1596             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'compute_V_xc'
    1597             : 
    1598             :       INTEGER                                            :: handle, img, ispin, myfun, nimages
    1599             :       LOGICAL                                            :: hf_present
    1600             :       REAL(KIND=dp)                                      :: energy_ex, energy_exc, energy_total, &
    1601             :                                                             myfraction
    1602          34 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: mat_ks_without_v_xc
    1603          34 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: matrix_ks_kp
    1604             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1605             :       TYPE(qs_energy_type), POINTER                      :: energy
    1606             :       TYPE(section_vals_type), POINTER                   :: hf_section, input, xc_section
    1607             : 
    1608          34 :       CALL timeset(routineN, handle)
    1609             : 
    1610          34 :       CALL get_qs_env(qs_env, input=input, energy=energy, dft_control=dft_control)
    1611             : 
    1612             :       ! previously, dft_control%nimages set to # neighbor cells, revert for Γ-only KS matrix
    1613          34 :       nimages = dft_control%nimages
    1614          34 :       dft_control%nimages = bs_env%nimages_scf
    1615             : 
    1616             :       ! we need to reset XC functional, therefore, get XC input
    1617          34 :       xc_section => section_vals_get_subs_vals(input, "DFT%XC")
    1618          34 :       CALL section_vals_val_get(xc_section, "XC_FUNCTIONAL%_SECTION_PARAMETERS_", i_val=myfun)
    1619          34 :       CALL section_vals_val_set(xc_section, "XC_FUNCTIONAL%_SECTION_PARAMETERS_", i_val=xc_none)
    1620             :       ! IF (ASSOCIATED(section_vals_get_subs_vals(xc_section, "HF", can_return_null=.TRUE.))) THEN
    1621          34 :       hf_section => section_vals_get_subs_vals(input, "DFT%XC%HF", can_return_null=.TRUE.)
    1622          34 :       hf_present = .FALSE.
    1623          34 :       IF (ASSOCIATED(hf_section)) THEN
    1624          34 :          CALL section_vals_get(hf_section, explicit=hf_present)
    1625             :       END IF
    1626          34 :       IF (hf_present) THEN
    1627             :          ! Special case for handling hfx
    1628           0 :          CALL section_vals_val_get(xc_section, "HF%FRACTION", r_val=myfraction)
    1629           0 :          CALL section_vals_val_set(xc_section, "HF%FRACTION", r_val=0.0_dp)
    1630             :       END IF
    1631             : 
    1632             :       ! save the energy before the energy gets updated
    1633          34 :       energy_total = energy%total
    1634          34 :       energy_exc = energy%exc
    1635          34 :       energy_ex = energy%ex
    1636             : 
    1637          62 :       SELECT CASE (bs_env%small_cell_full_kp_or_large_cell_Gamma)
    1638             :       CASE (large_cell_Gamma)
    1639             : 
    1640          28 :          NULLIFY (mat_ks_without_v_xc)
    1641          28 :          CALL dbcsr_allocate_matrix_set(mat_ks_without_v_xc, bs_env%n_spin)
    1642             : 
    1643          64 :          DO ispin = 1, bs_env%n_spin
    1644          36 :             ALLOCATE (mat_ks_without_v_xc(ispin)%matrix)
    1645          64 :             IF (hf_present) THEN
    1646             :                CALL dbcsr_create(mat_ks_without_v_xc(ispin)%matrix, template=bs_env%mat_ao_ao%matrix, &
    1647           0 :                                  matrix_type=dbcsr_type_symmetric)
    1648             :             ELSE
    1649          36 :                CALL dbcsr_create(mat_ks_without_v_xc(ispin)%matrix, template=bs_env%mat_ao_ao%matrix)
    1650             :             END IF
    1651             :          END DO
    1652             : 
    1653             :          ! calculate KS-matrix without XC
    1654             :          CALL qs_ks_build_kohn_sham_matrix(qs_env, calculate_forces=.FALSE., just_energy=.FALSE., &
    1655          28 :                                            ext_ks_matrix=mat_ks_without_v_xc)
    1656             : 
    1657          64 :          DO ispin = 1, bs_env%n_spin
    1658             :             ! transfer dbcsr matrix to fm
    1659          36 :             CALL cp_fm_create(bs_env%fm_V_xc_Gamma(ispin), bs_env%fm_s_Gamma%matrix_struct)
    1660          36 :             CALL copy_dbcsr_to_fm(mat_ks_without_v_xc(ispin)%matrix, bs_env%fm_V_xc_Gamma(ispin))
    1661             : 
    1662             :             ! v_xc = h_ks - h_ks(v_xc = 0)
    1663             :             CALL cp_fm_scale_and_add(alpha=-1.0_dp, matrix_a=bs_env%fm_V_xc_Gamma(ispin), &
    1664          64 :                                      beta=1.0_dp, matrix_b=bs_env%fm_ks_Gamma(ispin))
    1665             :          END DO
    1666             : 
    1667          28 :          CALL dbcsr_deallocate_matrix_set(mat_ks_without_v_xc)
    1668             : 
    1669             :       CASE (small_cell_full_kp)
    1670             : 
    1671             :          ! calculate KS-matrix without XC
    1672           6 :          CALL qs_ks_build_kohn_sham_matrix(qs_env, calculate_forces=.FALSE., just_energy=.FALSE.)
    1673           6 :          CALL get_qs_env(qs_env=qs_env, matrix_ks_kp=matrix_ks_kp)
    1674             : 
    1675         176 :          ALLOCATE (bs_env%fm_V_xc_R(dft_control%nimages, bs_env%n_spin))
    1676          46 :          DO ispin = 1, bs_env%n_spin
    1677         158 :             DO img = 1, dft_control%nimages
    1678             :                ! safe fm_V_xc_R in fm_matrix because saving in dbcsr matrix caused trouble...
    1679         146 :                CALL copy_dbcsr_to_fm(matrix_ks_kp(ispin, img)%matrix, bs_env%fm_work_mo(1))
    1680         146 :                CALL cp_fm_create(bs_env%fm_V_xc_R(img, ispin), bs_env%fm_work_mo(1)%matrix_struct)
    1681             :                ! store h_ks(v_xc = 0) in fm_V_xc_R
    1682             :                CALL cp_fm_scale_and_add(alpha=1.0_dp, matrix_a=bs_env%fm_V_xc_R(img, ispin), &
    1683         152 :                                         beta=1.0_dp, matrix_b=bs_env%fm_work_mo(1))
    1684             :             END DO
    1685             :          END DO
    1686             : 
    1687             :       END SELECT
    1688             : 
    1689             :       ! set back the energy
    1690          34 :       energy%total = energy_total
    1691          34 :       energy%exc = energy_exc
    1692          34 :       energy%ex = energy_ex
    1693             : 
    1694             :       ! set back nimages
    1695          34 :       dft_control%nimages = nimages
    1696             : 
    1697             :       ! set the DFT functional and HF fraction back
    1698             :       CALL section_vals_val_set(xc_section, "XC_FUNCTIONAL%_SECTION_PARAMETERS_", &
    1699          34 :                                 i_val=myfun)
    1700          34 :       IF (hf_present) THEN
    1701             :          CALL section_vals_val_set(xc_section, "HF%FRACTION", &
    1702           0 :                                    r_val=myfraction)
    1703             :       END IF
    1704             : 
    1705          34 :       IF (bs_env%small_cell_full_kp_or_large_cell_Gamma == small_cell_full_kp) THEN
    1706             :          ! calculate KS-matrix again with XC
    1707           6 :          CALL qs_ks_build_kohn_sham_matrix(qs_env, calculate_forces=.FALSE., just_energy=.FALSE.)
    1708          12 :          DO ispin = 1, bs_env%n_spin
    1709         158 :             DO img = 1, dft_control%nimages
    1710             :                ! store h_ks in fm_work_mo
    1711         146 :                CALL copy_dbcsr_to_fm(matrix_ks_kp(ispin, img)%matrix, bs_env%fm_work_mo(1))
    1712             :                ! v_xc = h_ks - h_ks(v_xc = 0)
    1713             :                CALL cp_fm_scale_and_add(alpha=-1.0_dp, matrix_a=bs_env%fm_V_xc_R(img, ispin), &
    1714         152 :                                         beta=1.0_dp, matrix_b=bs_env%fm_work_mo(1))
    1715             :             END DO
    1716             :          END DO
    1717             :       END IF
    1718             : 
    1719          34 :       CALL timestop(handle)
    1720             : 
    1721          34 :    END SUBROUTINE compute_V_xc
    1722             : 
    1723             : ! **************************************************************************************************
    1724             : !> \brief ...
    1725             : !> \param bs_env ...
    1726             : ! **************************************************************************************************
    1727          34 :    SUBROUTINE setup_time_and_frequency_minimax_grid(bs_env)
    1728             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    1729             : 
    1730             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'setup_time_and_frequency_minimax_grid'
    1731             : 
    1732             :       INTEGER                                            :: handle, homo, i_w, ierr, ispin, j_w, &
    1733             :                                                             n_mo, num_time_freq_points, u
    1734             :       REAL(KIND=dp)                                      :: E_max, E_max_ispin, E_min, E_min_ispin, &
    1735             :                                                             E_range, max_error_min
    1736          34 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: points_and_weights
    1737             : 
    1738          34 :       CALL timeset(routineN, handle)
    1739             : 
    1740          34 :       n_mo = bs_env%n_ao
    1741          34 :       num_time_freq_points = bs_env%num_time_freq_points
    1742             : 
    1743         102 :       ALLOCATE (bs_env%imag_freq_points(num_time_freq_points))
    1744         102 :       ALLOCATE (bs_env%imag_time_points(num_time_freq_points))
    1745         102 :       ALLOCATE (bs_env%imag_time_weights_freq_zero(num_time_freq_points))
    1746         136 :       ALLOCATE (bs_env%weights_cos_t_to_w(num_time_freq_points, num_time_freq_points))
    1747         136 :       ALLOCATE (bs_env%weights_cos_w_to_t(num_time_freq_points, num_time_freq_points))
    1748         136 :       ALLOCATE (bs_env%weights_sin_t_to_w(num_time_freq_points, num_time_freq_points))
    1749             : 
    1750             :       ! minimum and maximum difference between eigenvalues of unoccupied and an occupied MOs
    1751          34 :       E_min = 1000.0_dp
    1752          34 :       E_max = -1000.0_dp
    1753          76 :       DO ispin = 1, bs_env%n_spin
    1754          42 :          homo = bs_env%n_occ(ispin)
    1755          78 :          SELECT CASE (bs_env%small_cell_full_kp_or_large_cell_Gamma)
    1756             :          CASE (large_cell_Gamma)
    1757             :             E_min_ispin = bs_env%eigenval_scf_Gamma(homo + 1, ispin) - &
    1758          36 :                           bs_env%eigenval_scf_Gamma(homo, ispin)
    1759             :             E_max_ispin = bs_env%eigenval_scf_Gamma(n_mo, ispin) - &
    1760          36 :                           bs_env%eigenval_scf_Gamma(1, ispin)
    1761             :          CASE (small_cell_full_kp)
    1762             :             E_min_ispin = MINVAL(bs_env%eigenval_scf(homo + 1, :, ispin)) - &
    1763         458 :                           MAXVAL(bs_env%eigenval_scf(homo, :, ispin))
    1764             :             E_max_ispin = MAXVAL(bs_env%eigenval_scf(n_mo, :, ispin)) - &
    1765         500 :                           MINVAL(bs_env%eigenval_scf(1, :, ispin))
    1766             :          END SELECT
    1767          42 :          E_min = MIN(E_min, E_min_ispin)
    1768          76 :          E_max = MAX(E_max, E_max_ispin)
    1769             :       END DO
    1770             : 
    1771          34 :       E_range = E_max/E_min
    1772             : 
    1773         102 :       ALLOCATE (points_and_weights(2*num_time_freq_points))
    1774             : 
    1775             :       ! frequency points
    1776          34 :       IF (num_time_freq_points .LE. 20) THEN
    1777          34 :          CALL get_rpa_minimax_coeff(num_time_freq_points, E_range, points_and_weights, ierr, .FALSE.)
