LCOV - code coverage report
Current view: top level - src - hfx_ri.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:b4bd748) Lines: 1534 1834 83.6 %
Date: 2025-03-09 07:56:22 Functions: 16 22 72.7 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2025 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief RI-methods for HFX
      10             : ! **************************************************************************************************
      11             : 
      12             : MODULE hfx_ri
      13             : 
      14             :    USE OMP_LIB,                         ONLY: omp_get_num_threads,&
      15             :                                               omp_get_thread_num
      16             :    USE arnoldi_api,                     ONLY: arnoldi_extremal
      17             :    USE atomic_kind_types,               ONLY: atomic_kind_type,&
      18             :                                               get_atomic_kind_set
      19             :    USE basis_set_types,                 ONLY: gto_basis_set_p_type,&
      20             :                                               gto_basis_set_type
      21             :    USE cell_types,                      ONLY: cell_type
      22             :    USE cp_blacs_env,                    ONLY: cp_blacs_env_type
      23             :    USE cp_control_types,                ONLY: dft_control_type
      24             :    USE cp_dbcsr_api,                    ONLY: &
      25             :         dbcsr_add, dbcsr_complete_redistribute, dbcsr_copy, dbcsr_create, dbcsr_desymmetrize, &
      26             :         dbcsr_distribution_get, dbcsr_distribution_release, dbcsr_distribution_type, dbcsr_filter, &
      27             :         dbcsr_get_info, dbcsr_get_num_blocks, dbcsr_multiply, dbcsr_p_type, dbcsr_release, &
      28             :         dbcsr_scale, dbcsr_type, dbcsr_type_antisymmetric, dbcsr_type_no_symmetry, &
      29             :         dbcsr_type_symmetric
      30             :    USE cp_dbcsr_cholesky,               ONLY: cp_dbcsr_cholesky_decompose,&
      31             :                                               cp_dbcsr_cholesky_invert
      32             :    USE cp_dbcsr_contrib,                ONLY: dbcsr_add_on_diag,&
      33             :                                               dbcsr_dot,&
      34             :                                               dbcsr_frobenius_norm
      35             :    USE cp_dbcsr_diag,                   ONLY: cp_dbcsr_power
      36             :    USE cp_dbcsr_operations,             ONLY: copy_dbcsr_to_fm,&
      37             :                                               copy_fm_to_dbcsr,&
      38             :                                               cp_dbcsr_dist2d_to_dist,&
      39             :                                               dbcsr_deallocate_matrix_set
      40             :    USE cp_fm_struct,                    ONLY: cp_fm_struct_create,&
      41             :                                               cp_fm_struct_release,&
      42             :                                               cp_fm_struct_type
      43             :    USE cp_fm_types,                     ONLY: cp_fm_create,&
      44             :                                               cp_fm_release,&
      45             :                                               cp_fm_type,&
      46             :                                               cp_fm_write_unformatted
      47             :    USE cp_log_handling,                 ONLY: cp_get_default_logger,&
      48             :                                               cp_logger_type
      49             :    USE cp_output_handling,              ONLY: cp_p_file,&
      50             :                                               cp_print_key_finished_output,&
      51             :                                               cp_print_key_should_output,&
      52             :                                               cp_print_key_unit_nr
      53             :    USE dbt_api,                         ONLY: &
      54             :         dbt_batched_contract_finalize, dbt_batched_contract_init, dbt_clear, dbt_contract, &
      55             :         dbt_copy, dbt_copy_matrix_to_tensor, dbt_copy_tensor_to_matrix, dbt_create, &
      56             :         dbt_default_distvec, dbt_destroy, dbt_distribution_destroy, dbt_distribution_new, &
      57             :         dbt_distribution_type, dbt_filter, dbt_get_block, dbt_get_info, dbt_get_num_blocks_total, &
      58             :         dbt_iterator_blocks_left, dbt_iterator_next_block, dbt_iterator_start, dbt_iterator_stop, &
      59             :         dbt_iterator_type, dbt_mp_environ_pgrid, dbt_nd_mp_comm, dbt_pgrid_create, &
      60             :         dbt_pgrid_destroy, dbt_pgrid_type, dbt_put_block, dbt_reserve_blocks, dbt_scale, dbt_type
      61             :    USE distribution_2d_types,           ONLY: distribution_2d_type
      62             :    USE hfx_types,                       ONLY: alloc_containers,&
      63             :                                               block_ind_type,&
      64             :                                               dealloc_containers,&
      65             :                                               hfx_compression_type,&
      66             :                                               hfx_ri_init,&
      67             :                                               hfx_ri_release,&
      68             :                                               hfx_ri_type
      69             :    USE input_constants,                 ONLY: hfx_ri_do_2c_cholesky,&
      70             :                                               hfx_ri_do_2c_diag,&
      71             :                                               hfx_ri_do_2c_iter
      72             :    USE input_cp2k_hfx,                  ONLY: ri_mo,&
      73             :                                               ri_pmat
      74             :    USE input_section_types,             ONLY: section_vals_get_subs_vals,&
      75             :                                               section_vals_type,&
      76             :                                               section_vals_val_get
      77             :    USE iterate_matrix,                  ONLY: invert_hotelling,&
      78             :                                               matrix_sqrt_newton_schulz
      79             :    USE kinds,                           ONLY: default_string_length,&
      80             :                                               dp,&
      81             :                                               int_8
      82             :    USE machine,                         ONLY: m_walltime
      83             :    USE message_passing,                 ONLY: mp_cart_type,&
      84             :                                               mp_comm_type,&
      85             :                                               mp_para_env_type
      86             :    USE particle_methods,                ONLY: get_particle_set
      87             :    USE particle_types,                  ONLY: particle_type
      88             :    USE qs_environment_types,            ONLY: get_qs_env,&
      89             :                                               qs_environment_type
      90             :    USE qs_force_types,                  ONLY: qs_force_type
      91             :    USE qs_integral_utils,               ONLY: basis_set_list_setup
      92             :    USE qs_interactions,                 ONLY: init_interaction_radii_orb_basis
      93             :    USE qs_kind_types,                   ONLY: qs_kind_type
      94             :    USE qs_ks_types,                     ONLY: qs_ks_env_type
      95             :    USE qs_mo_types,                     ONLY: get_mo_set,&
      96             :                                               mo_set_type
      97             :    USE qs_neighbor_list_types,          ONLY: neighbor_list_set_p_type,&
      98             :                                               release_neighbor_list_sets
      99             :    USE qs_rho_types,                    ONLY: qs_rho_get,&
     100             :                                               qs_rho_type
     101             :    USE qs_tensors,                      ONLY: &
     102             :         build_2c_derivatives, build_2c_integrals, build_2c_neighbor_lists, build_3c_derivatives, &
     103             :         build_3c_integrals, build_3c_neighbor_lists, calc_2c_virial, calc_3c_virial, &
     104             :         compress_tensor, decompress_tensor, get_tensor_occupancy, neighbor_list_3c_destroy
     105             :    USE qs_tensors_types,                ONLY: create_2c_tensor,&
     106             :                                               create_3c_tensor,&
     107             :                                               create_tensor_batches,&
     108             :                                               distribution_3d_create,&
     109             :                                               distribution_3d_type,&
     110             :                                               neighbor_list_3c_type,&
     111             :                                               split_block_sizes
     112             :    USE util,                            ONLY: sort
     113             :    USE virial_types,                    ONLY: virial_type
     114             : #include "./base/base_uses.f90"
     115             : 
     116             : !$ USE OMP_LIB, ONLY: omp_get_num_threads
     117             : 
     118             :    IMPLICIT NONE
     119             :    PRIVATE
     120             : 
     121             :    PUBLIC :: hfx_ri_update_ks, hfx_ri_update_forces, get_force_from_3c_trace, get_2c_der_force, &
     122             :              get_idx_to_atom, print_ri_hfx, hfx_ri_pre_scf_calc_tensors, check_inverse
     123             : 
     124             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'hfx_ri'
     125             : CONTAINS
     126             : 
     127             : ! **************************************************************************************************
     128             : !> \brief Switches the RI_FLAVOR from MO to RHO or vice-versa
     129             : !> \param ri_data ...
     130             : !> \param qs_env ...
     131             : !> \note As a side product, the ri_data is mostly reinitialized and the integrals recomputed
     132             : ! **************************************************************************************************
     133          22 :    SUBROUTINE switch_ri_flavor(ri_data, qs_env)
     134             :       TYPE(hfx_ri_type), INTENT(INOUT)                   :: ri_data
     135             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     136             : 
     137             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'switch_ri_flavor'
     138             : 
     139             :       INTEGER                                            :: handle, n_mem, new_flavor
     140          22 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
     141             :       TYPE(dft_control_type), POINTER                    :: dft_control
     142             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     143          22 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     144          22 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     145             : 
     146          22 :       NULLIFY (qs_kind_set, particle_set, atomic_kind_set, para_env, dft_control)
     147             : 
     148          22 :       CALL timeset(routineN, handle)
     149             : 
     150             :       CALL get_qs_env(qs_env, para_env=para_env, dft_control=dft_control, atomic_kind_set=atomic_kind_set, &
     151          22 :                       particle_set=particle_set, qs_kind_set=qs_kind_set)
     152             : 
     153          22 :       CALL hfx_ri_release(ri_data, write_stats=.FALSE.)
     154             : 
     155          22 :       IF (ri_data%flavor == ri_pmat) THEN
     156             :          new_flavor = ri_mo
     157             :       ELSE
     158          12 :          new_flavor = ri_pmat
     159             :       END IF
     160          22 :       ri_data%flavor = new_flavor
     161             : 
     162          22 :       n_mem = ri_data%n_mem_input
     163          22 :       ri_data%n_mem_input = ri_data%n_mem_flavor_switch
     164          22 :       ri_data%n_mem_flavor_switch = n_mem
     165             : 
     166          22 :       CALL hfx_ri_init(ri_data, qs_kind_set, particle_set, atomic_kind_set, para_env)
     167             : 
     168             :       !Need to recalculate the integrals in the new flavor
     169             :       !TODO: should we backup the integrals and symmetrize/desymmetrize them instead of recomputing ?!?
     170             :       !      that only makes sense if actual integral calculation is not negligible
     171          22 :       IF (ri_data%flavor == ri_pmat) THEN
     172          12 :          CALL hfx_ri_pre_scf_Pmat(qs_env, ri_data)
     173             :       ELSE
     174          10 :          CALL hfx_ri_pre_scf_mo(qs_env, ri_data, dft_control%nspins)
     175             :       END IF
     176             : 
     177          22 :       IF (ri_data%unit_nr > 0) THEN
     178           0 :          IF (ri_data%flavor == ri_pmat) THEN
     179           0 :             WRITE (ri_data%unit_nr, '(T2,A)') "HFX_RI_INFO| temporarily switched to RI_FLAVOR RHO"
     180             :          ELSE
     181           0 :             WRITE (ri_data%unit_nr, '(T2,A)') "HFX_RI_INFO| temporarily switched to RI_FLAVOR MO"
     182             :          END IF
     183             :       END IF
     184             : 
     185          22 :       CALL timestop(handle)
     186             : 
     187          22 :    END SUBROUTINE switch_ri_flavor
     188             : 
     189             : ! **************************************************************************************************
     190             : !> \brief Pre-SCF steps in MO flavor of RI HFX
     191             : !>
     192             : !> Calculate 2-center & 3-center integrals (see hfx_ri_pre_scf_calc_tensors) and contract
     193             : !> K(P, S) = sum_R K_2(P, R)^{-1} K_1(R, S)^{1/2}
     194             : !> B(mu, lambda, R) = sum_P int_3c(mu, lambda, P) K(P, R)
     195             : !> \param qs_env ...
     196             : !> \param ri_data ...
     197             : !> \param nspins ...
     198             : ! **************************************************************************************************
     199          26 :    SUBROUTINE hfx_ri_pre_scf_mo(qs_env, ri_data, nspins)
     200             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     201             :       TYPE(hfx_ri_type), INTENT(INOUT)                   :: ri_data
     202             :       INTEGER, INTENT(IN)                                :: nspins
     203             : 
     204             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'hfx_ri_pre_scf_mo'
     205             : 
     206             :       INTEGER                                            :: handle, handle2, ispin, n_dependent, &
     207             :                                                             unit_nr, unit_nr_dbcsr
     208             :       REAL(KIND=dp)                                      :: threshold
     209             :       TYPE(cp_blacs_env_type), POINTER                   :: blacs_env
     210         156 :       TYPE(dbcsr_type), DIMENSION(1) :: dbcsr_work_1, dbcsr_work_2, t_2c_int_mat, t_2c_op_pot, &
     211         130 :          t_2c_op_pot_sqrt, t_2c_op_pot_sqrt_inv, t_2c_op_RI, t_2c_op_RI_inv
     212          26 :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:)          :: t_2c_int, t_2c_work
     213          26 :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:, :)       :: t_3c_int
     214             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     215             : 
     216          26 :       CALL timeset(routineN, handle)
     217             : 
     218          26 :       unit_nr_dbcsr = ri_data%unit_nr_dbcsr
     219          26 :       unit_nr = ri_data%unit_nr
     220             : 
     221          26 :       CALL get_qs_env(qs_env, para_env=para_env, blacs_env=blacs_env)
     222             : 
     223          26 :       CALL timeset(routineN//"_int", handle2)
     224             : 
     225         806 :       ALLOCATE (t_2c_int(1), t_2c_work(1), t_3c_int(1, 1))
     226          26 :       CALL hfx_ri_pre_scf_calc_tensors(qs_env, ri_data, t_2c_op_RI, t_2c_op_pot, t_3c_int)
     227             : 
     228          26 :       CALL timestop(handle2)
     229             : 
     230          26 :       CALL timeset(routineN//"_2c", handle2)
     231          26 :       IF (.NOT. ri_data%same_op) THEN
     232           4 :          SELECT CASE (ri_data%t2c_method)
     233             :          CASE (hfx_ri_do_2c_iter)
     234           0 :             CALL dbcsr_create(t_2c_op_RI_inv(1), template=t_2c_op_RI(1), matrix_type=dbcsr_type_no_symmetry)
     235           0 :             threshold = MAX(ri_data%filter_eps, 1.0e-12_dp)
     236           0 :             CALL invert_hotelling(t_2c_op_RI_inv(1), t_2c_op_RI(1), threshold=threshold, silent=.FALSE.)
     237             :          CASE (hfx_ri_do_2c_cholesky)
     238           4 :             CALL dbcsr_copy(t_2c_op_RI_inv(1), t_2c_op_RI(1))
     239           4 :             CALL cp_dbcsr_cholesky_decompose(t_2c_op_RI_inv(1), para_env=para_env, blacs_env=blacs_env)
     240           4 :             CALL cp_dbcsr_cholesky_invert(t_2c_op_RI_inv(1), para_env=para_env, blacs_env=blacs_env, uplo_to_full=.TRUE.)
     241             :          CASE (hfx_ri_do_2c_diag)
     242           0 :             CALL dbcsr_copy(t_2c_op_RI_inv(1), t_2c_op_RI(1))
     243             :             CALL cp_dbcsr_power(t_2c_op_RI_inv(1), -1.0_dp, ri_data%eps_eigval, n_dependent, &
     244           4 :                                 para_env, blacs_env, verbose=ri_data%unit_nr_dbcsr > 0)
     245             :          END SELECT
     246             : 
     247           4 :          IF (ri_data%check_2c_inv) THEN
     248           0 :             CALL check_inverse(t_2c_op_RI_inv(1), t_2c_op_RI(1), unit_nr=unit_nr)
     249             :          END IF
     250             : 
     251           4 :          CALL dbcsr_release(t_2c_op_RI(1))
     252             : 
     253           4 :          SELECT CASE (ri_data%t2c_method)
     254             :          CASE (hfx_ri_do_2c_iter)
     255           0 :             CALL dbcsr_create(t_2c_op_pot_sqrt(1), template=t_2c_op_pot(1), matrix_type=dbcsr_type_symmetric)
     256           0 :             CALL dbcsr_create(t_2c_op_pot_sqrt_inv(1), template=t_2c_op_pot(1), matrix_type=dbcsr_type_symmetric)
     257             :             CALL matrix_sqrt_newton_schulz(t_2c_op_pot_sqrt(1), t_2c_op_pot_sqrt_inv(1), t_2c_op_pot(1), &
     258             :                                            ri_data%filter_eps, ri_data%t2c_sqrt_order, ri_data%eps_lanczos, &
     259           0 :                                            ri_data%max_iter_lanczos)
     260             : 
     261           0 :             CALL dbcsr_release(t_2c_op_pot_sqrt_inv(1))
     262             :          CASE (hfx_ri_do_2c_diag, hfx_ri_do_2c_cholesky)
     263           4 :             CALL dbcsr_copy(t_2c_op_pot_sqrt(1), t_2c_op_pot(1))
     264             :             CALL cp_dbcsr_power(t_2c_op_pot_sqrt(1), 0.5_dp, ri_data%eps_eigval, n_dependent, &
     265           8 :                                 para_env, blacs_env, verbose=ri_data%unit_nr_dbcsr > 0)
     266             :          END SELECT
     267             : 
     268             :          !We need S^-1 and (P|Q) for the forces.
     269           4 :          CALL dbt_create(t_2c_op_RI_inv(1), t_2c_work(1))
     270           4 :          CALL dbt_copy_matrix_to_tensor(t_2c_op_RI_inv(1), t_2c_work(1))
     271           4 :          CALL dbt_copy(t_2c_work(1), ri_data%t_2c_inv(1, 1), move_data=.TRUE.)
     272           4 :          CALL dbt_destroy(t_2c_work(1))
     273           4 :          CALL dbt_filter(ri_data%t_2c_inv(1, 1), ri_data%filter_eps)
     274             : 
     275           4 :          CALL dbt_create(t_2c_op_pot(1), t_2c_work(1))
     276           4 :          CALL dbt_copy_matrix_to_tensor(t_2c_op_pot(1), t_2c_work(1))
     277           4 :          CALL dbt_copy(t_2c_work(1), ri_data%t_2c_pot(1, 1), move_data=.TRUE.)
     278           4 :          CALL dbt_destroy(t_2c_work(1))
     279           4 :          CALL dbt_filter(ri_data%t_2c_pot(1, 1), ri_data%filter_eps)
     280             : 
     281           4 :          IF (ri_data%check_2c_inv) THEN
     282           0 :             CALL check_sqrt(t_2c_op_pot(1), matrix_sqrt=t_2c_op_pot_sqrt(1), unit_nr=unit_nr)
     283             :          END IF
     284           4 :          CALL dbcsr_create(t_2c_int_mat(1), template=t_2c_op_pot(1), matrix_type=dbcsr_type_no_symmetry)
     285             :          CALL dbcsr_multiply("N", "N", 1.0_dp, t_2c_op_RI_inv(1), t_2c_op_pot_sqrt(1), &
     286           4 :                              0.0_dp, t_2c_int_mat(1), filter_eps=ri_data%filter_eps)
     287           4 :          CALL dbcsr_release(t_2c_op_RI_inv(1))
     288           4 :          CALL dbcsr_release(t_2c_op_pot_sqrt(1))
     289             :       ELSE
     290          22 :          SELECT CASE (ri_data%t2c_method)
     291             :          CASE (hfx_ri_do_2c_iter)
     292           0 :             CALL dbcsr_create(t_2c_int_mat(1), template=t_2c_op_pot(1), matrix_type=dbcsr_type_symmetric)
     293           0 :             CALL dbcsr_create(t_2c_op_pot_sqrt(1), template=t_2c_op_pot(1), matrix_type=dbcsr_type_symmetric)
     294             :             CALL matrix_sqrt_newton_schulz(t_2c_op_pot_sqrt(1), t_2c_int_mat(1), t_2c_op_pot(1), &
     295             :                                            ri_data%filter_eps, ri_data%t2c_sqrt_order, ri_data%eps_lanczos, &
     296           0 :                                            ri_data%max_iter_lanczos)
     297           0 :             CALL dbcsr_release(t_2c_op_pot_sqrt(1))
     298             :          CASE (hfx_ri_do_2c_diag, hfx_ri_do_2c_cholesky)
     299          22 :             CALL dbcsr_copy(t_2c_int_mat(1), t_2c_op_pot(1))
     300             :             CALL cp_dbcsr_power(t_2c_int_mat(1), -0.5_dp, ri_data%eps_eigval, n_dependent, &
     301          44 :                                 para_env, blacs_env, verbose=ri_data%unit_nr_dbcsr > 0)
     302             :          END SELECT
     303          22 :          IF (ri_data%check_2c_inv) THEN
     304           0 :             CALL check_sqrt(t_2c_op_pot(1), matrix_sqrt_inv=t_2c_int_mat(1), unit_nr=unit_nr)
     305             :          END IF
     306             : 
     307             :          !We need (P|Q)^-1 for the forces
     308          22 :          CALL dbcsr_copy(dbcsr_work_1(1), t_2c_int_mat(1))
     309          22 :          CALL dbcsr_create(dbcsr_work_2(1), template=t_2c_int_mat(1))
     310          22 :          CALL dbcsr_multiply("N", "N", 1.0_dp, dbcsr_work_1(1), t_2c_int_mat(1), 0.0_dp, dbcsr_work_2(1))
     311          22 :          CALL dbcsr_release(dbcsr_work_1(1))
     312          22 :          CALL dbt_create(dbcsr_work_2(1), t_2c_work(1))
     313          22 :          CALL dbt_copy_matrix_to_tensor(dbcsr_work_2(1), t_2c_work(1))
     314          22 :          CALL dbcsr_release(dbcsr_work_2(1))
     315          22 :          CALL dbt_copy(t_2c_work(1), ri_data%t_2c_inv(1, 1), move_data=.TRUE.)
     316          22 :          CALL dbt_destroy(t_2c_work(1))
     317          22 :          CALL dbt_filter(ri_data%t_2c_inv(1, 1), ri_data%filter_eps)
     318             :       END IF
     319             : 
     320          26 :       CALL dbcsr_release(t_2c_op_pot(1))
     321             : 
     322          26 :       CALL dbt_create(t_2c_int_mat(1), t_2c_int(1), name="(RI|RI)")
     323          26 :       CALL dbt_copy_matrix_to_tensor(t_2c_int_mat(1), t_2c_int(1))
     324          26 :       CALL dbcsr_release(t_2c_int_mat(1))
     325          58 :       DO ispin = 1, nspins
     326          58 :          CALL dbt_copy(t_2c_int(1), ri_data%t_2c_int(ispin, 1))
     327             :       END DO
     328          26 :       CALL dbt_destroy(t_2c_int(1))
     329          26 :       CALL timestop(handle2)
     330             : 
     331          26 :       CALL timeset(routineN//"_3c", handle2)
     332          26 :       CALL dbt_copy(t_3c_int(1, 1), ri_data%t_3c_int_ctr_1(1, 1), order=[2, 1, 3], move_data=.TRUE.)
     333          26 :       CALL dbt_filter(ri_data%t_3c_int_ctr_1(1, 1), ri_data%filter_eps)
     334          26 :       CALL dbt_copy(ri_data%t_3c_int_ctr_1(1, 1), ri_data%t_3c_int_ctr_2(1, 1))
     335          26 :       CALL dbt_destroy(t_3c_int(1, 1))
     336          26 :       CALL timestop(handle2)
     337             : 
     338          26 :       CALL timestop(handle)
     339             : 
     340         260 :    END SUBROUTINE
     341             : 
     342             : ! **************************************************************************************************
     343             : !> \brief ...
     344             : !> \param matrix_1 ...
     345             : !> \param matrix_2 ...
     346             : !> \param name ...
     347             : !> \param unit_nr ...
     348             : ! **************************************************************************************************
     349           0 :    SUBROUTINE check_inverse(matrix_1, matrix_2, name, unit_nr)
     350             :       TYPE(dbcsr_type), INTENT(INOUT)                    :: matrix_1, matrix_2
     351             :       CHARACTER(len=*), INTENT(IN), OPTIONAL             :: name
     352             :       INTEGER, INTENT(IN)                                :: unit_nr
     353             : 
     354             :       CHARACTER(len=default_string_length)               :: name_prv
     355             :       REAL(KIND=dp)                                      :: error, frob_matrix, frob_matrix_base
     356             :       TYPE(dbcsr_type)                                   :: matrix_tmp
     357             : 
     358           0 :       IF (PRESENT(name)) THEN
     359           0 :          name_prv = name
     360             :       ELSE
     361           0 :          CALL dbcsr_get_info(matrix_1, name=name_prv)
     362             :       END IF
     363             : 
     364           0 :       CALL dbcsr_create(matrix_tmp, template=matrix_1)
     365             :       CALL dbcsr_multiply("N", "N", 1.0_dp, matrix_1, matrix_2, &
     366           0 :                           0.0_dp, matrix_tmp)
     367           0 :       frob_matrix_base = dbcsr_frobenius_norm(matrix_tmp)
     368           0 :       CALL dbcsr_add_on_diag(matrix_tmp, -1.0_dp)
     369           0 :       frob_matrix = dbcsr_frobenius_norm(matrix_tmp)
     370           0 :       error = frob_matrix/frob_matrix_base
     371           0 :       IF (unit_nr > 0) THEN
     372             :          WRITE (UNIT=unit_nr, FMT="(T3,A,A,A,T73,ES8.1)") &
     373           0 :             "HFX_RI_INFO| Error for INV(", TRIM(name_prv), "):", error
     374             :       END IF
     375             : 
     376           0 :       CALL dbcsr_release(matrix_tmp)
     377           0 :    END SUBROUTINE
     378             : 
     379             : ! **************************************************************************************************
     380             : !> \brief ...
     381             : !> \param matrix ...
     382             : !> \param matrix_sqrt ...
     383             : !> \param matrix_sqrt_inv ...
     384             : !> \param name ...
     385             : !> \param unit_nr ...
     386             : ! **************************************************************************************************
     387           0 :    SUBROUTINE check_sqrt(matrix, matrix_sqrt, matrix_sqrt_inv, name, unit_nr)
     388             :       TYPE(dbcsr_type), INTENT(INOUT)                    :: matrix
     389             :       TYPE(dbcsr_type), INTENT(IN), OPTIONAL             :: matrix_sqrt, matrix_sqrt_inv
     390             :       CHARACTER(len=*), INTENT(IN), OPTIONAL             :: name
     391             :       INTEGER, INTENT(IN)                                :: unit_nr
     392             : 
     393             :       CHARACTER(len=default_string_length)               :: name_prv
     394             :       REAL(KIND=dp)                                      :: frob_matrix
     395             :       TYPE(dbcsr_type)                                   :: matrix_copy, matrix_tmp
     396             : 
     397           0 :       IF (PRESENT(name)) THEN
     398           0 :          name_prv = name
     399             :       ELSE
     400           0 :          CALL dbcsr_get_info(matrix, name=name_prv)
     401             :       END IF
     402           0 :       IF (PRESENT(matrix_sqrt)) THEN
     403           0 :          CALL dbcsr_create(matrix_tmp, template=matrix)
     404           0 :          CALL dbcsr_copy(matrix_copy, matrix_sqrt)
     405             :          CALL dbcsr_multiply("N", "N", 1.0_dp, matrix_sqrt, matrix_copy, &
     406           0 :                              0.0_dp, matrix_tmp)
     407           0 :          CALL dbcsr_add(matrix_tmp, matrix, 1.0_dp, -1.0_dp)
     408           0 :          frob_matrix = dbcsr_frobenius_norm(matrix_tmp)
     409           0 :          IF (unit_nr > 0) THEN
     410             :             WRITE (UNIT=unit_nr, FMT="(T3,A,A,A,T73,ES8.1)") &
     411           0 :                "HFX_RI_INFO| Error for SQRT(", TRIM(name_prv), "):", frob_matrix
     412             :          END IF
     413           0 :          CALL dbcsr_release(matrix_tmp)
     414           0 :          CALL dbcsr_release(matrix_copy)
     415             :       END IF
     416             : 
     417           0 :       IF (PRESENT(matrix_sqrt_inv)) THEN
     418           0 :          CALL dbcsr_create(matrix_tmp, template=matrix)
     419           0 :          CALL dbcsr_copy(matrix_copy, matrix_sqrt_inv)
     420             :          CALL dbcsr_multiply("N", "N", 1.0_dp, matrix_sqrt_inv, matrix_copy, &
     421           0 :                              0.0_dp, matrix_tmp)
     422           0 :          CALL check_inverse(matrix_tmp, matrix, name="SQRT("//TRIM(name_prv)//")", unit_nr=unit_nr)
     423           0 :          CALL dbcsr_release(matrix_tmp)
     424           0 :          CALL dbcsr_release(matrix_copy)
     425             :       END IF
     426             : 
     427           0 :    END SUBROUTINE
     428             : 
     429             : ! **************************************************************************************************
     430             : !> \brief Calculate 2-center and 3-center integrals
     431             : !>
     432             : !> 2c: K_1(P, R) = (P|v1|R) and K_2(P, R) = (P|v2|R)
     433             : !> 3c: int_3c(mu, lambda, P) = (mu lambda |v2| P)
     434             : !> v_1 is HF operator, v_2 is RI metric
     435             : !> \param qs_env ...
     436             : !> \param ri_data ...
     437             : !> \param t_2c_int_RI K_2(P, R) note: even with k-point, only need on central cell
     438             : !> \param t_2c_int_pot K_1(P, R)
     439             : !> \param t_3c_int int_3c(mu, lambda, P)
     440             : !> \param do_kpoints ...
     441             : !> \notes the integral tensor arrays are already allocated on entry
     442             : ! **************************************************************************************************
     443        4004 :    SUBROUTINE hfx_ri_pre_scf_calc_tensors(qs_env, ri_data, t_2c_int_RI, t_2c_int_pot, t_3c_int, do_kpoints)
     444             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     445             :       TYPE(hfx_ri_type), INTENT(INOUT)                   :: ri_data
     446             :       TYPE(dbcsr_type), DIMENSION(:), INTENT(OUT)        :: t_2c_int_RI, t_2c_int_pot
     447             :       TYPE(dbt_type), DIMENSION(:, :)                    :: t_3c_int
     448             :       LOGICAL, INTENT(IN), OPTIONAL                      :: do_kpoints
     449             : 
     450             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'hfx_ri_pre_scf_calc_tensors'
     451             : 
     452             :       CHARACTER                                          :: symm
     453             :       INTEGER                                            :: handle, i_img, i_mem, ibasis, j_img, &
     454             :                                                             n_mem, natom, nblks, nimg, nkind, &
     455             :                                                             nthreads
     456             :       INTEGER(int_8)                                     :: nze
     457         178 :       INTEGER, ALLOCATABLE, DIMENSION(:) :: dist_AO_1, dist_AO_2, dist_RI, dist_RI_ext, &
     458         356 :          ends_array_mc_block_int, ends_array_mc_int, sizes_AO, sizes_RI, sizes_RI_ext, &
     459         178 :          sizes_RI_ext_split, starts_array_mc_block_int, starts_array_mc_int
     460             :       INTEGER, DIMENSION(3)                              :: pcoord, pdims
     461         356 :       INTEGER, DIMENSION(:), POINTER                     :: col_bsize, row_bsize
     462             :       LOGICAL                                            :: converged, do_kpoints_prv
     463             :       REAL(dp)                                           :: max_ev, min_ev, occ, RI_range
     464         178 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
     465             :       TYPE(dbcsr_distribution_type)                      :: dbcsr_dist
     466        1246 :       TYPE(dbt_distribution_type)                        :: t_dist
     467         534 :       TYPE(dbt_pgrid_type)                               :: pgrid
     468        1246 :       TYPE(dbt_type)                                     :: t_3c_tmp
     469         178 :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:, :)       :: t_3c_int_batched
     470             :       TYPE(dft_control_type), POINTER                    :: dft_control
     471             :       TYPE(distribution_2d_type), POINTER                :: dist_2d
     472             :       TYPE(distribution_3d_type)                         :: dist_3d
     473             :       TYPE(gto_basis_set_p_type), ALLOCATABLE, &
     474         178 :          DIMENSION(:), TARGET                            :: basis_set_AO, basis_set_RI
     475             :       TYPE(gto_basis_set_type), POINTER                  :: orb_basis, ri_basis
     476         178 :       TYPE(mp_cart_type)                                 :: mp_comm_t3c
     477             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     478             :       TYPE(neighbor_list_3c_type)                        :: nl_3c
     479             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
     480         178 :          POINTER                                         :: nl_2c_pot, nl_2c_RI
     481         178 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     482         178 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     483             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
     484             : 
     485         178 :       CALL timeset(routineN, handle)
     486         178 :       NULLIFY (col_bsize, row_bsize, dist_2d, nl_2c_pot, nl_2c_RI, &
     487         178 :                particle_set, qs_kind_set, ks_env, para_env)
     488             : 
     489             :       CALL get_qs_env(qs_env, natom=natom, nkind=nkind, qs_kind_set=qs_kind_set, particle_set=particle_set, &
     490         178 :                       distribution_2d=dist_2d, ks_env=ks_env, dft_control=dft_control, para_env=para_env)
     491             : 
     492         178 :       RI_range = 0.0_dp
     493         178 :       do_kpoints_prv = .FALSE.
     494         178 :       IF (PRESENT(do_kpoints)) do_kpoints_prv = do_kpoints
     495         178 :       nimg = 1
     496         178 :       IF (do_kpoints_prv) THEN
     497          70 :          nimg = ri_data%nimg
     498          70 :          RI_range = ri_data%kp_RI_range
     499             :       END IF
     500             : 
     501         712 :       ALLOCATE (sizes_RI(natom), sizes_AO(natom))
     502        1332 :       ALLOCATE (basis_set_RI(nkind), basis_set_AO(nkind))
     503         178 :       CALL basis_set_list_setup(basis_set_RI, ri_data%ri_basis_type, qs_kind_set)
     504         178 :       CALL get_particle_set(particle_set, qs_kind_set, nsgf=sizes_RI, basis=basis_set_RI)
     505         178 :       CALL basis_set_list_setup(basis_set_AO, ri_data%orb_basis_type, qs_kind_set)
     506         178 :       CALL get_particle_set(particle_set, qs_kind_set, nsgf=sizes_AO, basis=basis_set_AO)
     507             : 
     508         488 :       DO ibasis = 1, SIZE(basis_set_AO)
     509         310 :          orb_basis => basis_set_AO(ibasis)%gto_basis_set
     510         310 :          ri_basis => basis_set_RI(ibasis)%gto_basis_set
     511             :          ! interaction radii should be based on eps_pgf_orb controlled in RI section
     512             :          ! (since hartree-fock needs very tight eps_pgf_orb for Kohn-Sham/Fock matrix but eps_pgf_orb
     513             :          ! can be much looser in RI HFX since no systematic error is introduced with tensor sparsity)
     514         310 :          CALL init_interaction_radii_orb_basis(orb_basis, ri_data%eps_pgf_orb)
     515         488 :          CALL init_interaction_radii_orb_basis(ri_basis, ri_data%eps_pgf_orb)
     516             :       END DO
     517             : 
     518         178 :       n_mem = ri_data%n_mem
     519             :       CALL create_tensor_batches(sizes_RI, n_mem, starts_array_mc_int, ends_array_mc_int, &
     520             :                                  starts_array_mc_block_int, ends_array_mc_block_int)
     521             : 
     522         178 :       DEALLOCATE (starts_array_mc_int, ends_array_mc_int)
     523             : 
     524             :       !We separate the K-points and standard 3c integrals, because handle quite differently
     525         178 :       IF (.NOT. do_kpoints_prv) THEN
     526             : 
     527         108 :          nthreads = 1
     528         108 : !$       nthreads = omp_get_num_threads()
     529         108 :          pdims = 0
     530         432 :          CALL dbt_pgrid_create(para_env, pdims, pgrid, tensor_dims=[MAX(1, natom/(n_mem*nthreads)), natom, natom])
     531             : 
     532         972 :          ALLOCATE (t_3c_int_batched(1, 1))
     533             :          CALL create_3c_tensor(t_3c_int_batched(1, 1), dist_RI, dist_AO_1, dist_AO_2, pgrid, &
     534             :                                sizes_RI, sizes_AO, sizes_AO, map1=[1], map2=[2, 3], &
     535         108 :                                name="(RI | AO AO)")
     536             : 
     537         108 :          CALL get_qs_env(qs_env, nkind=nkind, particle_set=particle_set, atomic_kind_set=atomic_kind_set)
     538         108 :          CALL dbt_mp_environ_pgrid(pgrid, pdims, pcoord)
     539         108 :          CALL mp_comm_t3c%create(pgrid%mp_comm_2d, 3, pdims)
     540             :          CALL distribution_3d_create(dist_3d, dist_RI, dist_AO_1, dist_AO_2, &
     541         108 :                                      nkind, particle_set, mp_comm_t3c, own_comm=.TRUE.)