    1778             :       ELSE
    1779           0 :          CALL get_rpa_minimax_coeff_larger_grid(num_time_freq_points, E_range, points_and_weights)
    1780             :       END IF
    1781             : 
    1782             :       ! one needs to scale the minimax grids, see Azizi, Wilhelm, Golze, Panades-Barrueta,
    1783             :       ! Giantomassi, Rinke, Draxl, Gonze et al., 2 publications
    1784         470 :       bs_env%imag_freq_points(:) = points_and_weights(1:num_time_freq_points)*E_min
    1785             : 
    1786             :       ! determine number of fit points in the interval [0,ω_max] for virt, or [-ω_max,0] for occ
    1787          34 :       bs_env%num_freq_points_fit = 0
    1788         470 :       DO i_w = 1, num_time_freq_points
    1789         470 :          IF (bs_env%imag_freq_points(i_w) < bs_env%freq_max_fit) THEN
    1790         180 :             bs_env%num_freq_points_fit = bs_env%num_freq_points_fit + 1
    1791             :          END IF
    1792             :       END DO
    1793             : 
    1794             :       ! iω values for the analytic continuation Σ^c_n(iω,k) -> Σ^c_n(ϵ,k)
    1795         102 :       ALLOCATE (bs_env%imag_freq_points_fit(bs_env%num_freq_points_fit))
    1796          34 :       j_w = 0
    1797         470 :       DO i_w = 1, num_time_freq_points
    1798         470 :          IF (bs_env%imag_freq_points(i_w) < bs_env%freq_max_fit) THEN
    1799         180 :             j_w = j_w + 1
    1800         180 :             bs_env%imag_freq_points_fit(j_w) = bs_env%imag_freq_points(i_w)
    1801             :          END IF
    1802             :       END DO
    1803             : 
    1804             :       ! reset the number of Padé parameters if smaller than the number of
    1805             :       ! imaginary-frequency points for the fit
    1806          34 :       IF (bs_env%num_freq_points_fit < bs_env%nparam_pade) THEN
    1807          34 :          bs_env%nparam_pade = bs_env%num_freq_points_fit
    1808             :       END IF
    1809             : 
    1810             :       ! time points
    1811          34 :       IF (num_time_freq_points .LE. 20) THEN
    1812          34 :          CALL get_exp_minimax_coeff(num_time_freq_points, E_range, points_and_weights)
    1813             :       ELSE
    1814           0 :          CALL get_exp_minimax_coeff_gw(num_time_freq_points, E_range, points_and_weights)
    1815             :       END IF
    1816             : 
    1817         470 :       bs_env%imag_time_points(:) = points_and_weights(1:num_time_freq_points)/(2.0_dp*E_min)
    1818         470 :       bs_env%imag_time_weights_freq_zero(:) = points_and_weights(num_time_freq_points + 1:)/(E_min)
    1819             : 
    1820          34 :       DEALLOCATE (points_and_weights)
    1821             : 
    1822          34 :       u = bs_env%unit_nr
    1823          34 :       IF (u > 0) THEN
    1824          17 :          WRITE (u, '(T2,A)') ''
    1825          17 :          WRITE (u, '(T2,A,F55.2)') 'SCF direct band gap (eV)', E_min*evolt
    1826          17 :          WRITE (u, '(T2,A,F53.2)') 'Max. SCF eigval diff. (eV)', E_max*evolt
    1827          17 :          WRITE (u, '(T2,A,F55.2)') 'E-Range for minimax grid', E_range
    1828          17 :          WRITE (u, '(T2,A,I27)') 'Number of Padé parameters for analytic continuation:', &
    1829          34 :             bs_env%nparam_pade
    1830          17 :          WRITE (u, '(T2,A)') ''
    1831             :       END IF
    1832             : 
    1833             :       ! in minimax grids, Fourier transforms t -> w and w -> t are split using
    1834             :       ! e^(iwt) = cos(wt) + i sin(wt); we thus calculate weights for trafos with a cos and
    1835             :       ! sine prefactor; details in Azizi, Wilhelm, Golze, Giantomassi, Panades-Barrueta,
    1836             :       ! Rinke, Draxl, Gonze et al., 2 publications
    1837             : 
    1838             :       ! cosine transform weights imaginary time to imaginary frequency
    1839             :       CALL get_l_sq_wghts_cos_tf_t_to_w(num_time_freq_points, &
    1840             :                                         bs_env%imag_time_points, &
    1841             :                                         bs_env%weights_cos_t_to_w, &
    1842             :                                         bs_env%imag_freq_points, &
    1843             :                                         E_min, E_max, max_error_min, &
    1844             :                                         bs_env%num_points_per_magnitude, &
    1845          34 :                                         bs_env%regularization_minimax)
    1846             : 
    1847             :       ! cosine transform weights imaginary frequency to imaginary time
    1848             :       CALL get_l_sq_wghts_cos_tf_w_to_t(num_time_freq_points, &
    1849             :                                         bs_env%imag_time_points, &
    1850             :                                         bs_env%weights_cos_w_to_t, &
    1851             :                                         bs_env%imag_freq_points, &
    1852             :                                         E_min, E_max, max_error_min, &
    1853             :                                         bs_env%num_points_per_magnitude, &
    1854          34 :                                         bs_env%regularization_minimax)
    1855             : 
    1856             :       ! sine transform weights imaginary time to imaginary frequency
    1857             :       CALL get_l_sq_wghts_sin_tf_t_to_w(num_time_freq_points, &
    1858             :                                         bs_env%imag_time_points, &
    1859             :                                         bs_env%weights_sin_t_to_w, &
    1860             :                                         bs_env%imag_freq_points, &
    1861             :                                         E_min, E_max, max_error_min, &
    1862             :                                         bs_env%num_points_per_magnitude, &
    1863          34 :                                         bs_env%regularization_minimax)
    1864             : 
    1865          34 :       CALL timestop(handle)
    1866             : 
    1867          68 :    END SUBROUTINE setup_time_and_frequency_minimax_grid
    1868             : 
    1869             : ! **************************************************************************************************
    1870             : !> \brief ...
    1871             : !> \param qs_env ...
    1872             : !> \param bs_env ...
    1873             : ! **************************************************************************************************
    1874           6 :    SUBROUTINE setup_cells_3c(qs_env, bs_env)
    1875             : 
    1876             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1877             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    1878             : 
    1879             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'setup_cells_3c'
    1880             : 
    1881             :       INTEGER :: atom_i, atom_j, atom_k, cell_pair_count, handle, i, i_cell_x, i_cell_x_max, &
    1882             :          i_cell_x_min, i_size, ikind, img, j, j_cell, j_cell_max, j_cell_y, j_cell_y_max, &
    1883             :          j_cell_y_min, j_size, k_cell, k_cell_max, k_cell_z, k_cell_z_max, k_cell_z_min, k_size, &
    1884             :          nimage_pairs_3c, nimages_3c, nimages_3c_max, nkind, u
    1885             :       INTEGER(KIND=int_8)                                :: mem_occ_per_proc
    1886           6 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: n_other_3c_images_max
    1887           6 :       INTEGER, ALLOCATABLE, DIMENSION(:, :)              :: index_to_cell_3c_max, nblocks_3c_max
    1888             :       INTEGER, DIMENSION(3)                              :: cell_index, n_max
    1889             :       REAL(KIND=dp) :: avail_mem_per_proc_GB, cell_dist, cell_radius_3c, eps, exp_min_ao, &
    1890             :          exp_min_RI, frobenius_norm, mem_3c_GB, mem_occ_per_proc_GB, radius_ao, radius_ao_product, &
    1891             :          radius_RI
    1892           6 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :)     :: int_3c
    1893           6 :       REAL(KIND=dp), DIMENSION(:, :), POINTER            :: exp_ao, exp_RI
    1894             : 
    1895           6 :       CALL timeset(routineN, handle)
    1896             : 
    1897           6 :       CALL get_qs_env(qs_env, nkind=nkind)
    1898             : 
    1899           6 :       exp_min_RI = 10.0_dp
    1900           6 :       exp_min_ao = 10.0_dp
    1901             : 
    1902          18 :       DO ikind = 1, nkind
    1903             : 
    1904          12 :          CALL get_gto_basis_set(bs_env%basis_set_RI(ikind)%gto_basis_set, zet=exp_RI)
    1905          12 :          CALL get_gto_basis_set(bs_env%basis_set_ao(ikind)%gto_basis_set, zet=exp_ao)
    1906             : 
    1907             :          ! we need to remove all exponents lower than a lower bound, e.g. 1E-3, because
    1908             :          ! for contracted basis sets, there might be exponents = 0 in zet
    1909          24 :          DO i = 1, SIZE(exp_RI, 1)
    1910          42 :             DO j = 1, SIZE(exp_RI, 2)
    1911          30 :                IF (exp_RI(i, j) < exp_min_RI .AND. exp_RI(i, j) > 1E-3_dp) exp_min_RI = exp_RI(i, j)
    1912             :             END DO
    1913             :          END DO
    1914          66 :          DO i = 1, SIZE(exp_ao, 1)
    1915         144 :             DO j = 1, SIZE(exp_ao, 2)
    1916         132 :                IF (exp_ao(i, j) < exp_min_ao .AND. exp_ao(i, j) > 1E-3_dp) exp_min_ao = exp_ao(i, j)
    1917             :             END DO
    1918             :          END DO
    1919             : 
    1920             :       END DO
    1921             : 
    1922           6 :       eps = bs_env%eps_filter*bs_env%heuristic_filter_factor
    1923             : 
    1924           6 :       radius_ao = SQRT(-LOG(eps)/exp_min_ao)
    1925           6 :       radius_ao_product = SQRT(-LOG(eps)/(2.0_dp*exp_min_ao))
    1926           6 :       radius_RI = SQRT(-LOG(eps)/exp_min_RI)
    1927             : 
    1928             :       ! For a 3c integral (μR υS | P0) we have that cell R and cell S need to be within radius_3c
    1929           6 :       cell_radius_3c = radius_ao_product + radius_RI + bs_env%ri_metric%cutoff_radius
    1930             : 
    1931          24 :       n_max(1:3) = bs_env%periodic(1:3)*30
    1932             : 
    1933           6 :       nimages_3c_max = 0
    1934             : 
    1935           6 :       i_cell_x_min = 0
    1936           6 :       i_cell_x_max = 0
    1937           6 :       j_cell_y_min = 0
    1938           6 :       j_cell_y_max = 0
    1939           6 :       k_cell_z_min = 0
    1940           6 :       k_cell_z_max = 0
    1941             : 
    1942         252 :       DO i_cell_x = -n_max(1), n_max(1)
    1943       15258 :          DO j_cell_y = -n_max(2), n_max(2)
    1944       37578 :             DO k_cell_z = -n_max(3), n_max(3)
    1945             : 
    1946       89304 :                cell_index(1:3) = (/i_cell_x, j_cell_y, k_cell_z/)
    1947             : 
    1948       22326 :                CALL get_cell_dist(cell_index, bs_env%hmat, cell_dist)
    1949             : 
    1950       37332 :                IF (cell_dist < cell_radius_3c) THEN
    1951         134 :                   nimages_3c_max = nimages_3c_max + 1
    1952         134 :                   i_cell_x_min = MIN(i_cell_x_min, i_cell_x)
    1953         134 :                   i_cell_x_max = MAX(i_cell_x_max, i_cell_x)
    1954         134 :                   j_cell_y_min = MIN(j_cell_y_min, j_cell_y)
    1955         134 :                   j_cell_y_max = MAX(j_cell_y_max, j_cell_y)
    1956         134 :                   k_cell_z_min = MIN(k_cell_z_min, k_cell_z)
    1957         134 :                   k_cell_z_max = MAX(k_cell_z_max, k_cell_z)
    1958             :                END IF
    1959             : 
    1960             :             END DO
    1961             :          END DO
    1962             :       END DO
    1963             : 
    1964             :       ! get index_to_cell_3c_max for the maximum possible cell range;
    1965             :       ! compute 3c integrals later in this routine and check really which cell is needed
    1966          18 :       ALLOCATE (index_to_cell_3c_max(nimages_3c_max, 3))
    1967             : 
    1968           6 :       img = 0
    1969         252 :       DO i_cell_x = -n_max(1), n_max(1)
    1970       15258 :          DO j_cell_y = -n_max(2), n_max(2)
    1971       37578 :             DO k_cell_z = -n_max(3), n_max(3)
    1972             : 
    1973       89304 :                cell_index(1:3) = (/i_cell_x, j_cell_y, k_cell_z/)
    1974             : 
    1975       22326 :                CALL get_cell_dist(cell_index, bs_env%hmat, cell_dist)
    1976             : 
    1977       37332 :                IF (cell_dist < cell_radius_3c) THEN
    1978         134 :                   img = img + 1
    1979         536 :                   index_to_cell_3c_max(img, 1:3) = cell_index(1:3)
    1980             :                END IF
    1981             : 
    1982             :             END DO
    1983             :          END DO
    1984             :       END DO
    1985             : 
    1986             :       ! get pairs of R and S which have non-zero 3c integral (μR υS | P0)
    1987          24 :       ALLOCATE (nblocks_3c_max(nimages_3c_max, nimages_3c_max))
    1988        3154 :       nblocks_3c_max(:, :) = 0
    1989             : 
    1990             :       cell_pair_count = 0
    1991         140 :       DO j_cell = 1, nimages_3c_max
    1992        3154 :          DO k_cell = 1, nimages_3c_max
    1993             : 
    1994        3014 :             cell_pair_count = cell_pair_count + 1
    1995             : 
    1996             :             ! trivial parallelization over cell pairs
    1997        3014 :             IF (MODULO(cell_pair_count, bs_env%para_env%num_pe) .NE. bs_env%para_env%mepos) CYCLE
    1998             : 
    1999        5280 :             DO atom_j = 1, bs_env%n_atom
    2000       15806 :             DO atom_k = 1, bs_env%n_atom
    2001       36723 :             DO atom_i = 1, bs_env%n_atom
    2002             : 
    2003       23931 :                j_size = bs_env%i_ao_end_from_atom(atom_j) - bs_env%i_ao_start_from_atom(atom_j) + 1
    2004       23931 :                k_size = bs_env%i_ao_end_from_atom(atom_k) - bs_env%i_ao_start_from_atom(atom_k) + 1
    2005       23931 :                i_size = bs_env%i_RI_end_from_atom(atom_i) - bs_env%i_RI_start_from_atom(atom_i) + 1
    2006             : 
    2007      119655 :                ALLOCATE (int_3c(j_size, k_size, i_size))
    2008             : 
    2009             :                ! compute 3-c int. ( μ(atom j) R , ν (atom k) S | P (atom i) 0 )
    2010             :                ! ("|": truncated Coulomb operator), inside build_3c_integrals: (j k | i)
    2011             :                CALL build_3c_integral_block(int_3c, qs_env, bs_env%ri_metric, &
    2012             :                                             basis_j=bs_env%basis_set_AO, &
    2013             :                                             basis_k=bs_env%basis_set_AO, &
    2014             :                                             basis_i=bs_env%basis_set_RI, &
    2015             :                                             cell_j=index_to_cell_3c_max(j_cell, 1:3), &
    2016             :                                             cell_k=index_to_cell_3c_max(k_cell, 1:3), &
    2017      167517 :                                             atom_k=atom_k, atom_j=atom_j, atom_i=atom_i)
    2018             : 
    2019     1404411 :                frobenius_norm = SQRT(SUM(int_3c(:, :, :)**2))
    2020             : 
    2021       23931 :                DEALLOCATE (int_3c)
    2022             : 
    2023             :                ! we use a higher threshold here to safe memory when storing the 3c integrals
    2024             :                ! in every tensor group
    2025       33084 :                IF (frobenius_norm > eps) THEN
    2026         513 :                   nblocks_3c_max(j_cell, k_cell) = nblocks_3c_max(j_cell, k_cell) + 1
    2027             :                END IF
    2028             : 
    2029             :             END DO
    2030             :             END DO
    2031             :             END DO
    2032             : 
    2033             :          END DO
    2034             :       END DO
    2035             : 
    2036           6 :       CALL bs_env%para_env%sum(nblocks_3c_max)
    2037             : 
    2038          18 :       ALLOCATE (n_other_3c_images_max(nimages_3c_max))
    2039         140 :       n_other_3c_images_max(:) = 0
    2040             : 
    2041           6 :       nimages_3c = 0
    2042           6 :       nimage_pairs_3c = 0
    2043             : 
    2044         140 :       DO j_cell = 1, nimages_3c_max
    2045        3148 :          DO k_cell = 1, nimages_3c_max
    2046        3148 :             IF (nblocks_3c_max(j_cell, k_cell) > 0) THEN
    2047         178 :                n_other_3c_images_max(j_cell) = n_other_3c_images_max(j_cell) + 1
    2048         178 :                nimage_pairs_3c = nimage_pairs_3c + 1
    2049             :             END IF
    2050             :          END DO
    2051             : 
    2052         140 :          IF (n_other_3c_images_max(j_cell) > 0) nimages_3c = nimages_3c + 1
    2053             : 
    2054             :       END DO
    2055             : 
    2056           6 :       bs_env%nimages_3c = nimages_3c
    2057          18 :       ALLOCATE (bs_env%index_to_cell_3c(nimages_3c, 3))
    2058             :       ALLOCATE (bs_env%cell_to_index_3c(i_cell_x_min:i_cell_x_max, &
    2059             :                                         j_cell_y_min:j_cell_y_max, &
    2060          30 :                                         k_cell_z_min:k_cell_z_max))
    2061         240 :       bs_env%cell_to_index_3c(:, :, :) = -1
    2062             : 
    2063          24 :       ALLOCATE (bs_env%nblocks_3c(nimages_3c, nimages_3c))
    2064           6 :       bs_env%nblocks_3c(nimages_3c, nimages_3c) = 0
    2065             : 
    2066           6 :       j_cell = 0
    2067         140 :       DO j_cell_max = 1, nimages_3c_max
    2068         134 :          IF (n_other_3c_images_max(j_cell_max) == 0) CYCLE
    2069          44 :          j_cell = j_cell + 1
    2070         176 :          cell_index(1:3) = index_to_cell_3c_max(j_cell_max, 1:3)
    2071         176 :          bs_env%index_to_cell_3c(j_cell, 1:3) = cell_index(1:3)
    2072          44 :          bs_env%cell_to_index_3c(cell_index(1), cell_index(2), cell_index(3)) = j_cell
    2073             : 
    2074          44 :          k_cell = 0
    2075        1070 :          DO k_cell_max = 1, nimages_3c_max
    2076        1020 :             IF (n_other_3c_images_max(k_cell_max) == 0) CYCLE
    2077         388 :             k_cell = k_cell + 1
    2078             : 
    2079        1154 :             bs_env%nblocks_3c(j_cell, k_cell) = nblocks_3c_max(j_cell_max, k_cell_max)
    2080             :          END DO
    2081             : 
    2082             :       END DO
    2083             : 
    2084             :       ! we use: 8*10^-9 GB / double precision number
    2085             :       mem_3c_GB = REAL(bs_env%n_RI, KIND=dp)*REAL(bs_env%n_ao, KIND=dp)**2 &
    2086           6 :                   *REAL(nimage_pairs_3c, KIND=dp)*8E-9_dp
    2087             : 
    2088           6 :       CALL m_memory(mem_occ_per_proc)
    2089           6 :       CALL bs_env%para_env%max(mem_occ_per_proc)
    2090             : 
    2091           6 :       mem_occ_per_proc_GB = REAL(mem_occ_per_proc, KIND=dp)/1.0E9_dp
    2092             : 
    2093             :       ! number of processors per group that entirely stores the 3c integrals and does tensor ops
    2094           6 :       avail_mem_per_proc_GB = bs_env%input_memory_per_proc_GB - mem_occ_per_proc_GB
    2095             : 
    2096             :       ! careful: downconvering real to integer, 1.9 -> 1; thus add 1.0 for upconversion, 1.9 -> 2
    2097           6 :       bs_env%group_size_tensor = MAX(INT(mem_3c_GB/avail_mem_per_proc_GB + 1.0_dp), 1)
    2098             : 
    2099           6 :       u = bs_env%unit_nr
    2100             : 
    2101           6 :       IF (u > 0) THEN
    2102           3 :          WRITE (u, FMT="(T2,A,F52.1,A)") "Radius of atomic orbitals", radius_ao*angstrom, " Å"
    2103           3 :          WRITE (u, FMT="(T2,A,F55.1,A)") "Radius of RI functions", radius_RI*angstrom, " Å"
    2104           3 :          WRITE (u, FMT="(T2,A,I47)") "Number of cells for 3c integrals", nimages_3c
    2105           3 :          WRITE (u, FMT="(T2,A,I42)") "Number of cell pairs for 3c integrals", nimage_pairs_3c
    2106           3 :          WRITE (u, '(T2,A)') ''
    2107           3 :          WRITE (u, '(T2,A,F37.1,A)') 'Input: Available memory per MPI process', &
    2108           6 :             bs_env%input_memory_per_proc_GB, ' GB'
    2109           3 :          WRITE (u, '(T2,A,F35.1,A)') 'Used memory per MPI process before GW run', &
    2110           6 :             mem_occ_per_proc_GB, ' GB'
    2111           3 :          WRITE (u, '(T2,A,F44.1,A)') 'Memory of three-center integrals', mem_3c_GB, ' GB'
    2112             :       END IF
    2113             : 
    2114           6 :       CALL timestop(handle)
    2115             : 
    2116          18 :    END SUBROUTINE setup_cells_3c
    2117             : 
    2118             : ! **************************************************************************************************
    2119             : !> \brief ...
    2120             : !> \param index_to_cell_1 ...
    2121             : !> \param index_to_cell_2 ...
    2122             : !> \param nimages_1 ...
    2123             : !> \param nimages_2 ...
    2124             : !> \param index_to_cell ...
    2125             : !> \param cell_to_index ...
    2126             : !> \param nimages ...
    2127             : ! **************************************************************************************************
    2128           6 :    SUBROUTINE sum_two_R_grids(index_to_cell_1, index_to_cell_2, nimages_1, nimages_2, &
    2129             :                               index_to_cell, cell_to_index, nimages)
    2130             : 
    2131             :       INTEGER, DIMENSION(:, :)                           :: index_to_cell_1, index_to_cell_2
    2132             :       INTEGER                                            :: nimages_1, nimages_2
    2133             :       INTEGER, ALLOCATABLE, DIMENSION(:, :)              :: index_to_cell
    2134             :       INTEGER, DIMENSION(:, :, :), POINTER               :: cell_to_index
    2135             :       INTEGER                                            :: nimages
    2136             : 
    2137             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'sum_two_R_grids'
    2138             : 
    2139             :       INTEGER                                            :: handle, i_dim, img_1, img_2, nimages_max
    2140           6 :       INTEGER, ALLOCATABLE, DIMENSION(:, :)              :: index_to_cell_tmp
    2141             :       INTEGER, DIMENSION(3)                              :: cell_1, cell_2, R, R_max, R_min
    2142             : 
    2143           6 :       CALL timeset(routineN, handle)
    2144             : 
    2145          24 :       DO i_dim = 1, 3
    2146         282 :          R_min(i_dim) = MINVAL(index_to_cell_1(:, i_dim)) + MINVAL(index_to_cell_2(:, i_dim))
    2147         306 :          R_max(i_dim) = MAXVAL(index_to_cell_1(:, i_dim)) + MAXVAL(index_to_cell_2(:, i_dim))
    2148             :       END DO
    2149             : 
    2150           6 :       nimages_max = (R_max(1) - R_min(1) + 1)*(R_max(2) - R_min(2) + 1)*(R_max(3) - R_min(3) + 1)
    2151             : 
    2152          18 :       ALLOCATE (index_to_cell_tmp(nimages_max, 3))
    2153         534 :       index_to_cell_tmp(:, :) = -1
    2154             : 
    2155          30 :       ALLOCATE (cell_to_index(R_min(1):R_max(1), R_min(2):R_max(2), R_min(3):R_max(3)))
    2156         284 :       cell_to_index(:, :, :) = -1
    2157             : 
    2158           6 :       nimages = 0
    2159             : 
    2160          50 :       DO img_1 = 1, nimages_1
    2161             : 
    2162         438 :          DO img_2 = 1, nimages_2
    2163             : 
    2164        1552 :             cell_1(1:3) = index_to_cell_1(img_1, 1:3)
    2165        1552 :             cell_2(1:3) = index_to_cell_2(img_2, 1:3)
    2166             : 
    2167        1552 :             R(1:3) = cell_1(1:3) + cell_2(1:3)
    2168             : 
    2169             :             ! check whether we have found a new cell
    2170         432 :             IF (cell_to_index(R(1), R(2), R(3)) == -1) THEN
    2171             : 
    2172         122 :                nimages = nimages + 1
    2173         122 :                cell_to_index(R(1), R(2), R(3)) = nimages
    2174         488 :                index_to_cell_tmp(nimages, 1:3) = R(1:3)
    2175             : 
    2176             :             END IF
    2177             : 
    2178             :          END DO
    2179             : 
    2180             :       END DO
    2181             : 
    2182          18 :       ALLOCATE (index_to_cell(nimages, 3))
    2183         390 :       index_to_cell(:, :) = index_to_cell_tmp(1:nimages, 1:3)
    2184             : 
    2185           6 :       CALL timestop(handle)
    2186             : 
    2187          12 :    END SUBROUTINE sum_two_R_grids
    2188             : 
    2189             : ! **************************************************************************************************
    2190             : !> \brief ...
    2191             : !> \param qs_env ...
    2192             : !> \param bs_env ...