     542         108 :          DEALLOCATE (dist_RI, dist_AO_1, dist_AO_2)
     543             : 
     544             :          CALL create_3c_tensor(t_3c_int(1, 1), dist_RI, dist_AO_1, dist_AO_2, ri_data%pgrid, &
     545             :                                ri_data%bsizes_RI_split, ri_data%bsizes_AO_split, ri_data%bsizes_AO_split, &
     546             :                                map1=[1], map2=[2, 3], &
     547         108 :                                name="O (RI AO | AO)")
     548             : 
     549             :          CALL build_3c_neighbor_lists(nl_3c, basis_set_RI, basis_set_AO, basis_set_AO, dist_3d, ri_data%ri_metric, &
     550         108 :                                       "HFX_3c_nl", qs_env, op_pos=1, sym_jk=.TRUE., own_dist=.TRUE.)
     551             : 
     552         424 :          DO i_mem = 1, n_mem
     553             :             CALL build_3c_integrals(t_3c_int_batched, ri_data%filter_eps/2, qs_env, nl_3c, &
     554             :                                     basis_set_RI, basis_set_AO, basis_set_AO, &
     555             :                                     ri_data%ri_metric, int_eps=ri_data%eps_schwarz, op_pos=1, &
     556             :                                     desymmetrize=.FALSE., &
     557         948 :                                     bounds_i=[starts_array_mc_block_int(i_mem), ends_array_mc_block_int(i_mem)])
     558         316 :             CALL dbt_copy(t_3c_int_batched(1, 1), t_3c_int(1, 1), summation=.TRUE., move_data=.TRUE.)
     559         424 :             CALL dbt_filter(t_3c_int(1, 1), ri_data%filter_eps/2)
     560             :          END DO
     561             : 
     562         108 :          CALL dbt_destroy(t_3c_int_batched(1, 1))
     563             : 
     564         108 :          CALL neighbor_list_3c_destroy(nl_3c)
     565             : 
     566         108 :          CALL dbt_create(t_3c_int(1, 1), t_3c_tmp)
     567             : 
     568         108 :          IF (ri_data%flavor == ri_pmat) THEN ! desymmetrize
     569             :             ! desymmetrize
     570          82 :             CALL dbt_copy(t_3c_int(1, 1), t_3c_tmp)
     571          82 :             CALL dbt_copy(t_3c_tmp, t_3c_int(1, 1), order=[1, 3, 2], summation=.TRUE., move_data=.TRUE.)
     572             : 
     573             :             ! For RI-RHO filter_eps_storage is reserved for screening tensor contracted with RI-metric
     574             :             ! with RI metric but not to bare integral tensor
     575          82 :             CALL dbt_filter(t_3c_int(1, 1), ri_data%filter_eps)
     576             :          ELSE
     577          26 :             CALL dbt_filter(t_3c_int(1, 1), ri_data%filter_eps_storage/2)
     578             :          END IF
     579             : 
     580         108 :          CALL dbt_destroy(t_3c_tmp)
     581             : 
     582             :       ELSE !do_kpoints
     583             : 
     584          70 :          nthreads = 1
     585          70 : !$       nthreads = omp_get_num_threads()
     586          70 :          pdims = 0
     587         280 :          CALL dbt_pgrid_create(para_env, pdims, pgrid, tensor_dims=[natom, natom, MAX(1, natom/(n_mem*nthreads))])
     588             : 
     589             :          !In k-points HFX, we stack all images along the RI direction in the same tensors, in order
     590             :          !to avoid storing nimg x ncell_RI different tensors (very memory intensive)
     591          70 :          nblks = SIZE(ri_data%bsizes_RI_split)
     592         350 :          ALLOCATE (sizes_RI_ext(natom*ri_data%ncell_RI), sizes_RI_ext_split(nblks*ri_data%ncell_RI))
     593         506 :          DO i_img = 1, ri_data%ncell_RI
     594        1308 :             sizes_RI_ext((i_img - 1)*natom + 1:i_img*natom) = sizes_RI(:)
     595        2344 :             sizes_RI_ext_split((i_img - 1)*nblks + 1:i_img*nblks) = ri_data%bsizes_RI_split(:)
     596             :          END DO
     597             : 
     598             :          CALL create_3c_tensor(t_3c_tmp, dist_AO_1, dist_AO_2, dist_RI, &
     599             :                                pgrid, sizes_AO, sizes_AO, sizes_RI, map1=[1, 2], map2=[3], &
     600          70 :                                name="(AO AO | RI)")
     601          70 :          CALL dbt_destroy(t_3c_tmp)
     602             : 
     603             :          !For the integrals to work, the distribution along the RI direction must be repeated
     604         210 :          ALLOCATE (dist_RI_ext(natom*ri_data%ncell_RI))
     605         506 :          DO i_img = 1, ri_data%ncell_RI
     606        1378 :             dist_RI_ext((i_img - 1)*natom + 1:i_img*natom) = dist_RI(:)
     607             :          END DO
     608             : 
     609        2416 :          ALLOCATE (t_3c_int_batched(nimg, 1))
     610          70 :          CALL dbt_distribution_new(t_dist, pgrid, dist_AO_1, dist_AO_2, dist_RI_ext)
     611             :          CALL dbt_create(t_3c_int_batched(1, 1), "KP_3c_ints", t_dist, [1, 2], [3], &
     612          70 :                          sizes_AO, sizes_AO, sizes_RI_ext)
     613        1716 :          DO i_img = 2, nimg
     614        1716 :             CALL dbt_create(t_3c_int_batched(1, 1), t_3c_int_batched(i_img, 1))
     615             :          END DO
     616          70 :          CALL dbt_distribution_destroy(t_dist)
     617             : 
     618          70 :          CALL get_qs_env(qs_env, nkind=nkind, particle_set=particle_set, atomic_kind_set=atomic_kind_set)
     619          70 :          CALL dbt_mp_environ_pgrid(pgrid, pdims, pcoord)
     620          70 :          CALL mp_comm_t3c%create(pgrid%mp_comm_2d, 3, pdims)
     621             :          CALL distribution_3d_create(dist_3d, dist_AO_1, dist_AO_2, dist_RI, &
     622          70 :                                      nkind, particle_set, mp_comm_t3c, own_comm=.TRUE.)
     623          70 :          DEALLOCATE (dist_RI, dist_AO_1, dist_AO_2)
     624             : 
     625             :          ! create 3c tensor for storage of ints
     626             :          CALL build_3c_neighbor_lists(nl_3c, basis_set_AO, basis_set_AO, basis_set_RI, dist_3d, ri_data%ri_metric, &
     627          70 :                                       "HFX_3c_nl", qs_env, op_pos=2, sym_ij=.FALSE., own_dist=.TRUE.)
     628             : 
     629             :          CALL create_3c_tensor(t_3c_int(1, 1), dist_RI, dist_AO_1, dist_AO_2, ri_data%pgrid, &
     630             :                                sizes_RI_ext_split, ri_data%bsizes_AO_split, ri_data%bsizes_AO_split, &
     631             :                                map1=[1], map2=[2, 3], &
     632          70 :                                name="O (RI AO | AO)")
     633        1716 :          DO j_img = 2, nimg
     634        1716 :             CALL dbt_create(t_3c_int(1, 1), t_3c_int(1, j_img))
     635             :          END DO
     636             : 
     637          70 :          CALL dbt_create(t_3c_int(1, 1), t_3c_tmp)
     638         192 :          DO i_mem = 1, n_mem
     639             :             CALL build_3c_integrals(t_3c_int_batched, ri_data%filter_eps, qs_env, nl_3c, &
     640             :                                     basis_set_AO, basis_set_AO, basis_set_RI, &
     641             :                                     ri_data%ri_metric, int_eps=ri_data%eps_schwarz, op_pos=2, &
     642             :                                     desymmetrize=.FALSE., do_kpoints=.TRUE., do_hfx_kpoints=.TRUE., &
     643             :                                     bounds_k=[starts_array_mc_block_int(i_mem), ends_array_mc_block_int(i_mem)], &
     644         366 :                                     RI_range=RI_range, img_to_RI_cell=ri_data%img_to_RI_cell)
     645             : 
     646        3440 :             DO i_img = 1, nimg
     647             :                !we start with (mu^0 sigma^i | P^j) and finish with (P^i | mu^0 sigma^j)
     648        3248 :                CALL get_tensor_occupancy(t_3c_int_batched(i_img, 1), nze, occ)
     649        3370 :                IF (nze > 0) THEN
     650        2154 :                   CALL dbt_copy(t_3c_int_batched(i_img, 1), t_3c_tmp, order=[3, 2, 1], move_data=.TRUE.)
     651        2154 :                   CALL dbt_filter(t_3c_tmp, ri_data%filter_eps)
     652             :                   CALL dbt_copy(t_3c_tmp, t_3c_int(1, i_img), order=[1, 3, 2], &
     653        2154 :                                 summation=.TRUE., move_data=.TRUE.)
     654             :                END IF
     655             :             END DO
     656             :          END DO
     657             : 
     658        1786 :          DO i_img = 1, nimg
     659        1786 :             CALL dbt_destroy(t_3c_int_batched(i_img, 1))
     660             :          END DO
     661        1786 :          DEALLOCATE (t_3c_int_batched)
     662          70 :          CALL neighbor_list_3c_destroy(nl_3c)
     663          70 :          CALL dbt_destroy(t_3c_tmp)
     664             :       END IF
     665         178 :       CALL dbt_pgrid_destroy(pgrid)
     666             : 
     667             :       CALL build_2c_neighbor_lists(nl_2c_pot, basis_set_RI, basis_set_RI, ri_data%hfx_pot, &
     668             :                                    "HFX_2c_nl_pot", qs_env, sym_ij=.NOT. do_kpoints_prv, &
     669         178 :                                    dist_2d=dist_2d)
     670             : 
     671         178 :       CALL cp_dbcsr_dist2d_to_dist(dist_2d, dbcsr_dist)
     672         534 :       ALLOCATE (row_bsize(SIZE(sizes_RI)))
     673         356 :       ALLOCATE (col_bsize(SIZE(sizes_RI)))
     674         676 :       row_bsize(:) = sizes_RI
     675         676 :       col_bsize(:) = sizes_RI
     676             : 
     677             :       !Use non-symmetric nl and matrices for k-points
     678         178 :       symm = dbcsr_type_symmetric
     679         178 :       IF (do_kpoints_prv) symm = dbcsr_type_no_symmetry
     680             : 
     681         178 :       CALL dbcsr_create(t_2c_int_pot(1), "(R|P) HFX", dbcsr_dist, symm, row_bsize, col_bsize)
     682        1824 :       DO i_img = 2, nimg
     683        1824 :          CALL dbcsr_create(t_2c_int_pot(i_img), template=t_2c_int_pot(1))
     684             :       END DO
     685             : 
     686         178 :       IF (.NOT. ri_data%same_op) THEN
     687          88 :          CALL dbcsr_create(t_2c_int_RI(1), "(R|P) HFX", dbcsr_dist, symm, row_bsize, col_bsize)
     688        1734 :          DO i_img = 2, nimg
     689        1734 :             CALL dbcsr_create(t_2c_int_RI(i_img), template=t_2c_int_RI(1))
     690             :          END DO
     691             :       END IF
     692         178 :       DEALLOCATE (col_bsize, row_bsize)
     693             : 
     694         178 :       CALL dbcsr_distribution_release(dbcsr_dist)
     695             : 
     696             :       CALL build_2c_integrals(t_2c_int_pot, ri_data%filter_eps_2c, qs_env, nl_2c_pot, basis_set_RI, basis_set_RI, &
     697         178 :                               ri_data%hfx_pot, do_kpoints=do_kpoints_prv, do_hfx_kpoints=do_kpoints_prv)
     698         178 :       CALL release_neighbor_list_sets(nl_2c_pot)
     699             : 
     700         178 :       IF (.NOT. ri_data%same_op) THEN
     701             :          CALL build_2c_neighbor_lists(nl_2c_RI, basis_set_RI, basis_set_RI, ri_data%ri_metric, &
     702             :                                       "HFX_2c_nl_RI", qs_env, sym_ij=.NOT. do_kpoints_prv, &
     703          88 :                                       dist_2d=dist_2d)
     704             : 
     705             :          CALL build_2c_integrals(t_2c_int_RI, ri_data%filter_eps_2c, qs_env, nl_2c_RI, basis_set_RI, basis_set_RI, &
     706          88 :                                  ri_data%ri_metric, do_kpoints=do_kpoints_prv, do_hfx_kpoints=do_kpoints_prv)
     707             : 
     708          88 :          CALL release_neighbor_list_sets(nl_2c_RI)
     709             :       END IF
     710             : 
     711         488 :       DO ibasis = 1, SIZE(basis_set_AO)
     712         310 :          orb_basis => basis_set_AO(ibasis)%gto_basis_set
     713         310 :          ri_basis => basis_set_RI(ibasis)%gto_basis_set
     714             :          ! reset interaction radii of orb basis
     715         310 :          CALL init_interaction_radii_orb_basis(orb_basis, dft_control%qs_control%eps_pgf_orb)
     716         488 :          CALL init_interaction_radii_orb_basis(ri_basis, dft_control%qs_control%eps_pgf_orb)
     717             :       END DO
     718             : 
     719         178 :       IF (ri_data%calc_condnum) THEN
     720             :          CALL arnoldi_extremal(t_2c_int_pot(1), max_ev, min_ev, threshold=ri_data%eps_lanczos, &
     721           4 :                                max_iter=ri_data%max_iter_lanczos, converged=converged)
     722             : 
     723           4 :          IF (.NOT. converged) THEN
     724           0 :             CPWARN("Not converged: unreliable condition number estimate of (P|Q) matrix (HFX potential).")
     725             :          END IF
     726             : 
     727           4 :          IF (ri_data%unit_nr > 0) THEN
     728           2 :             WRITE (ri_data%unit_nr, '(T2,A)') "2-Norm Condition Number of (P|Q) integrals (HFX potential)"
     729           2 :             IF (min_ev > 0) THEN
     730             :                WRITE (ri_data%unit_nr, '(T4,A,ES11.3E3,T32,A,ES11.3E3,A4,ES11.3E3,T63,A,F8.4)') &
     731           2 :                   "CN : max/min ev: ", max_ev, " / ", min_ev, "=", max_ev/min_ev, "Log(2-CN):", LOG10(max_ev/min_ev)
     732             :             ELSE
     733             :                WRITE (ri_data%unit_nr, '(T4,A,ES11.3E3,T32,A,ES11.3E3,T63,A)') &
     734           0 :                   "CN : max/min ev: ", max_ev, " / ", min_ev, "Log(CN): infinity"
     735             :             END IF
     736             :          END IF
     737             : 
     738           4 :          IF (.NOT. ri_data%same_op) THEN
     739             :             CALL arnoldi_extremal(t_2c_int_RI(1), max_ev, min_ev, threshold=ri_data%eps_lanczos, &
     740           2 :                                   max_iter=ri_data%max_iter_lanczos, converged=converged)
     741             : 
     742           2 :             IF (.NOT. converged) THEN
     743           0 :                CPWARN("Not converged: unreliable condition number estimate of (P|Q) matrix (RI metric).")
     744             :             END IF
     745             : 
     746           2 :             IF (ri_data%unit_nr > 0) THEN
     747           1 :                WRITE (ri_data%unit_nr, '(T2,A)') "2-Norm Condition Number of (P|Q) integrals (RI metric)"
     748           1 :                IF (min_ev > 0) THEN
     749             :                   WRITE (ri_data%unit_nr, '(T4,A,ES11.3E3,T32,A,ES11.3E3,A4,ES11.3E3,T63,A,F8.4)') &
     750           1 :                      "CN : max/min ev: ", max_ev, " / ", min_ev, "=", max_ev/min_ev, "Log(2-CN):", LOG10(max_ev/min_ev)
     751             :                ELSE
     752             :                   WRITE (ri_data%unit_nr, '(T4,A,ES11.3E3,T32,A,ES11.3E3,T63,A)') &
     753           0 :                      "CN : max/min ev: ", max_ev, " / ", min_ev, "Log(CN): infinity"
     754             :                END IF
     755             :             END IF
     756             :          END IF
     757             :       END IF
     758             : 
     759         178 :       CALL timestop(handle)
     760        1176 :    END SUBROUTINE
     761             : 
     762             : ! **************************************************************************************************
     763             : !> \brief Pre-SCF steps in rho flavor of RI HFX
     764             : !>
     765             : !> K(P, S) = sum_{R,Q} K_2(P, R)^{-1} K_1(R, Q) K_2(Q, S)^{-1}
     766             : !> Calculate B(mu, lambda, R) = sum_P int_3c(mu, lambda, P) K(P, R)
     767             : !> \param qs_env ...
     768             : !> \param ri_data ...
     769             : ! **************************************************************************************************
     770          82 :    SUBROUTINE hfx_ri_pre_scf_Pmat(qs_env, ri_data)
     771             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     772             :       TYPE(hfx_ri_type), INTENT(INOUT)                   :: ri_data
     773             : 
     774             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'hfx_ri_pre_scf_Pmat'
     775             : 
     776             :       INTEGER                                            :: handle, handle2, i_mem, j_mem, &
     777             :                                                             n_dependent, unit_nr, unit_nr_dbcsr
     778             :       INTEGER(int_8)                                     :: nflop, nze, nze_O
     779          82 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: batch_ranges_AO, batch_ranges_RI
     780             :       INTEGER, DIMENSION(2, 1)                           :: bounds_i
     781             :       INTEGER, DIMENSION(2, 2)                           :: bounds_j
     782             :       INTEGER, DIMENSION(3)                              :: dims_3c
     783             :       REAL(KIND=dp)                                      :: compression_factor, memory_3c, occ, &
     784             :                                                             threshold
     785             :       TYPE(cp_blacs_env_type), POINTER                   :: blacs_env
     786         328 :       TYPE(dbcsr_type), DIMENSION(1)                     :: t_2c_int_mat, t_2c_op_pot, t_2c_op_RI, &
     787         246 :                                                             t_2c_tmp, t_2c_tmp_2
     788         738 :       TYPE(dbt_type)                                     :: t_3c_2
     789         164 :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:)          :: t_2c_int, t_2c_work
     790          82 :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:, :)       :: t_3c_int_1
     791             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     792             : 
     793          82 :       CALL timeset(routineN, handle)
     794             : 
     795          82 :       unit_nr_dbcsr = ri_data%unit_nr_dbcsr
     796          82 :       unit_nr = ri_data%unit_nr
     797             : 
     798          82 :       CALL get_qs_env(qs_env, para_env=para_env, blacs_env=blacs_env)
     799             : 
     800          82 :       CALL timeset(routineN//"_int", handle2)
     801             : 
     802        2542 :       ALLOCATE (t_2c_int(1), t_2c_work(1), t_3c_int_1(1, 1))
     803          82 :       CALL hfx_ri_pre_scf_calc_tensors(qs_env, ri_data, t_2c_op_RI, t_2c_op_pot, t_3c_int_1)
     804             : 
     805          82 :       CALL dbt_copy(t_3c_int_1(1, 1), ri_data%t_3c_int_ctr_3(1, 1), order=[1, 2, 3], move_data=.TRUE.)
     806             : 
     807          82 :       CALL dbt_destroy(t_3c_int_1(1, 1))
     808             : 
     809          82 :       CALL timestop(handle2)
     810             : 
     811          82 :       CALL timeset(routineN//"_2c", handle2)
     812             : 
     813          82 :       IF (ri_data%same_op) t_2c_op_RI(1) = t_2c_op_pot(1)
     814          82 :       CALL dbcsr_create(t_2c_int_mat(1), template=t_2c_op_RI(1), matrix_type=dbcsr_type_no_symmetry)
     815          82 :       threshold = MAX(ri_data%filter_eps, 1.0e-12_dp)
     816             : 
     817          82 :       SELECT CASE (ri_data%t2c_method)
     818             :       CASE (hfx_ri_do_2c_iter)
     819             :          CALL invert_hotelling(t_2c_int_mat(1), t_2c_op_RI(1), &
     820           0 :                                threshold=threshold, silent=.FALSE.)
     821             :       CASE (hfx_ri_do_2c_cholesky)
     822          82 :          CALL dbcsr_copy(t_2c_int_mat(1), t_2c_op_RI(1))
     823          82 :          CALL cp_dbcsr_cholesky_decompose(t_2c_int_mat(1), para_env=para_env, blacs_env=blacs_env)
     824          82 :          CALL cp_dbcsr_cholesky_invert(t_2c_int_mat(1), para_env=para_env, blacs_env=blacs_env, uplo_to_full=.TRUE.)
     825             :       CASE (hfx_ri_do_2c_diag)
     826           0 :          CALL dbcsr_copy(t_2c_int_mat(1), t_2c_op_RI(1))
     827             :          CALL cp_dbcsr_power(t_2c_int_mat(1), -1.0_dp, ri_data%eps_eigval, n_dependent, &
     828          82 :                              para_env, blacs_env, verbose=ri_data%unit_nr_dbcsr > 0)
     829             :       END SELECT
     830             : 
     831          82 :       IF (ri_data%check_2c_inv) THEN
     832           0 :          CALL check_inverse(t_2c_int_mat(1), t_2c_op_RI(1), unit_nr=unit_nr)
     833             :       END IF
     834             : 
     835             :       !Need to save the (P|Q)^-1 tensor for forces (inverse metric if not same_op)
     836          82 :       CALL dbt_create(t_2c_int_mat(1), t_2c_work(1))
     837          82 :       CALL dbt_copy_matrix_to_tensor(t_2c_int_mat(1), t_2c_work(1))
     838          82 :       CALL dbt_copy(t_2c_work(1), ri_data%t_2c_inv(1, 1), move_data=.TRUE.)
     839          82 :       CALL dbt_destroy(t_2c_work(1))
     840          82 :       CALL dbt_filter(ri_data%t_2c_inv(1, 1), ri_data%filter_eps)
     841          82 :       IF (.NOT. ri_data%same_op) THEN
     842             :          !Also save the RI (P|Q) integral
     843          14 :          CALL dbt_create(t_2c_op_pot(1), t_2c_work(1))
     844          14 :          CALL dbt_copy_matrix_to_tensor(t_2c_op_pot(1), t_2c_work(1))
     845          14 :          CALL dbt_copy(t_2c_work(1), ri_data%t_2c_pot(1, 1), move_data=.TRUE.)
     846          14 :          CALL dbt_destroy(t_2c_work(1))
     847          14 :          CALL dbt_filter(ri_data%t_2c_pot(1, 1), ri_data%filter_eps)
     848             :       END IF
     849             : 
     850          82 :       IF (ri_data%same_op) THEN
     851          68 :          CALL dbcsr_release(t_2c_op_pot(1))
     852             :       ELSE
     853          14 :          CALL dbcsr_create(t_2c_tmp(1), template=t_2c_op_RI(1), matrix_type=dbcsr_type_no_symmetry)
     854          14 :          CALL dbcsr_create(t_2c_tmp_2(1), template=t_2c_op_RI(1), matrix_type=dbcsr_type_no_symmetry)
     855          14 :          CALL dbcsr_release(t_2c_op_RI(1))
     856             :          CALL dbcsr_multiply('N', 'N', 1.0_dp, t_2c_int_mat(1), t_2c_op_pot(1), 0.0_dp, t_2c_tmp(1), &
     857          14 :                              filter_eps=ri_data%filter_eps)
     858             : 
     859          14 :          CALL dbcsr_release(t_2c_op_pot(1))
     860             :          CALL dbcsr_multiply('N', 'N', 1.0_dp, t_2c_tmp(1), t_2c_int_mat(1), 0.0_dp, t_2c_tmp_2(1), &
     861          14 :                              filter_eps=ri_data%filter_eps)
     862          14 :          CALL dbcsr_release(t_2c_tmp(1))
     863          14 :          CALL dbcsr_release(t_2c_int_mat(1))
     864          14 :          t_2c_int_mat(1) = t_2c_tmp_2(1)
     865             :       END IF
     866             : 
     867          82 :       CALL dbt_create(t_2c_int_mat(1), t_2c_int(1), name="(RI|RI)")
     868          82 :       CALL dbt_copy_matrix_to_tensor(t_2c_int_mat(1), t_2c_int(1))
     869          82 :       CALL dbcsr_release(t_2c_int_mat(1))
     870          82 :       CALL dbt_copy(t_2c_int(1), ri_data%t_2c_int(1, 1), move_data=.TRUE.)
     871          82 :       CALL dbt_destroy(t_2c_int(1))
     872          82 :       CALL dbt_filter(ri_data%t_2c_int(1, 1), ri_data%filter_eps)
     873             : 
     874          82 :       CALL timestop(handle2)
     875             : 
     876          82 :       CALL dbt_create(ri_data%t_3c_int_ctr_3(1, 1), t_3c_2)
     877             : 
     878          82 :       CALL dbt_get_info(ri_data%t_3c_int_ctr_3(1, 1), nfull_total=dims_3c)
     879             : 
     880          82 :       memory_3c = 0.0_dp
     881          82 :       nze_O = 0
     882             : 
     883         246 :       ALLOCATE (batch_ranges_RI(ri_data%n_mem_RI + 1))
     884         246 :       ALLOCATE (batch_ranges_AO(ri_data%n_mem + 1))
     885         328 :       batch_ranges_RI(:ri_data%n_mem_RI) = ri_data%starts_array_RI_mem_block(:)
     886          82 :       batch_ranges_RI(ri_data%n_mem_RI + 1) = ri_data%ends_array_RI_mem_block(ri_data%n_mem_RI) + 1
     887         328 :       batch_ranges_AO(:ri_data%n_mem) = ri_data%starts_array_mem_block(:)
     888          82 :       batch_ranges_AO(ri_data%n_mem + 1) = ri_data%ends_array_mem_block(ri_data%n_mem) + 1
     889             : 
     890             :       CALL dbt_batched_contract_init(ri_data%t_3c_int_ctr_3(1, 1), batch_range_1=batch_ranges_RI, &
     891          82 :                                      batch_range_2=batch_ranges_AO)
     892             :       CALL dbt_batched_contract_init(t_3c_2, batch_range_1=batch_ranges_RI, &
     893          82 :                                      batch_range_2=batch_ranges_AO)
     894             : 
     895         328 :       DO i_mem = 1, ri_data%n_mem_RI
     896         738 :          bounds_i(:, 1) = [ri_data%starts_array_RI_mem(i_mem), ri_data%ends_array_RI_mem(i_mem)]
     897             : 
     898         246 :          CALL dbt_batched_contract_init(ri_data%t_2c_int(1, 1))
     899         984 :          DO j_mem = 1, ri_data%n_mem
     900        2214 :             bounds_j(:, 1) = [ri_data%starts_array_mem(j_mem), ri_data%ends_array_mem(j_mem)]
     901        2214 :             bounds_j(:, 2) = [1, dims_3c(3)]
     902         738 :             CALL timeset(routineN//"_RIx3C", handle2)
     903             :             CALL dbt_contract(1.0_dp, ri_data%t_2c_int(1, 1), ri_data%t_3c_int_ctr_3(1, 1), &
     904             :                               0.0_dp, t_3c_2, &
     905             :                               contract_1=[2], notcontract_1=[1], &
     906             :                               contract_2=[1], notcontract_2=[2, 3], &
     907             :                               map_1=[1], map_2=[2, 3], filter_eps=ri_data%filter_eps_storage, &
     908             :                               bounds_2=bounds_i, &
     909             :                               bounds_3=bounds_j, &
     910             :                               unit_nr=unit_nr_dbcsr, &
     911         738 :                               flop=nflop)
     912             : 
     913         738 :             ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
     914         738 :             CALL timestop(handle2)
     915             : 
     916         738 :             CALL timeset(routineN//"_copy_2", handle2)
     917         738 :             CALL dbt_copy(t_3c_2, ri_data%t_3c_int_ctr_1(1, 1), order=[2, 1, 3], move_data=.TRUE.)
     918             : 
     919         738 :             CALL get_tensor_occupancy(ri_data%t_3c_int_ctr_1(1, 1), nze, occ)
     920         738 :             nze_O = nze_O + nze
     921             : 
     922             :             CALL compress_tensor(ri_data%t_3c_int_ctr_1(1, 1), ri_data%blk_indices(j_mem, i_mem)%ind, &
     923         738 :                                  ri_data%store_3c(j_mem, i_mem), ri_data%filter_eps_storage, memory_3c)
     924             : 
     925        3198 :             CALL timestop(handle2)
     926             :          END DO
     927         328 :          CALL dbt_batched_contract_finalize(ri_data%t_2c_int(1, 1))
     928             :       END DO
     929          82 :       CALL dbt_batched_contract_finalize(t_3c_2)
     930          82 :       CALL dbt_batched_contract_finalize(ri_data%t_3c_int_ctr_3(1, 1))
     931             : 
     932          82 :       CALL para_env%sum(memory_3c)
     933          82 :       compression_factor = REAL(nze_O, dp)*1.0E-06*8.0_dp/memory_3c
     934             : 
     935          82 :       IF (unit_nr > 0) THEN
     936             :          WRITE (UNIT=unit_nr, FMT="((T3,A,T66,F11.2,A4))") &
     937          20 :             "MEMORY_INFO| Memory for 3-center HFX integrals (compressed):", memory_3c, ' MiB'
     938             : 
     939             :          WRITE (UNIT=unit_nr, FMT="((T3,A,T60,F21.2))") &
     940          20 :             "MEMORY_INFO| Compression factor:                  ", compression_factor
     941             :       END IF
     942             : 
     943          82 :       CALL dbt_clear(ri_data%t_2c_int(1, 1))
     944          82 :       CALL dbt_destroy(t_3c_2)
     945             : 
     946          82 :       CALL dbt_copy(ri_data%t_3c_int_ctr_3(1, 1), ri_data%t_3c_int_ctr_2(1, 1), order=[2, 1, 3], move_data=.TRUE.)
     947             : 
     948          82 :       CALL timestop(handle)
     949         738 :    END SUBROUTINE
     950             : 
     951             : ! **************************************************************************************************
     952             : !> \brief Sorts 2d indices w.r.t. rows and columns
     953             : !> \param blk_ind ...
     954             : ! **************************************************************************************************
     955           0 :    SUBROUTINE sort_unique_blkind_2d(blk_ind)
     956             :       INTEGER, ALLOCATABLE, DIMENSION(:, :), &
     957             :          INTENT(INOUT)                                   :: blk_ind
     958             : 
     959             :       INTEGER                                            :: end_ind, iblk, iblk_all, irow, nblk, &
     960             :                                                             ncols, start_ind
     961           0 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: ind_1, ind_2, sort_1, sort_2
     962           0 :       INTEGER, ALLOCATABLE, DIMENSION(:, :)              :: blk_ind_tmp
     963             : 
     964           0 :       nblk = SIZE(blk_ind, 1)
     965             : 
     966           0 :       ALLOCATE (sort_1(nblk))
     967           0 :       ALLOCATE (ind_1(nblk))
     968             : 
     969           0 :       sort_1(:) = blk_ind(:, 1)
     970           0 :       CALL sort(sort_1, nblk, ind_1)
     971             : 
     972           0 :       blk_ind(:, :) = blk_ind(ind_1, :)
     973             : 
     974           0 :       start_ind = 1
     975             : 
     976           0 :       DO WHILE (start_ind <= nblk)
     977           0 :          irow = blk_ind(start_ind, 1)
     978           0 :          end_ind = start_ind
     979             : 
     980           0 :          IF (end_ind + 1 <= nblk) THEN
     981           0 :          DO WHILE (blk_ind(end_ind + 1, 1) == irow)
     982           0 :             end_ind = end_ind + 1
     983           0 :             IF (end_ind + 1 > nblk) EXIT
     984             :          END DO
     985             :          END IF
     986             : 
     987           0 :          ncols = end_ind - start_ind + 1
     988           0 :          ALLOCATE (sort_2(ncols))
     989           0 :          ALLOCATE (ind_2(ncols))
     990           0 :          sort_2(:) = blk_ind(start_ind:end_ind, 2)
     991           0 :          CALL sort(sort_2, ncols, ind_2)
     992           0 :          ind_2 = ind_2 + start_ind - 1
     993             : 
     994           0 :          blk_ind(start_ind:end_ind, :) = blk_ind(ind_2, :)
     995           0 :          start_ind = end_ind + 1
     996             : 
     997           0 :          DEALLOCATE (sort_2, ind_2)
     998             :       END DO
     999             : 
    1000           0 :       ALLOCATE (blk_ind_tmp(nblk, 2))
    1001           0 :       blk_ind_tmp = 0
    1002             : 
    1003             :       iblk = 0
    1004           0 :       DO iblk_all = 1, nblk
    1005           0 :          IF (iblk >= 1) THEN
    1006           0 :             IF (ALL(blk_ind_tmp(iblk, :) == blk_ind(iblk_all, :))) THEN
    1007             :                CYCLE
    1008             :             END IF
    1009             :          END IF
    1010           0 :          iblk = iblk + 1
    1011           0 :          blk_ind_tmp(iblk, :) = blk_ind(iblk_all, :)
    1012             :       END DO
    1013           0 :       nblk = iblk
    1014             : 
    1015           0 :       DEALLOCATE (blk_ind)
    1016           0 :       ALLOCATE (blk_ind(nblk, 2))
    1017             : 
    1018           0 :       blk_ind(:, :) = blk_ind_tmp(:nblk, :)
    1019             : 
    1020           0 :    END SUBROUTINE
    1021             : 
    1022             : ! **************************************************************************************************
    1023             : !> \brief ...
    1024             : !> \param qs_env ...
    1025             : !> \param ri_data ...
    1026             : !> \param ks_matrix ...
    1027             : !> \param ehfx ...
    1028             : !> \param mos ...
    1029             : !> \param rho_ao ...
    1030             : !> \param geometry_did_change ...
    1031             : !> \param nspins ...
    1032             : !> \param hf_fraction ...
    1033             : ! **************************************************************************************************
    1034        1700 :    SUBROUTINE hfx_ri_update_ks(qs_env, ri_data, ks_matrix, ehfx, mos, rho_ao, &
    1035             :                                geometry_did_change, nspins, hf_fraction)
    1036             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1037             :       TYPE(hfx_ri_type), INTENT(INOUT)                   :: ri_data
    1038             :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: ks_matrix
    1039             :       REAL(KIND=dp), INTENT(OUT)                         :: ehfx
    1040             :       TYPE(mo_set_type), DIMENSION(:), INTENT(IN), &
    1041             :          OPTIONAL                                        :: mos
    1042             :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: rho_ao
    1043             :       LOGICAL, INTENT(IN)                                :: geometry_did_change
    1044             :       INTEGER, INTENT(IN)                                :: nspins
    1045             :       REAL(KIND=dp), INTENT(IN)                          :: hf_fraction
    1046             : 
    1047             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'hfx_ri_update_ks'
    1048             : 
    1049             :       CHARACTER(1)                                       :: mtype
    1050             :       INTEGER                                            :: handle, handle2, i, ispin, j
    1051             :       INTEGER(int_8)                                     :: nblks
    1052             :       INTEGER, DIMENSION(2)                              :: homo
    1053             :       LOGICAL                                            :: is_antisymmetric
    1054             :       REAL(dp)                                           :: etmp, fac
    1055        1700 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: mo_eigenvalues
    1056             :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
    1057        1700 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: my_ks_matrix, my_rho_ao
    1058        5100 :       TYPE(dbcsr_type), DIMENSION(2)                     :: mo_coeff_b
    1059             :       TYPE(dbcsr_type), POINTER                          :: mo_coeff_b_tmp
    1060             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    1061             : 
    1062        1700 :       CALL timeset(routineN, handle)
    1063             : 
    1064        1700 :       IF (nspins == 1) THEN
    1065        1336 :          fac = 0.5_dp*hf_fraction
    1066             :       ELSE
    1067         364 :          fac = 1.0_dp*hf_fraction
    1068             :       END IF
    1069             : 
    1070             :       !If incoming assymetric matrices, need to convert to normal
    1071        1700 :       NULLIFY (my_ks_matrix, my_rho_ao)
    1072        1700 :       CALL dbcsr_get_info(ks_matrix(1, 1)%matrix, matrix_type=mtype)
    1073        1700 :       is_antisymmetric = mtype == dbcsr_type_antisymmetric
    1074        1700 :       IF (is_antisymmetric) THEN
    1075         960 :          ALLOCATE (my_ks_matrix(SIZE(ks_matrix, 1), SIZE(ks_matrix, 2)))
    1076         960 :          ALLOCATE (my_rho_ao(SIZE(rho_ao, 1), SIZE(rho_ao, 2)))
    1077             : 
    1078         320 :          DO i = 1, SIZE(ks_matrix, 1)
    1079         480 :             DO j = 1, SIZE(ks_matrix, 2)
    1080         160 :                ALLOCATE (my_ks_matrix(i, j)%matrix, my_rho_ao(i, j)%matrix)
    1081             :                CALL dbcsr_create(my_ks_matrix(i, j)%matrix, template=ks_matrix(i, j)%matrix, &
    1082         160 :                                  matrix_type=dbcsr_type_no_symmetry)
    1083         160 :                CALL dbcsr_desymmetrize(ks_matrix(i, j)%matrix, my_ks_matrix(i, j)%matrix)
    1084             :                CALL dbcsr_create(my_rho_ao(i, j)%matrix, template=rho_ao(i, j)%matrix, &
    1085         160 :                                  matrix_type=dbcsr_type_no_symmetry)
    1086         320 :                CALL dbcsr_desymmetrize(rho_ao(i, j)%matrix, my_rho_ao(i, j)%matrix)
    1087             :             END DO
    1088             :          END DO
    1089             :       ELSE
    1090        1540 :          my_ks_matrix => ks_matrix
    1091        1540 :          my_rho_ao => rho_ao
    1092             :       END IF
    1093             : 
    1094             :       !Case analysis on RI_FLAVOR: we switch if the input flavor is MO, there is no provided MO, and
    1095             :       !                            the current flavor is not yet RHO. We switch back to MO if there are
    1096             :       !                            MOs available and the current flavor is actually RHO
    1097        1700 :       IF (ri_data%input_flavor == ri_mo .AND. (.NOT. PRESENT(mos)) .AND. ri_data%flavor == ri_mo) THEN
    1098          12 :          CALL switch_ri_flavor(ri_data, qs_env)
    1099        1688 :       ELSE IF (ri_data%input_flavor == ri_mo .AND. PRESENT(mos) .AND. ri_data%flavor == ri_pmat) THEN
    1100          10 :          CALL switch_ri_flavor(ri_data, qs_env)
    1101             :       END IF
    1102             : 
    1103        1928 :       SELECT CASE (ri_data%flavor)
    1104             :       CASE (ri_mo)
    1105         228 :          CPASSERT(PRESENT(mos))
    1106         228 :          CALL timeset(routineN//"_MO", handle2)
    1107             : 
    1108         550 :          DO ispin = 1, nspins
    1109         322 :             NULLIFY (mo_coeff_b_tmp)
    1110         322 :             CPASSERT(mos(ispin)%uniform_occupation)
    1111         322 :             CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, eigenvalues=mo_eigenvalues, mo_coeff_b=mo_coeff_b_tmp)
    1112             : 
    1113         322 :             IF (.NOT. mos(ispin)%use_mo_coeff_b) CALL copy_fm_to_dbcsr(mo_coeff, mo_coeff_b_tmp)
    1114         550 :             CALL dbcsr_copy(mo_coeff_b(ispin), mo_coeff_b_tmp)
    1115             :          END DO
    1116             : 
    1117         550 :          DO ispin = 1, nspins
    1118         322 :             CALL dbcsr_scale(mo_coeff_b(ispin), SQRT(mos(ispin)%maxocc))
    1119         550 :             homo(ispin) = mos(ispin)%homo
    1120             :          END DO
    1121             : 
    1122         228 :          CALL timestop(handle2)
    1123             : 
    1124             :          CALL hfx_ri_update_ks_mo(qs_env, ri_data, my_ks_matrix, mo_coeff_b, homo, &
    1125         228 :                                   geometry_did_change, nspins, fac)
    1126             :       CASE (ri_pmat)
    1127             : 
    1128        1472 :          NULLIFY (para_env)
    1129        1472 :          CALL get_qs_env(qs_env, para_env=para_env)
    1130        3214 :          DO ispin = 1, SIZE(my_rho_ao, 1)
    1131        1742 :             nblks = dbcsr_get_num_blocks(my_rho_ao(ispin, 1)%matrix)
    1132        1742 :             CALL para_env%sum(nblks)
    1133        3214 :             IF (nblks == 0) THEN
    1134           0 :                CPABORT("received empty density matrix")
    1135             :             END IF
    1136             :          END DO
    1137             : 
    1138             :          CALL hfx_ri_update_ks_pmat(qs_env, ri_data, my_ks_matrix, my_rho_ao, &
    1139        3400 :                                     geometry_did_change, nspins, fac)
    1140             : 
    1141             :       END SELECT
    1142             : 
    1143        3764 :       DO ispin = 1, nspins
    1144        3764 :          CALL dbcsr_release(mo_coeff_b(ispin))
    1145             :       END DO
    1146             : 
    1147        3764 :       DO ispin = 1, nspins
    1148        3764 :          CALL dbcsr_filter(my_ks_matrix(ispin, 1)%matrix, ri_data%filter_eps)
    1149             :       END DO
    1150             : 
    1151        1700 :       CALL timeset(routineN//"_energy", handle2)
    1152             :       ! Calculate the exchange energy
    1153        1700 :       ehfx = 0.0_dp
    1154        3764 :       DO ispin = 1, nspins
    1155             :          CALL dbcsr_dot(my_ks_matrix(ispin, 1)%matrix, my_rho_ao(ispin, 1)%matrix, &
    1156        2064 :                         etmp)
    1157        3764 :          ehfx = ehfx + 0.5_dp*etmp
    1158             : 
    1159             :       END DO
    1160        1700 :       CALL timestop(handle2)
    1161             : 
    1162             :       !Anti-symmetric case
    1163        1700 :       IF (is_antisymmetric) THEN
    1164         320 :          DO i = 1, SIZE(ks_matrix, 1)
    1165         480 :             DO j = 1, SIZE(ks_matrix, 2)
    1166         160 :                CALL dbcsr_complete_redistribute(my_ks_matrix(i, j)%matrix, ks_matrix(i, j)%matrix)
    1167         320 :                CALL dbcsr_complete_redistribute(my_rho_ao(i, j)%matrix, rho_ao(i, j)%matrix)
    1168             :             END DO
    1169             :          END DO
    1170         160 :          CALL dbcsr_deallocate_matrix_set(my_ks_matrix)
    1171         160 :          CALL dbcsr_deallocate_matrix_set(my_rho_ao)
    1172             :       END IF
    1173             : 
    1174        1700 :       CALL timestop(handle)
    1175        1700 :    END SUBROUTINE
    1176             : 
    1177             : ! **************************************************************************************************
    1178             : !> \brief Calculate Fock (AKA Kohn-Sham) matrix in MO flavor
    1179             : !>
    1180             : !> C(mu, i) (MO coefficients)
    1181             : !> M(mu, i, R) = sum_nu B(mu, nu, R) C(nu, i)
    1182             : !> KS(mu, lambda) = sum_{i,R} M(mu, i, R) M(lambda, i, R)
    1183             : !> \param qs_env ...
    1184             : !> \param ri_data ...
    1185             : !> \param ks_matrix ...
    1186             : !> \param mo_coeff C(mu, i)
    1187             : !> \param homo ...
    1188             : !> \param geometry_did_change ...
    1189             : !> \param nspins ...
    1190             : !> \param fac ...
    1191             : ! **************************************************************************************************
    1192         228 :    SUBROUTINE hfx_ri_update_ks_mo(qs_env, ri_data, ks_matrix, mo_coeff, &
    1193         228 :                                   homo, geometry_did_change, nspins, fac)
    1194             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1195             :       TYPE(hfx_ri_type), INTENT(INOUT)                   :: ri_data
    1196             :       TYPE(dbcsr_p_type), DIMENSION(:, :)                :: ks_matrix
    1197             :       TYPE(dbcsr_type), DIMENSION(:), INTENT(IN)         :: mo_coeff
    1198             :       INTEGER, DIMENSION(:)                              :: homo
    1199             :       LOGICAL, INTENT(IN)                                :: geometry_did_change
    1200             :       INTEGER, INTENT(IN)                                :: nspins
    1201             :       REAL(dp), INTENT(IN)                               :: fac
    1202             : 
    1203             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'hfx_ri_update_ks_mo'
    1204             : 
    1205             :       INTEGER                                            :: bsize, bsum, comm_2d_handle, handle, &
    1206             :                                                             handle2, i_mem, iblock, iproc, ispin, &
    1207             :                                                             n_mem, n_mos, nblock, unit_nr_dbcsr
    1208             :       INTEGER(int_8)                                     :: nblks, nflop
    1209         228 :       INTEGER, ALLOCATABLE, DIMENSION(:) :: batch_ranges_1, batch_ranges_2, dist1, dist2, dist3, &
    1210         228 :          mem_end, mem_end_block_1, mem_end_block_2, mem_size, mem_start, mem_start_block_1, &
    1211         228 :          mem_start_block_2, mo_bsizes_1, mo_bsizes_2
    1212         228 :       INTEGER, ALLOCATABLE, DIMENSION(:, :)              :: bounds
    1213             :       INTEGER, DIMENSION(2)                              :: pdims_2d
    1214             :       INTEGER, DIMENSION(3)                              :: pdims
    1215             :       LOGICAL                                            :: do_initialize
    1216             :       REAL(dp)                                           :: t1, t2
    1217             :       TYPE(dbcsr_distribution_type)                      :: ks_dist
    1218        1140 :       TYPE(dbt_pgrid_type)                               :: pgrid, pgrid_2d
    1219        5700 :       TYPE(dbt_type)                                     :: ks_t, ks_t_mat, mo_coeff_t, &
    1220        2052 :                                                             mo_coeff_t_split
    1221         228 :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:, :)       :: t_3c_int_mo_1, t_3c_int_mo_2
    1222             :       TYPE(mp_comm_type)                                 :: comm_2d
    1223             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    1224             : 
    1225         228 :       CALL timeset(routineN, handle)
    1226             : 
    1227         228 :       CPASSERT(SIZE(ks_matrix, 2) == 1)
    1228             : 
    1229         228 :       unit_nr_dbcsr = ri_data%unit_nr_dbcsr
    1230             : 
    1231         228 :       IF (geometry_did_change) THEN
    1232          16 :          CALL hfx_ri_pre_scf_mo(qs_env, ri_data, nspins)
    1233             :       END IF
    1234             : 
    1235         228 :       nblks = dbt_get_num_blocks_total(ri_data%t_3c_int_ctr_1(1, 1))
    1236         228 :       IF (nblks == 0) THEN
    1237           0 :          CPABORT("3-center integrals are not available (first call requires geometry_did_change=.TRUE.)")
    1238             :       END IF
    1239             : 
    1240         550 :       DO ispin = 1, nspins
    1241         322 :          nblks = dbt_get_num_blocks_total(ri_data%t_2c_int(ispin, 1))
    1242         550 :          IF (nblks == 0) THEN
    1243           0 :             CPABORT("2-center integrals are not available (first call requires geometry_did_change=.TRUE.)")
    1244             :          END IF
    1245             :       END DO
    1246             : 
    1247         228 :       IF (.NOT. ALLOCATED(ri_data%t_3c_int_mo)) THEN
    1248          18 :          do_initialize = .TRUE.
    1249          18 :          CPASSERT(.NOT. ALLOCATED(ri_data%t_3c_ctr_RI))
    1250          18 :          CPASSERT(.NOT. ALLOCATED(ri_data%t_3c_ctr_KS))
    1251          18 :          CPASSERT(.NOT. ALLOCATED(ri_data%t_3c_ctr_KS_copy))
    1252         256 :          ALLOCATE (ri_data%t_3c_int_mo(nspins, 1, 1))
    1253         238 :          ALLOCATE (ri_data%t_3c_ctr_RI(nspins, 1, 1))
    1254         238 :          ALLOCATE (ri_data%t_3c_ctr_KS(nspins, 1, 1))
    1255         238 :          ALLOCATE (ri_data%t_3c_ctr_KS_copy(nspins, 1, 1))
    1256             :       ELSE
    1257             :          do_initialize = .FALSE.
    1258             :       END IF
    1259             : 
    1260         228 :       CALL get_qs_env(qs_env, para_env=para_env)
    1261             : 
    1262         228 :       ALLOCATE (bounds(2, 1))
    1263             : 
    1264         228 :       CALL dbcsr_get_info(ks_matrix(1, 1)%matrix, distribution=ks_dist)
    1265         228 :       CALL dbcsr_distribution_get(ks_dist, group=comm_2d_handle, nprows=pdims_2d(1), npcols=pdims_2d(2))
    1266             : 
    1267         228 :       CALL comm_2d%set_handle(comm_2d_handle)
    1268         228 :       pgrid_2d = dbt_nd_mp_comm(comm_2d, [1], [2], pdims_2d=pdims_2d)
    1269             : 
    1270             :       CALL create_2c_tensor(ks_t, dist1, dist2, pgrid_2d, ri_data%bsizes_AO_fit, ri_data%bsizes_AO_fit, &
    1271         228 :                             name="(AO | AO)")
    1272             : 
    1273         228 :       DEALLOCATE (dist1, dist2)
    1274             : 
    1275         228 :       CALL para_env%sync()
    1276         228 :       t1 = m_walltime()
    1277             : 
    1278        5244 :       ALLOCATE (t_3c_int_mo_1(1, 1), t_3c_int_mo_2(1, 1))
    1279         550 :       DO ispin = 1, nspins
    1280             : 
    1281         322 :          CALL dbcsr_get_info(mo_coeff(ispin), nfullcols_total=n_mos)
    1282         966 :          ALLOCATE (mo_bsizes_2(n_mos))
    1283        2020 :          mo_bsizes_2 = 1
    1284             : 
    1285             :          CALL create_tensor_batches(mo_bsizes_2, ri_data%n_mem, mem_start, mem_end, &
    1286         322 :                                     mem_start_block_2, mem_end_block_2)
    1287         322 :          n_mem = ri_data%n_mem
    1288         966 :          ALLOCATE (mem_size(n_mem))
    1289             : 
    1290        1542 :          DO i_mem = 1, n_mem
    1291        2918 :             bsize = SUM(mo_bsizes_2(mem_start_block_2(i_mem):mem_end_block_2(i_mem)))
    1292        1542 :             mem_size(i_mem) = bsize
    1293             :          END DO
    1294             : 
    1295         322 :          CALL split_block_sizes(mem_size, mo_bsizes_1, ri_data%max_bsize_MO)
    1296         644 :          ALLOCATE (mem_start_block_1(n_mem))
    1297         644 :          ALLOCATE (mem_end_block_1(n_mem))
    1298         322 :          nblock = SIZE(mo_bsizes_1)
    1299         322 :          iblock = 0
    1300        1542 :          DO i_mem = 1, n_mem
    1301             :             bsum = 0
    1302         322 :             DO
    1303        1220 :                iblock = iblock + 1
    1304        1220 :                CPASSERT(iblock <= nblock)
    1305        1220 :                bsum = bsum + mo_bsizes_1(iblock)
    1306        1220 :                IF (bsum == mem_size(i_mem)) THEN
    1307        1220 :                   IF (i_mem == 1) THEN
    1308         322 :                      mem_start_block_1(i_mem) = 1
    1309             :                   ELSE
    1310         898 :                      mem_start_block_1(i_mem) = mem_end_block_1(i_mem - 1) + 1
    1311             :                   END IF
    1312        1220 :                   mem_end_block_1(i_mem) = iblock
    1313             :                   EXIT
    1314             :                END IF
    1315             :             END DO
    1316             :          END DO
    1317             : 
    1318         966 :          ALLOCATE (batch_ranges_1(ri_data%n_mem + 1))
    1319        1542 :          batch_ranges_1(:ri_data%n_mem) = mem_start_block_1(:)
    1320         322 :          batch_ranges_1(ri_data%n_mem + 1) = mem_end_block_1(ri_data%n_mem) + 1
    1321             : 
    1322         644 :          ALLOCATE (batch_ranges_2(ri_data%n_mem + 1))
    1323        1542 :          batch_ranges_2(:ri_data%n_mem) = mem_start_block_2(:)
    1324         322 :          batch_ranges_2(ri_data%n_mem + 1) = mem_end_block_2(ri_data%n_mem) + 1
    1325             : 
    1326         322 :          iproc = para_env%mepos
    1327             : 
    1328             :          CALL create_3c_tensor(t_3c_int_mo_1(1, 1), dist1, dist2, dist3, ri_data%pgrid_1, &
    1329             :                                ri_data%bsizes_AO_split, ri_data%bsizes_RI_split, mo_bsizes_1, &
    1330             :                                [1, 2], [3], &
    1331         322 :                                name="(AO RI | MO)")
    1332             : 
    1333         322 :          DEALLOCATE (dist1, dist2, dist3)
    1334             : 
    1335             :          CALL create_3c_tensor(t_3c_int_mo_2(1, 1), dist1, dist2, dist3, ri_data%pgrid_2, &
    1336             :                                mo_bsizes_1, ri_data%bsizes_RI_split, ri_data%bsizes_AO_split, &
    1337             :                                [1], [2, 3], &
    1338         322 :                                name="(MO | RI AO)")
    1339             : 
    1340         322 :          DEALLOCATE (dist1, dist2, dist3)
    1341             : 
    1342             :          CALL create_2c_tensor(mo_coeff_t_split, dist1, dist2, pgrid_2d, ri_data%bsizes_AO_split, mo_bsizes_1, &
    1343             :                                name="(AO | MO)")
    1344             : 
    1345         322 :          DEALLOCATE (dist1, dist2)
    1346             : 
    1347         322 :          CPASSERT(homo(ispin)/ri_data%n_mem > 0)
    1348             : 
    1349         322 :          IF (do_initialize) THEN
    1350          22 :             pdims(:) = 0
    1351             : 
    1352             :             CALL dbt_pgrid_create(para_env, pdims, pgrid, &
    1353             :                                   tensor_dims=[SIZE(ri_data%bsizes_RI_fit), &
    1354             :                                                (homo(ispin) - 1)/ri_data%n_mem + 1, &
    1355          88 :                                                SIZE(ri_data%bsizes_AO_fit)])
    1356             :             CALL create_3c_tensor(ri_data%t_3c_int_mo(ispin, 1, 1), dist1, dist2, dist3, pgrid, &
    1357             :                                   ri_data%bsizes_RI_fit, mo_bsizes_2, ri_data%bsizes_AO_fit, &
    1358             :                                   [1], [2, 3], &
    1359          22 :                                   name="(RI | MO AO)")
    1360             : 
    1361          22 :             DEALLOCATE (dist1, dist2, dist3)
    1362             : 
    1363             :             CALL create_3c_tensor(ri_data%t_3c_ctr_KS(ispin, 1, 1), dist1, dist2, dist3, pgrid, &
    1364             :                                   ri_data%bsizes_RI_fit, mo_bsizes_2, ri_data%bsizes_AO_fit, &
    1365             :                                   [1, 2], [3], &
    1366          22 :                                   name="(RI MO | AO)")
    1367          22 :             DEALLOCATE (dist1, dist2, dist3)
    1368          22 :             CALL dbt_pgrid_destroy(pgrid)
    1369             : 
    1370          22 :             CALL dbt_create(ri_data%t_3c_int_mo(ispin, 1, 1), ri_data%t_3c_ctr_RI(ispin, 1, 1), name="(RI | MO AO)")
    1371          22 :             CALL dbt_create(ri_data%t_3c_ctr_KS(ispin, 1, 1), ri_data%t_3c_ctr_KS_copy(ispin, 1, 1))
    1372             :          END IF
    1373             : 
    1374         322 :          CALL dbt_create(mo_coeff(ispin), mo_coeff_t, name="MO coeffs")
    1375         322 :          CALL dbt_copy_matrix_to_tensor(mo_coeff(ispin), mo_coeff_t)
    1376         322 :          CALL dbt_copy(mo_coeff_t, mo_coeff_t_split, move_data=.TRUE.)
    1377         322 :          CALL dbt_filter(mo_coeff_t_split, ri_data%filter_eps_mo)
    1378         322 :          CALL dbt_destroy(mo_coeff_t)
    1379             : 
    1380         322 :          CALL dbt_batched_contract_init(ks_t)
    1381         322 :          CALL dbt_batched_contract_init(ri_data%t_3c_ctr_KS(ispin, 1, 1), batch_range_2=batch_ranges_2)
    1382         322 :          CALL dbt_batched_contract_init(ri_data%t_3c_ctr_KS_copy(ispin, 1, 1), batch_range_2=batch_ranges_2)
    1383             : 
    1384         322 :          CALL dbt_batched_contract_init(ri_data%t_2c_int(ispin, 1))
    1385         322 :          CALL dbt_batched_contract_init(ri_data%t_3c_int_mo(ispin, 1, 1), batch_range_2=batch_ranges_2)
    1386         322 :          CALL dbt_batched_contract_init(ri_data%t_3c_ctr_RI(ispin, 1, 1), batch_range_2=batch_ranges_2)
    1387             : 
    1388        1542 :          DO i_mem = 1, n_mem
    1389             : 
    1390        3660 :             bounds(:, 1) = [mem_start(i_mem), mem_end(i_mem)]
    1391             : 
    1392        1220 :             CALL dbt_batched_contract_init(mo_coeff_t_split)
    1393        1220 :             CALL dbt_batched_contract_init(ri_data%t_3c_int_ctr_1(1, 1))
    1394             :             CALL dbt_batched_contract_init(t_3c_int_mo_1(1, 1), &
    1395        1220 :                                            batch_range_3=batch_ranges_1)
    1396        1220 :             CALL timeset(routineN//"_MOx3C_R", handle2)
    1397             :             CALL dbt_contract(1.0_dp, mo_coeff_t_split, ri_data%t_3c_int_ctr_1(1, 1), &
    1398             :                               0.0_dp, t_3c_int_mo_1(1, 1), &
    1399             :                               contract_1=[1], notcontract_1=[2], &
    1400             :                               contract_2=[3], notcontract_2=[1, 2], &
    1401             :                               map_1=[3], map_2=[1, 2], &
    1402             :                               bounds_2=bounds, &
    1403             :                               filter_eps=ri_data%filter_eps_mo/2, &
    1404             :                               unit_nr=unit_nr_dbcsr, &
    1405             :                               move_data=.FALSE., &
    1406        1220 :                               flop=nflop)
    1407             : 
    1408        1220 :             ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    1409             : 
    1410        1220 :             CALL timestop(handle2)
    1411        1220 :             CALL dbt_batched_contract_finalize(mo_coeff_t_split)
    1412        1220 :             CALL dbt_batched_contract_finalize(ri_data%t_3c_int_ctr_1(1, 1))
    1413        1220 :             CALL dbt_batched_contract_finalize(t_3c_int_mo_1(1, 1))
    1414             : 
    1415        1220 :             CALL timeset(routineN//"_copy_1", handle2)
    1416        1220 :             CALL dbt_copy(t_3c_int_mo_1(1, 1), ri_data%t_3c_int_mo(ispin, 1, 1), order=[3, 1, 2], move_data=.TRUE.)
    1417        1220 :             CALL timestop(handle2)
    1418             : 
    1419        1220 :             CALL dbt_batched_contract_init(mo_coeff_t_split)
    1420        1220 :             CALL dbt_batched_contract_init(ri_data%t_3c_int_ctr_2(1, 1))
    1421             :             CALL dbt_batched_contract_init(t_3c_int_mo_2(1, 1), &
    1422        1220 :                                            batch_range_1=batch_ranges_1)
    1423             : 
    1424        1220 :             CALL timeset(routineN//"_MOx3C_L", handle2)
    1425             :             CALL dbt_contract(1.0_dp, mo_coeff_t_split, ri_data%t_3c_int_ctr_2(1, 1), &
    1426             :                               0.0_dp, t_3c_int_mo_2(1, 1), &
    1427             :                               contract_1=[1], notcontract_1=[2], &
    1428             :                               contract_2=[1], notcontract_2=[2, 3], &
    1429             :                               map_1=[1], map_2=[2, 3], &
    1430             :                               bounds_2=bounds, &
    1431             :                               filter_eps=ri_data%filter_eps_mo/2, &
    1432             :                               unit_nr=unit_nr_dbcsr, &
    1433             :                               move_data=.FALSE., &
    1434        1220 :                               flop=nflop)
    1435             : 
    1436        1220 :             ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    1437             : 
    1438        1220 :             CALL timestop(handle2)
    1439             : 
    1440        1220 :             CALL dbt_batched_contract_finalize(mo_coeff_t_split)
    1441        1220 :             CALL dbt_batched_contract_finalize(ri_data%t_3c_int_ctr_2(1, 1))
    1442        1220 :             CALL dbt_batched_contract_finalize(t_3c_int_mo_2(1, 1))
    1443             : 
    1444        1220 :             CALL timeset(routineN//"_copy_1", handle2)
    1445             :             CALL dbt_copy(t_3c_int_mo_2(1, 1), ri_data%t_3c_int_mo(ispin, 1, 1), order=[2, 1, 3], &
    1446        1220 :                           summation=.TRUE., move_data=.TRUE.)
    1447             : 
    1448        1220 :             CALL dbt_filter(ri_data%t_3c_int_mo(ispin, 1, 1), ri_data%filter_eps_mo)
    1449        1220 :             CALL timestop(handle2)
    1450             : 
    1451        1220 :             CALL timeset(routineN//"_RIx3C", handle2)
    1452             : 
    1453             :             CALL dbt_contract(1.0_dp, ri_data%t_2c_int(ispin, 1), ri_data%t_3c_int_mo(ispin, 1, 1), &
    1454             :                               0.0_dp, ri_data%t_3c_ctr_RI(ispin, 1, 1), &
    1455             :                               contract_1=[1], notcontract_1=[2], &
    1456             :                               contract_2=[1], notcontract_2=[2, 3], &
    1457             :                               map_1=[1], map_2=[2, 3], filter_eps=ri_data%filter_eps, &
    1458             :                               unit_nr=unit_nr_dbcsr, &
    1459        1220 :                               flop=nflop)
    1460             : 
    1461        1220 :             ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    1462             : 
    1463        1220 :             CALL timestop(handle2)
    1464             : 
    1465        1220 :             CALL timeset(routineN//"_copy_2", handle2)
    1466             : 
    1467             :             ! note: this copy should not involve communication (same block sizes, same 3d distribution on same process grid)
    1468        1220 :             CALL dbt_copy(ri_data%t_3c_ctr_RI(ispin, 1, 1), ri_data%t_3c_ctr_KS(ispin, 1, 1), move_data=.TRUE.)
    1469        1220 :             CALL dbt_copy(ri_data%t_3c_ctr_KS(ispin, 1, 1), ri_data%t_3c_ctr_KS_copy(ispin, 1, 1))
    1470        1220 :             CALL timestop(handle2)
    1471             : 
    1472        1220 :             CALL timeset(routineN//"_3Cx3C", handle2)
    1473             :             CALL dbt_contract(-fac, ri_data%t_3c_ctr_KS(ispin, 1, 1), ri_data%t_3c_ctr_KS_copy(ispin, 1, 1), &
    1474             :                               1.0_dp, ks_t, &
    1475             :                               contract_1=[1, 2], notcontract_1=[3], &
    1476             :                               contract_2=[1, 2], notcontract_2=[3], &
    1477             :                               map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps/n_mem, &
    1478             :                               unit_nr=unit_nr_dbcsr, move_data=.TRUE., &
    1479        1220 :                               flop=nflop)
    1480             : 
    1481        1220 :             ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    1482             : 
    1483       10082 :             CALL timestop(handle2)
    1484             :          END DO
    1485             : 
    1486         322 :          CALL dbt_batched_contract_finalize(ks_t)
    1487         322 :          CALL dbt_batched_contract_finalize(ri_data%t_3c_ctr_KS(ispin, 1, 1))
    1488         322 :          CALL dbt_batched_contract_finalize(ri_data%t_3c_ctr_KS_copy(ispin, 1, 1))
    1489             : 
    1490         322 :          CALL dbt_batched_contract_finalize(ri_data%t_2c_int(ispin, 1))
    1491         322 :          CALL dbt_batched_contract_finalize(ri_data%t_3c_int_mo(ispin, 1, 1))
    1492         322 :          CALL dbt_batched_contract_finalize(ri_data%t_3c_ctr_RI(ispin, 1, 1))
    1493             : 
    1494         322 :          CALL dbt_destroy(t_3c_int_mo_1(1, 1))
    1495         322 :          CALL dbt_destroy(t_3c_int_mo_2(1, 1))
    1496         322 :          CALL dbt_clear(ri_data%t_3c_int_mo(ispin, 1, 1))
    1497             : 
    1498         322 :          CALL dbt_destroy(mo_coeff_t_split)
    1499             : 
    1500         322 :          CALL dbt_filter(ks_t, ri_data%filter_eps)
    1501             : 
    1502         322 :          CALL dbt_create(ks_matrix(ispin, 1)%matrix, ks_t_mat)
    1503         322 :          CALL dbt_copy(ks_t, ks_t_mat, move_data=.TRUE.)
    1504         322 :          CALL dbt_copy_tensor_to_matrix(ks_t_mat, ks_matrix(ispin, 1)%matrix, summation=.TRUE.)
    1505         322 :          CALL dbt_destroy(ks_t_mat)
    1506             : 
    1507           0 :          DEALLOCATE (mem_end, mem_start, mo_bsizes_2, mem_size, mem_start_block_1, mem_end_block_1, &
    1508        1838 :                      mem_start_block_2, mem_end_block_2, batch_ranges_1, batch_ranges_2)
    1509             : 
    1510             :       END DO
    1511             : 
    1512         228 :       CALL dbt_pgrid_destroy(pgrid_2d)
    1513         228 :       CALL dbt_destroy(ks_t)
    1514             : 
    1515         228 :       CALL para_env%sync()
    1516         228 :       t2 = m_walltime()
    1517             : 
    1518         228 :       ri_data%dbcsr_time = ri_data%dbcsr_time + t2 - t1
    1519             : 
    1520         228 :       CALL timestop(handle)
    1521             : 
    1522        2052 :    END SUBROUTINE
    1523             : 
    1524             : ! **************************************************************************************************
    1525             : !> \brief Calculate Fock (AKA Kohn-Sham) matrix in rho flavor
    1526             : !>
    1527             : !> M(mu, lambda, R) = sum_{nu} int_3c(mu, nu, R) P(nu, lambda)
    1528             : !> KS(mu, lambda) = sum_{nu,R} B(mu, nu, R) M(lambda, nu, R)
    1529             : !> \param qs_env ...
    1530             : !> \param ri_data ...
    1531             : !> \param ks_matrix ...
    1532             : !> \param rho_ao ...
    1533             : !> \param geometry_did_change ...
    1534             : !> \param nspins ...
    1535             : !> \param fac ...
    1536             : ! **************************************************************************************************
    1537        1472 :    SUBROUTINE hfx_ri_update_ks_Pmat(qs_env, ri_data, ks_matrix, rho_ao, &
    1538             :                                     geometry_did_change, nspins, fac)
    1539             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1540             :       TYPE(hfx_ri_type), INTENT(INOUT)                   :: ri_data
    1541             :       TYPE(dbcsr_p_type), DIMENSION(:, :)                :: ks_matrix, rho_ao
    1542             :       LOGICAL, INTENT(IN)                                :: geometry_did_change
    1543             :       INTEGER, INTENT(IN)                                :: nspins
    1544             :       REAL(dp), INTENT(IN)                               :: fac
    1545             : 
    1546             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'hfx_ri_update_ks_Pmat'
    1547             : 
    1548             :       INTEGER                                            :: handle, handle2, i_mem, ispin, j_mem, &
    1549             :                                                             n_mem, n_mem_RI, unit_nr, unit_nr_dbcsr
    1550             :       INTEGER(int_8)                                     :: flops_ks_max, flops_p_max, nblks, nflop, &
    1551             :                                                             nze, nze_3c, nze_3c_1, nze_3c_2, &
    1552             :                                                             nze_ks, nze_rho
    1553        1472 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: batch_ranges_AO, batch_ranges_RI, dist1, &
    1554        1472 :                                                             dist2
    1555             :       INTEGER, DIMENSION(2, 1)                           :: bounds_i
    1556             :       INTEGER, DIMENSION(2, 2)                           :: bounds_ij, bounds_j
    1557             :       INTEGER, DIMENSION(3)                              :: dims_3c
    1558             :       REAL(dp)                                           :: memory_3c, occ, occ_3c, occ_3c_1, &
    1559             :                                                             occ_3c_2, occ_ks, occ_rho, t1, t2, &
    1560             :                                                             unused
    1561       36800 :       TYPE(dbt_type)                                     :: ks_t, ks_tmp, rho_ao_tmp, t_3c_1, &
    1562       19136 :                                                             t_3c_3, tensor_old
    1563             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    1564             : 
    1565        1472 :       IF (.NOT. fac > EPSILON(0.0_dp)) RETURN
    1566             : 
    1567        1472 :       CALL timeset(routineN, handle)
    1568             : 
    1569        1472 :       NULLIFY (para_env)
    1570             : 
    1571             :       ! get a useful output_unit
    1572        1472 :       unit_nr_dbcsr = ri_data%unit_nr_dbcsr
    1573        1472 :       unit_nr = ri_data%unit_nr
    1574             : 
    1575        1472 :       CALL get_qs_env(qs_env, para_env=para_env)
    1576             : 
    1577        1472 :       CPASSERT(SIZE(ks_matrix, 2) == 1)
    1578             : 
    1579        1472 :       IF (geometry_did_change) THEN
    1580          70 :          CALL hfx_ri_pre_scf_Pmat(qs_env, ri_data)
    1581         160 :          DO ispin = 1, nspins
    1582          90 :             CALL dbt_scale(ri_data%rho_ao_t(ispin, 1), 0.0_dp)
    1583         160 :             CALL dbt_scale(ri_data%ks_t(ispin, 1), 0.0_dp)
    1584             :          END DO
    1585             :       END IF
    1586             : 
    1587        1472 :       nblks = dbt_get_num_blocks_total(ri_data%t_3c_int_ctr_2(1, 1))
    1588        1472 :       IF (nblks == 0) THEN
    1589           0 :          CPABORT("3-center integrals are not available (first call requires geometry_did_change=.TRUE.)")