    2193             : ! **************************************************************************************************
    2194           6 :    SUBROUTINE compute_3c_integrals(qs_env, bs_env)
    2195             : 
    2196             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2197             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    2198             : 
    2199             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_3c_integrals'
    2200             : 
    2201             :       INTEGER                                            :: handle, j_cell, k_cell, nimages_3c
    2202             : 
    2203           6 :       CALL timeset(routineN, handle)
    2204             : 
    2205           6 :       nimages_3c = bs_env%nimages_3c
    2206         504 :       ALLOCATE (bs_env%t_3c_int(nimages_3c, nimages_3c))
    2207          50 :       DO j_cell = 1, nimages_3c
    2208         438 :          DO k_cell = 1, nimages_3c
    2209         432 :             CALL dbt_create(bs_env%t_RI_AO__AO, bs_env%t_3c_int(j_cell, k_cell))
    2210             :          END DO
    2211             :       END DO
    2212             : 
    2213             :       CALL build_3c_integrals(bs_env%t_3c_int, &
    2214             :                               bs_env%eps_filter, &
    2215             :                               qs_env, &
    2216             :                               bs_env%nl_3c, &
    2217             :                               int_eps=bs_env%eps_filter*0.05_dp, &
    2218             :                               basis_i=bs_env%basis_set_RI, &
    2219             :                               basis_j=bs_env%basis_set_AO, &
    2220             :                               basis_k=bs_env%basis_set_AO, &
    2221             :                               potential_parameter=bs_env%ri_metric, &
    2222             :                               desymmetrize=.FALSE., do_kpoints=.TRUE., cell_sym=.TRUE., &
    2223           6 :                               cell_to_index_ext=bs_env%cell_to_index_3c)
    2224             : 
    2225           6 :       CALL bs_env%para_env%sync()
    2226             : 
    2227           6 :       CALL timestop(handle)
    2228             : 
    2229           6 :    END SUBROUTINE compute_3c_integrals
    2230             : 
    2231             : ! **************************************************************************************************
    2232             : !> \brief ...
    2233             : !> \param cell_index ...
    2234             : !> \param hmat ...
    2235             : !> \param cell_dist ...
    2236             : ! **************************************************************************************************
    2237       44652 :    SUBROUTINE get_cell_dist(cell_index, hmat, cell_dist)
    2238             : 
    2239             :       INTEGER, DIMENSION(3)                              :: cell_index
    2240             :       REAL(KIND=dp)                                      :: hmat(3, 3), cell_dist
    2241             : 
    2242             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'get_cell_dist'
    2243             : 
    2244             :       INTEGER                                            :: handle, i_dim
    2245             :       INTEGER, DIMENSION(3)                              :: cell_index_adj
    2246             :       REAL(KIND=dp)                                      :: cell_dist_3(3)
    2247             : 
    2248       44652 :       CALL timeset(routineN, handle)
    2249             : 
    2250             :       ! the distance of cells needs to be taken to adjacent neighbors, not
    2251             :       ! between the center of the cells. We thus need to rescale the cell index
    2252      178608 :       DO i_dim = 1, 3
    2253      133956 :          IF (cell_index(i_dim) > 0) cell_index_adj(i_dim) = cell_index(i_dim) - 1
    2254      133956 :          IF (cell_index(i_dim) < 0) cell_index_adj(i_dim) = cell_index(i_dim) + 1
    2255      178608 :          IF (cell_index(i_dim) == 0) cell_index_adj(i_dim) = cell_index(i_dim)
    2256             :       END DO
    2257             : 
    2258      714432 :       cell_dist_3(1:3) = MATMUL(hmat, REAL(cell_index_adj, KIND=dp))
    2259             : 
    2260      178608 :       cell_dist = SQRT(ABS(SUM(cell_dist_3(1:3)**2)))
    2261             : 
    2262       44652 :       CALL timestop(handle)
    2263             : 
    2264       44652 :    END SUBROUTINE get_cell_dist
    2265             : 
    2266             : ! **************************************************************************************************
    2267             : !> \brief ...
    2268             : !> \param qs_env ...
    2269             : !> \param bs_env ...
    2270             : !> \param kpoints ...
    2271             : !> \param do_print ...
    2272             : ! **************************************************************************************************
    2273           0 :    SUBROUTINE setup_kpoints_scf_desymm(qs_env, bs_env, kpoints, do_print)
    2274             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2275             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    2276             :       TYPE(kpoint_type), POINTER                         :: kpoints
    2277             : 
    2278             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'setup_kpoints_scf_desymm'
    2279             : 
    2280             :       INTEGER                                            :: handle, i_cell_x, i_dim, img, j_cell_y, &
    2281             :                                                             k_cell_z, nimages, nkp, u
    2282             :       INTEGER, DIMENSION(3)                              :: cell_grid, cixd, nkp_grid
    2283             :       TYPE(kpoint_type), POINTER                         :: kpoints_scf
    2284             : 
    2285             :       LOGICAL:: do_print
    2286             : 
    2287           0 :       CALL timeset(routineN, handle)
    2288             : 
    2289           0 :       NULLIFY (kpoints)
    2290           0 :       CALL kpoint_create(kpoints)
    2291             : 
    2292           0 :       CALL get_qs_env(qs_env=qs_env, kpoints=kpoints_scf)
    2293             : 
    2294           0 :       nkp_grid(1:3) = kpoints_scf%nkp_grid(1:3)
    2295           0 :       nkp = nkp_grid(1)*nkp_grid(2)*nkp_grid(3)
    2296             : 
    2297             :       ! we need in periodic directions at least 2 k-points in the SCF
    2298           0 :       DO i_dim = 1, 3
    2299           0 :          IF (bs_env%periodic(i_dim) == 1) THEN
    2300           0 :             CPASSERT(nkp_grid(i_dim) > 1)
    2301             :          END IF
    2302             :       END DO
    2303             : 
    2304           0 :       kpoints%kp_scheme = "GENERAL"
    2305           0 :       kpoints%nkp_grid(1:3) = nkp_grid(1:3)
    2306           0 :       kpoints%nkp = nkp
    2307           0 :       bs_env%nkp_scf_desymm = nkp
    2308             : 
    2309           0 :       ALLOCATE (kpoints%xkp(1:3, nkp))
    2310           0 :       CALL compute_xkp(kpoints%xkp, 1, nkp, nkp_grid)
    2311             : 
    2312           0 :       ALLOCATE (kpoints%wkp(nkp))
    2313           0 :       kpoints%wkp(:) = 1.0_dp/REAL(nkp, KIND=dp)
    2314             : 
    2315             :       ! for example 4x3x6 kpoint grid -> 3x3x5 cell grid because we need the same number of
    2316             :       ! neighbor cells on both sides of the unit cell
    2317           0 :       cell_grid(1:3) = nkp_grid(1:3) - MODULO(nkp_grid(1:3) + 1, 2)
    2318             :       ! cell index: for example for x: from -n_x/2 to +n_x/2, n_x: number of cells in x direction
    2319           0 :       cixd(1:3) = cell_grid(1:3)/2
    2320             : 
    2321           0 :       nimages = cell_grid(1)*cell_grid(2)*cell_grid(3)
    2322             : 
    2323           0 :       bs_env%nimages_scf_desymm = nimages
    2324             : 
    2325           0 :       ALLOCATE (kpoints%cell_to_index(-cixd(1):cixd(1), -cixd(2):cixd(2), -cixd(3):cixd(3)))
    2326           0 :       ALLOCATE (kpoints%index_to_cell(nimages, 3))
    2327             : 
    2328           0 :       img = 0
    2329           0 :       DO i_cell_x = -cixd(1), cixd(1)
    2330           0 :          DO j_cell_y = -cixd(2), cixd(2)
    2331           0 :             DO k_cell_z = -cixd(3), cixd(3)
    2332           0 :                img = img + 1
    2333           0 :                kpoints%cell_to_index(i_cell_x, j_cell_y, k_cell_z) = img
    2334           0 :                kpoints%index_to_cell(img, 1:3) = (/i_cell_x, j_cell_y, k_cell_z/)
    2335             :             END DO
    2336             :          END DO
    2337             :       END DO
    2338             : 
    2339           0 :       u = bs_env%unit_nr
    2340           0 :       IF (u > 0 .AND. do_print) THEN
    2341           0 :          WRITE (u, FMT="(T2,A,I49)") "Number of cells for G, χ, W, Σ", nimages
    2342             :       END IF
    2343             : 
    2344           0 :       CALL timestop(handle)
    2345             : 
    2346           0 :    END SUBROUTINE setup_kpoints_scf_desymm
    2347             : 
    2348             : ! **************************************************************************************************
    2349             : !> \brief ...
    2350             : !> \param bs_env ...
    2351             : ! **************************************************************************************************
    2352           6 :    SUBROUTINE setup_cells_Delta_R(bs_env)
    2353             : 
    2354             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    2355             : 
    2356             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'setup_cells_Delta_R'
    2357             : 
    2358             :       INTEGER                                            :: handle
    2359             : 
    2360           6 :       CALL timeset(routineN, handle)
    2361             : 
    2362             :       ! cell sums batch wise for fixed ΔR = S_1 - R_1; for example:
    2363             :       ! Σ_λσ^R = sum_PR1νS1 M^G_λ0,νS1,PR1 M^W_σR,νS1,PR1
    2364             : 
    2365             :       CALL sum_two_R_grids(bs_env%index_to_cell_3c, &
    2366             :                            bs_env%index_to_cell_3c, &
    2367             :                            bs_env%nimages_3c, bs_env%nimages_3c, &
    2368             :                            bs_env%index_to_cell_Delta_R, &
    2369             :                            bs_env%cell_to_index_Delta_R, &
    2370           6 :                            bs_env%nimages_Delta_R)
    2371             : 
    2372           6 :       IF (bs_env%unit_nr > 0) THEN
    2373           3 :          WRITE (bs_env%unit_nr, FMT="(T2,A,I61)") "Number of cells ΔR", bs_env%nimages_Delta_R
    2374             :       END IF
    2375             : 
    2376           6 :       CALL timestop(handle)
    2377             : 
    2378           6 :    END SUBROUTINE setup_cells_Delta_R
    2379             : 
    2380             : ! **************************************************************************************************
    2381             : !> \brief ...
    2382             : !> \param bs_env ...
    2383             : ! **************************************************************************************************
    2384           6 :    SUBROUTINE setup_parallelization_Delta_R(bs_env)
    2385             : 
    2386             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    2387             : 
    2388             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'setup_parallelization_Delta_R'
    2389             : 
    2390             :       INTEGER                                            :: handle, i_cell_Delta_R, i_task_local, &
    2391             :                                                             n_tasks_local
    2392           6 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: i_cell_Delta_R_group, &
    2393           6 :                                                             n_tensor_ops_Delta_R
    2394             : 
    2395           6 :       CALL timeset(routineN, handle)
    2396             : 
    2397           6 :       CALL compute_n_tensor_ops_Delta_R(bs_env, n_tensor_ops_Delta_R)
    2398             : 
    2399           6 :       CALL compute_Delta_R_dist(bs_env, n_tensor_ops_Delta_R, i_cell_Delta_R_group, n_tasks_local)
    2400             : 
    2401           6 :       bs_env%n_tasks_Delta_R_local = n_tasks_local
    2402             : 
    2403          18 :       ALLOCATE (bs_env%task_Delta_R(n_tasks_local))
    2404             : 
    2405           6 :       i_task_local = 0
    2406         128 :       DO i_cell_Delta_R = 1, bs_env%nimages_Delta_R
    2407             : 
    2408         122 :          IF (i_cell_Delta_R_group(i_cell_Delta_R) /= bs_env%tensor_group_color) CYCLE
    2409             : 
    2410          56 :          i_task_local = i_task_local + 1
    2411             : 
    2412         128 :          bs_env%task_Delta_R(i_task_local) = i_cell_Delta_R
    2413             : 
    2414             :       END DO
    2415             : 
    2416           6 :       CALL timestop(handle)
    2417             : 
    2418          12 :    END SUBROUTINE setup_parallelization_Delta_R
    2419             : 
    2420             : ! **************************************************************************************************
    2421             : !> \brief ...
    2422             : !> \param bs_env ...
    2423             : !> \param n_tensor_ops_Delta_R ...
    2424             : !> \param i_cell_Delta_R_group ...
    2425             : !> \param n_tasks_local ...
    2426             : ! **************************************************************************************************
    2427           6 :    SUBROUTINE compute_Delta_R_dist(bs_env, n_tensor_ops_Delta_R, i_cell_Delta_R_group, n_tasks_local)
    2428             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    2429             :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: n_tensor_ops_Delta_R, &
    2430             :                                                             i_cell_Delta_R_group
    2431             :       INTEGER                                            :: n_tasks_local
    2432             : 
    2433             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_Delta_R_dist'
    2434             : 
    2435             :       INTEGER                                            :: handle, i_Delta_R_max_op, i_group_min, &
    2436             :                                                             nimages_Delta_R, u
    2437           6 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: n_tensor_ops_Delta_R_in_group
    2438             : 
    2439           6 :       CALL timeset(routineN, handle)
    2440             : 
    2441           6 :       nimages_Delta_R = bs_env%nimages_Delta_R
    2442             : 
    2443           6 :       u = bs_env%unit_nr
    2444             : 
    2445           6 :       IF (u > 0 .AND. nimages_Delta_R < bs_env%num_tensor_groups) THEN
    2446           0 :          WRITE (u, FMT="(T2,A,I5,A,I5,A)") "There are only ", nimages_Delta_R, &
    2447           0 :             " tasks to work on but there are ", bs_env%num_tensor_groups, " groups."