    1590             :       END IF
    1591             : 
    1592        1472 :       n_mem = ri_data%n_mem
    1593        1472 :       n_mem_RI = ri_data%n_mem_RI
    1594             : 
    1595        1472 :       CALL dbt_create(ks_matrix(1, 1)%matrix, ks_tmp)
    1596        1472 :       CALL dbt_create(rho_ao(1, 1)%matrix, rho_ao_tmp)
    1597             : 
    1598             :       CALL create_2c_tensor(ks_t, dist1, dist2, ri_data%pgrid_2d, &
    1599             :                             ri_data%bsizes_AO_split, ri_data%bsizes_AO_split, &
    1600             :                             name="(AO | AO)")
    1601        1472 :       DEALLOCATE (dist1, dist2)
    1602             : 
    1603        1472 :       CALL dbt_create(ri_data%t_3c_int_ctr_2(1, 1), t_3c_1)
    1604        1472 :       CALL dbt_create(ri_data%t_3c_int_ctr_1(1, 1), t_3c_3)
    1605             : 
    1606        1472 :       CALL para_env%sync()
    1607        1472 :       t1 = m_walltime()
    1608             : 
    1609        1472 :       flops_ks_max = 0; flops_p_max = 0
    1610             : 
    1611        4416 :       ALLOCATE (batch_ranges_RI(ri_data%n_mem_RI + 1))
    1612        4416 :       ALLOCATE (batch_ranges_AO(ri_data%n_mem + 1))
    1613        5888 :       batch_ranges_RI(:ri_data%n_mem_RI) = ri_data%starts_array_RI_mem_block(:)
    1614        1472 :       batch_ranges_RI(ri_data%n_mem_RI + 1) = ri_data%ends_array_RI_mem_block(ri_data%n_mem_RI) + 1
    1615        5888 :       batch_ranges_AO(:ri_data%n_mem) = ri_data%starts_array_mem_block(:)
    1616        1472 :       batch_ranges_AO(ri_data%n_mem + 1) = ri_data%ends_array_mem_block(ri_data%n_mem) + 1
    1617             : 
    1618        1472 :       memory_3c = 0.0_dp
    1619        3214 :       DO ispin = 1, nspins
    1620             : 
    1621        1742 :          CALL get_tensor_occupancy(ri_data%t_3c_int_ctr_2(1, 1), nze_3c, occ_3c)
    1622             : 
    1623             :          nze_rho = 0
    1624             :          occ_rho = 0.0_dp
    1625        1742 :          nze_3c_1 = 0
    1626        1742 :          occ_3c_1 = 0.0_dp
    1627        1742 :          nze_3c_2 = 0
    1628        1742 :          occ_3c_2 = 0.0_dp
    1629             : 
    1630        1742 :          CALL dbt_copy_matrix_to_tensor(rho_ao(ispin, 1)%matrix, rho_ao_tmp)
    1631             : 
    1632             :          !We work with Delta P: the diff between previous SCF step and this one, for increased sparsity
    1633        1742 :          CALL dbt_scale(ri_data%rho_ao_t(ispin, 1), -1.0_dp)
    1634        1742 :          CALL dbt_copy(rho_ao_tmp, ri_data%rho_ao_t(ispin, 1), summation=.TRUE., move_data=.TRUE.)
    1635             : 
    1636        1742 :          CALL get_tensor_occupancy(ri_data%rho_ao_t(ispin, 1), nze_rho, occ_rho)
    1637             : 
    1638             :          CALL dbt_batched_contract_init(ri_data%t_3c_int_ctr_1(1, 1), batch_range_1=batch_ranges_AO, &
    1639        1742 :                                         batch_range_2=batch_ranges_RI)
    1640        1742 :          CALL dbt_batched_contract_init(t_3c_3, batch_range_1=batch_ranges_AO, batch_range_2=batch_ranges_RI)
    1641             : 
    1642        1742 :          CALL dbt_create(ri_data%t_3c_int_ctr_1(1, 1), tensor_old)
    1643             : 
    1644        6968 :          DO i_mem = 1, n_mem
    1645             : 
    1646        5226 :             CALL dbt_batched_contract_init(ri_data%rho_ao_t(ispin, 1))
    1647             :             CALL dbt_batched_contract_init(ri_data%t_3c_int_ctr_2(1, 1), batch_range_2=batch_ranges_RI, &
    1648        5226 :                                            batch_range_3=batch_ranges_AO)
    1649        5226 :             CALL dbt_batched_contract_init(t_3c_1, batch_range_2=batch_ranges_RI, batch_range_3=batch_ranges_AO)
    1650       20904 :             DO j_mem = 1, n_mem_RI
    1651             : 
    1652       15678 :                CALL timeset(routineN//"_Px3C", handle2)
    1653             : 
    1654       15678 :                CALL dbt_get_info(t_3c_1, nfull_total=dims_3c)
    1655       47034 :                bounds_i(:, 1) = [ri_data%starts_array_mem(i_mem), ri_data%ends_array_mem(i_mem)]
    1656       47034 :                bounds_j(:, 1) = [1, dims_3c(1)]
    1657       47034 :                bounds_j(:, 2) = [ri_data%starts_array_RI_mem(j_mem), ri_data%ends_array_RI_mem(j_mem)]
    1658             : 
    1659             :                CALL dbt_contract(1.0_dp, ri_data%rho_ao_t(ispin, 1), ri_data%t_3c_int_ctr_2(1, 1), &
    1660             :                                  0.0_dp, t_3c_1, &
    1661             :                                  contract_1=[2], notcontract_1=[1], &
    1662             :                                  contract_2=[3], notcontract_2=[1, 2], &
    1663             :                                  map_1=[3], map_2=[1, 2], filter_eps=ri_data%filter_eps, &
    1664             :                                  bounds_2=bounds_i, &
    1665             :                                  bounds_3=bounds_j, &
    1666             :                                  unit_nr=unit_nr_dbcsr, &
    1667       15678 :                                  flop=nflop)
    1668             : 
    1669       15678 :                CALL timestop(handle2)
    1670             : 
    1671       15678 :                ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    1672             : 
    1673       15678 :                CALL get_tensor_occupancy(t_3c_1, nze, occ)
    1674       15678 :                nze_3c_1 = nze_3c_1 + nze
    1675       15678 :                occ_3c_1 = occ_3c_1 + occ
    1676             : 
    1677       15678 :                CALL timeset(routineN//"_copy_2", handle2)
    1678       15678 :                CALL dbt_copy(t_3c_1, t_3c_3, order=[3, 2, 1], move_data=.TRUE.)
    1679       15678 :                CALL timestop(handle2)
    1680             : 
    1681       47034 :                bounds_ij(:, 1) = [ri_data%starts_array_mem(i_mem), ri_data%ends_array_mem(i_mem)]
    1682       47034 :                bounds_ij(:, 2) = [ri_data%starts_array_RI_mem(j_mem), ri_data%ends_array_RI_mem(j_mem)]
    1683             : 
    1684             :                CALL decompress_tensor(tensor_old, ri_data%blk_indices(i_mem, j_mem)%ind, &
    1685       15678 :                                       ri_data%store_3c(i_mem, j_mem), ri_data%filter_eps_storage)
    1686             : 
    1687       15678 :                CALL dbt_copy(tensor_old, ri_data%t_3c_int_ctr_1(1, 1), move_data=.TRUE.)
    1688             : 
    1689       15678 :                CALL get_tensor_occupancy(ri_data%t_3c_int_ctr_1(1, 1), nze, occ)
    1690       15678 :                nze_3c_2 = nze_3c_2 + nze
    1691       15678 :                occ_3c_2 = occ_3c_2 + occ
    1692       15678 :                CALL timeset(routineN//"_KS", handle2)
    1693       15678 :                CALL dbt_batched_contract_init(ks_t)
    1694             :                CALL dbt_contract(-fac, ri_data%t_3c_int_ctr_1(1, 1), t_3c_3, &
    1695             :                                  1.0_dp, ks_t, &
    1696             :                                  contract_1=[1, 2], notcontract_1=[3], &
    1697             :                                  contract_2=[1, 2], notcontract_2=[3], &
    1698             :                                  map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps/n_mem, &
    1699             :                                  bounds_1=bounds_ij, &
    1700             :                                  unit_nr=unit_nr_dbcsr, &
    1701       15678 :                                  flop=nflop, move_data=.TRUE.)
    1702             : 
    1703       15678 :                CALL dbt_batched_contract_finalize(ks_t, unit_nr=unit_nr_dbcsr)
    1704       15678 :                CALL timestop(handle2)
    1705             : 
    1706       67938 :                ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    1707             : 
    1708             :             END DO
    1709        5226 :             CALL dbt_batched_contract_finalize(ri_data%rho_ao_t(ispin, 1), unit_nr=unit_nr_dbcsr)
    1710        5226 :             CALL dbt_batched_contract_finalize(ri_data%t_3c_int_ctr_2(1, 1))
    1711        6968 :             CALL dbt_batched_contract_finalize(t_3c_1)
    1712             :          END DO
    1713        1742 :          CALL dbt_batched_contract_finalize(ri_data%t_3c_int_ctr_1(1, 1))
    1714        1742 :          CALL dbt_batched_contract_finalize(t_3c_3)
    1715             : 
    1716        6968 :          DO i_mem = 1, n_mem
    1717       22646 :             DO j_mem = 1, n_mem_RI
    1718        5226 :                ASSOCIATE (blk_indices => ri_data%blk_indices(i_mem, j_mem), t_3c => ri_data%t_3c_int_ctr_1(1, 1))
    1719             :                   CALL decompress_tensor(tensor_old, blk_indices%ind, &
    1720       15678 :                                          ri_data%store_3c(i_mem, j_mem), ri_data%filter_eps_storage)
    1721       15678 :                   CALL dbt_copy(tensor_old, t_3c, move_data=.TRUE.)
    1722             : 
    1723       15678 :                   unused = 0
    1724             :                   CALL compress_tensor(t_3c, blk_indices%ind, ri_data%store_3c(i_mem, j_mem), &
    1725       31356 :                                        ri_data%filter_eps_storage, unused)
    1726             :                END ASSOCIATE
    1727             :             END DO
    1728             :          END DO
    1729             : 
    1730        1742 :          CALL dbt_destroy(tensor_old)
    1731             : 
    1732        1742 :          CALL get_tensor_occupancy(ks_t, nze_ks, occ_ks)
    1733             : 
    1734             :          !rho_ao_t holds the density difference, and ks_t is built upon it => need the full picture
    1735        1742 :          CALL dbt_copy_matrix_to_tensor(rho_ao(ispin, 1)%matrix, rho_ao_tmp)
    1736        1742 :          CALL dbt_copy(rho_ao_tmp, ri_data%rho_ao_t(ispin, 1), move_data=.TRUE.)
    1737        1742 :          CALL dbt_copy(ks_t, ri_data%ks_t(ispin, 1), summation=.TRUE., move_data=.TRUE.)
    1738             : 
    1739        1742 :          CALL dbt_copy(ri_data%ks_t(ispin, 1), ks_tmp)
    1740        1742 :          CALL dbt_copy_tensor_to_matrix(ks_tmp, ks_matrix(ispin, 1)%matrix, summation=.TRUE.)
    1741        1742 :          CALL dbt_clear(ks_tmp)
    1742             : 
    1743        8440 :          IF (unit_nr > 0 .AND. geometry_did_change) THEN
    1744             :             WRITE (unit_nr, '(T6,A,T63,ES7.1,1X,A1,1X,F7.3,A1)') &
    1745          28 :                'Occupancy of density matrix P:', REAL(nze_rho, dp), '/', occ_rho*100, '%'
    1746             :             WRITE (unit_nr, '(T6,A,T63,ES7.1,1X,A1,1X,F7.3,A1)') &
    1747          28 :                'Occupancy of 3c ints:', REAL(nze_3c, dp), '/', occ_3c*100, '%'
    1748             :             WRITE (unit_nr, '(T6,A,T63,ES7.1,1X,A1,1X,F7.3,A1)') &
    1749          28 :                'Occupancy after contraction with K:', REAL(nze_3c_2, dp), '/', occ_3c_2*100, '%'
    1750             :             WRITE (unit_nr, '(T6,A,T63,ES7.1,1X,A1,1X,F7.3,A1)') &
    1751          28 :                'Occupancy after contraction with P:', REAL(nze_3c_1, dp), '/', occ_3c_1*100, '%'
    1752             :             WRITE (unit_nr, '(T6,A,T63,ES7.1,1X,A1,1X,F7.3,A1)') &
    1753          28 :                'Occupancy of Kohn-Sham matrix:', REAL(nze_ks, dp), '/', occ_ks*100, '%'
    1754             :          END IF
    1755             : 
    1756             :       END DO
    1757             : 
    1758        1472 :       CALL para_env%sync()
    1759        1472 :       t2 = m_walltime()
    1760             : 
    1761        1472 :       ri_data%dbcsr_time = ri_data%dbcsr_time + t2 - t1
    1762             : 
    1763        1472 :       CALL dbt_destroy(t_3c_1)
    1764        1472 :       CALL dbt_destroy(t_3c_3)
    1765             : 
    1766        1472 :       CALL dbt_destroy(rho_ao_tmp)
    1767        1472 :       CALL dbt_destroy(ks_t)
    1768        1472 :       CALL dbt_destroy(ks_tmp)
    1769             : 
    1770        1472 :       CALL timestop(handle)
    1771             : 
    1772        4416 :    END SUBROUTINE
    1773             : 
    1774             : ! **************************************************************************************************
    1775             : !> \brief Implementation based on the MO flavor
    1776             : !> \param qs_env ...
    1777             : !> \param ri_data ...
    1778             : !> \param nspins ...
    1779             : !> \param hf_fraction ...
    1780             : !> \param mo_coeff ...
    1781             : !> \param use_virial ...
    1782             : !> \note There is no response code for forces with the MO flavor
    1783             : ! **************************************************************************************************
    1784          14 :    SUBROUTINE hfx_ri_forces_mo(qs_env, ri_data, nspins, hf_fraction, mo_coeff, use_virial)
    1785             : 
    1786             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1787             :       TYPE(hfx_ri_type), INTENT(INOUT)                   :: ri_data
    1788             :       INTEGER, INTENT(IN)                                :: nspins
    1789             :       REAL(dp), INTENT(IN)                               :: hf_fraction
    1790             :       TYPE(dbcsr_type), DIMENSION(:), INTENT(IN)         :: mo_coeff
    1791             :       LOGICAL, INTENT(IN), OPTIONAL                      :: use_virial
    1792             : 
    1793             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'hfx_ri_forces_mo'
    1794             : 
    1795             :       INTEGER :: dummy_int, handle, i_mem, i_xyz, ibasis, ispin, j_mem, k_mem, n_mem, n_mem_input, &
    1796             :          n_mem_input_RI, n_mem_RI, n_mem_RI_fit, n_mos, natom, nkind, unit_nr_dbcsr
    1797             :       INTEGER(int_8)                                     :: nflop
    1798          14 :       INTEGER, ALLOCATABLE, DIMENSION(:) :: atom_of_kind, batch_blk_end, batch_blk_start, &
    1799          14 :          batch_end, batch_end_RI, batch_end_RI_fit, batch_ranges, batch_ranges_RI, &
    1800          14 :          batch_ranges_RI_fit, batch_start, batch_start_RI, batch_start_RI_fit, bsizes_MO, dist1, &
    1801          14 :          dist2, dist3, idx_to_at_AO, idx_to_at_RI, kind_of
    1802             :       INTEGER, DIMENSION(2, 1)                           :: bounds_ctr_1d
    1803             :       INTEGER, DIMENSION(2, 2)                           :: bounds_ctr_2d
    1804             :       INTEGER, DIMENSION(3)                              :: pdims
    1805             :       LOGICAL                                            :: use_virial_prv
    1806             :       REAL(dp)                                           :: pref, spin_fac, t1, t2
    1807          14 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
    1808          14 :       TYPE(block_ind_type), ALLOCATABLE, DIMENSION(:, :) :: t_3c_der_AO_ind, t_3c_der_RI_ind
    1809             :       TYPE(cell_type), POINTER                           :: cell
    1810          14 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_s
    1811          70 :       TYPE(dbt_pgrid_type)                               :: pgrid_1, pgrid_2
    1812         602 :       TYPE(dbt_type) :: t_2c_RI, t_2c_RI_inv, t_2c_RI_met, t_2c_RI_PQ, t_2c_tmp, t_3c_0, t_3c_1, &
    1813         700 :          t_3c_2, t_3c_3, t_3c_4, t_3c_5, t_3c_6, t_3c_ao_ri_ao, t_3c_ao_ri_mo, t_3c_desymm, &
    1814         434 :          t_3c_mo_ri_ao, t_3c_mo_ri_mo, t_3c_ri_ao_ao, t_3c_RI_ctr, t_3c_ri_mo_mo, &
    1815         350 :          t_3c_ri_mo_mo_fit, t_3c_work, t_mo_coeff, t_mo_cpy
    1816          14 :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:) :: t_2c_der_metric, t_2c_der_RI, t_2c_MO_AO, &
    1817          28 :          t_2c_MO_AO_ctr, t_3c_der_AO, t_3c_der_AO_ctr_1, t_3c_der_RI, t_3c_der_RI_ctr_1, &
    1818          14 :          t_3c_der_RI_ctr_2
    1819             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1820             :       TYPE(gto_basis_set_p_type), ALLOCATABLE, &
    1821          14 :          DIMENSION(:), TARGET                            :: basis_set_AO, basis_set_RI
    1822             :       TYPE(gto_basis_set_type), POINTER                  :: orb_basis, ri_basis
    1823             :       TYPE(hfx_compression_type), ALLOCATABLE, &
    1824          14 :          DIMENSION(:, :)                                 :: t_3c_der_AO_comp, t_3c_der_RI_comp
    1825             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    1826          14 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    1827          14 :       TYPE(qs_force_type), DIMENSION(:), POINTER         :: force
    1828          14 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    1829             : 
    1830             :       ! 1) Precompute the derivatives that are needed (3c, 3c RI and metric)
    1831             :       ! 2) Go over batched of occupied MOs so as to save memory and optimize contractions
    1832             :       ! 3) Contract all 3c integrals and derivatives with MO coeffs
    1833             :       ! 4) Contract relevant quantities with the inverse 2c RI (metric or pot)
    1834             :       ! 5) First force contribution with the 2c RI derivative d/dx (Q|R)
    1835             :       ! 6) If metric, do the additional contraction  with S_pq^-1 (Q|R)
    1836             :       ! 7) Do the force contribution due to 3c integrals (a'b|P) and (ab|P')
    1837             :       ! 8) If metric, do the last force contribution due to d/dx S^-1 (First contract (ab|P), then S^-1)
    1838             : 
    1839          14 :       use_virial_prv = .FALSE.
    1840          14 :       IF (PRESENT(use_virial)) use_virial_prv = use_virial
    1841          14 :       IF (use_virial_prv) THEN
    1842           0 :          CPABORT("Stress tensor with RI-HFX MO flavor not implemented.")
    1843             :       END IF
    1844             : 
    1845          14 :       unit_nr_dbcsr = ri_data%unit_nr_dbcsr
    1846             : 
    1847             :       CALL get_qs_env(qs_env, natom=natom, particle_set=particle_set, nkind=nkind, &
    1848             :                       atomic_kind_set=atomic_kind_set, cell=cell, force=force, &
    1849             :                       matrix_s=matrix_s, para_env=para_env, dft_control=dft_control, &
    1850          14 :                       qs_kind_set=qs_kind_set)
    1851             : 
    1852          14 :       pdims(:) = 0
    1853             :       CALL dbt_pgrid_create(para_env, pdims, pgrid_1, tensor_dims=[SIZE(ri_data%bsizes_AO_split), &
    1854             :                                                                    SIZE(ri_data%bsizes_RI_split), &
    1855          56 :                                                                    SIZE(ri_data%bsizes_AO_split)])
    1856          14 :       pdims(:) = 0
    1857             :       CALL dbt_pgrid_create(para_env, pdims, pgrid_2, tensor_dims=[SIZE(ri_data%bsizes_RI_split), &
    1858             :                                                                    SIZE(ri_data%bsizes_AO_split), &
    1859          56 :                                                                    SIZE(ri_data%bsizes_AO_split)])
    1860             : 
    1861             :       CALL create_3c_tensor(t_3c_ao_ri_ao, dist1, dist2, dist3, pgrid_1, &
    1862             :                             ri_data%bsizes_AO_split, ri_data%bsizes_RI_split, ri_data%bsizes_AO_split, &
    1863          14 :                             [1, 2], [3], name="(AO RI | AO)")
    1864          14 :       DEALLOCATE (dist1, dist2, dist3)
    1865             :       CALL create_3c_tensor(t_3c_ri_ao_ao, dist1, dist2, dist3, pgrid_2, &
    1866             :                             ri_data%bsizes_RI_split, ri_data%bsizes_AO_split, ri_data%bsizes_AO_split, &
    1867          14 :                             [1], [2, 3], name="(RI | AO AO)")
    1868          14 :       DEALLOCATE (dist1, dist2, dist3)
    1869             : 
    1870         104 :       ALLOCATE (basis_set_RI(nkind), basis_set_AO(nkind))
    1871          14 :       CALL basis_set_list_setup(basis_set_RI, ri_data%ri_basis_type, qs_kind_set)
    1872          14 :       CALL get_particle_set(particle_set, qs_kind_set, basis=basis_set_RI)
    1873          14 :       CALL basis_set_list_setup(basis_set_AO, ri_data%orb_basis_type, qs_kind_set)
    1874          14 :       CALL get_particle_set(particle_set, qs_kind_set, basis=basis_set_AO)
    1875             : 
    1876          38 :       DO ibasis = 1, SIZE(basis_set_AO)
    1877          24 :          orb_basis => basis_set_AO(ibasis)%gto_basis_set
    1878          24 :          CALL init_interaction_radii_orb_basis(orb_basis, ri_data%eps_pgf_orb)
    1879          24 :          ri_basis => basis_set_RI(ibasis)%gto_basis_set
    1880          38 :          CALL init_interaction_radii_orb_basis(ri_basis, ri_data%eps_pgf_orb)
    1881             :       END DO
    1882             : 
    1883             :       ALLOCATE (t_2c_der_metric(3), t_2c_der_RI(3), t_2c_MO_AO(3), t_2c_MO_AO_ctr(3), t_3c_der_AO(3), &
    1884        1148 :                 t_3c_der_AO_ctr_1(3), t_3c_der_RI(3), t_3c_der_RI_ctr_1(3), t_3c_der_RI_ctr_2(3))
    1885             : 
    1886             :       ! 1) Precompute the derivatives
    1887             :       CALL precalc_derivatives(t_3c_der_RI_comp, t_3c_der_AO_comp, t_3c_der_RI_ind, t_3c_der_AO_ind, &
    1888             :                                t_2c_der_RI, t_2c_der_metric, t_3c_ri_ao_ao, &
    1889          14 :                                basis_set_AO, basis_set_RI, ri_data, qs_env)
    1890             : 
    1891          38 :       DO ibasis = 1, SIZE(basis_set_AO)
    1892          24 :          orb_basis => basis_set_AO(ibasis)%gto_basis_set
    1893          24 :          ri_basis => basis_set_RI(ibasis)%gto_basis_set
    1894          24 :          CALL init_interaction_radii_orb_basis(orb_basis, dft_control%qs_control%eps_pgf_orb)
    1895          38 :          CALL init_interaction_radii_orb_basis(ri_basis, dft_control%qs_control%eps_pgf_orb)
    1896             :       END DO
    1897             : 
    1898          14 :       n_mem = SIZE(t_3c_der_RI_comp, 1)
    1899          56 :       DO i_xyz = 1, 3
    1900          42 :          CALL dbt_create(t_3c_ao_ri_ao, t_3c_der_RI(i_xyz))
    1901          42 :          CALL dbt_create(t_3c_ao_ri_ao, t_3c_der_AO(i_xyz))
    1902             : 
    1903         194 :          DO i_mem = 1, n_mem
    1904             :             CALL decompress_tensor(t_3c_ri_ao_ao, t_3c_der_RI_ind(i_mem, i_xyz)%ind, &
    1905         138 :                                    t_3c_der_RI_comp(i_mem, i_xyz), ri_data%filter_eps_storage)
    1906         138 :             CALL dbt_copy(t_3c_ri_ao_ao, t_3c_der_RI(i_xyz), order=[2, 1, 3], move_data=.TRUE., summation=.TRUE.)
    1907             : 
    1908             :             CALL decompress_tensor(t_3c_ri_ao_ao, t_3c_der_AO_ind(i_mem, i_xyz)%ind, &
    1909         138 :                                    t_3c_der_AO_comp(i_mem, i_xyz), ri_data%filter_eps_storage)
    1910         180 :             CALL dbt_copy(t_3c_ri_ao_ao, t_3c_der_AO(i_xyz), order=[2, 1, 3], move_data=.TRUE., summation=.TRUE.)
    1911             :          END DO
    1912             :       END DO
    1913             : 
    1914          56 :       DO i_xyz = 1, 3
    1915         194 :          DO i_mem = 1, n_mem
    1916         138 :             CALL dealloc_containers(t_3c_der_AO_comp(i_mem, i_xyz), dummy_int)
    1917         180 :             CALL dealloc_containers(t_3c_der_RI_comp(i_mem, i_xyz), dummy_int)
    1918             :          END DO
    1919             :       END DO
    1920         290 :       DEALLOCATE (t_3c_der_AO_ind, t_3c_der_RI_ind)
    1921             : 
    1922             :       ! Get the 3c integrals (desymmetrized)
    1923          14 :       CALL dbt_create(t_3c_ao_ri_ao, t_3c_desymm)
    1924          14 :       CALL dbt_copy(ri_data%t_3c_int_ctr_1(1, 1), t_3c_desymm)
    1925             :       CALL dbt_copy(ri_data%t_3c_int_ctr_1(1, 1), t_3c_desymm, order=[3, 2, 1], &
    1926          14 :                     summation=.TRUE., move_data=.TRUE.)
    1927             : 
    1928          14 :       CALL dbt_destroy(t_3c_ao_ri_ao)
    1929          14 :       CALL dbt_destroy(t_3c_ri_ao_ao)
    1930             : 
    1931             :       ! Some utilities
    1932          14 :       spin_fac = 0.5_dp
    1933          14 :       IF (nspins == 2) spin_fac = 1.0_dp
    1934             : 
    1935          42 :       ALLOCATE (idx_to_at_RI(SIZE(ri_data%bsizes_RI_split)))
    1936          14 :       CALL get_idx_to_atom(idx_to_at_RI, ri_data%bsizes_RI_split, ri_data%bsizes_RI)
    1937             : 
    1938          42 :       ALLOCATE (idx_to_at_AO(SIZE(ri_data%bsizes_AO_split)))
    1939          14 :       CALL get_idx_to_atom(idx_to_at_AO, ri_data%bsizes_AO_split, ri_data%bsizes_AO)
    1940             : 
    1941          14 :       CALL get_atomic_kind_set(atomic_kind_set, kind_of=kind_of, atom_of_kind=atom_of_kind)
    1942             : 
    1943             :       ! 2-center RI tensors
    1944             :       CALL create_2c_tensor(t_2c_RI, dist1, dist2, ri_data%pgrid_2d, &
    1945          14 :                             ri_data%bsizes_RI_split, ri_data%bsizes_RI_split, name="(RI | RI)")
    1946          14 :       DEALLOCATE (dist1, dist2)
    1947             : 
    1948             :       CALL create_2c_tensor(t_2c_RI_PQ, dist1, dist2, ri_data%pgrid_2d, &
    1949             :                             ri_data%bsizes_RI_fit, ri_data%bsizes_RI_fit, name="(RI | RI)")
    1950          14 :       DEALLOCATE (dist1, dist2)
    1951             : 
    1952          14 :       IF (.NOT. ri_data%same_op) THEN
    1953             :          !precompute the (P|Q)*S^-1 product
    1954           4 :          CALL dbt_create(t_2c_RI_PQ, t_2c_RI_inv)
    1955           4 :          CALL dbt_create(t_2c_RI_PQ, t_2c_RI_met)
    1956           4 :          CALL dbt_create(ri_data%t_2c_inv(1, 1), t_2c_tmp)
    1957             : 
    1958             :          CALL dbt_contract(1.0_dp, ri_data%t_2c_inv(1, 1), ri_data%t_2c_pot(1, 1), &
    1959             :                            0.0_dp, t_2c_tmp, &
    1960             :                            contract_1=[2], notcontract_1=[1], &
    1961             :                            contract_2=[1], notcontract_2=[2], &
    1962             :                            map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps, &
    1963           4 :                            unit_nr=unit_nr_dbcsr, flop=nflop)
    1964           4 :          ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    1965             : 
    1966           4 :          CALL dbt_copy(t_2c_tmp, t_2c_RI_inv, move_data=.TRUE.)
    1967           4 :          CALL dbt_destroy(t_2c_tmp)
    1968             :       END IF
    1969             : 
    1970             :       !3 loops in MO force evaluations. To be consistent with input MEMORY_CUT, need to take the cubic root
    1971             :       !No need to cut memory further because SCF tensors alrady dense
    1972          14 :       n_mem_input = FLOOR((ri_data%n_mem_input - 0.1_dp)**(1._dp/3._dp)) + 1
    1973          14 :       n_mem_input_RI = FLOOR((ri_data%n_mem_input - 0.1_dp)/n_mem_input**2) + 1
    1974             : 
    1975             :       !batches on RI_split and RI_fit blocks
    1976          14 :       n_mem_RI = n_mem_input_RI
    1977             :       CALL create_tensor_batches(ri_data%bsizes_RI_split, n_mem_RI, batch_start_RI, batch_end_RI, &
    1978          14 :                                  batch_blk_start, batch_blk_end)
    1979          42 :       ALLOCATE (batch_ranges_RI(n_mem_RI + 1))
    1980          28 :       batch_ranges_RI(1:n_mem_RI) = batch_blk_start(1:n_mem_RI)
    1981          14 :       batch_ranges_RI(n_mem_RI + 1) = batch_blk_end(n_mem_RI) + 1
    1982          14 :       DEALLOCATE (batch_blk_start, batch_blk_end)
    1983             : 
    1984          14 :       n_mem_RI_fit = n_mem_input_RI
    1985             :       CALL create_tensor_batches(ri_data%bsizes_RI_fit, n_mem_RI_fit, batch_start_RI_fit, batch_end_RI_fit, &
    1986          14 :                                  batch_blk_start, batch_blk_end)
    1987          42 :       ALLOCATE (batch_ranges_RI_fit(n_mem_RI_fit + 1))
    1988          28 :       batch_ranges_RI_fit(1:n_mem_RI_fit) = batch_blk_start(1:n_mem_RI_fit)
    1989          14 :       batch_ranges_RI_fit(n_mem_RI_fit + 1) = batch_blk_end(n_mem_RI_fit) + 1
    1990          14 :       DEALLOCATE (batch_blk_start, batch_blk_end)
    1991             : 
    1992          32 :       DO ispin = 1, nspins
    1993             : 
    1994             :          ! 2 )Prepare the batches for this spin
    1995          18 :          CALL dbcsr_get_info(mo_coeff(ispin), nfullcols_total=n_mos)
    1996             :          !note: optimized GPU block size for SCF is 64x1x64. Here we do 8x8x64
    1997          36 :          CALL split_block_sizes([n_mos], bsizes_MO, max_size=FLOOR(SQRT(ri_data%max_bsize_MO - 0.1)) + 1)
    1998             : 
    1999             :          !batching on MO blocks
    2000          18 :          n_mem = n_mem_input
    2001             :          CALL create_tensor_batches(bsizes_MO, n_mem, batch_start, batch_end, &
    2002          18 :                                     batch_blk_start, batch_blk_end)
    2003          54 :          ALLOCATE (batch_ranges(n_mem + 1))
    2004          40 :          batch_ranges(1:n_mem) = batch_blk_start(1:n_mem)
    2005          18 :          batch_ranges(n_mem + 1) = batch_blk_end(n_mem) + 1
    2006          18 :          DEALLOCATE (batch_blk_start, batch_blk_end)
    2007             : 
    2008             :          ! Initialize the different tensors needed (Note: keep MO coeffs as (MO | AO) for less transpose)
    2009             :          CALL create_2c_tensor(t_mo_coeff, dist1, dist2, ri_data%pgrid_2d, bsizes_MO, &
    2010          18 :                                ri_data%bsizes_AO_split, name="MO coeffs")
    2011          18 :          DEALLOCATE (dist1, dist2)
    2012          18 :          CALL dbt_create(mo_coeff(ispin), t_2c_tmp, name="MO coeffs")
    2013          18 :          CALL dbt_copy_matrix_to_tensor(mo_coeff(ispin), t_2c_tmp)
    2014          18 :          CALL dbt_copy(t_2c_tmp, t_mo_coeff, order=[2, 1], move_data=.TRUE.)
    2015          18 :          CALL dbt_destroy(t_2c_tmp)
    2016             : 
    2017          18 :          CALL dbt_create(t_mo_coeff, t_mo_cpy)
    2018          18 :          CALL dbt_copy(t_mo_coeff, t_mo_cpy)
    2019          72 :          DO i_xyz = 1, 3
    2020          54 :             CALL dbt_create(t_mo_coeff, t_2c_MO_AO_ctr(i_xyz))
    2021          72 :             CALL dbt_create(t_mo_coeff, t_2c_MO_AO(i_xyz))
    2022             :          END DO
    2023             : 
    2024             :          CALL create_3c_tensor(t_3c_ao_ri_mo, dist1, dist2, dist3, pgrid_1, ri_data%bsizes_AO_split, &
    2025          18 :                                ri_data%bsizes_RI_split, bsizes_MO, [1, 2], [3], name="(AO RI| MO)")
    2026          18 :          DEALLOCATE (dist1, dist2, dist3)
    2027             : 
    2028          18 :          CALL dbt_create(t_3c_ao_ri_mo, t_3c_0)
    2029          18 :          CALL dbt_destroy(t_3c_ao_ri_mo)
    2030             : 
    2031             :          CALL create_3c_tensor(t_3c_mo_ri_ao, dist1, dist2, dist3, pgrid_1, bsizes_MO, ri_data%bsizes_RI_split, &
    2032          18 :                                ri_data%bsizes_AO_split, [1, 2], [3], name="(MO RI | AO)")
    2033          18 :          DEALLOCATE (dist1, dist2, dist3)
    2034          18 :          CALL dbt_create(t_3c_mo_ri_ao, t_3c_1)
    2035             : 
    2036          72 :          DO i_xyz = 1, 3
    2037          54 :             CALL dbt_create(t_3c_mo_ri_ao, t_3c_der_RI_ctr_1(i_xyz))
    2038          72 :             CALL dbt_create(t_3c_mo_ri_ao, t_3c_der_AO_ctr_1(i_xyz))
    2039             :          END DO
    2040             : 
    2041             :          CALL create_3c_tensor(t_3c_mo_ri_mo, dist1, dist2, dist3, pgrid_1, bsizes_MO, &
    2042          18 :                                ri_data%bsizes_RI_split, bsizes_MO, [1, 2], [3], name="(MO RI | MO)")
    2043          18 :          DEALLOCATE (dist1, dist2, dist3)
    2044          18 :          CALL dbt_create(t_3c_mo_ri_mo, t_3c_work)
    2045             : 
    2046             :          CALL create_3c_tensor(t_3c_ri_mo_mo, dist1, dist2, dist3, pgrid_2, ri_data%bsizes_RI_split, &
    2047          18 :                                bsizes_MO, bsizes_MO, [1], [2, 3], name="(RI| MO MO)")
    2048          18 :          DEALLOCATE (dist1, dist2, dist3)
    2049             : 
    2050          18 :          CALL dbt_create(t_3c_ri_mo_mo, t_3c_2)
    2051          18 :          CALL dbt_create(t_3c_ri_mo_mo, t_3c_3)
    2052          18 :          CALL dbt_create(t_3c_ri_mo_mo, t_3c_RI_ctr)
    2053          72 :          DO i_xyz = 1, 3
    2054          72 :             CALL dbt_create(t_3c_ri_mo_mo, t_3c_der_RI_ctr_2(i_xyz))
    2055             :          END DO
    2056             : 
    2057             :          !Very large RI_fit blocks => new pgrid to make sure distribution is ideal
    2058          18 :          pdims(:) = 0
    2059             :          CALL create_3c_tensor(t_3c_ri_mo_mo_fit, dist1, dist2, dist3, pgrid_2, ri_data%bsizes_RI_fit, &
    2060          18 :                                bsizes_MO, bsizes_MO, [1], [2, 3], name="(RI| MO MO)")
    2061          18 :          DEALLOCATE (dist1, dist2, dist3)
    2062             : 
    2063          18 :          CALL dbt_create(t_3c_ri_mo_mo_fit, t_3c_4)
    2064          18 :          CALL dbt_create(t_3c_ri_mo_mo_fit, t_3c_5)
    2065          18 :          CALL dbt_create(t_3c_ri_mo_mo_fit, t_3c_6)
    2066             : 
    2067          18 :          CALL dbt_batched_contract_init(t_3c_desymm, batch_range_2=batch_ranges_RI)
    2068          18 :          CALL dbt_batched_contract_init(t_3c_0, batch_range_2=batch_ranges_RI, batch_range_3=batch_ranges)
    2069             : 
    2070          72 :          DO i_xyz = 1, 3
    2071          54 :             CALL dbt_batched_contract_init(t_3c_der_AO(i_xyz), batch_range_2=batch_ranges_RI)
    2072          72 :             CALL dbt_batched_contract_init(t_3c_der_RI(i_xyz), batch_range_2=batch_ranges_RI)
    2073             :          END DO
    2074             : 
    2075          18 :          CALL para_env%sync()
    2076          18 :          t1 = m_walltime()
    2077             : 
    2078             :          ! 2) Loop over batches
    2079          40 :          DO i_mem = 1, n_mem
    2080             : 
    2081          22 :             bounds_ctr_1d(1, 1) = batch_start(i_mem)
    2082          22 :             bounds_ctr_1d(2, 1) = batch_end(i_mem)
    2083             : 
    2084          22 :             bounds_ctr_2d(1, 1) = 1
    2085          96 :             bounds_ctr_2d(2, 1) = SUM(ri_data%bsizes_AO)
    2086             : 
    2087             :             ! 3) Do the first AO to MO contraction here
    2088          22 :             CALL timeset(routineN//"_AO2MO_1", handle)
    2089          22 :             CALL dbt_batched_contract_init(t_mo_coeff)
    2090          44 :             DO k_mem = 1, n_mem_RI
    2091          22 :                bounds_ctr_2d(1, 2) = batch_start_RI(k_mem)
    2092          22 :                bounds_ctr_2d(2, 2) = batch_end_RI(k_mem)
    2093             : 
    2094             :                CALL dbt_contract(1.0_dp, t_mo_coeff, t_3c_desymm, &
    2095             :                                  1.0_dp, t_3c_0, &
    2096             :                                  contract_1=[2], notcontract_1=[1], &
    2097             :                                  contract_2=[3], notcontract_2=[1, 2], &
    2098             :                                  map_1=[3], map_2=[1, 2], filter_eps=ri_data%filter_eps, &
    2099             :                                  bounds_2=bounds_ctr_1d, &
    2100             :                                  bounds_3=bounds_ctr_2d, &
    2101          22 :                                  unit_nr=unit_nr_dbcsr, flop=nflop)
    2102          44 :                ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2103             :             END DO
    2104          22 :             CALL dbt_copy(t_3c_0, t_3c_1, order=[3, 2, 1], move_data=.TRUE.)
    2105             : 
    2106          88 :             DO i_xyz = 1, 3
    2107         132 :                DO k_mem = 1, n_mem_RI
    2108          66 :                   bounds_ctr_2d(1, 2) = batch_start_RI(k_mem)
    2109          66 :                   bounds_ctr_2d(2, 2) = batch_end_RI(k_mem)
    2110             : 
    2111             :                   CALL dbt_contract(1.0_dp, t_mo_coeff, t_3c_der_AO(i_xyz), &
    2112             :                                     1.0_dp, t_3c_0, &
    2113             :                                     contract_1=[2], notcontract_1=[1], &
    2114             :                                     contract_2=[3], notcontract_2=[1, 2], &
    2115             :                                     map_1=[3], map_2=[1, 2], filter_eps=ri_data%filter_eps, &
    2116             :                                     bounds_2=bounds_ctr_1d, &
    2117             :                                     bounds_3=bounds_ctr_2d, &
    2118          66 :                                     unit_nr=unit_nr_dbcsr, flop=nflop)
    2119         132 :                   ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2120             :                END DO
    2121          66 :                CALL dbt_copy(t_3c_0, t_3c_der_AO_ctr_1(i_xyz), order=[3, 2, 1], move_data=.TRUE.)
    2122             : 
    2123         132 :                DO k_mem = 1, n_mem_RI
    2124          66 :                   bounds_ctr_2d(1, 2) = batch_start_RI(k_mem)
    2125          66 :                   bounds_ctr_2d(2, 2) = batch_end_RI(k_mem)
    2126             : 
    2127             :                   CALL dbt_contract(1.0_dp, t_mo_coeff, t_3c_der_RI(i_xyz), &
    2128             :                                     1.0_dp, t_3c_0, &
    2129             :                                     contract_1=[2], notcontract_1=[1], &
    2130             :                                     contract_2=[3], notcontract_2=[1, 2], &
    2131             :                                     map_1=[3], map_2=[1, 2], filter_eps=ri_data%filter_eps, &
    2132             :                                     bounds_2=bounds_ctr_1d, &
    2133             :                                     bounds_3=bounds_ctr_2d, &
    2134          66 :                                     unit_nr=unit_nr_dbcsr, flop=nflop)
    2135         132 :                   ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2136             :                END DO
    2137          88 :                CALL dbt_copy(t_3c_0, t_3c_der_RI_ctr_1(i_xyz), order=[3, 2, 1], move_data=.TRUE.)
    2138             :             END DO
    2139          22 :             CALL dbt_batched_contract_finalize(t_mo_coeff)
    2140          22 :             CALL timestop(handle)
    2141             : 
    2142          22 :             CALL dbt_batched_contract_init(t_3c_1, batch_range_1=batch_ranges, batch_range_2=batch_ranges_RI)
    2143             :             CALL dbt_batched_contract_init(t_3c_work, batch_range_1=batch_ranges, batch_range_2=batch_ranges_RI, &
    2144          22 :                                            batch_range_3=batch_ranges)
    2145          22 :             CALL dbt_batched_contract_init(t_3c_2, batch_range_2=batch_ranges, batch_range_3=batch_ranges)
    2146             :             CALL dbt_batched_contract_init(t_3c_3, batch_range_1=batch_ranges_RI, &
    2147          22 :                                            batch_range_2=batch_ranges, batch_range_3=batch_ranges)
    2148             : 
    2149             :             CALL dbt_batched_contract_init(t_3c_4, batch_range_1=batch_ranges_RI_fit, &
    2150          22 :                                            batch_range_2=batch_ranges, batch_range_3=batch_ranges)
    2151          22 :             CALL dbt_batched_contract_init(t_3c_5, batch_range_2=batch_ranges, batch_range_3=batch_ranges)
    2152             : 
    2153          88 :             DO i_xyz = 1, 3
    2154             :                CALL dbt_batched_contract_init(t_3c_der_RI_ctr_1(i_xyz), batch_range_1=batch_ranges, &
    2155          66 :                                               batch_range_2=batch_ranges_RI)
    2156             :                CALL dbt_batched_contract_init(t_3c_der_AO_ctr_1(i_xyz), batch_range_1=batch_ranges, &
    2157          88 :                                               batch_range_2=batch_ranges_RI)
    2158             : 
    2159             :             END DO
    2160             : 
    2161          22 :             IF (.NOT. ri_data%same_op) THEN
    2162           8 :                CALL dbt_batched_contract_init(t_3c_6, batch_range_2=batch_ranges, batch_range_3=batch_ranges)
    2163             :             END IF
    2164             : 
    2165          52 :             DO j_mem = 1, n_mem
    2166             : 
    2167          30 :                bounds_ctr_1d(1, 1) = batch_start(j_mem)
    2168          30 :                bounds_ctr_1d(2, 1) = batch_end(j_mem)
    2169             : 
    2170          30 :                bounds_ctr_2d(1, 1) = batch_start(i_mem)
    2171          30 :                bounds_ctr_2d(2, 1) = batch_end(i_mem)
    2172             : 
    2173             :                ! 3) Do the second AO to MO contraction here, followed by the S^-1 contraction
    2174          30 :                CALL timeset(routineN//"_AO2MO_2", handle)
    2175          30 :                CALL dbt_batched_contract_init(t_mo_coeff)
    2176          60 :                DO k_mem = 1, n_mem_RI
    2177          30 :                   bounds_ctr_2d(1, 2) = batch_start_RI(k_mem)
    2178          30 :                   bounds_ctr_2d(2, 2) = batch_end_RI(k_mem)
    2179             : 
    2180             :                   CALL dbt_contract(1.0_dp, t_mo_coeff, t_3c_1, &
    2181             :                                     1.0_dp, t_3c_work, &
    2182             :                                     contract_1=[2], notcontract_1=[1], &
    2183             :                                     contract_2=[3], notcontract_2=[1, 2], &
    2184             :                                     map_1=[3], map_2=[1, 2], filter_eps=ri_data%filter_eps, &
    2185             :                                     bounds_2=bounds_ctr_1d, &
    2186             :                                     bounds_3=bounds_ctr_2d, &
    2187          30 :                                     unit_nr=unit_nr_dbcsr, flop=nflop)
    2188          60 :                   ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2189             :                END DO
    2190          30 :                CALL dbt_batched_contract_finalize(t_mo_coeff)
    2191          30 :                CALL timestop(handle)
    2192             : 
    2193          30 :                bounds_ctr_2d(1, 1) = batch_start(i_mem)
    2194          30 :                bounds_ctr_2d(2, 1) = batch_end(i_mem)
    2195          30 :                bounds_ctr_2d(1, 2) = batch_start(j_mem)
    2196          30 :                bounds_ctr_2d(2, 2) = batch_end(j_mem)
    2197             : 
    2198             :                ! 4) Contract 3c MO integrals with S^-1 as well
    2199          30 :                CALL timeset(routineN//"_2c_inv", handle)
    2200          30 :                CALL dbt_copy(t_3c_work, t_3c_3, order=[2, 1, 3], move_data=.TRUE.)
    2201          60 :                DO k_mem = 1, n_mem_RI
    2202          30 :                   bounds_ctr_1d(1, 1) = batch_start_RI(k_mem)
    2203          30 :                   bounds_ctr_1d(2, 1) = batch_end_RI(k_mem)
    2204             : 
    2205          30 :                   CALL dbt_batched_contract_init(ri_data%t_2c_inv(1, 1))
    2206             :                   CALL dbt_contract(1.0_dp, ri_data%t_2c_inv(1, 1), t_3c_3, &
    2207             :                                     1.0_dp, t_3c_2, &
    2208             :                                     contract_1=[2], notcontract_1=[1], &
    2209             :                                     contract_2=[1], notcontract_2=[2, 3], &
    2210             :                                     map_1=[1], map_2=[2, 3], filter_eps=ri_data%filter_eps, &
    2211             :                                     bounds_1=bounds_ctr_1d, &
    2212             :                                     bounds_3=bounds_ctr_2d, &
    2213          30 :                                     unit_nr=unit_nr_dbcsr, flop=nflop)
    2214          30 :                   ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2215          60 :                   CALL dbt_batched_contract_finalize(ri_data%t_2c_inv(1, 1))
    2216             :                END DO
    2217          30 :                CALL dbt_copy(t_3c_ri_mo_mo, t_3c_3)
    2218          30 :                CALL timestop(handle)
    2219             : 
    2220             :                !Only contract (ab|P') with MO coeffs since need AO rep for the force of (a'b|P)
    2221          30 :                bounds_ctr_1d(1, 1) = batch_start(j_mem)
    2222          30 :                bounds_ctr_1d(2, 1) = batch_end(j_mem)
    2223             : 
    2224          30 :                bounds_ctr_2d(1, 1) = batch_start(i_mem)
    2225          30 :                bounds_ctr_2d(2, 1) = batch_end(i_mem)
    2226             : 
    2227          30 :                CALL timeset(routineN//"_AO2MO_2", handle)
    2228          30 :                CALL dbt_batched_contract_init(t_mo_coeff)
    2229         120 :                DO i_xyz = 1, 3
    2230         180 :                   DO k_mem = 1, n_mem_RI
    2231          90 :                      bounds_ctr_2d(1, 2) = batch_start_RI(k_mem)
    2232          90 :                      bounds_ctr_2d(2, 2) = batch_end_RI(k_mem)
    2233             : 
    2234             :                      CALL dbt_contract(1.0_dp, t_mo_coeff, t_3c_der_RI_ctr_1(i_xyz), &
    2235             :                                        1.0_dp, t_3c_work, &
    2236             :                                        contract_1=[2], notcontract_1=[1], &
    2237             :                                        contract_2=[3], notcontract_2=[1, 2], &
    2238             :                                        map_1=[3], map_2=[1, 2], filter_eps=ri_data%filter_eps, &
    2239             :                                        bounds_2=bounds_ctr_1d, &
    2240             :                                        bounds_3=bounds_ctr_2d, &
    2241          90 :                                        unit_nr=unit_nr_dbcsr, flop=nflop)
    2242         180 :                      ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2243             :                   END DO
    2244         120 :                   CALL dbt_copy(t_3c_work, t_3c_der_RI_ctr_2(i_xyz), order=[2, 1, 3], move_data=.TRUE.)
    2245             :                END DO
    2246          30 :                CALL dbt_batched_contract_finalize(t_mo_coeff)
    2247          30 :                CALL timestop(handle)
    2248             : 
    2249          30 :                bounds_ctr_2d(1, 1) = batch_start(i_mem)
    2250          30 :                bounds_ctr_2d(2, 1) = batch_end(i_mem)
    2251          30 :                bounds_ctr_2d(1, 2) = batch_start(j_mem)
    2252          30 :                bounds_ctr_2d(2, 2) = batch_end(j_mem)
    2253             : 
    2254             :                ! 5) Force due to d/dx (P|Q)
    2255          30 :                CALL timeset(routineN//"_PQ_der", handle)
    2256          30 :                CALL dbt_copy(t_3c_2, t_3c_4, move_data=.TRUE.)
    2257          30 :                CALL dbt_copy(t_3c_4, t_3c_5)
    2258          60 :                DO k_mem = 1, n_mem_RI_fit
    2259          30 :                   bounds_ctr_1d(1, 1) = batch_start_RI_fit(k_mem)
    2260          30 :                   bounds_ctr_1d(2, 1) = batch_end_RI_fit(k_mem)
    2261             : 
    2262          30 :                   CALL dbt_batched_contract_init(t_2c_RI_PQ)
    2263             :                   CALL dbt_contract(1.0_dp, t_3c_4, t_3c_5, &
    2264             :                                     1.0_dp, t_2c_RI_PQ, &
    2265             :                                     contract_1=[2, 3], notcontract_1=[1], &
    2266             :                                     contract_2=[2, 3], notcontract_2=[1], &
    2267             :                                     bounds_1=bounds_ctr_2d, &
    2268             :                                     bounds_2=bounds_ctr_1d, &
    2269             :                                     map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps, &
    2270          30 :                                     unit_nr=unit_nr_dbcsr, flop=nflop)
    2271          30 :                   ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2272          60 :                   CALL dbt_batched_contract_finalize(t_2c_RI_PQ)
    2273             :                END DO
    2274          30 :                CALL timestop(handle)
    2275             : 
    2276             :                ! 6) If metric, do the additional contraction  with S_pq^-1 (Q|R) (not on the derivatives)
    2277          30 :                IF (.NOT. ri_data%same_op) THEN
    2278          16 :                   CALL timeset(routineN//"_metric", handle)
    2279          32 :                   DO k_mem = 1, n_mem_RI_fit
    2280          16 :                      bounds_ctr_1d(1, 1) = batch_start_RI_fit(k_mem)
    2281          16 :                      bounds_ctr_1d(2, 1) = batch_end_RI_fit(k_mem)
    2282             : 
    2283          16 :                      CALL dbt_batched_contract_init(t_2c_RI_inv)
    2284             :                      CALL dbt_contract(1.0_dp, t_2c_RI_inv, t_3c_4, &
    2285             :                                        1.0_dp, t_3c_6, &
    2286             :                                        contract_1=[2], notcontract_1=[1], &
    2287             :                                        contract_2=[1], notcontract_2=[2, 3], &
    2288             :                                        bounds_1=bounds_ctr_1d, &
    2289             :                                        bounds_3=bounds_ctr_2d, &
    2290             :                                        map_1=[1], map_2=[2, 3], filter_eps=ri_data%filter_eps, &
    2291          16 :                                        unit_nr=unit_nr_dbcsr, flop=nflop)
    2292          16 :                      ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2293          32 :                      CALL dbt_batched_contract_finalize(t_2c_RI_inv)
    2294             :                   END DO
    2295          16 :                   CALL dbt_copy(t_3c_6, t_3c_4, move_data=.TRUE.)
    2296             : 
    2297             :                   ! 8) and get the force due to d/dx S^-1
    2298          32 :                   DO k_mem = 1, n_mem_RI_fit
    2299          16 :                      bounds_ctr_1d(1, 1) = batch_start_RI_fit(k_mem)
    2300          16 :                      bounds_ctr_1d(2, 1) = batch_end_RI_fit(k_mem)
    2301             : 
    2302          16 :                      CALL dbt_batched_contract_init(t_2c_RI_met)
    2303             :                      CALL dbt_contract(1.0_dp, t_3c_4, t_3c_5, &
    2304             :                                        1.0_dp, t_2c_RI_met, &
    2305             :                                        contract_1=[2, 3], notcontract_1=[1], &
    2306             :                                        contract_2=[2, 3], notcontract_2=[1], &
    2307             :                                        bounds_1=bounds_ctr_2d, &
    2308             :                                        bounds_2=bounds_ctr_1d, &
    2309             :                                        map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps, &
    2310          16 :                                        unit_nr=unit_nr_dbcsr, flop=nflop)
    2311          16 :                      ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2312          32 :                      CALL dbt_batched_contract_finalize(t_2c_RI_met)
    2313             :                   END DO
    2314          16 :                   CALL timestop(handle)
    2315             :                END IF
    2316          30 :                CALL dbt_copy(t_3c_ri_mo_mo_fit, t_3c_5)
    2317             : 
    2318             :                ! 7) Do the force contribution due to 3c integrals (a'b|P) and (ab|P')
    2319             : 
    2320             :                ! (ab|P')
    2321          30 :                CALL timeset(routineN//"_3c_RI", handle)
    2322          30 :                pref = -0.5_dp*2.0_dp*hf_fraction*spin_fac
    2323          30 :                CALL dbt_copy(t_3c_4, t_3c_RI_ctr, move_data=.TRUE.)
    2324             :                CALL get_force_from_3c_trace(force, t_3c_RI_ctr, t_3c_der_RI_ctr_2, atom_of_kind, kind_of, &
    2325          30 :                                             idx_to_at_RI, pref)
    2326          30 :                CALL timestop(handle)
    2327             : 
    2328             :                ! (a'b|P) Note that derivative remains in AO rep until the actual force evaluation,
    2329             :                ! which also prevents doing a direct 3-center trace
    2330          30 :                bounds_ctr_2d(1, 1) = batch_start(i_mem)
    2331          30 :                bounds_ctr_2d(2, 1) = batch_end(i_mem)
    2332             : 
    2333          30 :                bounds_ctr_1d(1, 1) = batch_start(j_mem)
    2334          30 :                bounds_ctr_1d(2, 1) = batch_end(j_mem)
    2335             : 
    2336          30 :                CALL timeset(routineN//"_3c_AO", handle)
    2337          30 :                CALL dbt_copy(t_3c_RI_ctr, t_3c_work, order=[2, 1, 3], move_data=.TRUE.)
    2338         120 :                DO i_xyz = 1, 3
    2339             : 
    2340          90 :                   CALL dbt_batched_contract_init(t_2c_MO_AO_ctr(i_xyz))
    2341         180 :                   DO k_mem = 1, n_mem_RI
    2342          90 :                      bounds_ctr_2d(1, 2) = batch_start_RI(k_mem)
    2343          90 :                      bounds_ctr_2d(2, 2) = batch_end_RI(k_mem)
    2344             : 
    2345             :                      CALL dbt_contract(1.0_dp, t_3c_work, t_3c_der_AO_ctr_1(i_xyz), &
    2346             :                                        1.0_dp, t_2c_MO_AO_ctr(i_xyz), &
    2347             :                                        contract_1=[1, 2], notcontract_1=[3], &
    2348             :                                        contract_2=[1, 2], notcontract_2=[3], &
    2349             :                                        map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps, &
    2350             :                                        bounds_1=bounds_ctr_2d, &
    2351             :                                        bounds_2=bounds_ctr_1d, &
    2352          90 :                                        unit_nr=unit_nr_dbcsr, flop=nflop)
    2353         180 :                      ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2354             :                   END DO
    2355         120 :                   CALL dbt_batched_contract_finalize(t_2c_MO_AO_ctr(i_xyz))
    2356             :                END DO
    2357         232 :                CALL timestop(handle)
    2358             : 
    2359             :             END DO !j_mem
    2360          22 :             CALL dbt_batched_contract_finalize(t_3c_1)
    2361          22 :             CALL dbt_batched_contract_finalize(t_3c_work)
    2362          22 :             CALL dbt_batched_contract_finalize(t_3c_2)
    2363          22 :             CALL dbt_batched_contract_finalize(t_3c_3)
    2364          22 :             CALL dbt_batched_contract_finalize(t_3c_4)
    2365          22 :             CALL dbt_batched_contract_finalize(t_3c_5)
    2366             : 
    2367          88 :             DO i_xyz = 1, 3
    2368          66 :                CALL dbt_batched_contract_finalize(t_3c_der_RI_ctr_1(i_xyz))
    2369          88 :                CALL dbt_batched_contract_finalize(t_3c_der_AO_ctr_1(i_xyz))
    2370             :             END DO
    2371             : 
    2372          62 :             IF (.NOT. ri_data%same_op) THEN
    2373           8 :                CALL dbt_batched_contract_finalize(t_3c_6)
    2374             :             END IF
    2375             : 
    2376             :          END DO !i_mem
    2377          18 :          CALL dbt_batched_contract_finalize(t_3c_desymm)
    2378          18 :          CALL dbt_batched_contract_finalize(t_3c_0)
    2379             : 
    2380          72 :          DO i_xyz = 1, 3
    2381          54 :             CALL dbt_batched_contract_finalize(t_3c_der_AO(i_xyz))
    2382          72 :             CALL dbt_batched_contract_finalize(t_3c_der_RI(i_xyz))
    2383             :          END DO
    2384             : 
    2385             :          !Force contribution due to 3-center AO derivatives (a'b|P)
    2386          18 :          pref = -0.5_dp*4.0_dp*hf_fraction*spin_fac
    2387          72 :          DO i_xyz = 1, 3
    2388          54 :             CALL dbt_copy(t_2c_MO_AO_ctr(i_xyz), t_2c_MO_AO(i_xyz), move_data=.TRUE.) !ensures matching distributions
    2389          54 :             CALL get_mo_ao_force(force, t_mo_cpy, t_2c_MO_AO(i_xyz), atom_of_kind, kind_of, idx_to_at_AO, pref, i_xyz)
    2390          72 :             CALL dbt_clear(t_2c_MO_AO(i_xyz))
    2391             :          END DO
    2392             : 
    2393             :          !Force contribution of d/dx (P|Q)
    2394          18 :          pref = 0.5_dp*hf_fraction*spin_fac
    2395          18 :          IF (.NOT. ri_data%same_op) pref = -pref
    2396             : 
    2397             :          !Making sure dists of the t_2c_RI tensors match
    2398          18 :          CALL dbt_copy(t_2c_RI_PQ, t_2c_RI, move_data=.TRUE.)
    2399             :          CALL get_2c_der_force(force, t_2c_RI, t_2c_der_RI, atom_of_kind, &
    2400          18 :                                kind_of, idx_to_at_RI, pref)
    2401          18 :          CALL dbt_clear(t_2c_RI)
    2402             : 
    2403             :          !Force contribution due to the inverse metric
    2404          18 :          IF (.NOT. ri_data%same_op) THEN
    2405           4 :             pref = 0.5_dp*2.0_dp*hf_fraction*spin_fac
    2406             : 
    2407           4 :             CALL dbt_copy(t_2c_RI_met, t_2c_RI, move_data=.TRUE.)
    2408             :             CALL get_2c_der_force(force, t_2c_RI, t_2c_der_metric, atom_of_kind, &
    2409           4 :                                   kind_of, idx_to_at_RI, pref)
    2410           4 :             CALL dbt_clear(t_2c_RI)
    2411             :          END IF
    2412             : 
    2413          18 :          CALL dbt_destroy(t_3c_0)
    2414          18 :          CALL dbt_destroy(t_3c_1)
    2415          18 :          CALL dbt_destroy(t_3c_2)
    2416          18 :          CALL dbt_destroy(t_3c_3)
    2417          18 :          CALL dbt_destroy(t_3c_4)
    2418          18 :          CALL dbt_destroy(t_3c_5)
    2419          18 :          CALL dbt_destroy(t_3c_6)
    2420          18 :          CALL dbt_destroy(t_3c_work)
    2421          18 :          CALL dbt_destroy(t_3c_RI_ctr)
    2422          18 :          CALL dbt_destroy(t_3c_mo_ri_ao)
    2423          18 :          CALL dbt_destroy(t_3c_mo_ri_mo)
    2424          18 :          CALL dbt_destroy(t_3c_ri_mo_mo)
    2425          18 :          CALL dbt_destroy(t_3c_ri_mo_mo_fit)
    2426          18 :          CALL dbt_destroy(t_mo_coeff)
    2427          18 :          CALL dbt_destroy(t_mo_cpy)
    2428          72 :          DO i_xyz = 1, 3
    2429          54 :             CALL dbt_destroy(t_2c_MO_AO(i_xyz))
    2430          54 :             CALL dbt_destroy(t_2c_MO_AO_ctr(i_xyz))
    2431          54 :             CALL dbt_destroy(t_3c_der_RI_ctr_1(i_xyz))
    2432          54 :             CALL dbt_destroy(t_3c_der_AO_ctr_1(i_xyz))
    2433          72 :             CALL dbt_destroy(t_3c_der_RI_ctr_2(i_xyz))
    2434             :          END DO
    2435          86 :          DEALLOCATE (batch_ranges, batch_start, batch_end)
    2436             :       END DO !ispin
    2437             : 
    2438             :       ! Clean-up
    2439          14 :       CALL dbt_pgrid_destroy(pgrid_1)
    2440          14 :       CALL dbt_pgrid_destroy(pgrid_2)
    2441          14 :       CALL dbt_destroy(t_3c_desymm)
    2442          14 :       CALL dbt_destroy(t_2c_RI)
    2443          14 :       CALL dbt_destroy(t_2c_RI_PQ)
    2444          14 :       IF (.NOT. ri_data%same_op) THEN
    2445           4 :          CALL dbt_destroy(t_2c_RI_met)
    2446           4 :          CALL dbt_destroy(t_2c_RI_inv)
    2447             :       END IF
    2448          56 :       DO i_xyz = 1, 3
    2449          42 :          CALL dbt_destroy(t_3c_der_AO(i_xyz))
    2450          42 :          CALL dbt_destroy(t_3c_der_RI(i_xyz))
    2451          42 :          CALL dbt_destroy(t_2c_der_RI(i_xyz))
    2452          56 :          IF (.NOT. ri_data%same_op) CALL dbt_destroy(t_2c_der_metric(i_xyz))
    2453             :       END DO
    2454          14 :       CALL dbt_copy(ri_data%t_3c_int_ctr_2(1, 1), ri_data%t_3c_int_ctr_1(1, 1))
    2455             : 
    2456          14 :       CALL para_env%sync()
    2457          14 :       t2 = m_walltime()
    2458             : 
    2459          14 :       ri_data%dbcsr_time = ri_data%dbcsr_time + t2 - t1
    2460             : 
    2461         476 :    END SUBROUTINE hfx_ri_forces_mo
    2462             : 
    2463             : ! **************************************************************************************************
    2464             : !> \brief New sparser implementation
    2465             : !> \param qs_env ...
    2466             : !> \param ri_data ...
    2467             : !> \param nspins ...
    2468             : !> \param hf_fraction ...
    2469             : !> \param rho_ao ...
    2470             : !> \param rho_ao_resp ...
    2471             : !> \param use_virial ...
    2472             : !> \param resp_only ...
    2473             : !> \param rescale_factor ...
    2474             : ! **************************************************************************************************
    2475         116 :    SUBROUTINE hfx_ri_forces_Pmat(qs_env, ri_data, nspins, hf_fraction, rho_ao, rho_ao_resp, &
    2476             :                                  use_virial, resp_only, rescale_factor)
    2477             : 
    2478             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2479             :       TYPE(hfx_ri_type), INTENT(INOUT)                   :: ri_data
    2480             :       INTEGER, INTENT(IN)                                :: nspins
    2481             :       REAL(dp), INTENT(IN)                               :: hf_fraction
    2482             :       TYPE(dbcsr_p_type), DIMENSION(:, :)                :: rho_ao
    2483             :       TYPE(dbcsr_p_type), DIMENSION(:), OPTIONAL         :: rho_ao_resp
    2484             :       LOGICAL, INTENT(IN), OPTIONAL                      :: use_virial, resp_only
    2485             :       REAL(dp), INTENT(IN), OPTIONAL                     :: rescale_factor
    2486             : 
    2487             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'hfx_ri_forces_Pmat'
    2488             : 
    2489             :       INTEGER                                            :: dummy_int, handle, i_mem, i_spin, i_xyz, &
    2490             :                                                             ibasis, j_mem, j_xyz, k_mem, k_xyz, &
    2491             :                                                             n_mem, n_mem_RI, natom, nkind, &
    2492             :                                                             unit_nr_dbcsr
    2493             :       INTEGER(int_8)                                     :: nflop
    2494         116 :       INTEGER, ALLOCATABLE, DIMENSION(:) :: atom_of_kind, batch_end, batch_end_RI, batch_ranges, &
    2495         116 :          batch_ranges_RI, batch_start, batch_start_RI, dist1, dist2, dist3, idx_to_at_AO, &
    2496         116 :          idx_to_at_RI, kind_of
    2497             :       INTEGER, DIMENSION(2, 1)                           :: ibounds, jbounds, kbounds
    2498             :       INTEGER, DIMENSION(2, 2)                           :: ijbounds
    2499             :       INTEGER, DIMENSION(2, 3)                           :: bounds_cpy
    2500         232 :       INTEGER, DIMENSION(:), POINTER                     :: col_bsize, row_bsize
    2501             :       LOGICAL                                            :: do_resp, resp_only_prv, use_virial_prv
    2502             :       REAL(dp)                                           :: pref, spin_fac, t1, t2
    2503             :       REAL(dp), DIMENSION(3, 3)                          :: work_virial
    2504         116 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
    2505         116 :       TYPE(block_ind_type), ALLOCATABLE, DIMENSION(:, :) :: t_3c_der_AO_ind, t_3c_der_RI_ind
    2506             :       TYPE(cell_type), POINTER                           :: cell
    2507             :       TYPE(dbcsr_distribution_type), POINTER             :: dbcsr_dist
    2508             :       TYPE(dbcsr_type)                                   :: dbcsr_tmp, virial_trace
    2509        6728 :       TYPE(dbt_type) :: rho_ao_1, rho_ao_2, t_2c_RI, t_2c_RI_tmp, t_2c_tmp, t_2c_virial, t_3c_1, &
    2510        7656 :          t_3c_2, t_3c_3, t_3c_4, t_3c_5, t_3c_ao_ri_ao, t_3c_help_1, t_3c_help_2, t_3c_int, &
    2511        5684 :          t_3c_int_2, t_3c_ri_ao_ao, t_3c_sparse, t_3c_virial, t_R, t_SVS
    2512         116 :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:)          :: t_2c_der_metric, t_2c_der_RI, &
    2513         116 :                                                             t_3c_der_AO, t_3c_der_RI
    2514             :       TYPE(dft_control_type), POINTER                    :: dft_control
    2515             :       TYPE(gto_basis_set_p_type), ALLOCATABLE, &
    2516         116 :          DIMENSION(:), TARGET                            :: basis_set_AO, basis_set_RI
    2517             :       TYPE(gto_basis_set_type), POINTER                  :: orb_basis, ri_basis
    2518             :       TYPE(hfx_compression_type), ALLOCATABLE, &
    2519         116 :          DIMENSION(:, :)                                 :: t_3c_der_AO_comp, t_3c_der_RI_comp
    2520             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    2521             :       TYPE(neighbor_list_3c_type)                        :: nl_3c
    2522             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    2523         116 :          POINTER                                         :: nl_2c_met, nl_2c_pot
    2524         116 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    2525         116 :       TYPE(qs_force_type), DIMENSION(:), POINTER         :: force
    2526         116 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    2527             :       TYPE(virial_type), POINTER                         :: virial
    2528             : 
    2529             :       !The idea is the following: we need to compute the gradients
    2530             :       ! d/dx [P_ab P_cd (acP) S^-1_PQ (Q|R) S^-1_RS (Sbd)]
    2531             :       ! Which we do in a few steps:
    2532             :       ! 1) Contract the density matrices with the 3c integrals: M_acS = P_ab P_cd (Sbd)
    2533             :       ! 2) Calculate the 3c contributions: d/dx (acP) [S^-1_PQ (Q|R) S^-1_RS M_acS]
    2534             :       !    For maximum perf, we first multiply all 2c matrices together, than contract with retain_sparsity
    2535             :       ! 3) Contract the 3c integrals and the M tensor together in order to only work with 2c quantities:
    2536             :       !    R_PS = (acP) M_acS
    2537             :       ! 4) From there, we can easily calculate the 2c contributions to the force:
    2538             :       !    Potential: [S^-1*R*S^-1]_QR d/dx (Q|R)
    2539             :       !    Metric:    [S^-1*R*S^-1*(Q|R)*S^-1]_UV d/dx S_UV
    2540             : 
    2541         116 :       NULLIFY (particle_set, virial, cell, force, atomic_kind_set, nl_2c_pot, nl_2c_met)
    2542         116 :       NULLIFY (orb_basis, ri_basis, qs_kind_set, particle_set, dft_control, dbcsr_dist)
    2543             : 
    2544         116 :       use_virial_prv = .FALSE.
    2545         116 :       IF (PRESENT(use_virial)) use_virial_prv = use_virial
    2546             : 
    2547         116 :       do_resp = .FALSE.
    2548         116 :       IF (PRESENT(rho_ao_resp)) THEN
    2549          30 :          IF (ASSOCIATED(rho_ao_resp(1)%matrix)) do_resp = .TRUE.
    2550             :       END IF
    2551             : 
    2552         116 :       resp_only_prv = .FALSE.