    2448           0 :          WRITE (u, FMT="(T2,A)") "Please reduce the number of MPI processes."
    2449           0 :          WRITE (u, '(T2,A)') ''
    2450             :       END IF
    2451             : 
    2452          18 :       ALLOCATE (n_tensor_ops_Delta_R_in_group(bs_env%num_tensor_groups))
    2453          18 :       n_tensor_ops_Delta_R_in_group(:) = 0
    2454          18 :       ALLOCATE (i_cell_Delta_R_group(nimages_Delta_R))
    2455         128 :       i_cell_Delta_R_group(:) = -1
    2456             : 
    2457           6 :       n_tasks_local = 0
    2458             : 
    2459         474 :       DO WHILE (ANY(n_tensor_ops_Delta_R(:) .NE. 0))
    2460             : 
    2461             :          ! get largest element of n_tensor_ops_Delta_R
    2462        2888 :          i_Delta_R_max_op = MAXLOC(n_tensor_ops_Delta_R, 1)
    2463             : 
    2464             :          ! distribute i_Delta_R_max_op to tensor group which has currently the smallest load
    2465         448 :          i_group_min = MINLOC(n_tensor_ops_Delta_R_in_group, 1)
    2466             : 
    2467             :          ! the tensor groups are 0-index based; but i_group_min is 1-index based
    2468         112 :          i_cell_Delta_R_group(i_Delta_R_max_op) = i_group_min - 1
    2469             :          n_tensor_ops_Delta_R_in_group(i_group_min) = n_tensor_ops_Delta_R_in_group(i_group_min) + &
    2470         112 :                                                       n_tensor_ops_Delta_R(i_Delta_R_max_op)
    2471             : 
    2472             :          ! remove i_Delta_R_max_op from n_tensor_ops_Delta_R
    2473         112 :          n_tensor_ops_Delta_R(i_Delta_R_max_op) = 0
    2474             : 
    2475         118 :          IF (bs_env%tensor_group_color == i_group_min - 1) n_tasks_local = n_tasks_local + 1
    2476             : 
    2477             :       END DO
    2478             : 
    2479           6 :       CALL timestop(handle)
    2480             : 
    2481          12 :    END SUBROUTINE compute_Delta_R_dist
    2482             : 
    2483             : ! **************************************************************************************************
    2484             : !> \brief ...
    2485             : !> \param bs_env ...
    2486             : !> \param n_tensor_ops_Delta_R ...
    2487             : ! **************************************************************************************************
    2488           6 :    SUBROUTINE compute_n_tensor_ops_Delta_R(bs_env, n_tensor_ops_Delta_R)
    2489             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    2490             :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: n_tensor_ops_Delta_R
    2491             : 
    2492             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_n_tensor_ops_Delta_R'
    2493             : 
    2494             :       INTEGER :: handle, i_cell_Delta_R, i_cell_R, i_cell_R1, i_cell_R1_minus_R, i_cell_R2, &
    2495             :          i_cell_R2_m_R1, i_cell_S1, i_cell_S1_m_R1_p_R2, i_cell_S1_minus_R, i_cell_S2, &
    2496             :          nimages_Delta_R
    2497             :       INTEGER, DIMENSION(3) :: cell_DR, cell_m_R1, cell_R, cell_R1, cell_R1_minus_R, cell_R2, &
    2498             :          cell_R2_m_R1, cell_S1, cell_S1_m_R2_p_R1, cell_S1_minus_R, cell_S1_p_S2_m_R1, cell_S2
    2499             :       LOGICAL                                            :: cell_found
    2500             : 
    2501           6 :       CALL timeset(routineN, handle)
    2502             : 
    2503           6 :       nimages_Delta_R = bs_env%nimages_Delta_R
    2504             : 
    2505          18 :       ALLOCATE (n_tensor_ops_Delta_R(nimages_Delta_R))
    2506         128 :       n_tensor_ops_Delta_R(:) = 0
    2507             : 
    2508             :       ! compute number of tensor operations for specific Delta_R
    2509         128 :       DO i_cell_Delta_R = 1, nimages_Delta_R
    2510             : 
    2511         122 :          IF (MODULO(i_cell_Delta_R, bs_env%num_tensor_groups) /= bs_env%tensor_group_color) CYCLE
    2512             : 
    2513         617 :          DO i_cell_R1 = 1, bs_env%nimages_3c
    2514             : 
    2515        2200 :             cell_R1(1:3) = bs_env%index_to_cell_3c(i_cell_R1, 1:3)
    2516        2200 :             cell_DR(1:3) = bs_env%index_to_cell_Delta_R(i_cell_Delta_R, 1:3)
    2517             : 
    2518             :             ! S_1 = R_1 + ΔR (from ΔR = S_1 - R_1)
    2519             :             CALL add_R(cell_R1, cell_DR, bs_env%index_to_cell_3c, cell_S1, &
    2520         550 :                        cell_found, bs_env%cell_to_index_3c, i_cell_S1)
    2521         550 :             IF (.NOT. cell_found) CYCLE
    2522             : 
    2523        1850 :             DO i_cell_R2 = 1, bs_env%nimages_scf_desymm
    2524             : 
    2525        6660 :                cell_R2(1:3) = bs_env%kpoints_scf_desymm%index_to_cell(i_cell_R2, 1:3)
    2526             : 
    2527             :                ! R_2 - R_1
    2528             :                CALL add_R(cell_R2, -cell_R1, bs_env%index_to_cell_3c, cell_R2_m_R1, &
    2529        6660 :                           cell_found, bs_env%cell_to_index_3c, i_cell_R2_m_R1)
    2530        1665 :                IF (.NOT. cell_found) CYCLE
    2531             : 
    2532             :                ! S_1 - R_1 + R_2
    2533             :                CALL add_R(cell_S1, cell_R2_m_R1, bs_env%index_to_cell_3c, cell_S1_m_R2_p_R1, &
    2534         945 :                           cell_found, bs_env%cell_to_index_3c, i_cell_S1_m_R1_p_R2)
    2535         945 :                IF (.NOT. cell_found) CYCLE
    2536             : 
    2537        2457 :                n_tensor_ops_Delta_R(i_cell_Delta_R) = n_tensor_ops_Delta_R(i_cell_Delta_R) + 1
    2538             : 
    2539             :             END DO ! i_cell_R2
    2540             : 
    2541        1850 :             DO i_cell_S2 = 1, bs_env%nimages_scf_desymm
    2542             : 
    2543        6660 :                cell_S2(1:3) = bs_env%kpoints_scf_desymm%index_to_cell(i_cell_S2, 1:3)
    2544        6660 :                cell_m_R1(1:3) = -cell_R1(1:3)
    2545        6660 :                cell_S1_p_S2_m_R1(1:3) = cell_S1(1:3) + cell_S2(1:3) - cell_R1(1:3)
    2546             : 
    2547        1665 :                CALL is_cell_in_index_to_cell(cell_m_R1, bs_env%index_to_cell_3c, cell_found)
    2548        1665 :                IF (.NOT. cell_found) CYCLE
    2549             : 
    2550        1422 :                CALL is_cell_in_index_to_cell(cell_S1_p_S2_m_R1, bs_env%index_to_cell_3c, cell_found)
    2551         185 :                IF (.NOT. cell_found) CYCLE
    2552             : 
    2553             :             END DO ! i_cell_S2
    2554             : 
    2555        2522 :             DO i_cell_R = 1, bs_env%nimages_scf_desymm
    2556             : 
    2557        6660 :                cell_R = bs_env%kpoints_scf_desymm%index_to_cell(i_cell_R, 1:3)
    2558             : 
    2559             :                ! R_1 - R
    2560             :                CALL add_R(cell_R1, -cell_R, bs_env%index_to_cell_3c, cell_R1_minus_R, &
    2561        6660 :                           cell_found, bs_env%cell_to_index_3c, i_cell_R1_minus_R)
    2562        1665 :                IF (.NOT. cell_found) CYCLE
    2563             : 
    2564             :                ! S_1 - R
    2565             :                CALL add_R(cell_S1, -cell_R, bs_env%index_to_cell_3c, cell_S1_minus_R, &
    2566        4032 :                           cell_found, bs_env%cell_to_index_3c, i_cell_S1_minus_R)
    2567         550 :                IF (.NOT. cell_found) CYCLE
    2568             : 
    2569             :             END DO ! i_cell_R
    2570             : 
    2571             :          END DO ! i_cell_R1
    2572             : 
    2573             :       END DO ! i_cell_Delta_R
    2574             : 
    2575           6 :       CALL bs_env%para_env%sum(n_tensor_ops_Delta_R)
    2576             : 
    2577           6 :       CALL timestop(handle)
    2578             : 
    2579           6 :    END SUBROUTINE compute_n_tensor_ops_Delta_R
    2580             : 
    2581             : ! **************************************************************************************************
    2582             : !> \brief ...
    2583             : !> \param cell_1 ...
    2584             : !> \param cell_2 ...
    2585             : !> \param index_to_cell ...
    2586             : !> \param cell_1_plus_2 ...
    2587             : !> \param cell_found ...
    2588             : !> \param cell_to_index ...
    2589             : !> \param i_cell_1_plus_2 ...
    2590             : ! **************************************************************************************************
    2591      131410 :    SUBROUTINE add_R(cell_1, cell_2, index_to_cell, cell_1_plus_2, cell_found, &
    2592             :                     cell_to_index, i_cell_1_plus_2)
    2593             : 
    2594             :       INTEGER, DIMENSION(3)                              :: cell_1, cell_2
    2595             :       INTEGER, DIMENSION(:, :)                           :: index_to_cell
    2596             :       INTEGER, DIMENSION(3)                              :: cell_1_plus_2
    2597             :       LOGICAL                                            :: cell_found
    2598             :       INTEGER, DIMENSION(:, :, :), INTENT(IN), &
    2599             :          OPTIONAL, POINTER                               :: cell_to_index
    2600             :       INTEGER, INTENT(OUT), OPTIONAL                     :: i_cell_1_plus_2
    2601             : 
    2602             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'add_R'
    2603             : 
    2604             :       INTEGER                                            :: handle
    2605             : 
    2606      131410 :       CALL timeset(routineN, handle)
    2607             : 
    2608      525640 :       cell_1_plus_2(1:3) = cell_1(1:3) + cell_2(1:3)
    2609             : 
    2610      131410 :       CALL is_cell_in_index_to_cell(cell_1_plus_2, index_to_cell, cell_found)
    2611             : 
    2612      131410 :       IF (PRESENT(i_cell_1_plus_2)) THEN
    2613      131410 :          IF (cell_found) THEN
    2614       68845 :             CPASSERT(PRESENT(cell_to_index))
    2615       68845 :             i_cell_1_plus_2 = cell_to_index(cell_1_plus_2(1), cell_1_plus_2(2), cell_1_plus_2(3))
    2616             :          ELSE
    2617       62565 :             i_cell_1_plus_2 = -1000
    2618             :          END IF
    2619             :       END IF
    2620             : 
    2621      131410 :       CALL timestop(handle)
    2622             : 
    2623      131410 :    END SUBROUTINE add_R
    2624             : 
    2625             : ! **************************************************************************************************
    2626             : !> \brief ...
    2627             : !> \param cell ...
    2628             : !> \param index_to_cell ...
    2629             : !> \param cell_found ...
    2630             : ! **************************************************************************************************
    2631      205408 :    SUBROUTINE is_cell_in_index_to_cell(cell, index_to_cell, cell_found)
    2632             :       INTEGER, DIMENSION(3)                              :: cell
    2633             :       INTEGER, DIMENSION(:, :)                           :: index_to_cell
    2634             :       LOGICAL                                            :: cell_found
    2635             : 
    2636             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'is_cell_in_index_to_cell'
    2637             : 
    2638             :       INTEGER                                            :: handle, i_cell, nimg
    2639             :       INTEGER, DIMENSION(3)                              :: cell_i
    2640             : 
    2641      205408 :       CALL timeset(routineN, handle)
    2642             : 
    2643      205408 :       nimg = SIZE(index_to_cell, 1)
    2644             : 
    2645      205408 :       cell_found = .FALSE.
    2646             : 
    2647     2144394 :       DO i_cell = 1, nimg
    2648             : 
    2649     7755944 :          cell_i(1:3) = index_to_cell(i_cell, 1:3)
    2650             : 
    2651     2144394 :          IF (cell_i(1) == cell(1) .AND. cell_i(2) == cell(2) .AND. cell_i(3) == cell(3)) THEN
    2652      117317 :             cell_found = .TRUE.