    2553         116 :       IF (PRESENT(resp_only)) resp_only_prv = resp_only
    2554             : 
    2555         116 :       unit_nr_dbcsr = ri_data%unit_nr_dbcsr
    2556             : 
    2557             :       CALL get_qs_env(qs_env, natom=natom, particle_set=particle_set, nkind=nkind, &
    2558             :                       atomic_kind_set=atomic_kind_set, virial=virial, &
    2559             :                       cell=cell, force=force, para_env=para_env, dft_control=dft_control, &
    2560         116 :                       qs_kind_set=qs_kind_set, dbcsr_dist=dbcsr_dist)
    2561             : 
    2562             :       CALL create_3c_tensor(t_3c_ao_ri_ao, dist1, dist2, dist3, ri_data%pgrid_1, &
    2563             :                             ri_data%bsizes_AO_split, ri_data%bsizes_RI_split, ri_data%bsizes_AO_split, &
    2564         116 :                             [1, 2], [3], name="(AO RI | AO)")
    2565         116 :       DEALLOCATE (dist1, dist2, dist3)
    2566             : 
    2567             :       CALL create_3c_tensor(t_3c_ri_ao_ao, dist1, dist2, dist3, ri_data%pgrid_2, &
    2568             :                             ri_data%bsizes_RI_split, ri_data%bsizes_AO_split, ri_data%bsizes_AO_split, &
    2569         116 :                             [1], [2, 3], name="(RI | AO AO)")
    2570         116 :       DEALLOCATE (dist1, dist2, dist3)
    2571             : 
    2572         916 :       ALLOCATE (basis_set_RI(nkind), basis_set_AO(nkind))
    2573         116 :       CALL basis_set_list_setup(basis_set_RI, ri_data%ri_basis_type, qs_kind_set)
    2574         116 :       CALL get_particle_set(particle_set, qs_kind_set, basis=basis_set_RI)
    2575         116 :       CALL basis_set_list_setup(basis_set_AO, ri_data%orb_basis_type, qs_kind_set)
    2576         116 :       CALL get_particle_set(particle_set, qs_kind_set, basis=basis_set_AO)
    2577             : 
    2578         342 :       DO ibasis = 1, SIZE(basis_set_AO)
    2579         226 :          orb_basis => basis_set_AO(ibasis)%gto_basis_set
    2580         226 :          CALL init_interaction_radii_orb_basis(orb_basis, ri_data%eps_pgf_orb)
    2581         226 :          ri_basis => basis_set_RI(ibasis)%gto_basis_set
    2582         342 :          CALL init_interaction_radii_orb_basis(ri_basis, ri_data%eps_pgf_orb)
    2583             :       END DO
    2584             : 
    2585             :       ! Precompute the derivatives
    2586        5684 :       ALLOCATE (t_2c_der_metric(3), t_2c_der_RI(3), t_3c_der_AO(3), t_3c_der_RI(3))
    2587         116 :       IF (use_virial) THEN
    2588             :          CALL precalc_derivatives(t_3c_der_RI_comp, t_3c_der_AO_comp, t_3c_der_RI_ind, t_3c_der_AO_ind, &
    2589             :                                   t_2c_der_RI, t_2c_der_metric, t_3c_ri_ao_ao, &
    2590             :                                   basis_set_AO, basis_set_RI, ri_data, qs_env, &
    2591             :                                   nl_2c_pot=nl_2c_pot, nl_2c_met=nl_2c_met, &
    2592           4 :                                   nl_3c_out=nl_3c, t_3c_virial=t_3c_virial)
    2593             : 
    2594          16 :          ALLOCATE (col_bsize(natom), row_bsize(natom))
    2595          16 :          col_bsize(:) = ri_data%bsizes_RI
    2596          16 :          row_bsize(:) = ri_data%bsizes_RI
    2597           4 :          CALL dbcsr_create(virial_trace, "virial_trace", dbcsr_dist, dbcsr_type_no_symmetry, row_bsize, col_bsize)
    2598           4 :          CALL dbt_create(virial_trace, t_2c_virial)
    2599           4 :          DEALLOCATE (col_bsize, row_bsize)
    2600             :       ELSE
    2601             :          CALL precalc_derivatives(t_3c_der_RI_comp, t_3c_der_AO_comp, t_3c_der_RI_ind, t_3c_der_AO_ind, &
    2602             :                                   t_2c_der_RI, t_2c_der_metric, t_3c_ri_ao_ao, &
    2603         112 :                                   basis_set_AO, basis_set_RI, ri_data, qs_env)
    2604             :       END IF
    2605             : 
    2606             :       ! Keep track of derivative sparsity to be able to use retain_sparsity in contraction
    2607         116 :       CALL dbt_create(t_3c_ri_ao_ao, t_3c_sparse)
    2608         464 :       DO i_xyz = 1, 3
    2609        1490 :          DO i_mem = 1, SIZE(t_3c_der_RI_comp, 1)
    2610             :             CALL decompress_tensor(t_3c_ri_ao_ao, t_3c_der_RI_ind(i_mem, i_xyz)%ind, &
    2611        1026 :                                    t_3c_der_RI_comp(i_mem, i_xyz), ri_data%filter_eps_storage)
    2612        1026 :             CALL dbt_copy(t_3c_ri_ao_ao, t_3c_sparse, summation=.TRUE., move_data=.TRUE.)
    2613             : 
    2614             :             CALL decompress_tensor(t_3c_ri_ao_ao, t_3c_der_AO_ind(i_mem, i_xyz)%ind, &
    2615        1026 :                                    t_3c_der_AO_comp(i_mem, i_xyz), ri_data%filter_eps_storage)
    2616        1026 :             CALL dbt_copy(t_3c_ri_ao_ao, t_3c_sparse, summation=.TRUE.)
    2617        1374 :             CALL dbt_copy(t_3c_ri_ao_ao, t_3c_sparse, order=[1, 3, 2], summation=.TRUE., move_data=.TRUE.)
    2618             :          END DO
    2619             :       END DO
    2620             : 
    2621         464 :       DO i_xyz = 1, 3
    2622         348 :          CALL dbt_create(t_3c_ri_ao_ao, t_3c_der_RI(i_xyz))
    2623         464 :          CALL dbt_create(t_3c_ri_ao_ao, t_3c_der_AO(i_xyz))
    2624             :       END DO
    2625             : 
    2626             :       ! Some utilities
    2627         116 :       spin_fac = 0.5_dp
    2628         116 :       IF (nspins == 2) spin_fac = 1.0_dp
    2629         116 :       IF (PRESENT(rescale_factor)) spin_fac = spin_fac*rescale_factor
    2630             : 
    2631         348 :       ALLOCATE (idx_to_at_RI(SIZE(ri_data%bsizes_RI_split)))
    2632         116 :       CALL get_idx_to_atom(idx_to_at_RI, ri_data%bsizes_RI_split, ri_data%bsizes_RI)
    2633             : 
    2634         348 :       ALLOCATE (idx_to_at_AO(SIZE(ri_data%bsizes_AO_split)))
    2635         116 :       CALL get_idx_to_atom(idx_to_at_AO, ri_data%bsizes_AO_split, ri_data%bsizes_AO)
    2636             : 
    2637         116 :       CALL get_atomic_kind_set(atomic_kind_set, kind_of=kind_of, atom_of_kind=atom_of_kind)
    2638             : 
    2639             :       ! Go over batches of the 2 AO indices to save memory
    2640         116 :       n_mem = ri_data%n_mem
    2641         464 :       ALLOCATE (batch_start(n_mem), batch_end(n_mem))
    2642         464 :       batch_start(:) = ri_data%starts_array_mem(:)
    2643         464 :       batch_end(:) = ri_data%ends_array_mem(:)
    2644             : 
    2645         348 :       ALLOCATE (batch_ranges(n_mem + 1))
    2646         464 :       batch_ranges(:n_mem) = ri_data%starts_array_mem_block(:)
    2647         116 :       batch_ranges(n_mem + 1) = ri_data%ends_array_mem_block(n_mem) + 1
    2648             : 
    2649         116 :       n_mem_RI = ri_data%n_mem_RI
    2650         464 :       ALLOCATE (batch_start_RI(n_mem_RI), batch_end_RI(n_mem_RI))
    2651         464 :       batch_start_RI(:) = ri_data%starts_array_RI_mem(:)
    2652         464 :       batch_end_RI(:) = ri_data%ends_array_RI_mem(:)
    2653             : 
    2654         348 :       ALLOCATE (batch_ranges_RI(n_mem_RI + 1))
    2655         464 :       batch_ranges_RI(:n_mem_RI) = ri_data%starts_array_RI_mem_block(:)
    2656         116 :       batch_ranges_RI(n_mem_RI + 1) = ri_data%ends_array_RI_mem_block(n_mem_RI) + 1
    2657             : 
    2658             :       ! Pre-create all the needed tensors
    2659             :       CALL create_2c_tensor(rho_ao_1, dist1, dist2, ri_data%pgrid_2d, &
    2660             :                             ri_data%bsizes_AO_split, ri_data%bsizes_AO_split, &
    2661         116 :                             name="(AO | AO)")
    2662         116 :       DEALLOCATE (dist1, dist2)
    2663         116 :       CALL dbt_create(rho_ao_1, rho_ao_2)
    2664             : 
    2665             :       CALL create_2c_tensor(t_2c_RI, dist1, dist2, ri_data%pgrid_2d, &
    2666             :                             ri_data%bsizes_RI_split, ri_data%bsizes_RI_split, name="(RI | RI)")
    2667         116 :       DEALLOCATE (dist1, dist2)
    2668         116 :       CALL dbt_create(t_2c_RI, t_SVS)
    2669         116 :       CALL dbt_create(t_2c_RI, t_R)
    2670         116 :       CALL dbt_create(t_2c_RI, t_2c_RI_tmp)
    2671             : 
    2672         116 :       CALL dbt_create(t_3c_ao_ri_ao, t_3c_1)
    2673         116 :       CALL dbt_create(t_3c_ao_ri_ao, t_3c_2)
    2674         116 :       CALL dbt_create(t_3c_ri_ao_ao, t_3c_3)
    2675         116 :       CALL dbt_create(t_3c_ri_ao_ao, t_3c_4)
    2676         116 :       CALL dbt_create(t_3c_ri_ao_ao, t_3c_5)
    2677         116 :       CALL dbt_create(t_3c_ri_ao_ao, t_3c_help_1)
    2678         116 :       CALL dbt_create(t_3c_ri_ao_ao, t_3c_help_2)
    2679             : 
    2680         116 :       CALL dbt_create(t_3c_ao_ri_ao, t_3c_int)
    2681         116 :       CALL dbt_copy(ri_data%t_3c_int_ctr_2(1, 1), t_3c_int)
    2682             : 
    2683         116 :       CALL dbt_create(t_3c_ri_ao_ao, t_3c_int_2)
    2684             : 
    2685         116 :       CALL para_env%sync()
    2686         116 :       t1 = m_walltime()
    2687             : 
    2688             :       !Pre-calculate the necessary 2-center quantities
    2689         116 :       IF (.NOT. ri_data%same_op) THEN
    2690             :          !S^-1 * V * S^-1
    2691             :          CALL dbt_contract(1.0_dp, ri_data%t_2c_inv(1, 1), ri_data%t_2c_pot(1, 1), 0.0_dp, t_2c_RI, &
    2692             :                            contract_1=[2], notcontract_1=[1], &
    2693             :                            contract_2=[1], notcontract_2=[2], &
    2694             :                            map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps, &
    2695          28 :                            unit_nr=unit_nr_dbcsr, flop=nflop)
    2696          28 :          ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2697             : 
    2698             :          CALL dbt_contract(1.0_dp, t_2c_RI, ri_data%t_2c_inv(1, 1), 0.0_dp, t_SVS, &
    2699             :                            contract_1=[2], notcontract_1=[1], &
    2700             :                            contract_2=[1], notcontract_2=[2], &
    2701             :                            map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps, &
    2702          28 :                            unit_nr=unit_nr_dbcsr, flop=nflop)
    2703          28 :          ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2704             :       ELSE
    2705             :          ! Simply V^-1
    2706          88 :          CALL dbt_copy(ri_data%t_2c_inv(1, 1), t_SVS)
    2707             :       END IF
    2708             : 
    2709         116 :       CALL dbt_batched_contract_init(t_3c_int, batch_range_1=batch_ranges, batch_range_3=batch_ranges)
    2710             :       CALL dbt_batched_contract_init(t_3c_int_2, batch_range_1=batch_ranges_RI, &
    2711         116 :                                      batch_range_2=batch_ranges, batch_range_3=batch_ranges)
    2712         116 :       CALL dbt_batched_contract_init(t_3c_1, batch_range_1=batch_ranges, batch_range_3=batch_ranges)
    2713         116 :       CALL dbt_batched_contract_init(t_3c_2, batch_range_1=batch_ranges, batch_range_3=batch_ranges)
    2714             :       CALL dbt_batched_contract_init(t_3c_3, batch_range_1=batch_ranges_RI, &
    2715         116 :                                      batch_range_2=batch_ranges, batch_range_3=batch_ranges)
    2716             :       CALL dbt_batched_contract_init(t_3c_4, batch_range_1=batch_ranges_RI, &
    2717         116 :                                      batch_range_2=batch_ranges, batch_range_3=batch_ranges)
    2718             :       CALL dbt_batched_contract_init(t_3c_5, batch_range_1=batch_ranges_RI, &
    2719         116 :                                      batch_range_2=batch_ranges, batch_range_3=batch_ranges)
    2720             :       CALL dbt_batched_contract_init(t_3c_sparse, batch_range_1=batch_ranges_RI, &
    2721         116 :                                      batch_range_2=batch_ranges, batch_range_3=batch_ranges)
    2722             : 
    2723         242 :       DO i_spin = 1, nspins
    2724             : 
    2725             :          !Prepare Pmat in tensor format
    2726         126 :          CALL dbt_create(rho_ao(i_spin, 1)%matrix, t_2c_tmp)
    2727         126 :          CALL dbt_copy_matrix_to_tensor(rho_ao(i_spin, 1)%matrix, t_2c_tmp)
    2728         126 :          CALL dbt_copy(t_2c_tmp, rho_ao_1, move_data=.TRUE.)
    2729         126 :          CALL dbt_destroy(t_2c_tmp)
    2730             : 
    2731         126 :          IF (.NOT. do_resp) THEN
    2732          94 :             CALL dbt_copy(rho_ao_1, rho_ao_2)
    2733          32 :          ELSE IF (do_resp .AND. resp_only_prv) THEN
    2734             : 
    2735          24 :             CALL dbt_create(rho_ao_resp(i_spin)%matrix, t_2c_tmp)
    2736          24 :             CALL dbt_copy_matrix_to_tensor(rho_ao_resp(i_spin)%matrix, t_2c_tmp)
    2737          24 :             CALL dbt_copy(t_2c_tmp, rho_ao_2)
    2738             :             !symmetry allows to take 2*P_resp rasther than explicitely take all cross products
    2739          24 :             CALL dbt_copy(t_2c_tmp, rho_ao_2, summation=.TRUE., move_data=.TRUE.)
    2740          24 :             CALL dbt_destroy(t_2c_tmp)
    2741             :          ELSE
    2742             : 
    2743             :             !if not resp_only, need P-P_resp and P+P_resp
    2744           8 :             CALL dbt_copy(rho_ao_1, rho_ao_2)
    2745           8 :             CALL dbcsr_create(dbcsr_tmp, template=rho_ao_resp(i_spin)%matrix)
    2746           8 :             CALL dbcsr_add(dbcsr_tmp, rho_ao_resp(i_spin)%matrix, 0.0_dp, -1.0_dp)
    2747           8 :             CALL dbt_create(dbcsr_tmp, t_2c_tmp)
    2748           8 :             CALL dbt_copy_matrix_to_tensor(dbcsr_tmp, t_2c_tmp)
    2749           8 :             CALL dbt_copy(t_2c_tmp, rho_ao_1, summation=.TRUE., move_data=.TRUE.)
    2750           8 :             CALL dbcsr_release(dbcsr_tmp)
    2751             : 
    2752           8 :             CALL dbt_copy_matrix_to_tensor(rho_ao_resp(i_spin)%matrix, t_2c_tmp)
    2753           8 :             CALL dbt_copy(t_2c_tmp, rho_ao_2, summation=.TRUE., move_data=.TRUE.)
    2754           8 :             CALL dbt_destroy(t_2c_tmp)
    2755             : 
    2756             :          END IF
    2757         126 :          work_virial = 0.0_dp
    2758             : 
    2759         126 :          CALL timeset(routineN//"_3c", handle)
    2760             :          !Start looping of the batches
    2761         504 :          DO i_mem = 1, n_mem
    2762        1134 :             ibounds(:, 1) = [batch_start(i_mem), batch_end(i_mem)]
    2763             : 
    2764         378 :             CALL dbt_batched_contract_init(rho_ao_1)
    2765             :             CALL dbt_contract(1.0_dp, rho_ao_1, t_3c_int, 0.0_dp, t_3c_1, &
    2766             :                               contract_1=[1], notcontract_1=[2], &
    2767             :                               contract_2=[3], notcontract_2=[1, 2], &
    2768             :                               map_1=[3], map_2=[1, 2], filter_eps=ri_data%filter_eps, &
    2769         378 :                               bounds_2=ibounds, unit_nr=unit_nr_dbcsr, flop=nflop)
    2770         378 :             ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2771         378 :             CALL dbt_batched_contract_finalize(rho_ao_1)
    2772             : 
    2773         378 :             CALL dbt_copy(t_3c_1, t_3c_2, order=[3, 2, 1], move_data=.TRUE.)
    2774             : 
    2775        1512 :             DO j_mem = 1, n_mem
    2776        3402 :                jbounds(:, 1) = [batch_start(j_mem), batch_end(j_mem)]
    2777             : 
    2778        1134 :                CALL dbt_batched_contract_init(rho_ao_2)
    2779             :                CALL dbt_contract(1.0_dp, rho_ao_2, t_3c_2, 0.0_dp, t_3c_1, &
    2780             :                                  contract_1=[1], notcontract_1=[2], &
    2781             :                                  contract_2=[3], notcontract_2=[1, 2], &
    2782             :                                  map_1=[3], map_2=[1, 2], filter_eps=ri_data%filter_eps, &
    2783        1134 :                                  bounds_2=jbounds, unit_nr=unit_nr_dbcsr, flop=nflop)
    2784        1134 :                ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2785        1134 :                CALL dbt_batched_contract_finalize(rho_ao_2)
    2786             : 
    2787        3402 :                bounds_cpy(:, 1) = [batch_start(i_mem), batch_end(i_mem)]
    2788        6840 :                bounds_cpy(:, 2) = [1, SUM(ri_data%bsizes_RI)]
    2789        3402 :                bounds_cpy(:, 3) = [batch_start(j_mem), batch_end(j_mem)]
    2790        1134 :                CALL dbt_copy(t_3c_int, t_3c_int_2, order=[2, 1, 3], bounds=bounds_cpy)
    2791        1134 :                CALL dbt_copy(t_3c_1, t_3c_3, order=[2, 1, 3], move_data=.TRUE.)
    2792             : 
    2793        4914 :                DO k_mem = 1, n_mem_RI
    2794       10206 :                   kbounds(:, 1) = [batch_start_RI(k_mem), batch_end_RI(k_mem)]
    2795             : 
    2796       10206 :                   bounds_cpy(:, 1) = [batch_start_RI(k_mem), batch_end_RI(k_mem)]
    2797       10206 :                   bounds_cpy(:, 2) = [batch_start(i_mem), batch_end(i_mem)]
    2798       10206 :                   bounds_cpy(:, 3) = [batch_start(j_mem), batch_end(j_mem)]
    2799        3402 :                   CALL dbt_copy(t_3c_sparse, t_3c_4, bounds=bounds_cpy)
    2800             : 
    2801             :                   !Contract with the 2-center product S^-1 * V * S^-1 while keeping sparsity of derivatives
    2802        3402 :                   CALL dbt_batched_contract_init(t_SVS)
    2803             :                   CALL dbt_contract(1.0_dp, t_SVS, t_3c_3, 0.0_dp, t_3c_4, &
    2804             :                                     contract_1=[2], notcontract_1=[1], &
    2805             :                                     contract_2=[1], notcontract_2=[2, 3], &
    2806             :                                     map_1=[1], map_2=[2, 3], filter_eps=ri_data%filter_eps, &
    2807        3402 :                                     retain_sparsity=.TRUE., unit_nr=unit_nr_dbcsr, flop=nflop)
    2808        3402 :                   ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2809        3402 :                   CALL dbt_batched_contract_finalize(t_SVS)
    2810             : 
    2811        3402 :                   CALL dbt_copy(t_3c_4, t_3c_5, summation=.TRUE., move_data=.TRUE.)
    2812             : 
    2813       10206 :                   ijbounds(:, 1) = ibounds(:, 1)
    2814       10206 :                   ijbounds(:, 2) = jbounds(:, 1)
    2815             : 
    2816             :                   !Contract R_PS = (acP) M_acS
    2817        3402 :                   CALL dbt_batched_contract_init(t_R)
    2818             :                   CALL dbt_contract(1.0_dp, t_3c_int_2, t_3c_3, 1.0_dp, t_R, &
    2819             :                                     contract_1=[2, 3], notcontract_1=[1], &
    2820             :                                     contract_2=[2, 3], notcontract_2=[1], &
    2821             :                                     map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps, &
    2822             :                                     bounds_1=ijbounds, bounds_3=kbounds, &
    2823        3402 :                                     unit_nr=unit_nr_dbcsr, flop=nflop)
    2824        3402 :                   ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2825        4536 :                   CALL dbt_batched_contract_finalize(t_R)
    2826             : 
    2827             :                END DO !k_mem
    2828             :             END DO !j_mem
    2829             : 
    2830         378 :             CALL dbt_copy(t_3c_5, t_3c_help_1, move_data=.TRUE.)
    2831             : 
    2832             :             !The force from the 3c derivatives
    2833         378 :             pref = -0.5_dp*2.0_dp*hf_fraction*spin_fac
    2834             : 
    2835        1476 :             DO k_mem = 1, SIZE(t_3c_der_RI_comp, 1)
    2836        4392 :                DO i_xyz = 1, 3
    2837        3294 :                   CALL dbt_clear(t_3c_der_RI(i_xyz))
    2838             :                   CALL decompress_tensor(t_3c_der_RI(i_xyz), t_3c_der_RI_ind(k_mem, i_xyz)%ind, &
    2839        4392 :                                          t_3c_der_RI_comp(k_mem, i_xyz), ri_data%filter_eps_storage)
    2840             :                END DO
    2841             :                CALL get_force_from_3c_trace(force, t_3c_help_1, t_3c_der_RI, atom_of_kind, kind_of, &
    2842        1476 :                                             idx_to_at_RI, pref)
    2843             :             END DO
    2844             : 
    2845         378 :             pref = -0.5_dp*4.0_dp*hf_fraction*spin_fac
    2846         378 :             IF (do_resp) THEN
    2847          96 :                pref = 0.5_dp*pref
    2848          96 :                CALL dbt_copy(t_3c_help_1, t_3c_help_2, order=[1, 3, 2])
    2849             :             END IF
    2850             : 
    2851        1476 :             DO k_mem = 1, SIZE(t_3c_der_AO_comp, 1)
    2852        4392 :                DO i_xyz = 1, 3
    2853        3294 :                   CALL dbt_clear(t_3c_der_AO(i_xyz))
    2854             :                   CALL decompress_tensor(t_3c_der_AO(i_xyz), t_3c_der_AO_ind(k_mem, i_xyz)%ind, &
    2855        4392 :                                          t_3c_der_AO_comp(k_mem, i_xyz), ri_data%filter_eps_storage)
    2856             :                END DO
    2857             :                CALL get_force_from_3c_trace(force, t_3c_help_1, t_3c_der_AO, atom_of_kind, kind_of, &
    2858        1098 :                                             idx_to_at_AO, pref, deriv_dim=2)
    2859             : 
    2860        1476 :                IF (do_resp) THEN
    2861             :                   CALL get_force_from_3c_trace(force, t_3c_help_2, t_3c_der_AO, atom_of_kind, kind_of, &
    2862         276 :                                                idx_to_at_AO, pref, deriv_dim=2)
    2863             :                END IF
    2864             :             END DO
    2865             : 
    2866             :             !The 3c virial contribution. Note: only fraction of integrals correspondig to i_mem calculated
    2867         378 :             IF (use_virial) THEN
    2868          12 :                pref = -0.5_dp*2.0_dp*hf_fraction*spin_fac
    2869          12 :                CALL dbt_copy(t_3c_help_1, t_3c_virial, move_data=.TRUE.)
    2870             :                CALL calc_3c_virial(work_virial, t_3c_virial, pref, qs_env, nl_3c, basis_set_RI, &
    2871             :                                    basis_set_AO, basis_set_AO, ri_data%ri_metric, &
    2872          12 :                                    der_eps=ri_data%eps_schwarz_forces, op_pos=1)
    2873             : 
    2874          12 :                CALL dbt_clear(t_3c_virial)
    2875             :             END IF
    2876             : 
    2877         378 :             CALL dbt_clear(t_3c_help_1)
    2878         504 :             CALL dbt_clear(t_3c_help_2)
    2879             :          END DO !i_mem
    2880         126 :          CALL timestop(handle)
    2881             : 
    2882         126 :          CALL timeset(routineN//"_2c", handle)
    2883             :          !Now we deal with all the 2-center quantities
    2884             :          !Calculate S^-1 * R * S^-1
    2885             :          CALL dbt_contract(1.0_dp, ri_data%t_2c_inv(1, 1), t_R, 0.0_dp, t_2c_RI_tmp, &
    2886             :                            contract_1=[2], notcontract_1=[1], &
    2887             :                            contract_2=[1], notcontract_2=[2], &
    2888             :                            map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps, &
    2889         126 :                            unit_nr=unit_nr_dbcsr, flop=nflop)
    2890         126 :          ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2891             : 
    2892             :          CALL dbt_contract(1.0_dp, t_2c_RI_tmp, ri_data%t_2c_inv(1, 1), 0.0_dp, t_2c_RI, &
    2893             :                            contract_1=[2], notcontract_1=[1], &
    2894             :                            contract_2=[1], notcontract_2=[2], &
    2895             :                            map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps, &
    2896         126 :                            unit_nr=unit_nr_dbcsr, flop=nflop)
    2897         126 :          ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2898             : 
    2899             :          !Calculate the potential contribution to the force: [S^-1*R*S^-1]_QR d/dx (Q|R)
    2900         126 :          pref = 0.5_dp*hf_fraction*spin_fac
    2901         126 :          IF (.NOT. ri_data%same_op) pref = -pref
    2902         126 :          CALL get_2c_der_force(force, t_2c_RI, t_2c_der_RI, atom_of_kind, kind_of, idx_to_at_RI, pref)
    2903             : 
    2904             :          !Calculate the contribution to the virial on the fly
    2905         126 :          IF (use_virial_prv) THEN
    2906           4 :             CALL dbt_copy(t_2c_RI, t_2c_virial)
    2907           4 :             CALL dbt_copy_tensor_to_matrix(t_2c_virial, virial_trace)
    2908             :             CALL calc_2c_virial(work_virial, virial_trace, pref, qs_env, nl_2c_pot, &
    2909           4 :                                 basis_set_RI, basis_set_RI, ri_data%hfx_pot)
    2910             :          END IF
    2911             : 
    2912             :          !And that from the metric: [S^-1*R*S^-1*(Q|R)*S^-1]_UV d/dx S_UV
    2913         126 :          IF (.NOT. ri_data%same_op) THEN
    2914             :             CALL dbt_contract(1.0_dp, t_2c_RI, ri_data%t_2c_pot(1, 1), 0.0_dp, t_2c_RI_tmp, &
    2915             :                               contract_1=[2], notcontract_1=[1], &
    2916             :                               contract_2=[1], notcontract_2=[2], &
    2917             :                               map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps, &
    2918          28 :                               unit_nr=unit_nr_dbcsr, flop=nflop)
    2919          28 :             ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2920             : 
    2921             :             CALL dbt_contract(1.0_dp, t_2c_RI_tmp, ri_data%t_2c_inv(1, 1), 0.0_dp, t_2c_RI, &
    2922             :                               contract_1=[2], notcontract_1=[1], &
    2923             :                               contract_2=[1], notcontract_2=[2], &
    2924             :                               map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps, &
    2925          28 :                               unit_nr=unit_nr_dbcsr, flop=nflop)
    2926          28 :             ri_data%dbcsr_nflop = ri_data%dbcsr_nflop + nflop
    2927             : 
    2928          28 :             pref = 0.5_dp*2.0_dp*hf_fraction*spin_fac
    2929          28 :             CALL get_2c_der_force(force, t_2c_RI, t_2c_der_metric, atom_of_kind, kind_of, idx_to_at_RI, pref)
    2930             : 
    2931          28 :             IF (use_virial_prv) THEN
    2932           0 :                CALL dbt_copy(t_2c_RI, t_2c_virial)
    2933           0 :                CALL dbt_copy_tensor_to_matrix(t_2c_virial, virial_trace)
    2934             :                CALL calc_2c_virial(work_virial, virial_trace, pref, qs_env, nl_2c_met, &
    2935           0 :                                    basis_set_RI, basis_set_RI, ri_data%ri_metric)
    2936             :             END IF
    2937             :          END IF
    2938         126 :          CALL dbt_clear(t_2c_RI)
    2939         126 :          CALL dbt_clear(t_2c_RI_tmp)
    2940         126 :          CALL dbt_clear(t_R)
    2941         126 :          CALL dbt_clear(t_3c_help_1)
    2942         126 :          CALL dbt_clear(t_3c_help_2)
    2943         126 :          CALL timestop(handle)
    2944             : 
    2945         494 :          IF (use_virial_prv) THEN
    2946          16 :             DO k_xyz = 1, 3
    2947          52 :                DO j_xyz = 1, 3
    2948         156 :                   DO i_xyz = 1, 3
    2949             :                      virial%pv_fock_4c(i_xyz, j_xyz) = virial%pv_fock_4c(i_xyz, j_xyz) &
    2950         144 :                                                        + work_virial(i_xyz, k_xyz)*cell%hmat(j_xyz, k_xyz)
    2951             :                   END DO
    2952             :                END DO
    2953             :             END DO
    2954             :          END IF
    2955             :       END DO !i_spin
    2956             : 
    2957         116 :       CALL dbt_batched_contract_finalize(t_3c_int)
    2958         116 :       CALL dbt_batched_contract_finalize(t_3c_int_2)
    2959         116 :       CALL dbt_batched_contract_finalize(t_3c_1)
    2960         116 :       CALL dbt_batched_contract_finalize(t_3c_2)
    2961         116 :       CALL dbt_batched_contract_finalize(t_3c_3)
    2962         116 :       CALL dbt_batched_contract_finalize(t_3c_4)
    2963         116 :       CALL dbt_batched_contract_finalize(t_3c_5)
    2964         116 :       CALL dbt_batched_contract_finalize(t_3c_sparse)
    2965             : 
    2966         116 :       CALL para_env%sync()
    2967         116 :       t2 = m_walltime()
    2968             : 
    2969         116 :       CALL dbt_copy(t_3c_int, ri_data%t_3c_int_ctr_2(1, 1), move_data=.TRUE.)
    2970             : 
    2971             :       !clean-up
    2972         116 :       CALL dbt_destroy(rho_ao_1)
    2973         116 :       CALL dbt_destroy(rho_ao_2)
    2974         116 :       CALL dbt_destroy(t_3c_ao_ri_ao)
    2975         116 :       CALL dbt_destroy(t_3c_ri_ao_ao)
    2976         116 :       CALL dbt_destroy(t_3c_int)
    2977         116 :       CALL dbt_destroy(t_3c_int_2)
    2978         116 :       CALL dbt_destroy(t_3c_1)
    2979         116 :       CALL dbt_destroy(t_3c_2)
    2980         116 :       CALL dbt_destroy(t_3c_3)
    2981         116 :       CALL dbt_destroy(t_3c_4)
    2982         116 :       CALL dbt_destroy(t_3c_5)
    2983         116 :       CALL dbt_destroy(t_3c_help_1)
    2984         116 :       CALL dbt_destroy(t_3c_help_2)
    2985         116 :       CALL dbt_destroy(t_3c_sparse)
    2986         116 :       CALL dbt_destroy(t_SVS)
    2987         116 :       CALL dbt_destroy(t_R)
    2988         116 :       CALL dbt_destroy(t_2c_RI)
    2989         116 :       CALL dbt_destroy(t_2c_RI_tmp)
    2990             : 
    2991         464 :       DO i_xyz = 1, 3
    2992         348 :          CALL dbt_destroy(t_3c_der_RI(i_xyz))
    2993         348 :          CALL dbt_destroy(t_3c_der_AO(i_xyz))
    2994         348 :          CALL dbt_destroy(t_2c_der_RI(i_xyz))
    2995         464 :          IF (.NOT. ri_data%same_op) CALL dbt_destroy(t_2c_der_metric(i_xyz))
    2996             :       END DO
    2997             : 
    2998         464 :       DO i_xyz = 1, 3
    2999        1490 :          DO i_mem = 1, SIZE(t_3c_der_AO_comp, 1)
    3000        1026 :             CALL dealloc_containers(t_3c_der_AO_comp(i_mem, i_xyz), dummy_int)
    3001        1374 :             CALL dealloc_containers(t_3c_der_RI_comp(i_mem, i_xyz), dummy_int)
    3002             :          END DO
    3003             :       END DO
    3004        2168 :       DEALLOCATE (t_3c_der_AO_ind, t_3c_der_RI_ind)
    3005             : 
    3006         342 :       DO ibasis = 1, SIZE(basis_set_AO)
    3007         226 :          orb_basis => basis_set_AO(ibasis)%gto_basis_set
    3008         226 :          ri_basis => basis_set_RI(ibasis)%gto_basis_set
    3009         226 :          CALL init_interaction_radii_orb_basis(orb_basis, dft_control%qs_control%eps_pgf_orb)
    3010         342 :          CALL init_interaction_radii_orb_basis(ri_basis, dft_control%qs_control%eps_pgf_orb)
    3011             :       END DO
    3012             : 
    3013         116 :       IF (use_virial) THEN
    3014           4 :          CALL release_neighbor_list_sets(nl_2c_met)
    3015           4 :          CALL release_neighbor_list_sets(nl_2c_pot)
    3016           4 :          CALL neighbor_list_3c_destroy(nl_3c)
    3017           4 :          CALL dbcsr_release(virial_trace)
    3018           4 :          CALL dbt_destroy(t_2c_virial)
    3019           4 :          CALL dbt_destroy(t_3c_virial)
    3020             :       END IF
    3021             : 
    3022        2552 :    END SUBROUTINE hfx_ri_forces_Pmat
    3023             : 
    3024             : ! **************************************************************************************************
    3025             : !> \brief the general routine that calls the relevant force code
    3026             : !> \param qs_env ...
    3027             : !> \param ri_data ...
    3028             : !> \param nspins ...
    3029             : !> \param hf_fraction ...
    3030             : !> \param rho_ao ...
    3031             : !> \param rho_ao_resp ...
    3032             : !> \param mos ...
    3033             : !> \param use_virial ...
    3034             : !> \param resp_only ...
    3035             : !> \param rescale_factor ...
    3036             : ! **************************************************************************************************
    3037         130 :    SUBROUTINE hfx_ri_update_forces(qs_env, ri_data, nspins, hf_fraction, rho_ao, rho_ao_resp, &
    3038         130 :                                    mos, use_virial, resp_only, rescale_factor)
    3039             : 
    3040             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    3041             :       TYPE(hfx_ri_type), INTENT(INOUT)                   :: ri_data
    3042             :       INTEGER, INTENT(IN)                                :: nspins
    3043             :       REAL(KIND=dp), INTENT(IN)                          :: hf_fraction
    3044             :       TYPE(dbcsr_p_type), DIMENSION(:, :), OPTIONAL      :: rho_ao
    3045             :       TYPE(dbcsr_p_type), DIMENSION(:), OPTIONAL         :: rho_ao_resp
    3046             :       TYPE(mo_set_type), DIMENSION(:), INTENT(IN), &
    3047             :          OPTIONAL                                        :: mos
    3048             :       LOGICAL, INTENT(IN), OPTIONAL                      :: use_virial, resp_only
    3049             :       REAL(dp), INTENT(IN), OPTIONAL                     :: rescale_factor
    3050             : 
    3051             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'hfx_ri_update_forces'
    3052             : 
    3053             :       INTEGER                                            :: handle, ispin
    3054             :       INTEGER, DIMENSION(2)                              :: homo
    3055         130 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: mo_eigenvalues
    3056             :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
    3057         390 :       TYPE(dbcsr_type), DIMENSION(2)                     :: mo_coeff_b
    3058             :       TYPE(dbcsr_type), POINTER                          :: mo_coeff_b_tmp
    3059             : 
    3060         130 :       CALL timeset(routineN, handle)
    3061             : 
    3062         144 :       SELECT CASE (ri_data%flavor)
    3063             :       CASE (ri_mo)
    3064             : 
    3065          32 :          DO ispin = 1, nspins
    3066          18 :             NULLIFY (mo_coeff_b_tmp)
    3067          18 :             CPASSERT(mos(ispin)%uniform_occupation)
    3068          18 :             CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, eigenvalues=mo_eigenvalues, mo_coeff_b=mo_coeff_b_tmp)
    3069             : 
    3070          18 :             IF (.NOT. mos(ispin)%use_mo_coeff_b) CALL copy_fm_to_dbcsr(mo_coeff, mo_coeff_b_tmp)
    3071          32 :             CALL dbcsr_copy(mo_coeff_b(ispin), mo_coeff_b_tmp)
    3072             :          END DO
    3073             : 
    3074          32 :          DO ispin = 1, nspins
    3075          18 :             CALL dbcsr_scale(mo_coeff_b(ispin), SQRT(mos(ispin)%maxocc))
    3076          14 :             homo(ispin) = mos(ispin)%homo
    3077             :          END DO
    3078             : 
    3079          14 :          CALL hfx_ri_forces_mo(qs_env, ri_data, nspins, hf_fraction, mo_coeff_b, use_virial)
    3080             : 
    3081             :       CASE (ri_pmat)
    3082             : 
    3083             :          CALL hfx_ri_forces_Pmat(qs_env, ri_data, nspins, hf_fraction, rho_ao, rho_ao_resp, use_virial, &
    3084         216 :                                  resp_only, rescale_factor)
    3085             :       END SELECT
    3086             : 
    3087         274 :       DO ispin = 1, nspins
    3088         274 :          CALL dbcsr_release(mo_coeff_b(ispin))
    3089             :       END DO
    3090             : 
    3091         130 :       CALL timestop(handle)
    3092             : 
    3093         130 :    END SUBROUTINE hfx_ri_update_forces
    3094             : 
    3095             : ! **************************************************************************************************
    3096             : !> \brief Calculate the derivatives tensors for the force, in a format fit for contractions
    3097             : !> \param t_3c_der_RI_comp compressed RI derivatives
    3098             : !> \param t_3c_der_AO_comp compressed AO derivatives
    3099             : !> \param t_3c_der_RI_ind ...
    3100             : !> \param t_3c_der_AO_ind ...
    3101             : !> \param t_2c_der_RI format based on standard atomic block sizes
    3102             : !> \param t_2c_der_metric format based on standard atomic block sizes
    3103             : !> \param ri_ao_ao_template ...
    3104             : !> \param basis_set_AO ...
    3105             : !> \param basis_set_RI ...
    3106             : !> \param ri_data ...
    3107             : !> \param qs_env ...
    3108             : !> \param nl_2c_pot ...
    3109             : !> \param nl_2c_met ...
    3110             : !> \param nl_3c_out ...
    3111             : !> \param t_3c_virial ...
    3112             : ! **************************************************************************************************
    3113        4160 :    SUBROUTINE precalc_derivatives(t_3c_der_RI_comp, t_3c_der_AO_comp, t_3c_der_RI_ind, t_3c_der_AO_ind, &
    3114             :                                   t_2c_der_RI, t_2c_der_metric, ri_ao_ao_template, &
    3115             :                                   basis_set_AO, basis_set_RI, ri_data, qs_env, &
    3116             :                                   nl_2c_pot, nl_2c_met, nl_3c_out, t_3c_virial)
    3117             : 
    3118             :       TYPE(hfx_compression_type), ALLOCATABLE, &
    3119             :          DIMENSION(:, :), INTENT(INOUT)                  :: t_3c_der_RI_comp, t_3c_der_AO_comp
    3120             :       TYPE(block_ind_type), ALLOCATABLE, DIMENSION(:, :) :: t_3c_der_RI_ind, t_3c_der_AO_ind
    3121             :       TYPE(dbt_type), DIMENSION(3), INTENT(OUT)          :: t_2c_der_RI, t_2c_der_metric
    3122             :       TYPE(dbt_type), INTENT(INOUT)                      :: ri_ao_ao_template
    3123             :       TYPE(gto_basis_set_p_type), ALLOCATABLE, &
    3124             :          DIMENSION(:), TARGET                            :: basis_set_AO, basis_set_RI
    3125             :       TYPE(hfx_ri_type), INTENT(INOUT)                   :: ri_data
    3126             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    3127             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    3128             :          OPTIONAL, POINTER                               :: nl_2c_pot, nl_2c_met
    3129             :       TYPE(neighbor_list_3c_type), OPTIONAL              :: nl_3c_out
    3130             :       TYPE(dbt_type), INTENT(INOUT), OPTIONAL            :: t_3c_virial
    3131             : 
    3132             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'precalc_derivatives'
    3133             : 
    3134             :       INTEGER                                            :: handle, i_mem, i_xyz, n_mem, natom, &
    3135             :                                                             nkind, nthreads
    3136             :       INTEGER(int_8)                                     :: nze, nze_tot
    3137         130 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: dist1, dist2, dist_AO_1, dist_AO_2, &
    3138         130 :                                                             dist_RI, dummy_end, dummy_start, &
    3139         260 :                                                             end_blocks, start_blocks
    3140             :       INTEGER, DIMENSION(3)                              :: pcoord, pdims
    3141         260 :       INTEGER, DIMENSION(:), POINTER                     :: col_bsize, row_bsize
    3142             :       REAL(dp)                                           :: compression_factor, memory, occ
    3143             :       TYPE(dbcsr_distribution_type)                      :: dbcsr_dist
    3144        1690 :       TYPE(dbcsr_type), DIMENSION(1, 3)                  :: t_2c_der_metric_prv, t_2c_der_RI_prv
    3145         390 :       TYPE(dbt_pgrid_type)                               :: pgrid
    3146        3380 :       TYPE(dbt_type)                                     :: t_2c_template, t_2c_tmp, t_3c_template
    3147         130 :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:, :, :)    :: t_3c_der_AO_prv, t_3c_der_RI_prv
    3148             :       TYPE(dft_control_type), POINTER                    :: dft_control
    3149             :       TYPE(distribution_2d_type), POINTER                :: dist_2d
    3150             :       TYPE(distribution_3d_type)                         :: dist_3d, dist_3d_out
    3151         130 :       TYPE(mp_cart_type)                                 :: mp_comm_t3c, mp_comm_t3c_out
    3152             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    3153             :       TYPE(neighbor_list_3c_type)                        :: nl_3c
    3154             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    3155         130 :          POINTER                                         :: nl_2c
    3156         130 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    3157         130 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    3158             : 
    3159         130 :       NULLIFY (qs_kind_set, dist_2d, nl_2c, particle_set, dft_control, para_env)
    3160             : 
    3161         130 :       CALL timeset(routineN, handle)
    3162             : 
    3163             :       CALL get_qs_env(qs_env, nkind=nkind, qs_kind_set=qs_kind_set, distribution_2d=dist_2d, natom=natom, &
    3164         130 :                       particle_set=particle_set, dft_control=dft_control, para_env=para_env)
    3165             : 
    3166             :       !TODO: is such a pgrid correct?
    3167             :       !Dealing with the 3c derivatives
    3168         130 :       nthreads = 1
    3169         130 : !$    nthreads = omp_get_num_threads()
    3170         130 :       pdims = 0
    3171         520 :       CALL dbt_pgrid_create(para_env, pdims, pgrid, tensor_dims=[MAX(1, natom/(ri_data%n_mem*nthreads)), natom, natom])
    3172             : 
    3173             :       CALL create_3c_tensor(t_3c_template, dist_RI, dist_AO_1, dist_AO_2, pgrid, &
    3174             :                             ri_data%bsizes_RI, ri_data%bsizes_AO, ri_data%bsizes_AO, &
    3175             :                             map1=[1], map2=[2, 3], &
    3176         130 :                             name="der (RI AO | AO)")
    3177             : 
    3178        4550 :       ALLOCATE (t_3c_der_AO_prv(1, 1, 3), t_3c_der_RI_prv(1, 1, 3))
    3179         520 :       DO i_xyz = 1, 3
    3180         390 :          CALL dbt_create(t_3c_template, t_3c_der_RI_prv(1, 1, i_xyz))
    3181         520 :          CALL dbt_create(t_3c_template, t_3c_der_AO_prv(1, 1, i_xyz))
    3182             :       END DO
    3183         130 :       IF (PRESENT(t_3c_virial)) THEN
    3184           4 :          CALL dbt_create(t_3c_template, t_3c_virial)
    3185             :       END IF
    3186         130 :       CALL dbt_destroy(t_3c_template)
    3187             : 
    3188         130 :       CALL dbt_mp_environ_pgrid(pgrid, pdims, pcoord)
    3189         130 :       CALL mp_comm_t3c%create(pgrid%mp_comm_2d, 3, pdims)
    3190             :       CALL distribution_3d_create(dist_3d, dist_RI, dist_AO_1, dist_AO_2, &
    3191         130 :                                   nkind, particle_set, mp_comm_t3c, own_comm=.TRUE.)
    3192             : 
    3193             :       CALL build_3c_neighbor_lists(nl_3c, basis_set_RI, basis_set_AO, basis_set_AO, dist_3d, ri_data%ri_metric, &
    3194         130 :                                    "HFX_3c_nl", qs_env, op_pos=1, sym_jk=.TRUE., own_dist=.TRUE.)
    3195             : 
    3196         130 :       IF (PRESENT(nl_3c_out)) THEN
    3197           4 :          CALL dbt_mp_environ_pgrid(pgrid, pdims, pcoord)
    3198           4 :          CALL mp_comm_t3c_out%create(pgrid%mp_comm_2d, 3, pdims)
    3199             :          CALL distribution_3d_create(dist_3d_out, dist_RI, dist_AO_1, dist_AO_2, &
    3200           4 :                                      nkind, particle_set, mp_comm_t3c_out, own_comm=.TRUE.)
    3201             :          CALL build_3c_neighbor_lists(nl_3c_out, basis_set_RI, basis_set_AO, basis_set_AO, dist_3d_out, &
    3202             :                                       ri_data%ri_metric, "HFX_3c_nl", qs_env, op_pos=1, sym_jk=.FALSE., &
    3203           4 :                                       own_dist=.TRUE.)
    3204             :       END IF
    3205         130 :       DEALLOCATE (dist_RI, dist_AO_1, dist_AO_2)
    3206         130 :       CALL dbt_pgrid_destroy(pgrid)
    3207             : 
    3208         130 :       n_mem = ri_data%n_mem
    3209             :       CALL create_tensor_batches(ri_data%bsizes_RI, n_mem, dummy_start, dummy_end, &
    3210         130 :                                  start_blocks, end_blocks)
    3211         130 :       DEALLOCATE (dummy_start, dummy_end)
    3212             : 
    3213      553008 :       ALLOCATE (t_3c_der_AO_comp(n_mem, 3), t_3c_der_RI_comp(n_mem, 3))
    3214        3628 :       ALLOCATE (t_3c_der_AO_ind(n_mem, 3), t_3c_der_RI_ind(n_mem, 3))
    3215             : 
    3216         130 :       memory = 0.0_dp
    3217         130 :       nze_tot = 0
    3218         518 :       DO i_mem = 1, n_mem
    3219             :          CALL build_3c_derivatives(t_3c_der_RI_prv, t_3c_der_AO_prv, ri_data%filter_eps, qs_env, &
    3220             :                                    nl_3c, basis_set_RI, basis_set_AO, basis_set_AO, &
    3221             :                                    ri_data%ri_metric, der_eps=ri_data%eps_schwarz_forces, op_pos=1, &
    3222        1164 :                                    bounds_i=[start_blocks(i_mem), end_blocks(i_mem)])
    3223             : 
    3224        1682 :          DO i_xyz = 1, 3
    3225        1164 :             CALL dbt_copy(t_3c_der_RI_prv(1, 1, i_xyz), ri_ao_ao_template, move_data=.TRUE.)
    3226        1164 :             CALL dbt_filter(ri_ao_ao_template, ri_data%filter_eps)
    3227        1164 :             CALL get_tensor_occupancy(ri_ao_ao_template, nze, occ)
    3228        1164 :             nze_tot = nze_tot + nze
    3229             : 
    3230        1164 :             CALL alloc_containers(t_3c_der_RI_comp(i_mem, i_xyz), 1)
    3231             :             CALL compress_tensor(ri_ao_ao_template, t_3c_der_RI_ind(i_mem, i_xyz)%ind, &
    3232        1164 :                                  t_3c_der_RI_comp(i_mem, i_xyz), ri_data%filter_eps_storage, memory)
    3233        1164 :             CALL dbt_clear(ri_ao_ao_template)
    3234             : 
    3235             :             !put AO derivative as middle index
    3236        1164 :             CALL dbt_copy(t_3c_der_AO_prv(1, 1, i_xyz), ri_ao_ao_template, order=[1, 3, 2], move_data=.TRUE.)
    3237        1164 :             CALL dbt_filter(ri_ao_ao_template, ri_data%filter_eps)
    3238        1164 :             CALL get_tensor_occupancy(ri_ao_ao_template, nze, occ)
    3239        1164 :             nze_tot = nze_tot + nze
    3240             : 
    3241        1164 :             CALL alloc_containers(t_3c_der_AO_comp(i_mem, i_xyz), 1)
    3242             :             CALL compress_tensor(ri_ao_ao_template, t_3c_der_AO_ind(i_mem, i_xyz)%ind, &
    3243        1164 :                                  t_3c_der_AO_comp(i_mem, i_xyz), ri_data%filter_eps_storage, memory)
    3244        3880 :             CALL dbt_clear(ri_ao_ao_template)
    3245             :          END DO
    3246             :       END DO
    3247             : 
    3248         130 :       CALL neighbor_list_3c_destroy(nl_3c)
    3249         520 :       DO i_xyz = 1, 3
    3250         390 :          CALL dbt_destroy(t_3c_der_RI_prv(1, 1, i_xyz))
    3251         520 :          CALL dbt_destroy(t_3c_der_AO_prv(1, 1, i_xyz))
    3252             :       END DO
    3253             : 
    3254         130 :       CALL para_env%sum(memory)
    3255         130 :       compression_factor = REAL(nze_tot, dp)*1.0E-06*8.0_dp/memory
    3256         130 :       IF (ri_data%unit_nr > 0) THEN
    3257             :          WRITE (UNIT=ri_data%unit_nr, FMT="((T3,A,T66,F11.2,A4))") &
    3258          14 :             "MEMORY_INFO| Memory for 3-center HFX derivatives (compressed):", memory, ' MiB'
    3259             : 
    3260             :          WRITE (UNIT=ri_data%unit_nr, FMT="((T3,A,T60,F21.2))") &
    3261          14 :             "MEMORY_INFO| Compression factor:                  ", compression_factor
    3262             :       END IF
    3263             : 
    3264             :       !Deal with the 2-center derivatives
    3265         130 :       CALL cp_dbcsr_dist2d_to_dist(dist_2d, dbcsr_dist)
    3266         390 :       ALLOCATE (row_bsize(SIZE(ri_data%bsizes_RI)))
    3267         260 :       ALLOCATE (col_bsize(SIZE(ri_data%bsizes_RI)))
    3268         530 :       row_bsize(:) = ri_data%bsizes_RI
    3269         530 :       col_bsize(:) = ri_data%bsizes_RI
    3270             : 
    3271             :       CALL build_2c_neighbor_lists(nl_2c, basis_set_RI, basis_set_RI, ri_data%hfx_pot, &
    3272         130 :                                    "HFX_2c_nl_pot", qs_env, sym_ij=.TRUE., dist_2d=dist_2d)
    3273             : 
    3274         520 :       DO i_xyz = 1, 3
    3275             :          CALL dbcsr_create(t_2c_der_RI_prv(1, i_xyz), "(R|P) HFX der", dbcsr_dist, &
    3276         520 :                            dbcsr_type_antisymmetric, row_bsize, col_bsize)
    3277             :       END DO
    3278             : 
    3279             :       CALL build_2c_derivatives(t_2c_der_RI_prv, ri_data%filter_eps_2c, qs_env, nl_2c, basis_set_RI, &
    3280         130 :                                 basis_set_RI, ri_data%hfx_pot)
    3281         130 :       CALL release_neighbor_list_sets(nl_2c)
    3282             : 
    3283         130 :       IF (PRESENT(nl_2c_pot)) THEN
    3284           4 :          NULLIFY (nl_2c_pot)
    3285             :          CALL build_2c_neighbor_lists(nl_2c_pot, basis_set_RI, basis_set_RI, ri_data%hfx_pot, &
    3286           4 :                                       "HFX_2c_nl_pot", qs_env, sym_ij=.FALSE., dist_2d=dist_2d)
    3287             :       END IF
    3288             : 
    3289             :       !copy 2c derivative tensor into the standard format
    3290             :       CALL create_2c_tensor(t_2c_template, dist1, dist2, ri_data%pgrid_2d, ri_data%bsizes_RI_split, &
    3291         130 :                             ri_data%bsizes_RI_split, name='(RI| RI)')
    3292         130 :       DEALLOCATE (dist1, dist2)
    3293             : 
    3294         520 :       DO i_xyz = 1, 3
    3295         390 :          CALL dbt_create(t_2c_der_RI_prv(1, i_xyz), t_2c_tmp)
    3296         390 :          CALL dbt_copy_matrix_to_tensor(t_2c_der_RI_prv(1, i_xyz), t_2c_tmp)
    3297             : 
    3298         390 :          CALL dbt_create(t_2c_template, t_2c_der_RI(i_xyz))
    3299         390 :          CALL dbt_copy(t_2c_tmp, t_2c_der_RI(i_xyz), move_data=.TRUE.)
    3300             : 
    3301         390 :          CALL dbt_destroy(t_2c_tmp)
    3302         520 :          CALL dbcsr_release(t_2c_der_RI_prv(1, i_xyz))
    3303             :       END DO
    3304             : 
    3305             :       !Repeat with the metric, if required
    3306         130 :       IF (.NOT. ri_data%same_op) THEN
    3307             : 
    3308             :          CALL build_2c_neighbor_lists(nl_2c, basis_set_RI, basis_set_RI, ri_data%ri_metric, &
    3309          32 :                                       "HFX_2c_nl_RI", qs_env, sym_ij=.TRUE., dist_2d=dist_2d)
    3310             : 
    3311         128 :          DO i_xyz = 1, 3
    3312             :             CALL dbcsr_create(t_2c_der_metric_prv(1, i_xyz), "(R|P) HFX der", dbcsr_dist, &
    3313         128 :                               dbcsr_type_antisymmetric, row_bsize, col_bsize)
    3314             :          END DO
    3315             : 
    3316             :          CALL build_2c_derivatives(t_2c_der_metric_prv, ri_data%filter_eps_2c, qs_env, nl_2c, &
    3317          32 :                                    basis_set_RI, basis_set_RI, ri_data%ri_metric)
    3318          32 :          CALL release_neighbor_list_sets(nl_2c)
    3319             : 
    3320          32 :          IF (PRESENT(nl_2c_met)) THEN
    3321           0 :             NULLIFY (nl_2c_met)
    3322             :             CALL build_2c_neighbor_lists(nl_2c_met, basis_set_RI, basis_set_RI, ri_data%ri_metric, &
    3323           0 :                                          "HFX_2c_nl_RI", qs_env, sym_ij=.FALSE., dist_2d=dist_2d)
    3324             :          END IF
    3325             : 
    3326         128 :          DO i_xyz = 1, 3
    3327          96 :             CALL dbt_create(t_2c_der_metric_prv(1, i_xyz), t_2c_tmp)
    3328          96 :             CALL dbt_copy_matrix_to_tensor(t_2c_der_metric_prv(1, i_xyz), t_2c_tmp)
    3329             : 
    3330          96 :             CALL dbt_create(t_2c_template, t_2c_der_metric(i_xyz))
    3331          96 :             CALL dbt_copy(t_2c_tmp, t_2c_der_metric(i_xyz), move_data=.TRUE.)
    3332             : 
    3333          96 :             CALL dbt_destroy(t_2c_tmp)
    3334         128 :             CALL dbcsr_release(t_2c_der_metric_prv(1, i_xyz))
    3335             :          END DO
    3336             : 
    3337             :       END IF
    3338             : 
    3339         130 :       CALL dbt_destroy(t_2c_template)
    3340         130 :       CALL dbcsr_distribution_release(dbcsr_dist)
    3341         130 :       DEALLOCATE (row_bsize, col_bsize)
    3342             : 
    3343         130 :       CALL timestop(handle)
    3344             : 
    3345        1690 :    END SUBROUTINE precalc_derivatives
    3346             : 
    3347             : ! **************************************************************************************************
    3348             : !> \brief This routines calculates the force contribution from a trace over 3D tensors, i.e.
    3349             : !>        force = sum_ijk A_ijk B_ijk. An iteration over the blocks is made, which index determin
    3350             : !>        the atom on which the force acts
    3351             : !> \param force ...
    3352             : !> \param t_3c_contr ...
    3353             : !> \param t_3c_der ...
    3354             : !> \param atom_of_kind ...
    3355             : !> \param kind_of ...
    3356             : !> \param idx_to_at ...
    3357             : !> \param pref ...
    3358             : !> \param do_mp2 ...
    3359             : !> \param deriv_dim the dimension of the tensor corresponding to the derivative (by default 1)
    3360             : ! **************************************************************************************************
    3361        3862 :    SUBROUTINE get_force_from_3c_trace(force, t_3c_contr, t_3c_der, atom_of_kind, kind_of, idx_to_at, &
    3362             :                                       pref, do_mp2, deriv_dim)
    3363             : 
    3364             :       TYPE(qs_force_type), DIMENSION(:), POINTER         :: force
    3365             :       TYPE(dbt_type), INTENT(INOUT)                      :: t_3c_contr
    3366             :       TYPE(dbt_type), DIMENSION(3), INTENT(INOUT)        :: t_3c_der
    3367             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: atom_of_kind, kind_of, idx_to_at
    3368             :       REAL(dp), INTENT(IN)                               :: pref
    3369             :       LOGICAL, INTENT(IN), OPTIONAL                      :: do_mp2
    3370             :       INTEGER, INTENT(IN), OPTIONAL                      :: deriv_dim
    3371             : 
    3372             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'get_force_from_3c_trace'
    3373             : 
    3374             :       INTEGER                                            :: deriv_dim_prv, handle, i_xyz, iat, &
    3375             :                                                             iat_of_kind, ikind, j_xyz
    3376             :       INTEGER, DIMENSION(3)                              :: ind
    3377             :       LOGICAL                                            :: do_mp2_prv, found
    3378             :       REAL(dp)                                           :: new_force
    3379        3862 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :, :), TARGET  :: contr_blk, der_blk
    3380             :       REAL(dp), DIMENSION(3)                             :: scoord
    3381             :       TYPE(dbt_iterator_type)                            :: iter
    3382             : 
    3383        3862 :       CALL timeset(routineN, handle)
    3384             : 
    3385        3862 :       do_mp2_prv = .FALSE.
    3386        3862 :       IF (PRESENT(do_mp2)) do_mp2_prv = do_mp2
    3387             : 
    3388        3862 :       deriv_dim_prv = 1
    3389        3862 :       IF (PRESENT(deriv_dim)) deriv_dim_prv = deriv_dim
    3390             : 
    3391             : !$OMP PARALLEL DEFAULT(NONE) &
    3392             : !$OMP SHARED(t_3c_der,t_3c_contr,force,do_mp2_prv,deriv_dim_prv,pref,idx_to_at,atom_of_kind,kind_of) &
    3393        3862 : !$OMP PRIVATE(i_xyz,j_xyz,iter,ind,der_blk,contr_blk,found,new_force,iat,iat_of_kind,ikind,scoord)
    3394             :       DO i_xyz = 1, 3
    3395             :          CALL dbt_iterator_start(iter, t_3c_der(i_xyz))
    3396             :          DO WHILE (dbt_iterator_blocks_left(iter))
    3397             :             CALL dbt_iterator_next_block(iter, ind)
    3398             : 
    3399             :             CALL dbt_get_block(t_3c_der(i_xyz), ind, der_blk, found)
    3400             :             CPASSERT(found)
    3401             :             CALL dbt_get_block(t_3c_contr, ind, contr_blk, found)
    3402             : 
    3403             :             IF (found) THEN
    3404             : 
    3405             :                !take the trace of the blocks
    3406             :                new_force = pref*SUM(der_blk(:, :, :)*contr_blk(:, :, :))
    3407             : 
    3408             :                !the first index of the derivative tensor defines the atom
    3409             :                iat = idx_to_at(ind(deriv_dim_prv))
    3410             :                iat_of_kind = atom_of_kind(iat)
    3411             :                ikind = kind_of(iat)
    3412             : 
    3413             :                IF (.NOT. do_mp2_prv) THEN
    3414             : !$OMP ATOMIC
    3415             :                   force(ikind)%fock_4c(i_xyz, iat_of_kind) = force(ikind)%fock_4c(i_xyz, iat_of_kind) &
    3416             :                                                              + new_force
    3417             :                ELSE
    3418             : !$OMP ATOMIC
    3419             :                   force(ikind)%mp2_non_sep(i_xyz, iat_of_kind) = force(ikind)%mp2_non_sep(i_xyz, iat_of_kind) &
    3420             :                                                                  + new_force
    3421             :                END IF
    3422             : 
    3423             :                DEALLOCATE (contr_blk)
    3424             :             END IF
    3425             :             DEALLOCATE (der_blk)
    3426             :          END DO !iter
    3427             :          CALL dbt_iterator_stop(iter)
    3428             :       END DO
    3429             : !$OMP END PARALLEL
    3430        3862 :       CALL timestop(handle)
    3431             : 
    3432        7724 :    END SUBROUTINE get_force_from_3c_trace
    3433             : 
    3434             : ! **************************************************************************************************
    3435             : !> \brief Update the forces due to the derivative of the a 2-center product d/dR (Q|R)
    3436             : !> \param force ...
    3437             : !> \param t_2c_contr A precontracted tensor containing sum_abcdPS (ab|P)(P|Q)^-1 (R|S)^-1 (S|cd) P_ac P_bd
    3438             : !> \param t_2c_der the d/dR (Q|R) tensor, in all 3 cartesian directions
    3439             : !> \param atom_of_kind ...
    3440             : !> \param kind_of ...
    3441             : !> \param idx_to_at ...
    3442             : !> \param pref ...
    3443             : !> \param do_mp2 ...
    3444             : !> \param do_ovlp ...
    3445             : !> \note IMPORTANT: t_tc_contr and t_2c_der need to have the same distribution
    3446             : ! **************************************************************************************************
    3447         610 :    SUBROUTINE get_2c_der_force(force, t_2c_contr, t_2c_der, atom_of_kind, kind_of, idx_to_at, &
    3448             :                                pref, do_mp2, do_ovlp)
    3449             : 
    3450             :       TYPE(qs_force_type), DIMENSION(:), POINTER         :: force
    3451             :       TYPE(dbt_type), INTENT(INOUT)                      :: t_2c_contr
    3452             :       TYPE(dbt_type), DIMENSION(3), INTENT(INOUT)        :: t_2c_der
    3453             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: atom_of_kind, kind_of, idx_to_at
    3454             :       REAL(dp), INTENT(IN)                               :: pref
    3455             :       LOGICAL, INTENT(IN), OPTIONAL                      :: do_mp2, do_ovlp
    3456             : 
    3457             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'get_2c_der_force'
    3458             : 
    3459             :       INTEGER                                            :: handle, i_xyz, iat, iat_of_kind, ikind, &
    3460             :                                                             j_xyz, jat, jat_of_kind, jkind
    3461             :       INTEGER, DIMENSION(2)                              :: ind
    3462             :       LOGICAL                                            :: do_mp2_prv, do_ovlp_prv, found
    3463             :       REAL(dp)                                           :: new_force
    3464         610 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :), TARGET     :: contr_blk, der_blk
    3465             :       REAL(dp), DIMENSION(3)                             :: scoord
    3466             :       TYPE(dbt_iterator_type)                            :: iter
    3467             : 
    3468             :       !Loop over the blocks of d/dR (Q|R), contract with the corresponding block of t_2c_contr and
    3469             :       !update the relevant force
    3470             : 
    3471         610 :       CALL timeset(routineN, handle)
    3472             : 
    3473         610 :       do_mp2_prv = .FALSE.
    3474         610 :       IF (PRESENT(do_mp2)) do_mp2_prv = do_mp2
    3475             : 
    3476         610 :       do_ovlp_prv = .FALSE.
    3477         610 :       IF (PRESENT(do_ovlp)) do_ovlp_prv = do_ovlp
    3478             : 
    3479             : !$OMP PARALLEL DEFAULT(NONE) &
    3480             : !$OMP SHARED(t_2c_der,t_2c_contr,force,do_mp2_prv,do_ovlp_prv,pref,idx_to_at,atom_of_kind,kind_of) &
    3481             : !$OMP PRIVATE(i_xyz,j_xyz,iter,ind,der_blk,contr_blk,found,new_force) &
    3482         610 : !$OMP PRIVATE(iat,jat,iat_of_kind,jat_of_kind,ikind,jkind,scoord)
    3483             :       DO i_xyz = 1, 3
    3484             :          CALL dbt_iterator_start(iter, t_2c_der(i_xyz))
    3485             :          DO WHILE (dbt_iterator_blocks_left(iter))
    3486             :             CALL dbt_iterator_next_block(iter, ind)
    3487             : 
    3488             :             IF (ind(1) == ind(2)) CYCLE
    3489             : 
    3490             :             CALL dbt_get_block(t_2c_der(i_xyz), ind, der_blk, found)
    3491             :             CPASSERT(found)
    3492             :             CALL dbt_get_block(t_2c_contr, ind, contr_blk, found)
    3493             : 
    3494             :             IF (found) THEN
    3495             : 
    3496             :                !an element of d/dR (Q|R) corresponds to 2 things because of translational invariance
    3497             :                !(Q'| R) = - (Q| R'), once wrt the center on Q, and once on R
    3498             :                new_force = pref*SUM(der_blk(:, :)*contr_blk(:, :))
    3499             : 
    3500             :                iat = idx_to_at(ind(1))
    3501             :                iat_of_kind = atom_of_kind(iat)
    3502             :                ikind = kind_of(iat)
    3503             : 
    3504             :                IF (do_mp2_prv) THEN
    3505             : !$OMP ATOMIC
    3506             :                   force(ikind)%mp2_non_sep(i_xyz, iat_of_kind) = force(ikind)%mp2_non_sep(i_xyz, iat_of_kind) &
    3507             :                                                                  + new_force
    3508             :                ELSE IF (do_ovlp_prv) THEN
    3509             : !$OMP ATOMIC
    3510             :                   force(ikind)%overlap(i_xyz, iat_of_kind) = force(ikind)%overlap(i_xyz, iat_of_kind) &
    3511             :                                                              + new_force
    3512             :                ELSE
    3513             : !$OMP ATOMIC
    3514             :                   force(ikind)%fock_4c(i_xyz, iat_of_kind) = force(ikind)%fock_4c(i_xyz, iat_of_kind) &
    3515             :                                                              + new_force
    3516             :                END IF
    3517             : 
    3518             :                jat = idx_to_at(ind(2))
    3519             :                jat_of_kind = atom_of_kind(jat)
    3520             :                jkind = kind_of(jat)
    3521             : 
    3522             :                IF (do_mp2_prv) THEN
    3523             : !$OMP ATOMIC
    3524             :                   force(jkind)%mp2_non_sep(i_xyz, jat_of_kind) = force(jkind)%mp2_non_sep(i_xyz, jat_of_kind) &
    3525             :                                                                  - new_force
    3526             :                ELSE IF (do_ovlp_prv) THEN
    3527             : !$OMP ATOMIC
    3528             :                   force(jkind)%overlap(i_xyz, jat_of_kind) = force(jkind)%overlap(i_xyz, jat_of_kind) &
    3529             :                                                              - new_force
    3530             :                ELSE
    3531             : !$OMP ATOMIC
    3532             :                   force(jkind)%fock_4c(i_xyz, jat_of_kind) = force(jkind)%fock_4c(i_xyz, jat_of_kind) &
    3533             :                                                              - new_force
    3534             :                END IF
    3535             : 
    3536             :                DEALLOCATE (contr_blk)
    3537             :             END IF
    3538             : 
    3539             :             DEALLOCATE (der_blk)
    3540             :          END DO !iter
    3541             :          CALL dbt_iterator_stop(iter)
    3542             : 
    3543             :       END DO !i_xyz
    3544             : !$OMP END PARALLEL
    3545         610 :       CALL timestop(handle)
    3546             : 
    3547        1220 :    END SUBROUTINE get_2c_der_force
    3548             : 
    3549             : ! **************************************************************************************************
    3550             : !> \brief Get the force from a contraction of type SUM_a,beta (a|beta') C_a,beta, where beta is an AO
    3551             : !>        and a is a MO
    3552             : !> \param force ...
    3553             : !> \param t_mo_coeff ...
    3554             : !> \param t_2c_MO_AO ...
    3555             : !> \param atom_of_kind ...
    3556             : !> \param kind_of ...
    3557             : !> \param idx_to_at ...
    3558             : !> \param pref ...
    3559             : !> \param i_xyz ...
    3560             : ! **************************************************************************************************
    3561          54 :    SUBROUTINE get_MO_AO_force(force, t_mo_coeff, t_2c_MO_AO, atom_of_kind, kind_of, idx_to_at, pref, i_xyz)
    3562             : 
    3563             :       TYPE(qs_force_type), DIMENSION(:), POINTER         :: force
    3564             :       TYPE(dbt_type), INTENT(INOUT)                      :: t_mo_coeff, t_2c_MO_AO
    3565             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: atom_of_kind, kind_of, idx_to_at
    3566             :       REAL(dp), INTENT(IN)                               :: pref
    3567             :       INTEGER, INTENT(IN)                                :: i_xyz
    3568             : 
    3569             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'get_MO_AO_force'
    3570             : 
    3571             :       INTEGER                                            :: handle, iat, iat_of_kind, ikind, j_xyz
    3572             :       INTEGER, DIMENSION(2)                              :: ind
    3573             :       LOGICAL                                            :: found
    3574             :       REAL(dp)                                           :: new_force
    3575          54 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :), TARGET     :: mo_ao_blk, mo_coeff_blk
    3576             :       REAL(dp), DIMENSION(3)                             :: scoord
    3577             :       TYPE(dbt_iterator_type)                            :: iter
    3578             : 
    3579          54 :       CALL timeset(routineN, handle)
    3580             : 
    3581             : !$OMP PARALLEL DEFAULT(NONE) &
    3582             : !$OMP SHARED(t_2c_MO_AO,t_mo_coeff,pref,force,idx_to_at,atom_of_kind,kind_of,i_xyz) &
    3583          54 : !$OMP PRIVATE(iter,ind,mo_ao_blk,mo_coeff_blk,found,new_force,iat,iat_of_kind,ikind,scoord,j_xyz)
    3584             :       CALL dbt_iterator_start(iter, t_2c_MO_AO)
    3585             :       DO WHILE (dbt_iterator_blocks_left(iter))
    3586             :          CALL dbt_iterator_next_block(iter, ind)
    3587             : 
    3588             :          CALL dbt_get_block(t_2c_MO_AO, ind, mo_ao_blk, found)
    3589             :          CPASSERT(found)
    3590             :          CALL dbt_get_block(t_mo_coeff, ind, mo_coeff_blk, found)
    3591             : 
    3592             :          IF (found) THEN
    3593             : 
    3594             :             new_force = pref*SUM(mo_ao_blk(:, :)*mo_coeff_blk(:, :))
    3595             : 
    3596             :             iat = idx_to_at(ind(2)) !AO index is column index
    3597             :             iat_of_kind = atom_of_kind(iat)
    3598             :             ikind = kind_of(iat)
    3599             : 
    3600             : !$OMP ATOMIC
    3601             :             force(ikind)%fock_4c(i_xyz, iat_of_kind) = force(ikind)%fock_4c(i_xyz, iat_of_kind) &
    3602             :                                                        + new_force
    3603             : 
    3604             :             DEALLOCATE (mo_coeff_blk)
    3605             :          END IF
    3606             : 
    3607             :          DEALLOCATE (mo_ao_blk)
    3608             :       END DO !iter
    3609             :       CALL dbt_iterator_stop(iter)
    3610             : !$OMP END PARALLEL
    3611             : 
    3612          54 :       CALL timestop(handle)
    3613             : 
    3614         108 :    END SUBROUTINE get_MO_AO_force
    3615             : 
    3616             : ! **************************************************************************************************
    3617             : !> \brief Print RI-HFX quantities, as required by the PRINT subsection
    3618             : !> \param ri_data ...
    3619             : !> \param qs_env ...