    2653             :          END IF
    2654             : 
    2655             :       END DO
    2656             : 
    2657      205408 :       CALL timestop(handle)
    2658             : 
    2659      205408 :    END SUBROUTINE is_cell_in_index_to_cell
    2660             : 
    2661             : ! **************************************************************************************************
    2662             : !> \brief ...
    2663             : !> \param qs_env ...
    2664             : !> \param bs_env ...
    2665             : ! **************************************************************************************************
    2666           6 :    SUBROUTINE allocate_matrices_small_cell_full_kp(qs_env, bs_env)
    2667             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2668             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    2669             : 
    2670             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'allocate_matrices_small_cell_full_kp'
    2671             : 
    2672             :       INTEGER                                            :: handle, i_spin, i_t, img, n_spin, &
    2673             :                                                             nimages_scf, num_time_freq_points
    2674             :       TYPE(cp_blacs_env_type), POINTER                   :: blacs_env
    2675             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    2676             : 
    2677           6 :       CALL timeset(routineN, handle)
    2678             : 
    2679           6 :       nimages_scf = bs_env%nimages_scf_desymm
    2680           6 :       num_time_freq_points = bs_env%num_time_freq_points
    2681           6 :       n_spin = bs_env%n_spin
    2682             : 
    2683           6 :       CALL get_qs_env(qs_env, para_env=para_env, blacs_env=blacs_env)
    2684             : 
    2685          72 :       ALLOCATE (bs_env%fm_G_S(nimages_scf))
    2686          72 :       ALLOCATE (bs_env%fm_Sigma_x_R(nimages_scf))
    2687         544 :       ALLOCATE (bs_env%fm_chi_R_t(nimages_scf, num_time_freq_points))
    2688         544 :       ALLOCATE (bs_env%fm_MWM_R_t(nimages_scf, num_time_freq_points))
    2689         556 :       ALLOCATE (bs_env%fm_Sigma_c_R_neg_tau(nimages_scf, num_time_freq_points, n_spin))
    2690         556 :       ALLOCATE (bs_env%fm_Sigma_c_R_pos_tau(nimages_scf, num_time_freq_points, n_spin))
    2691          60 :       DO img = 1, nimages_scf
    2692          54 :          CALL cp_fm_create(bs_env%fm_G_S(img), bs_env%fm_work_mo(1)%matrix_struct)
    2693          54 :          CALL cp_fm_create(bs_env%fm_Sigma_x_R(img), bs_env%fm_work_mo(1)%matrix_struct)
    2694         528 :          DO i_t = 1, num_time_freq_points
    2695         468 :             CALL cp_fm_create(bs_env%fm_chi_R_t(img, i_t), bs_env%fm_RI_RI%matrix_struct)
    2696         468 :             CALL cp_fm_create(bs_env%fm_MWM_R_t(img, i_t), bs_env%fm_RI_RI%matrix_struct)
    2697         468 :             CALL cp_fm_set_all(bs_env%fm_MWM_R_t(img, i_t), 0.0_dp)
    2698         990 :             DO i_spin = 1, n_spin
    2699             :                CALL cp_fm_create(bs_env%fm_Sigma_c_R_neg_tau(img, i_t, i_spin), &
    2700         468 :                                  bs_env%fm_work_mo(1)%matrix_struct)
    2701             :                CALL cp_fm_create(bs_env%fm_Sigma_c_R_pos_tau(img, i_t, i_spin), &
    2702         468 :                                  bs_env%fm_work_mo(1)%matrix_struct)
    2703         468 :                CALL cp_fm_set_all(bs_env%fm_Sigma_c_R_neg_tau(img, i_t, i_spin), 0.0_dp)
    2704         936 :                CALL cp_fm_set_all(bs_env%fm_Sigma_c_R_pos_tau(img, i_t, i_spin), 0.0_dp)
    2705             :             END DO
    2706             :          END DO
    2707             :       END DO
    2708             : 
    2709           6 :       CALL timestop(handle)
    2710             : 
    2711           6 :    END SUBROUTINE allocate_matrices_small_cell_full_kp
    2712             : 
    2713             : ! **************************************************************************************************
    2714             : !> \brief ...
    2715             : !> \param qs_env ...
    2716             : !> \param bs_env ...
    2717             : ! **************************************************************************************************
    2718           6 :    SUBROUTINE trafo_V_xc_R_to_kp(qs_env, bs_env)
    2719             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2720             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    2721             : 
    2722             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'trafo_V_xc_R_to_kp'
    2723             : 
    2724             :       INTEGER                                            :: handle, ikp, img, ispin, n_ao
    2725           6 :       INTEGER, DIMENSION(:, :, :), POINTER               :: cell_to_index_scf
    2726             :       TYPE(cp_cfm_type)                                  :: cfm_mo_coeff, cfm_tmp, cfm_V_xc
    2727             :       TYPE(cp_fm_type)                                   :: fm_V_xc_re
    2728           6 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: matrix_ks
    2729             :       TYPE(kpoint_type), POINTER                         :: kpoints_scf
    2730             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    2731           6 :          POINTER                                         :: sab_nl
    2732             : 
    2733           6 :       CALL timeset(routineN, handle)
    2734             : 
    2735           6 :       n_ao = bs_env%n_ao
    2736             : 
    2737           6 :       CALL get_qs_env(qs_env, matrix_ks_kp=matrix_ks, kpoints=kpoints_scf)
    2738             : 
    2739           6 :       NULLIFY (sab_nl)
    2740           6 :       CALL get_kpoint_info(kpoints_scf, sab_nl=sab_nl, cell_to_index=cell_to_index_scf)
    2741             : 
    2742           6 :       CALL cp_cfm_create(cfm_V_xc, bs_env%cfm_work_mo%matrix_struct)
    2743           6 :       CALL cp_cfm_create(cfm_mo_coeff, bs_env%cfm_work_mo%matrix_struct)
    2744           6 :       CALL cp_cfm_create(cfm_tmp, bs_env%cfm_work_mo%matrix_struct)
    2745           6 :       CALL cp_fm_create(fm_V_xc_re, bs_env%cfm_work_mo%matrix_struct)
    2746             : 
    2747         152 :       DO img = 1, bs_env%nimages_scf
    2748         298 :          DO ispin = 1, bs_env%n_spin
    2749             :             ! JW kind of hack because the format of matrix_ks remains dubious...
    2750         146 :             CALL dbcsr_set(matrix_ks(ispin, img)%matrix, 0.0_dp)
    2751         292 :             CALL copy_fm_to_dbcsr(bs_env%fm_V_xc_R(img, ispin), matrix_ks(ispin, img)%matrix)
    2752             :          END DO
    2753             :       END DO
    2754             : 
    2755          30 :       ALLOCATE (bs_env%v_xc_n(n_ao, bs_env%nkp_bs_and_DOS, bs_env%n_spin))
    2756             : 
    2757          12 :       DO ispin = 1, bs_env%n_spin
    2758         232 :          DO ikp = 1, bs_env%nkp_bs_and_DOS
    2759             : 
    2760             :             ! v^xc^R -> v^xc(k)  (matrix_ks stores v^xc^R, see SUBROUTINE compute_V_xc)
    2761             :             CALL rsmat_to_kp(matrix_ks, ispin, bs_env%kpoints_DOS%xkp(1:3, ikp), &
    2762         220 :                              cell_to_index_scf, sab_nl, bs_env, cfm_V_xc)
    2763             : 
    2764             :             ! get C_µn(k)
    2765         220 :             CALL cp_cfm_to_cfm(bs_env%cfm_mo_coeff_kp(ikp, ispin), cfm_mo_coeff)
    2766             : 
    2767             :             ! v^xc_nm(k_i) = sum_µν C^*_µn(k_i) v^xc_µν(k_i) C_νn(k_i)
    2768             :             CALL parallel_gemm('N', 'N', n_ao, n_ao, n_ao, z_one, cfm_V_xc, cfm_mo_coeff, &
    2769         220 :                                z_zero, cfm_tmp)
    2770             :             CALL parallel_gemm('C', 'N', n_ao, n_ao, n_ao, z_one, cfm_mo_coeff, cfm_tmp, &
    2771         220 :                                z_zero, cfm_V_xc)
    2772             : 
    2773             :             ! get v^xc_nn(k_i) which is a real quantity as v^xc is Hermitian
    2774         220 :             CALL cp_cfm_to_fm(cfm_V_xc, fm_V_xc_re)
    2775         226 :             CALL cp_fm_get_diag(fm_V_xc_re, bs_env%v_xc_n(:, ikp, ispin))
    2776             : 
    2777             :          END DO
    2778             : 
    2779             :       END DO
    2780             : 
    2781             :       ! just rebuild the overwritten KS matrix again
    2782           6 :       CALL qs_ks_build_kohn_sham_matrix(qs_env, calculate_forces=.FALSE., just_energy=.FALSE.)
    2783             : 
    2784           6 :       CALL cp_cfm_release(cfm_V_xc)
    2785           6 :       CALL cp_cfm_release(cfm_mo_coeff)
    2786           6 :       CALL cp_cfm_release(cfm_tmp)
    2787           6 :       CALL cp_fm_release(fm_V_xc_re)
    2788             : 
    2789           6 :       CALL timestop(handle)
    2790             : 
    2791          12 :    END SUBROUTINE trafo_V_xc_R_to_kp
    2792             : 
    2793             : ! **************************************************************************************************
    2794             : !> \brief ...
    2795             : !> \param qs_env ...
    2796             : !> \param bs_env ...
    2797             : ! **************************************************************************************************
    2798           6 :    SUBROUTINE heuristic_RI_regularization(qs_env, bs_env)
    2799             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2800             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    2801             : 
    2802             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'heuristic_RI_regularization'
    2803             : 
    2804           6 :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :)  :: M
    2805             :       INTEGER                                            :: handle, ikp, ikp_local, n_RI, nkp, &
    2806             :                                                             nkp_local, u
    2807             :       REAL(KIND=dp)                                      :: cond_nr, cond_nr_max, max_ev, &
    2808             :                                                             max_ev_ikp, min_ev, min_ev_ikp
    2809           6 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :)     :: M_R
    2810             : 
    2811           6 :       CALL timeset(routineN, handle)
    2812             : 
    2813             :       ! compute M^R_PQ = <phi_P,0|V^tr(rc)|phi_Q,R> for RI metric
    2814           6 :       CALL get_V_tr_R(M_R, bs_env%ri_metric, 0.0_dp, bs_env, qs_env)
    2815             : 
    2816           6 :       nkp = bs_env%nkp_chi_eps_W_orig_plus_extra
    2817           6 :       n_RI = bs_env%n_RI
    2818             : 
    2819           6 :       nkp_local = 0
    2820        3846 :       DO ikp = 1, nkp
    2821             :          ! trivial parallelization over k-points
    2822        3840 :          IF (MODULO(ikp, bs_env%para_env%num_pe) .NE. bs_env%para_env%mepos) CYCLE
    2823        3846 :          nkp_local = nkp_local + 1
    2824             :       END DO
    2825             : 
    2826          30 :       ALLOCATE (M(n_RI, n_RI, nkp_local))
    2827             : 
    2828           6 :       ikp_local = 0
    2829           6 :       cond_nr_max = 0.0_dp
    2830           6 :       min_ev = 1000.0_dp
    2831           6 :       max_ev = -1000.0_dp
    2832             : 
    2833        3846 :       DO ikp = 1, nkp
    2834             : 
    2835             :          ! trivial parallelization
    2836        3840 :          IF (MODULO(ikp, bs_env%para_env%num_pe) .NE. bs_env%para_env%mepos) CYCLE
    2837             : 
    2838        1920 :          ikp_local = ikp_local + 1
    2839             : 
    2840             :          ! M(k) = sum_R e^ikR M^R
    2841             :          CALL trafo_rs_to_ikp(M_R, M(:, :, ikp_local), &
    2842             :                               bs_env%kpoints_scf_desymm%index_to_cell, &
    2843        1920 :                               bs_env%kpoints_chi_eps_W%xkp(1:3, ikp))
    2844             : 
    2845             :          ! compute condition number of M_PQ(k)
    2846        1920 :          CALL power(M(:, :, ikp_local), 1.0_dp, 0.0_dp, cond_nr, min_ev_ikp, max_ev_ikp)
    2847             : 
    2848        1920 :          IF (cond_nr > cond_nr_max) cond_nr_max = cond_nr
    2849        1920 :          IF (max_ev_ikp > max_ev) max_ev = max_ev_ikp
    2850        1926 :          IF (min_ev_ikp < min_ev) min_ev = min_ev_ikp
    2851             : 
    2852             :       END DO ! ikp
    2853             : 
    2854           6 :       CALL bs_env%para_env%max(cond_nr_max)
    2855             : 
    2856           6 :       u = bs_env%unit_nr
    2857           6 :       IF (u > 0) THEN
    2858           3 :          WRITE (u, FMT="(T2,A,ES34.1)") "Min. abs. eigenvalue of RI metric matrix M(k)", min_ev
    2859           3 :          WRITE (u, FMT="(T2,A,ES34.1)") "Max. abs. eigenvalue of RI metric matrix M(k)", max_ev
    2860           3 :          WRITE (u, FMT="(T2,A,ES50.1)") "Max. condition number of M(k)", cond_nr_max
    2861             :       END IF
    2862             : 
    2863           6 :       CALL timestop(handle)
    2864             : 
    2865          12 :    END SUBROUTINE heuristic_RI_regularization
    2866             : 
    2867             : ! **************************************************************************************************
    2868             : !> \brief ...