    3620             : ! **************************************************************************************************
    3621         148 :    SUBROUTINE print_ri_hfx(ri_data, qs_env)
    3622             : 
    3623             :       TYPE(hfx_ri_type), INTENT(INOUT)                   :: ri_data
    3624             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    3625             : 
    3626             :       INTEGER                                            :: i_RI, ibasis, nkind, nspins, unit_nr
    3627         296 :       INTEGER, DIMENSION(:), POINTER                     :: col_bsize, row_bsize
    3628             :       LOGICAL                                            :: mult_by_S, print_density, print_ri_metric
    3629         148 :       REAL(dp), ALLOCATABLE, DIMENSION(:)                :: density_coeffs, density_coeffs_2
    3630             :       TYPE(cp_blacs_env_type), POINTER                   :: blacs_env
    3631             :       TYPE(cp_fm_struct_type), POINTER                   :: fm_struct
    3632             :       TYPE(cp_fm_type)                                   :: matrix_s_fm
    3633             :       TYPE(cp_logger_type), POINTER                      :: logger
    3634             :       TYPE(dbcsr_distribution_type)                      :: dbcsr_dist
    3635         148 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: rho_ao
    3636         296 :       TYPE(dbcsr_type), DIMENSION(1)                     :: matrix_s
    3637             :       TYPE(dft_control_type), POINTER                    :: dft_control
    3638             :       TYPE(distribution_2d_type), POINTER                :: dist_2d
    3639             :       TYPE(gto_basis_set_p_type), ALLOCATABLE, &
    3640         148 :          DIMENSION(:), TARGET                            :: basis_set_AO, basis_set_RI
    3641             :       TYPE(gto_basis_set_type), POINTER                  :: orb_basis, ri_basis
    3642             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    3643             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    3644         148 :          POINTER                                         :: nl_2c
    3645         148 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    3646         148 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    3647             :       TYPE(qs_rho_type), POINTER                         :: rho
    3648             :       TYPE(section_vals_type), POINTER                   :: input, print_section
    3649             : 
    3650         148 :       NULLIFY (rho_ao, input, print_section, logger, rho, particle_set, qs_kind_set, ri_basis, nl_2c, &
    3651         148 :                dist_2d, col_bsize, row_bsize, para_env, blacs_env, fm_struct, orb_basis, dft_control)
    3652             : 
    3653         148 :       CALL get_qs_env(qs_env, input=input, dft_control=dft_control)
    3654         148 :       logger => cp_get_default_logger()
    3655         148 :       print_density = .FALSE.
    3656         148 :       print_ri_metric = .FALSE.
    3657             : 
    3658             :       !Do we print the RI density coeffs  and/or RI_metric 2c integrals?
    3659         148 :       print_section => section_vals_get_subs_vals(input, "DFT%XC%HF%RI%PRINT")
    3660         148 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_section, "RI_DENSITY_COEFFS"), &
    3661           0 :                 cp_p_file)) print_density = .TRUE.
    3662         148 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_section, "RI_METRIC_2C_INTS"), &
    3663           0 :                 cp_p_file)) print_ri_metric = .TRUE.
    3664             : 
    3665             :       !common stuff
    3666         148 :       IF (print_density .OR. print_ri_metric) THEN
    3667             : 
    3668             :          !Re-calculate the 2-center RI_metric integrals (because not stored and cheap)
    3669             :          !Recalculated the RI_metric 2c-integrals, as it is cheap, and not stored
    3670             :          CALL get_qs_env(qs_env, nkind=nkind, qs_kind_set=qs_kind_set, particle_set=particle_set, &
    3671           0 :                          distribution_2d=dist_2d, para_env=para_env, blacs_env=blacs_env)
    3672           0 :          ALLOCATE (basis_set_RI(nkind), basis_set_AO(nkind))
    3673           0 :          CALL basis_set_list_setup(basis_set_RI, ri_data%ri_basis_type, qs_kind_set)
    3674           0 :          CALL get_particle_set(particle_set, qs_kind_set, basis=basis_set_RI)
    3675           0 :          CALL basis_set_list_setup(basis_set_AO, ri_data%orb_basis_type, qs_kind_set)
    3676           0 :          CALL get_particle_set(particle_set, qs_kind_set, basis=basis_set_AO)
    3677             : 
    3678           0 :          DO ibasis = 1, nkind
    3679           0 :             ri_basis => basis_set_RI(ibasis)%gto_basis_set
    3680           0 :             CALL init_interaction_radii_orb_basis(ri_basis, ri_data%eps_pgf_orb)
    3681           0 :             orb_basis => basis_set_AO(ibasis)%gto_basis_set
    3682           0 :             CALL init_interaction_radii_orb_basis(orb_basis, ri_data%eps_pgf_orb)
    3683             :          END DO
    3684             : 
    3685           0 :          CALL cp_dbcsr_dist2d_to_dist(dist_2d, dbcsr_dist)
    3686           0 :          ALLOCATE (row_bsize(SIZE(ri_data%bsizes_RI)))
    3687           0 :          ALLOCATE (col_bsize(SIZE(ri_data%bsizes_RI)))
    3688           0 :          row_bsize(:) = ri_data%bsizes_RI
    3689           0 :          col_bsize(:) = ri_data%bsizes_RI
    3690             : 
    3691           0 :          CALL dbcsr_create(matrix_s(1), "RI metric", dbcsr_dist, dbcsr_type_symmetric, row_bsize, col_bsize)
    3692             : 
    3693             :          CALL build_2c_neighbor_lists(nl_2c, basis_set_RI, basis_set_RI, ri_data%ri_metric, &
    3694           0 :                                       "HFX_2c_nl_pot", qs_env, sym_ij=.TRUE., dist_2d=dist_2d)
    3695             :          CALL build_2c_integrals(matrix_s, ri_data%filter_eps_2c, qs_env, nl_2c, basis_set_RI, &
    3696           0 :                                  basis_set_RI, ri_data%ri_metric)
    3697             : 
    3698           0 :          CALL release_neighbor_list_sets(nl_2c)
    3699           0 :          CALL dbcsr_distribution_release(dbcsr_dist)
    3700             :       END IF
    3701             : 
    3702           0 :       IF (print_density) THEN
    3703           0 :          CALL get_qs_env(qs_env, rho=rho)
    3704           0 :          CALL qs_rho_get(rho, rho_ao_kp=rho_ao)
    3705           0 :          nspins = SIZE(rho_ao, 1)
    3706             : 
    3707           0 :          CALL section_vals_val_get(print_section, "RI_DENSITY_COEFFS%MULTIPLY_BY_RI_2C_INTEGRALS", l_val=mult_by_s)
    3708             : 
    3709             :          CALL get_RI_density_coeffs(density_coeffs, matrix_s(1), rho_ao, 1, basis_set_AO, basis_set_RI, &
    3710           0 :                                     mult_by_s, ri_data, qs_env)
    3711           0 :          IF (nspins == 2) &
    3712             :             CALL get_RI_density_coeffs(density_coeffs_2, matrix_s(1), rho_ao, 2, basis_set_AO, &
    3713           0 :                                        basis_set_RI, mult_by_s, ri_data, qs_env)
    3714             : 
    3715             :          unit_nr = cp_print_key_unit_nr(logger, input, "DFT%XC%HF%RI%PRINT%RI_DENSITY_COEFFS", &
    3716             :                                         extension=".dat", file_status="REPLACE", &
    3717           0 :                                         file_action="WRITE", file_form="FORMATTED")
    3718             : 
    3719           0 :          IF (unit_nr > 0) THEN
    3720           0 :             IF (nspins == 1) THEN
    3721             :                WRITE (unit_nr, FMT="(A,A,A)") &
    3722           0 :                   "# Coefficients of the electronic density projected on the RI_HFX basis for ", &
    3723           0 :                   TRIM(logger%iter_info%project_name), " project"
    3724           0 :                DO i_RI = 1, SIZE(density_coeffs)
    3725           0 :                   WRITE (unit_nr, FMT="(F20.12)") density_coeffs(i_RI)
    3726             :                END DO
    3727             :             ELSE
    3728             :                WRITE (unit_nr, FMT="(A,A,A)") &
    3729           0 :                   "# Coefficients of the electronic density projected on the RI_HFX basis for ", &
    3730           0 :                   TRIM(logger%iter_info%project_name), " project. Spin up, spin down"
    3731           0 :                DO i_RI = 1, SIZE(density_coeffs)
    3732           0 :                   WRITE (unit_nr, FMT="(F20.12,F20.12)") density_coeffs(i_RI), density_coeffs_2(i_RI)
    3733             :                END DO
    3734             :             END IF
    3735             :          END IF
    3736             : 
    3737           0 :          CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%XC%HF%RI%PRINT%RI_DENSITY_COEFFS")
    3738             :       END IF
    3739             : 
    3740         148 :       IF (print_ri_metric) THEN
    3741             : 
    3742             :          !convert 2c integrals to fm for dumping
    3743             :          CALL cp_fm_struct_create(fm_struct, context=blacs_env, para_env=para_env, &
    3744           0 :                                   nrow_global=SUM(row_bsize), ncol_global=SUM(col_bsize))
    3745           0 :          CALL cp_fm_create(matrix_s_fm, fm_struct)
    3746             : 
    3747           0 :          CALL copy_dbcsr_to_fm(matrix_s(1), matrix_s_fm)
    3748             : 
    3749             :          unit_nr = cp_print_key_unit_nr(logger, input, "DFT%XC%HF%RI%PRINT%RI_METRIC_2C_INTS", &
    3750             :                                         extension=".fm", file_status="REPLACE", &
    3751           0 :                                         file_action="WRITE", file_form="UNFORMATTED")
    3752           0 :          CALL cp_fm_write_unformatted(matrix_s_fm, unit_nr)
    3753             : 
    3754           0 :          CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%XC%HF%RI%PRINT%RI_METRIC_2C_INTS")
    3755             : 
    3756           0 :          CALL cp_fm_struct_release(fm_struct)
    3757           0 :          CALL cp_fm_release(matrix_s_fm)
    3758             :       END IF
    3759             : 
    3760             :       !clean-up
    3761         148 :       IF (print_density .OR. print_ri_metric) THEN
    3762           0 :          DO ibasis = 1, nkind
    3763           0 :             ri_basis => basis_set_RI(ibasis)%gto_basis_set
    3764           0 :             CALL init_interaction_radii_orb_basis(ri_basis, dft_control%qs_control%eps_pgf_orb)
    3765           0 :             orb_basis => basis_set_AO(ibasis)%gto_basis_set
    3766           0 :             CALL init_interaction_radii_orb_basis(orb_basis, dft_control%qs_control%eps_pgf_orb)
    3767             :          END DO
    3768             : 
    3769           0 :          CALL dbcsr_release(matrix_s(1))
    3770           0 :          DEALLOCATE (row_bsize, col_bsize)
    3771             :       END IF
    3772             : 
    3773         444 :    END SUBROUTINE print_ri_hfx
    3774             : 
    3775             : ! **************************************************************************************************
    3776             : !> \brief Projects the density on the RI basis and return the array of the RI coefficients
    3777             : !> \param density_coeffs ...
    3778             : !> \param ri_2c_ints ...
    3779             : !> \param rho_ao ...
    3780             : !> \param ispin ...
    3781             : !> \param basis_set_AO ...
    3782             : !> \param basis_set_RI ...
    3783             : !> \param multiply_by_S ...
    3784             : !> \param ri_data ...
    3785             : !> \param qs_env ...
    3786             : ! **************************************************************************************************
    3787           0 :    SUBROUTINE get_RI_density_coeffs(density_coeffs, ri_2c_ints, rho_ao, ispin, basis_set_AO, &
    3788           0 :                                     basis_set_RI, multiply_by_S, ri_data, qs_env)
    3789             : 
    3790             :       REAL(dp), ALLOCATABLE, DIMENSION(:)                :: density_coeffs
    3791             :       TYPE(dbcsr_type), INTENT(INOUT)                    :: ri_2c_ints
    3792             :       TYPE(dbcsr_p_type), DIMENSION(:, :)                :: rho_ao
    3793             :       INTEGER, INTENT(IN)                                :: ispin
    3794             :       TYPE(gto_basis_set_p_type), DIMENSION(:)           :: basis_set_AO, basis_set_RI
    3795             :       LOGICAL, INTENT(IN)                                :: multiply_by_S
    3796             :       TYPE(hfx_ri_type), INTENT(INOUT)                   :: ri_data
    3797             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    3798             : 
    3799             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'get_RI_density_coeffs'
    3800             : 
    3801             :       INTEGER                                            :: a, b, handle, i_mem, idx, n_dependent, &
    3802             :                                                             n_mem, n_mem_RI, natom, &
    3803             :                                                             nblk_per_thread, nblks, nkind
    3804             :       INTEGER(int_8)                                     :: nze
    3805           0 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: batch_block_end, batch_block_start, &
    3806           0 :                                                             dist1, dist2, dist3, dummy1, dummy2, &
    3807           0 :                                                             idx1, idx2, idx3
    3808             :       INTEGER, DIMENSION(2)                              :: ind, pdims_2d
    3809             :       INTEGER, DIMENSION(2, 3)                           :: bounds_cpy
    3810             :       INTEGER, DIMENSION(3)                              :: dims_3c, pcoord_3d, pdims_3d
    3811             :       LOGICAL                                            :: calc_ints, found
    3812             :       REAL(dp)                                           :: occ, threshold
    3813           0 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :)             :: blk
    3814           0 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :, :)          :: blk_3d
    3815             :       TYPE(cp_blacs_env_type), POINTER                   :: blacs_env
    3816             :       TYPE(dbcsr_type)                                   :: ri_2c_inv
    3817           0 :       TYPE(dbt_distribution_type)                        :: dist_2d, dist_3d
    3818             :       TYPE(dbt_iterator_type)                            :: iter
    3819           0 :       TYPE(dbt_pgrid_type)                               :: pgrid_2d, pgrid_3d
    3820           0 :       TYPE(dbt_type)                                     :: density_coeffs_t, density_tmp, rho_ao_t, &
    3821           0 :                                                             rho_ao_t_3d, rho_ao_tmp, t2c_ri_ints, &
    3822           0 :                                                             t2c_ri_inv, t2c_ri_tmp
    3823           0 :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:, :)       :: t_3c_int_batched
    3824             :       TYPE(dft_control_type), POINTER                    :: dft_control
    3825             :       TYPE(distribution_3d_type)                         :: dist_nl3c
    3826           0 :       TYPE(mp_cart_type)                                 :: mp_comm_t3c
    3827             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    3828             :       TYPE(neighbor_list_3c_type)                        :: nl_3c
    3829           0 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    3830           0 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    3831             : 
    3832           0 :       NULLIFY (dft_control, para_env, blacs_env, particle_set, qs_kind_set)
    3833             : 
    3834           0 :       CALL timeset(routineN, handle)
    3835             : 
    3836             :       ! Projection of the density on the RI basis: n(r) = sum_pq sum_munu P_pq (pq|mu) (mu|nu)^-1 nu(r)
    3837             :       !                                                 = sum_nu d_nu nu(r)
    3838             :       ! the (pq|mu) (mu|nu)^-1 contraction is already stored in compressed format
    3839             : 
    3840           0 :       IF (.NOT. ri_data%flavor == ri_pmat) THEN
    3841           0 :          CPABORT("Can only calculate and print the RI density coefficients within the RHO flavor of RI-HFX")
    3842             :       END IF
    3843             : 
    3844             :       CALL get_qs_env(qs_env, dft_control=dft_control, para_env=para_env, blacs_env=blacs_env, nkind=nkind, &
    3845           0 :                       particle_set=particle_set, qs_kind_set=qs_kind_set, natom=natom)
    3846           0 :       n_mem = ri_data%n_mem
    3847           0 :       n_mem_RI = ri_data%n_mem_RI
    3848             : 
    3849             :       ! The RI 2c int tensor and its inverse
    3850           0 :       CALL dbcsr_create(ri_2c_inv, template=ri_2c_ints, matrix_type=dbcsr_type_no_symmetry)
    3851             : 
    3852           0 :       SELECT CASE (ri_data%t2c_method)
    3853             :       CASE (hfx_ri_do_2c_iter)
    3854           0 :          threshold = MAX(ri_data%filter_eps, 1.0e-12_dp)
    3855           0 :          CALL invert_hotelling(ri_2c_inv, ri_2c_ints, threshold=threshold, silent=.FALSE.)
    3856             :       CASE (hfx_ri_do_2c_cholesky)
    3857           0 :          CALL dbcsr_copy(ri_2c_inv, ri_2c_ints)
    3858           0 :          CALL cp_dbcsr_cholesky_decompose(ri_2c_inv, para_env=para_env, blacs_env=blacs_env)
    3859           0 :          CALL cp_dbcsr_cholesky_invert(ri_2c_inv, para_env=para_env, blacs_env=blacs_env, uplo_to_full=.TRUE.)
    3860             :       CASE (hfx_ri_do_2c_diag)
    3861           0 :          CALL dbcsr_copy(ri_2c_inv, ri_2c_ints)
    3862             :          CALL cp_dbcsr_power(ri_2c_inv, -1.0_dp, ri_data%eps_eigval, n_dependent, &
    3863           0 :                              para_env, blacs_env, verbose=ri_data%unit_nr_dbcsr > 0)
    3864             :       END SELECT
    3865             : 
    3866           0 :       CALL dbt_create(ri_2c_ints, t2c_ri_tmp)
    3867             :       CALL create_2c_tensor(t2c_ri_ints, dist1, dist2, ri_data%pgrid_2d, &
    3868             :                             ri_data%bsizes_RI_split, ri_data%bsizes_RI_split, &
    3869             :                             name="(RI | RI)")
    3870           0 :       CALL dbt_create(t2c_ri_ints, t2c_ri_inv)
    3871             : 
    3872           0 :       CALL dbt_copy_matrix_to_tensor(ri_2c_ints, t2c_ri_tmp)
    3873           0 :       CALL dbt_copy(t2c_ri_tmp, t2c_ri_ints, move_data=.TRUE.)
    3874           0 :       CALL dbt_filter(t2c_ri_ints, ri_data%filter_eps)
    3875             : 
    3876           0 :       CALL dbt_copy_matrix_to_tensor(ri_2c_inv, t2c_ri_tmp)
    3877           0 :       CALL dbt_copy(t2c_ri_tmp, t2c_ri_inv, move_data=.TRUE.)
    3878           0 :       CALL dbt_filter(t2c_ri_inv, ri_data%filter_eps)
    3879             : 
    3880           0 :       CALL dbcsr_release(ri_2c_inv)
    3881           0 :       CALL dbt_destroy(t2c_ri_tmp)
    3882           0 :       DEALLOCATE (dist1, dist2)
    3883             : 
    3884             :       ! The AO density tensor
    3885           0 :       CALL dbt_create(rho_ao(ispin, 1)%matrix, rho_ao_tmp)
    3886             :       CALL create_2c_tensor(rho_ao_t, dist1, dist2, ri_data%pgrid_2d, &
    3887             :                             ri_data%bsizes_AO_split, ri_data%bsizes_AO_split, &
    3888             :                             name="(AO | AO)")
    3889           0 :       DEALLOCATE (dist1, dist2)
    3890             : 
    3891           0 :       CALL dbt_copy_matrix_to_tensor(rho_ao(ispin, 1)%matrix, rho_ao_tmp)
    3892           0 :       CALL dbt_copy(rho_ao_tmp, rho_ao_t, move_data=.TRUE.)
    3893           0 :       CALL dbt_filter(rho_ao_t, ri_data%filter_eps)
    3894           0 :       CALL dbt_destroy(rho_ao_tmp)
    3895             : 
    3896             :       ! Put in in 3D
    3897           0 :       ALLOCATE (dist1(SIZE(ri_data%bsizes_AO_split)), dist2(SIZE(ri_data%bsizes_AO_split)), dist3(1))
    3898           0 :       dist3(1) = 0
    3899           0 :       CALL dbt_get_info(rho_ao_t, pdims=pdims_2d, proc_dist_1=dist1, proc_dist_2=dist2)
    3900           0 :       CALL dbt_default_distvec(1, 1, [1], dist3)
    3901             : 
    3902           0 :       pdims_3d(1) = pdims_2d(1)
    3903           0 :       pdims_3d(2) = pdims_2d(2)
    3904           0 :       pdims_3d(3) = 1
    3905             : 
    3906           0 :       CALL dbt_pgrid_create(para_env, pdims_3d, pgrid_3d)
    3907           0 :       CALL dbt_distribution_new(dist_3d, pgrid_3d, dist1, dist2, dist3)
    3908             :       CALL dbt_create(rho_ao_t_3d, "rho_ao_3d", dist_3d, [1, 2], [3], ri_data%bsizes_AO_split, &
    3909           0 :                       ri_data%bsizes_AO_split, [1])
    3910           0 :       DEALLOCATE (dist1, dist2, dist3)
    3911           0 :       CALL dbt_pgrid_destroy(pgrid_3d)
    3912           0 :       CALL dbt_distribution_destroy(dist_3d)
    3913             : 
    3914             :       ! copy density
    3915           0 :       nblks = 0
    3916             : !$OMP PARALLEL DEFAULT(NONE) &
    3917             : !$OMP SHARED(rho_ao_t,nblks) &
    3918           0 : !$OMP PRIVATE(iter,ind,blk,found)
    3919             :       CALL dbt_iterator_start(iter, rho_ao_t)
    3920             :       DO WHILE (dbt_iterator_blocks_left(iter))
    3921             :          CALL dbt_iterator_next_block(iter, ind)
    3922             :          CALL dbt_get_block(rho_ao_t, ind, blk, found)
    3923             :          IF (found) THEN
    3924             : !$OMP ATOMIC
    3925             :             nblks = nblks + 1
    3926             :             DEALLOCATE (blk)
    3927             :          END IF
    3928             :       END DO
    3929             :       CALL dbt_iterator_stop(iter)
    3930             : !$OMP END PARALLEL
    3931             : 
    3932           0 :       ALLOCATE (idx1(nblks), idx2(nblks), idx3(nblks))
    3933           0 :       idx3 = 1
    3934           0 :       nblks = 0
    3935             : !$OMP PARALLEL DEFAULT(NONE) &
    3936             : !$OMP SHARED(rho_ao_t,nblks,idx1,idx2) &
    3937           0 : !$OMP PRIVATE(iter,ind,blk,found)
    3938             :       CALL dbt_iterator_start(iter, rho_ao_t)
    3939             :       DO WHILE (dbt_iterator_blocks_left(iter))
    3940             :          CALL dbt_iterator_next_block(iter, ind)
    3941             :          CALL dbt_get_block(rho_ao_t, ind, blk, found)
    3942             :          IF (found) THEN
    3943             : !$OMP CRITICAL
    3944             :             nblks = nblks + 1
    3945             :             idx1(nblks) = ind(1)
    3946             :             idx2(nblks) = ind(2)
    3947             : !$OMP END CRITICAL
    3948             :             DEALLOCATE (blk)
    3949             :          END IF
    3950             :       END DO
    3951             :       CALL dbt_iterator_stop(iter)
    3952             : !$OMP END PARALLEL
    3953             : 
    3954           0 : !$OMP PARALLEL DEFAULT(NONE) SHARED(rho_ao_t_3d,nblks,idx1,idx2,idx3) PRIVATE(nblk_per_thread,A,b)
    3955             :       nblk_per_thread = nblks/omp_get_num_threads() + 1
    3956             :       a = omp_get_thread_num()*nblk_per_thread + 1
    3957             :       b = MIN(a + nblk_per_thread, nblks)
    3958             :       CALL dbt_reserve_blocks(rho_ao_t_3d, idx1(a:b), idx2(a:b), idx3(a:b))
    3959             : !$OMP END PARALLEL
    3960             : 
    3961             : !$OMP PARALLEL DEFAULT(NONE) &
    3962             : !$OMP SHARED(rho_ao_t,rho_ao_t_3d) &
    3963           0 : !$OMP PRIVATE(iter,ind,blk,found,blk_3d)
    3964             :       CALL dbt_iterator_start(iter, rho_ao_t)
    3965             :       DO WHILE (dbt_iterator_blocks_left(iter))
    3966             :          CALL dbt_iterator_next_block(iter, ind)
    3967             :          CALL dbt_get_block(rho_ao_t, ind, blk, found)
    3968             :          IF (found) THEN
    3969             :             ALLOCATE (blk_3d(SIZE(blk, 1), SIZE(blk, 2), 1))
    3970             :             blk_3d(:, :, 1) = blk(:, :)
    3971             : !$OMP CRITICAL
    3972             :             CALL dbt_put_block(rho_ao_t_3d, [ind(1), ind(2), 1], [SIZE(blk, 1), SIZE(blk, 2), 1], blk_3d)
    3973             : !$OMP END CRITICAL
    3974             :             DEALLOCATE (blk, blk_3d)
    3975             :          END IF
    3976             :       END DO
    3977             :       CALL dbt_iterator_stop(iter)
    3978             : !$OMP END PARALLEL
    3979             : 
    3980             :       ! The 1D tensor with the density coeffs
    3981           0 :       pdims_2d(1) = para_env%num_pe
    3982           0 :       pdims_2d(2) = 1
    3983             : 
    3984           0 :       ALLOCATE (dist1(SIZE(ri_data%bsizes_RI_split)), dist2(1))
    3985           0 :       CALL dbt_default_distvec(SIZE(ri_data%bsizes_RI_split), pdims_2d(1), ri_data%bsizes_RI_split, dist1)
    3986           0 :       CALL dbt_default_distvec(1, pdims_2d(2), [1], dist2)
    3987             : 
    3988           0 :       CALL dbt_pgrid_create(para_env, pdims_2d, pgrid_2d)
    3989           0 :       CALL dbt_distribution_new(dist_2d, pgrid_2d, dist1, dist2)
    3990           0 :       CALL dbt_create(density_coeffs_t, "density_coeffs", dist_2d, [1], [2], ri_data%bsizes_RI_split, [1])
    3991           0 :       CALL dbt_create(density_coeffs_t, density_tmp)
    3992           0 :       DEALLOCATE (dist1, dist2)
    3993           0 :       CALL dbt_pgrid_destroy(pgrid_2d)
    3994           0 :       CALL dbt_distribution_destroy(dist_2d)
    3995             : 
    3996           0 :       CALL dbt_get_info(ri_data%t_3c_int_ctr_3(1, 1), nfull_total=dims_3c)
    3997             : 
    3998             :       ! The 3c integrals tensor, in case we compute them here
    3999           0 :       pdims_3d = 0
    4000           0 :       CALL dbt_pgrid_create(para_env, pdims_3d, pgrid_3d, tensor_dims=[MAX(1, natom/n_mem), natom, natom])
    4001           0 :       ALLOCATE (t_3c_int_batched(1, 1))
    4002             :       CALL create_3c_tensor(t_3c_int_batched(1, 1), dist1, dist2, dist3, pgrid_3d, &
    4003             :                             ri_data%bsizes_RI, ri_data%bsizes_AO, ri_data%bsizes_AO, map1=[1], map2=[2, 3], &
    4004           0 :                             name="(RI | AO AO)")
    4005             : 
    4006           0 :       CALL dbt_mp_environ_pgrid(pgrid_3d, pdims_3d, pcoord_3d)
    4007           0 :       CALL mp_comm_t3c%create(pgrid_3d%mp_comm_2d, 3, pdims_3d)
    4008             :       CALL distribution_3d_create(dist_nl3c, dist1, dist2, dist3, nkind, particle_set, &
    4009           0 :                                   mp_comm_t3c, own_comm=.TRUE.)
    4010           0 :       DEALLOCATE (dist1, dist2, dist3)
    4011           0 :       CALL dbt_pgrid_destroy(pgrid_3d)
    4012             : 
    4013             :       CALL build_3c_neighbor_lists(nl_3c, basis_set_RI, basis_set_AO, basis_set_AO, dist_nl3c, ri_data%ri_metric, &
    4014           0 :                                    "HFX_3c_nl", qs_env, op_pos=1, sym_jk=.TRUE., own_dist=.TRUE.)
    4015             : 
    4016           0 :       n_mem = ri_data%n_mem
    4017           0 :       CALL create_tensor_batches(ri_data%bsizes_RI, n_mem, dummy1, dummy2, batch_block_start, batch_block_end)
    4018             : 
    4019           0 :       calc_ints = .FALSE.
    4020           0 :       CALL get_tensor_occupancy(ri_data%t_3c_int_ctr_2(1, 1), nze, occ)
    4021           0 :       IF (nze == 0) calc_ints = .TRUE.
    4022             : 
    4023           0 :       DO i_mem = 1, n_mem
    4024           0 :          IF (calc_ints) THEN
    4025             :             CALL build_3c_integrals(t_3c_int_batched, ri_data%filter_eps, qs_env, nl_3c, &
    4026             :                                     basis_set_RI, basis_set_AO, basis_set_AO, &
    4027             :                                     ri_data%ri_metric, int_eps=ri_data%eps_schwarz, op_pos=1, &
    4028             :                                     desymmetrize=.FALSE., &
    4029           0 :                                     bounds_i=[batch_block_start(i_mem), batch_block_end(i_mem)])
    4030           0 :             CALL dbt_copy(t_3c_int_batched(1, 1), ri_data%t_3c_int_ctr_3(1, 1), order=[1, 3, 2])
    4031           0 :             CALL dbt_copy(t_3c_int_batched(1, 1), ri_data%t_3c_int_ctr_3(1, 1), move_data=.TRUE., summation=.TRUE.)
    4032           0 :             CALL dbt_filter(ri_data%t_3c_int_ctr_3(1, 1), ri_data%filter_eps)
    4033             :          ELSE
    4034             :             bounds_cpy(:, 2) = [SUM(ri_data%bsizes_RI(1:batch_block_start(i_mem) - 1)) + 1, &
    4035           0 :                                 SUM(ri_data%bsizes_RI(1:batch_block_end(i_mem)))]
    4036           0 :             bounds_cpy(:, 1) = [1, SUM(ri_data%bsizes_AO)]
    4037           0 :             bounds_cpy(:, 3) = [1, SUM(ri_data%bsizes_AO)]
    4038             :             CALL dbt_copy(ri_data%t_3c_int_ctr_2(1, 1), ri_data%t_3c_int_ctr_3(1, 1), &
    4039           0 :                           order=[2, 1, 3], bounds=bounds_cpy)
    4040             :          END IF
    4041             : 
    4042             :          !contract the integrals with the density P_pq (pq|R)
    4043             :          CALL dbt_contract(1.0_dp, ri_data%t_3c_int_ctr_3(1, 1), rho_ao_t_3d, 0.0_dp, density_tmp, &
    4044             :                            contract_1=[2, 3], notcontract_1=[1], &
    4045             :                            contract_2=[1, 2], notcontract_2=[3], &
    4046           0 :                            map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps)
    4047           0 :          CALL dbt_clear(ri_data%t_3c_int_ctr_3(1, 1))
    4048             : 
    4049             :          !contract the above vector with the inverse metric
    4050             :          CALL dbt_contract(1.0_dp, t2c_ri_inv, density_tmp, 1.0_dp, density_coeffs_t, &
    4051             :                            contract_1=[2], notcontract_1=[1], &
    4052             :                            contract_2=[1], notcontract_2=[2], &
    4053           0 :                            map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps)
    4054             : 
    4055             :       END DO
    4056           0 :       CALL neighbor_list_3c_destroy(nl_3c)
    4057             : 
    4058           0 :       IF (multiply_by_s) THEN
    4059             :          CALL dbt_contract(1.0_dp, t2c_ri_ints, density_coeffs_t, 0.0_dp, density_tmp, &
    4060             :                            contract_1=[2], notcontract_1=[1], &
    4061             :                            contract_2=[1], notcontract_2=[2], &
    4062           0 :                            map_1=[1], map_2=[2], filter_eps=ri_data%filter_eps)
    4063           0 :          CALL dbt_copy(density_tmp, density_coeffs_t, move_data=.TRUE.)
    4064             :       END IF
    4065             : 
    4066           0 :       ALLOCATE (density_coeffs(SUM(ri_data%bsizes_RI)))
    4067           0 :       density_coeffs = 0.0
    4068             : 
    4069             : !$OMP PARALLEL DEFAULT(NONE) &
    4070             : !$OMP SHARED(density_coeffs_t,ri_data,density_coeffs) &
    4071           0 : !$OMP PRIVATE(iter,ind,blk,found,idx)
    4072             :       CALL dbt_iterator_start(iter, density_coeffs_t)
    4073             :       DO WHILE (dbt_iterator_blocks_left(iter))
    4074             :          CALL dbt_iterator_next_block(iter, ind)
    4075             :          CALL dbt_get_block(density_coeffs_t, ind, blk, found)
    4076             :          IF (found) THEN
    4077             : 
    4078             :             idx = SUM(ri_data%bsizes_RI_split(1:ind(1) - 1))
    4079             : !$OMP CRITICAL
    4080             :             density_coeffs(idx + 1:idx + ri_data%bsizes_RI_split(ind(1))) = blk(:, 1)
    4081             : !$OMP END CRITICAL
    4082             :             DEALLOCATE (blk)
    4083             :          END IF
    4084             :       END DO
    4085             :       CALL dbt_iterator_stop(iter)
    4086             : !$OMP END PARALLEL
    4087           0 :       CALL para_env%sum(density_coeffs)
    4088             : 
    4089           0 :       CALL dbt_destroy(t2c_ri_ints)
    4090           0 :       CALL dbt_destroy(t2c_ri_inv)
    4091           0 :       CALL dbt_destroy(density_tmp)
    4092           0 :       CALL dbt_destroy(rho_ao_t)
    4093           0 :       CALL dbt_destroy(rho_ao_t_3d)
    4094           0 :       CALL dbt_destroy(density_coeffs_t)
    4095           0 :       CALL dbt_destroy(t_3c_int_batched(1, 1))
    4096             : 
    4097           0 :       CALL timestop(handle)
    4098             : 
    4099           0 :    END SUBROUTINE get_RI_density_coeffs
    4100             : 
    4101             : ! **************************************************************************************************
    4102             : !> \brief a small utility function that returns the atom corresponding to a block of a split tensor
    4103             : !> \param idx_to_at ...
    4104             : !> \param bsizes_split ...
    4105             : !> \param bsizes_orig ...
    4106             : !> \return ...
    4107             : ! **************************************************************************************************
    4108         936 :    SUBROUTINE get_idx_to_atom(idx_to_at, bsizes_split, bsizes_orig)
    4109             :       INTEGER, DIMENSION(:), INTENT(INOUT)               :: idx_to_at
    4110             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: bsizes_split, bsizes_orig
    4111             : 
    4112             :       INTEGER                                            :: full_sum, iat, iblk, split_sum
    4113             : 
    4114         936 :       iat = 1
    4115         936 :       full_sum = bsizes_orig(iat)
    4116         936 :       split_sum = 0
    4117        4662 :       DO iblk = 1, SIZE(bsizes_split)
    4118        3726 :          split_sum = split_sum + bsizes_split(iblk)
    4119             : 
    4120        3726 :          IF (split_sum .GT. full_sum) THEN
    4121        1340 :             iat = iat + 1
    4122        1340 :             full_sum = full_sum + bsizes_orig(iat)
    4123             :          END IF
    4124             : 
    4125        4662 :          idx_to_at(iblk) = iat
    4126             :       END DO
    4127             : 
    4128         936 :    END SUBROUTINE get_idx_to_atom
    4129             : 
    4130             : ! **************************************************************************************************
    4131             : !> \brief Function for calculating sqrt of a matrix
    4132             : !> \param values ...
    4133             : !> \return ...
    4134             : ! **************************************************************************************************
    4135           0 :    FUNCTION my_sqrt(values)
    4136             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: values
    4137             :       REAL(KIND=dp), DIMENSION(SIZE(values))             :: my_sqrt
    4138             : 
    4139           0 :       my_sqrt = SQRT(values)
    4140             :    END FUNCTION
    4141             : 
    4142             : ! **************************************************************************************************
    4143             : !> \brief Function for calculation inverse sqrt of a matrix
    4144             : !> \param values ...
    4145             : !> \return ...
    4146             : ! **************************************************************************************************
    4147           0 :    FUNCTION my_invsqrt(values)
    4148             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: values
    4149             :       REAL(KIND=dp), DIMENSION(SIZE(values))             :: my_invsqrt
    4150             : 
    4151           0 :       my_invsqrt = SQRT(1.0_dp/values)
    4152             :    END FUNCTION
    4153         228 : END MODULE

Generated by: LCOV version 1.15