    2869             : !> \param V_tr_R ...
    2870             : !> \param pot_type ...
    2871             : !> \param regularization_RI ...
    2872             : !> \param bs_env ...
    2873             : !> \param qs_env ...
    2874             : ! **************************************************************************************************
    2875          76 :    SUBROUTINE get_V_tr_R(V_tr_R, pot_type, regularization_RI, bs_env, qs_env)
    2876             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :)     :: V_tr_R
    2877             :       TYPE(libint_potential_type)                        :: pot_type
    2878             :       REAL(KIND=dp)                                      :: regularization_RI
    2879             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    2880             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2881             : 
    2882             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'get_V_tr_R'
    2883             : 
    2884             :       INTEGER                                            :: handle, img, nimages_scf_desymm
    2885             :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: sizes_RI
    2886          76 :       INTEGER, DIMENSION(:), POINTER                     :: col_bsize, row_bsize
    2887             :       TYPE(cp_blacs_env_type), POINTER                   :: blacs_env
    2888          76 :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: fm_V_tr_R
    2889             :       TYPE(dbcsr_distribution_type)                      :: dbcsr_dist
    2890          76 :       TYPE(dbcsr_type), ALLOCATABLE, DIMENSION(:)        :: mat_V_tr_R
    2891             :       TYPE(distribution_2d_type), POINTER                :: dist_2d
    2892             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    2893          76 :          POINTER                                         :: sab_RI
    2894          76 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    2895          76 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    2896             : 
    2897          76 :       CALL timeset(routineN, handle)
    2898             : 
    2899          76 :       NULLIFY (sab_RI, dist_2d)
    2900             : 
    2901             :       CALL get_qs_env(qs_env=qs_env, &
    2902             :                       blacs_env=blacs_env, &
    2903             :                       distribution_2d=dist_2d, &
    2904             :                       qs_kind_set=qs_kind_set, &
    2905          76 :                       particle_set=particle_set)
    2906             : 
    2907         228 :       ALLOCATE (sizes_RI(bs_env%n_atom))
    2908          76 :       CALL get_particle_set(particle_set, qs_kind_set, nsgf=sizes_RI, basis=bs_env%basis_set_RI)
    2909             :       CALL build_2c_neighbor_lists(sab_RI, bs_env%basis_set_RI, bs_env%basis_set_RI, &
    2910             :                                    pot_type, "2c_nl_RI", qs_env, sym_ij=.FALSE., &
    2911          76 :                                    dist_2d=dist_2d)
    2912          76 :       CALL cp_dbcsr_dist2d_to_dist(dist_2d, dbcsr_dist)
    2913         228 :       ALLOCATE (row_bsize(SIZE(sizes_RI)))
    2914         228 :       ALLOCATE (col_bsize(SIZE(sizes_RI)))
    2915         248 :       row_bsize(:) = sizes_RI
    2916         248 :       col_bsize(:) = sizes_RI
    2917             : 
    2918          76 :       nimages_scf_desymm = bs_env%nimages_scf_desymm
    2919         912 :       ALLOCATE (mat_V_tr_R(nimages_scf_desymm))
    2920             :       CALL dbcsr_create(mat_V_tr_R(1), "(RI|RI)", dbcsr_dist, dbcsr_type_no_symmetry, &
    2921          76 :                         row_bsize, col_bsize)
    2922          76 :       DEALLOCATE (row_bsize, col_bsize)
    2923             : 
    2924         684 :       DO img = 2, nimages_scf_desymm
    2925         684 :          CALL dbcsr_create(mat_V_tr_R(img), template=mat_V_tr_R(1))
    2926             :       END DO
    2927             : 
    2928             :       CALL build_2c_integrals(mat_V_tr_R, 0.0_dp, qs_env, sab_RI, bs_env%basis_set_RI, &
    2929             :                               bs_env%basis_set_RI, pot_type, do_kpoints=.TRUE., &
    2930             :                               ext_kpoints=bs_env%kpoints_scf_desymm, &
    2931          76 :                               regularization_RI=regularization_RI)
    2932             : 
    2933         912 :       ALLOCATE (fm_V_tr_R(nimages_scf_desymm))
    2934         760 :       DO img = 1, nimages_scf_desymm
    2935         684 :          CALL cp_fm_create(fm_V_tr_R(img), bs_env%fm_RI_RI%matrix_struct)
    2936         684 :          CALL copy_dbcsr_to_fm(mat_V_tr_R(img), fm_V_tr_R(img))
    2937         760 :          CALL dbcsr_release(mat_V_tr_R(img))
    2938             :       END DO
    2939             : 
    2940          76 :       IF (.NOT. ALLOCATED(V_tr_R)) THEN
    2941         380 :          ALLOCATE (V_tr_R(bs_env%n_RI, bs_env%n_RI, nimages_scf_desymm))
    2942             :       END IF
    2943             : 
    2944          76 :       CALL fm_to_local_array(fm_V_tr_R, V_tr_R)
    2945             : 
    2946          76 :       CALL cp_fm_release(fm_V_tr_R)
    2947          76 :       CALL dbcsr_distribution_release(dbcsr_dist)
    2948          76 :       CALL release_neighbor_list_sets(sab_RI)
    2949             : 
    2950          76 :       CALL timestop(handle)
    2951             : 
    2952         228 :    END SUBROUTINE get_V_tr_R
    2953             : 
    2954             : ! **************************************************************************************************
    2955             : !> \brief ...
    2956             : !> \param matrix ...
    2957             : !> \param exponent ...
    2958             : !> \param eps ...
    2959             : !> \param cond_nr ...
    2960             : !> \param min_ev ...
    2961             : !> \param max_ev ...
    2962             : ! **************************************************************************************************
    2963       39504 :    SUBROUTINE power(matrix, exponent, eps, cond_nr, min_ev, max_ev)
    2964             :       COMPLEX(KIND=dp), DIMENSION(:, :)                  :: matrix
    2965             :       REAL(KIND=dp)                                      :: exponent, eps
    2966             :       REAL(KIND=dp), OPTIONAL                            :: cond_nr, min_ev, max_ev
    2967             : 
    2968             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'power'
    2969             : 
    2970       39504 :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:, :)     :: eigenvectors
    2971       39504 :       COMPLEX(KIND=dp), DIMENSION(:), POINTER            :: work
    2972       39504 :       COMPLEX(KIND=dp), DIMENSION(:, :), POINTER         :: A
    2973             :       INTEGER                                            :: handle, i, info, liwork, lrwork, lwork, n
    2974       39504 :       INTEGER, DIMENSION(:), POINTER                     :: iwork
    2975             :       REAL(KIND=dp)                                      :: pos_eval
    2976       39504 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: eigenvalues
    2977       39504 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: rwork
    2978             : 
    2979       39504 :       CALL timeset(routineN, handle)
    2980             : 
    2981             :       ! code by Ole Schütt
    2982       39504 :       IF (SIZE(matrix, 1) /= SIZE(matrix, 2)) CPABORT("expected square matrix")
    2983             : 
    2984             :       ! make matrix perfectly Hermitian
    2985     2642832 :       matrix(:, :) = 0.5_dp*(matrix(:, :) + CONJG(TRANSPOSE(matrix(:, :))))
    2986             : 
    2987       39504 :       n = SIZE(matrix, 1)
    2988      316032 :       ALLOCATE (iwork(1), rwork(1), work(1), A(n, n), eigenvalues(n), eigenvectors(n, n))
    2989             : 
    2990     1341168 :       A(:, :) = matrix ! ZHEEVD will overwrite A
    2991             :       ! work space query
    2992       39504 :       lwork = -1
    2993       39504 :       lrwork = -1
    2994       39504 :       liwork = -1
    2995             : 
    2996             :       CALL ZHEEVD('V', 'U', n, A(1, 1), n, eigenvalues(1), &
    2997       39504 :                   work(1), lwork, rwork(1), lrwork, iwork(1), liwork, info)
    2998       39504 :       lwork = INT(REAL(work(1), dp))
    2999       39504 :       lrwork = INT(REAL(rwork(1), dp))
    3000       39504 :       liwork = iwork(1)
    3001             : 
    3002       39504 :       DEALLOCATE (iwork, rwork, work)
    3003      118512 :       ALLOCATE (iwork(liwork))
    3004     1194176 :       iwork(:) = 0
    3005      118512 :       ALLOCATE (rwork(lrwork))
    3006     3304032 :       rwork(:) = 0.0_dp
    3007      118512 :       ALLOCATE (work(lwork))
    3008     6878160 :       work(:) = CMPLX(0.0_dp, 0.0_dp, KIND=dp)
    3009             : 
    3010             :       CALL ZHEEVD('V', 'U', n, A(1, 1), n, eigenvalues(1), &
    3011       39504 :                   work(1), lwork, rwork(1), lrwork, iwork(1), liwork, info)
    3012             : 
    3013     1341168 :       eigenvectors(:, :) = A(:, :)
    3014             : 
    3015       39504 :       IF (info /= 0) CPABORT("diagonalization failed")
    3016             : 
    3017       63824 :       IF (PRESENT(cond_nr)) cond_nr = MAXVAL(ABS(eigenvalues))/MINVAL(ABS(eigenvalues))
    3018       51664 :       IF (PRESENT(min_ev)) min_ev = MINVAL(ABS(eigenvalues))
    3019       51664 :       IF (PRESENT(max_ev)) max_ev = MAXVAL(ABS(eigenvalues))
    3020             : 
    3021      246736 :       DO i = 1, n
    3022      207232 :          IF (eigenvalues(i) > eps) THEN
    3023      207232 :             pos_eval = (eigenvalues(i))**(0.5_dp*exponent)
    3024             :          ELSE
    3025             :             pos_eval = 0.0_dp
    3026             :          END IF
    3027     1341168 :          eigenvectors(:, i) = eigenvectors(:, i)*pos_eval
    3028             :       END DO
    3029             : 
    3030       39504 :       CALL ZGEMM("N", "C", n, n, n, z_one, eigenvectors, n, eigenvectors, n, z_zero, matrix, n)
    3031             : 
    3032       39504 :       DEALLOCATE (iwork, rwork, work, A, eigenvalues, eigenvectors)
    3033             : 
    3034       39504 :       CALL timestop(handle)
    3035             : 
    3036       39504 :    END SUBROUTINE power
    3037             : 
    3038             : ! **************************************************************************************************
    3039             : !> \brief ...
    3040             : !> \param bs_env ...
    3041             : !> \param Sigma_c_n_time ...
    3042             : !> \param Sigma_c_n_freq ...
    3043             : !> \param ispin ...
    3044             : ! **************************************************************************************************
    3045         276 :    SUBROUTINE time_to_freq(bs_env, Sigma_c_n_time, Sigma_c_n_freq, ispin)
    3046             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    3047             :       REAL(KIND=dp), DIMENSION(:, :, :)                  :: Sigma_c_n_time, Sigma_c_n_freq
    3048             :       INTEGER                                            :: ispin
    3049             : 
    3050             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'time_to_freq'
    3051             : 
    3052             :       INTEGER                                            :: handle, i_t, j_w, n_occ
    3053             :       REAL(KIND=dp)                                      :: freq_j, time_i, w_cos_ij, w_sin_ij
    3054         276 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :)        :: Sigma_c_n_cos_time, Sigma_c_n_sin_time
    3055             : 
    3056         276 :       CALL timeset(routineN, handle)
    3057             : 
    3058        1104 :       ALLOCATE (Sigma_c_n_cos_time(bs_env%n_ao, bs_env%num_time_freq_points))
    3059         828 :       ALLOCATE (Sigma_c_n_sin_time(bs_env%n_ao, bs_env%num_time_freq_points))
    3060             : 
    3061       27428 :       Sigma_c_n_cos_time(:, :) = 0.5_dp*(Sigma_c_n_time(:, :, 1) + Sigma_c_n_time(:, :, 2))
    3062       27428 :       Sigma_c_n_sin_time(:, :) = 0.5_dp*(Sigma_c_n_time(:, :, 1) - Sigma_c_n_time(:, :, 2))
    3063             : 
    3064       55132 :       Sigma_c_n_freq(:, :, :) = 0.0_dp
    3065             : 
    3066        2996 :       DO i_t = 1, bs_env%num_time_freq_points
    3067             : 
    3068       31636 :          DO j_w = 1, bs_env%num_time_freq_points
    3069             : 
    3070       28640 :             freq_j = bs_env%imag_freq_points(j_w)
    3071       28640 :             time_i = bs_env%imag_time_points(i_t)
    3072             :             ! integration weights for cosine and sine transform
    3073       28640 :             w_cos_ij = bs_env%weights_cos_t_to_w(j_w, i_t)*COS(freq_j*time_i)
    3074       28640 :             w_sin_ij = bs_env%weights_sin_t_to_w(j_w, i_t)*SIN(freq_j*time_i)
    3075             : 
    3076             :             ! 1. Re(Σ^c_nn(k_i,iω)) from cosine transform
    3077             :             Sigma_c_n_freq(:, j_w, 1) = Sigma_c_n_freq(:, j_w, 1) + &
    3078      262592 :                                         w_cos_ij*Sigma_c_n_cos_time(:, i_t)
    3079             : 
    3080             :             ! 2. Im(Σ^c_nn(k_i,iω)) from sine transform
    3081             :             Sigma_c_n_freq(:, j_w, 2) = Sigma_c_n_freq(:, j_w, 2) + &
    3082      265312 :                                         w_sin_ij*Sigma_c_n_sin_time(:, i_t)
    3083             : 
    3084             :          END DO
    3085             : 
    3086             :       END DO
    3087             : 
    3088             :       ! for occupied levels, we need the correlation self-energy for negative omega.
    3089             :       ! Therefore, weight_sin should be computed with -omega, which results in an
    3090             :       ! additional minus for the imaginary part:
    3091         276 :       n_occ = bs_env%n_occ(ispin)
    3092       12996 :       Sigma_c_n_freq(1:n_occ, :, 2) = -Sigma_c_n_freq(1:n_occ, :, 2)
    3093             : 
    3094         276 :       CALL timestop(handle)
    3095             : 
    3096         552 :    END SUBROUTINE time_to_freq
    3097             : 
    3098             : ! **************************************************************************************************
    3099             : !> \brief ...
    3100             : !> \param bs_env ...
    3101             : !> \param Sigma_c_ikp_n_freq ...
    3102             : !> \param Sigma_x_ikp_n ...
    3103             : !> \param V_xc_ikp_n ...
    3104             : !> \param eigenval_scf ...
    3105             : !> \param ikp ...
    3106             : !> \param ispin ...
    3107             : ! **************************************************************************************************
    3108         276 :    SUBROUTINE analyt_conti_and_print(bs_env, Sigma_c_ikp_n_freq, Sigma_x_ikp_n, V_xc_ikp_n, &
    3109         276 :                                      eigenval_scf, ikp, ispin)
    3110             : 
    3111             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    3112             :       REAL(KIND=dp), DIMENSION(:, :, :)                  :: Sigma_c_ikp_n_freq
    3113             :       REAL(KIND=dp), DIMENSION(:)                        :: Sigma_x_ikp_n, V_xc_ikp_n, eigenval_scf
    3114             :       INTEGER                                            :: ikp, ispin
    3115             : 
    3116             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'analyt_conti_and_print'
    3117             : 
    3118             :       CHARACTER(len=3)                                   :: occ_vir
    3119             :       CHARACTER(len=default_string_length)               :: fname
    3120             :       INTEGER                                            :: handle, i_mo, ikp_for_print, iunit, &
    3121             :                                                             n_mo, nkp
    3122             :       LOGICAL                                            :: is_bandstruc_kpoint, print_DOS_kpoints, &
    3123             :                                                             print_ikp
    3124             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: dummy, Sigma_c_ikp_n_qp
    3125             : 
    3126         276 :       CALL timeset(routineN, handle)
    3127             : 
    3128         276 :       n_mo = bs_env%n_ao
    3129        1104 :       ALLOCATE (dummy(n_mo), Sigma_c_ikp_n_qp(n_mo))
    3130        2948 :       Sigma_c_ikp_n_qp(:) = 0.0_dp
    3131             : 
    3132        2948 :       DO i_mo = 1, n_mo
    3133             : 
    3134             :          ! parallelization
    3135        2672 :          IF (MODULO(i_mo, bs_env%para_env%num_pe) /= bs_env%para_env%mepos) CYCLE
    3136             : 
    3137             :          CALL continuation_pade(Sigma_c_ikp_n_qp, &
    3138             :                                 bs_env%imag_freq_points_fit, dummy, dummy, &
    3139             :                                 Sigma_c_ikp_n_freq(:, 1:bs_env%num_freq_points_fit, 1)*z_one + &
    3140             :                                 Sigma_c_ikp_n_freq(:, 1:bs_env%num_freq_points_fit, 2)*gaussi, &
    3141             :                                 Sigma_x_ikp_n(:) - V_xc_ikp_n(:), &
    3142             :                                 eigenval_scf(:), eigenval_scf(:), &
    3143             :                                 bs_env%do_hedin_shift, &
    3144             :                                 i_mo, bs_env%n_occ(ispin), bs_env%n_vir(ispin), &
    3145             :                                 bs_env%nparam_pade, bs_env%num_freq_points_fit, &
    3146             :                                 ri_rpa_g0w0_crossing_newton, bs_env%n_occ(ispin), &
    3147       87412 :                                 0.0_dp, .TRUE., .FALSE., 1, e_fermi_ext=bs_env%e_fermi(ispin))
    3148             :       END DO
    3149             : 
    3150         276 :       CALL bs_env%para_env%sum(Sigma_c_ikp_n_qp)
    3151             : 
    3152         276 :       CALL correct_obvious_fitting_fails(Sigma_c_ikp_n_qp, ispin, bs_env)
    3153             : 
    3154             :       bs_env%eigenval_G0W0(:, ikp, ispin) = eigenval_scf(:) + &
    3155             :                                             Sigma_c_ikp_n_qp(:) + &
    3156             :                                             Sigma_x_ikp_n(:) - &
    3157        2948 :                                             V_xc_ikp_n(:)
    3158             : 
    3159        2948 :       bs_env%eigenval_HF(:, ikp, ispin) = eigenval_scf(:) + Sigma_x_ikp_n(:) - V_xc_ikp_n(:)
    3160             : 
    3161             :       ! only print eigenvalues of DOS k-points in case no bandstructure path has been given
    3162         276 :       print_DOS_kpoints = (bs_env%nkp_only_bs .LE. 0)
    3163             :       ! in kpoints_DOS, the last nkp_only_bs are bandstructure k-points
    3164         276 :       is_bandstruc_kpoint = (ikp > bs_env%nkp_only_DOS)
    3165         276 :       print_ikp = print_DOS_kpoints .OR. is_bandstruc_kpoint
    3166             : 
    3167         276 :       IF (bs_env%para_env%is_source() .AND. print_ikp) THEN
    3168             : 
    3169         106 :          IF (print_DOS_kpoints) THEN
    3170          44 :             nkp = bs_env%nkp_only_DOS
    3171          44 :             ikp_for_print = ikp
    3172             :          ELSE
    3173          62 :             nkp = bs_env%nkp_only_bs
    3174          62 :             ikp_for_print = ikp - bs_env%nkp_only_DOS
    3175             :          END IF
    3176             : 
    3177         106 :          fname = "bandstructure_SCF_and_G0W0"
    3178             : 
    3179         106 :          IF (ikp_for_print == 1) THEN
    3180             :             CALL open_file(TRIM(fname), unit_number=iunit, file_status="REPLACE", &
    3181          21 :                            file_action="WRITE")
    3182             :          ELSE
    3183             :             CALL open_file(TRIM(fname), unit_number=iunit, file_status="OLD", &
    3184          85 :                            file_action="WRITE", file_position="APPEND")
    3185             :          END IF
    3186             : 
    3187         106 :          WRITE (iunit, "(A)") " "
    3188         106 :          WRITE (iunit, "(A10,I7,A25,3F10.4)") "kpoint: ", ikp_for_print, "coordinate: ", &
    3189         212 :             bs_env%kpoints_DOS%xkp(:, ikp)
    3190         106 :          WRITE (iunit, "(A)") " "
    3191         106 :          WRITE (iunit, "(A5,A12,3A17,A16,A18)") "n", "k", "ϵ_nk^DFT (eV)", "Σ^c_nk (eV)", &
    3192         212 :             "Σ^x_nk (eV)", "v_nk^xc (eV)", "ϵ_nk^G0W0 (eV)"
    3193         106 :          WRITE (iunit, "(A)") " "
    3194             : 
    3195        1154 :          DO i_mo = 1, n_mo
    3196        1048 :             IF (i_mo .LE. bs_env%n_occ(ispin)) occ_vir = 'occ'
    3197        1048 :             IF (i_mo > bs_env%n_occ(ispin)) occ_vir = 'vir'
    3198        1048 :             WRITE (iunit, "(I5,3A,I5,4F16.3,F17.3)") i_mo, ' (', occ_vir, ') ', ikp_for_print, &
    3199        1048 :                eigenval_scf(i_mo)*evolt, &
    3200        1048 :                Sigma_c_ikp_n_qp(i_mo)*evolt, &
    3201        1048 :                Sigma_x_ikp_n(i_mo)*evolt, &
    3202        1048 :                V_xc_ikp_n(i_mo)*evolt, &
    3203        2202 :                bs_env%eigenval_G0W0(i_mo, ikp, ispin)*evolt
    3204             :          END DO
    3205             : 
    3206         106 :          WRITE (iunit, "(A)") " "
    3207             : 
    3208         106 :          CALL close_file(iunit)
    3209             : 
    3210             :       END IF
    3211             : 
    3212         276 :       CALL timestop(handle)
    3213             : 
    3214         552 :    END SUBROUTINE analyt_conti_and_print
    3215             : 
    3216             : ! **************************************************************************************************
    3217             : !> \brief ...
    3218             : !> \param Sigma_c_ikp_n_qp ...
    3219             : !> \param ispin ...
    3220             : !> \param bs_env ...
    3221             : ! **************************************************************************************************
    3222         276 :    SUBROUTINE correct_obvious_fitting_fails(Sigma_c_ikp_n_qp, ispin, bs_env)
    3223             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: Sigma_c_ikp_n_qp
    3224             :       INTEGER                                            :: ispin
    3225             :       TYPE(post_scf_bandstructure_type), POINTER         :: bs_env
    3226             : 
    3227             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'correct_obvious_fitting_fails'
    3228             : 
    3229             :       INTEGER                                            :: handle, homo, i_mo, j_mo, &
    3230             :                                                             n_levels_scissor, n_mo
    3231             :       LOGICAL                                            :: is_occ, is_vir
    3232             :       REAL(KIND=dp)                                      :: sum_Sigma_c
    3233             : 
    3234         276 :       CALL timeset(routineN, handle)
    3235             : 
    3236         276 :       n_mo = bs_env%n_ao
    3237         276 :       homo = bs_env%n_occ(ispin)
    3238             : 
    3239        2948 :       DO i_mo = 1, n_mo
    3240             : 
    3241             :          ! if |𝚺^c| > 13 eV, we use a scissors shift
    3242        2948 :          IF (ABS(Sigma_c_ikp_n_qp(i_mo)) > 13.0_dp/evolt) THEN
    3243             : 
    3244           0 :             is_occ = (i_mo .LE. homo)
    3245           0 :             is_vir = (i_mo > homo)
    3246             : 
    3247           0 :             n_levels_scissor = 0
    3248           0 :             sum_Sigma_c = 0.0_dp
    3249             : 
    3250             :             ! compute scissor
    3251           0 :             DO j_mo = 1, n_mo
    3252             : 
    3253             :                ! only compute scissor from other GW levels close in energy
    3254           0 :                IF (is_occ .AND. j_mo > homo) CYCLE
    3255           0 :                IF (is_vir .AND. j_mo .LE. homo) CYCLE
    3256           0 :                IF (ABS(i_mo - j_mo) > 10) CYCLE
    3257           0 :                IF (i_mo == j_mo) CYCLE
    3258             : 
    3259           0 :                n_levels_scissor = n_levels_scissor + 1
    3260           0 :                sum_Sigma_c = sum_Sigma_c + Sigma_c_ikp_n_qp(j_mo)
    3261             : 
    3262             :             END DO
    3263             : 
    3264             :             ! overwrite the self-energy with scissor shift
    3265           0 :             Sigma_c_ikp_n_qp(i_mo) = sum_Sigma_c/REAL(n_levels_scissor, KIND=dp)
    3266             : 
    3267             :          END IF
    3268             : 
    3269             :       END DO ! i_mo
    3270             : 
    3271         276 :       CALL timestop(handle)
    3272             : 
    3273         276 :    END SUBROUTINE correct_obvious_fitting_fails
    3274             : 
    3275             : END MODULE gw_utils

Generated by: LCOV version 1.15