Line data Source code
1 : !--------------------------------------------------------------------------------------------------!
2 : ! CP2K: A general program to perform molecular dynamics simulations !
3 : ! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
4 : ! !
5 : ! SPDX-License-Identifier: GPL-2.0-or-later !
6 : !--------------------------------------------------------------------------------------------------!
7 :
8 : ! **************************************************************************************************
9 : !> \brief Calculate localized minimal basis and analyze wavefunctions
10 : !> \par History
11 : !> 12.2016 created [JGH]
12 : !> \author JGH
13 : ! **************************************************************************************************
14 : MODULE minbas_wfn_analysis
15 : USE atomic_charges, ONLY: print_atomic_charges,&
16 : print_bond_orders
17 : USE atomic_kind_types, ONLY: atomic_kind_type
18 : USE bibliography, ONLY: Lu2004,&
19 : cite_reference
20 : USE cell_types, ONLY: cell_type
21 : USE cp_blacs_env, ONLY: cp_blacs_env_type
22 : USE cp_control_types, ONLY: dft_control_type
23 : USE cp_dbcsr_api, ONLY: &
24 : dbcsr_copy, dbcsr_create, dbcsr_distribution_type, dbcsr_dot, dbcsr_get_block_p, &
25 : dbcsr_get_occupation, dbcsr_iterator_blocks_left, dbcsr_iterator_next_block, &
26 : dbcsr_iterator_start, dbcsr_iterator_stop, dbcsr_iterator_type, dbcsr_multiply, &
27 : dbcsr_p_type, dbcsr_release, dbcsr_set, dbcsr_type, dbcsr_type_no_symmetry, &
28 : dbcsr_type_symmetric
29 : USE cp_dbcsr_operations, ONLY: copy_dbcsr_to_fm,&
30 : cp_dbcsr_plus_fm_fm_t,&
31 : cp_dbcsr_sm_fm_multiply,&
32 : dbcsr_allocate_matrix_set,&
33 : dbcsr_deallocate_matrix_set
34 : USE cp_fm_basic_linalg, ONLY: cp_fm_column_scale
35 : USE cp_fm_struct, ONLY: cp_fm_struct_create,&
36 : cp_fm_struct_release,&
37 : cp_fm_struct_type
38 : USE cp_fm_types, ONLY: cp_fm_create,&
39 : cp_fm_get_diag,&
40 : cp_fm_release,&
41 : cp_fm_to_fm,&
42 : cp_fm_type
43 : USE cp_log_handling, ONLY: cp_get_default_logger,&
44 : cp_logger_type
45 : USE cp_output_handling, ONLY: cp_print_key_finished_output,&
46 : cp_print_key_unit_nr
47 : USE cp_realspace_grid_cube, ONLY: cp_pw_to_cube
48 : USE input_section_types, ONLY: section_get_ivals,&
49 : section_vals_get,&
50 : section_vals_get_subs_vals,&
51 : section_vals_type,&
52 : section_vals_val_get
53 : USE iterate_matrix, ONLY: invert_Hotelling
54 : USE kinds, ONLY: default_path_length,&
55 : dp
56 : USE message_passing, ONLY: mp_para_env_type
57 : USE minbas_methods, ONLY: minbas_calculation
58 : USE molden_utils, ONLY: write_mos_molden
59 : USE mulliken, ONLY: compute_bond_order,&
60 : mulliken_charges
61 : USE parallel_gemm_api, ONLY: parallel_gemm
62 : USE particle_list_types, ONLY: particle_list_type
63 : USE particle_methods, ONLY: get_particle_set
64 : USE particle_types, ONLY: particle_type
65 : USE pw_env_types, ONLY: pw_env_get,&
66 : pw_env_type
67 : USE pw_pool_types, ONLY: pw_pool_type
68 : USE pw_types, ONLY: pw_c1d_gs_type,&
69 : pw_r3d_rs_type
70 : USE qs_collocate_density, ONLY: calculate_wavefunction
71 : USE qs_environment_types, ONLY: get_qs_env,&
72 : qs_environment_type
73 : USE qs_kind_types, ONLY: qs_kind_type
74 : USE qs_ks_types, ONLY: get_ks_env,&
75 : qs_ks_env_type
76 : USE qs_mo_methods, ONLY: make_basis_lowdin
77 : USE qs_mo_types, ONLY: allocate_mo_set,&
78 : deallocate_mo_set,&
79 : get_mo_set,&
80 : mo_set_type,&
81 : set_mo_set
82 : USE qs_subsys_types, ONLY: qs_subsys_get,&
83 : qs_subsys_type
84 : #include "./base/base_uses.f90"
85 :
86 : IMPLICIT NONE
87 : PRIVATE
88 :
89 : CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'minbas_wfn_analysis'
90 :
91 : PUBLIC :: minbas_analysis
92 :
93 : ! **************************************************************************************************
94 :
95 : CONTAINS
96 :
97 : ! **************************************************************************************************
98 : !> \brief ...
99 : !> \param qs_env ...
100 : !> \param input_section ...
101 : !> \param unit_nr ...
102 : ! **************************************************************************************************
103 28 : SUBROUTINE minbas_analysis(qs_env, input_section, unit_nr)
104 : TYPE(qs_environment_type), POINTER :: qs_env
105 : TYPE(section_vals_type), POINTER :: input_section
106 : INTEGER, INTENT(IN) :: unit_nr
107 :
108 : CHARACTER(len=*), PARAMETER :: routineN = 'minbas_analysis'
109 :
110 : INTEGER :: handle, homo, i, ispin, nao, natom, &
111 : nimages, nmao, nmo, nspin
112 28 : INTEGER, ALLOCATABLE, DIMENSION(:, :, :) :: ecount
113 28 : INTEGER, DIMENSION(:), POINTER :: col_blk_sizes, row_blk_sizes
114 : LOGICAL :: do_bondorder, explicit, full_ortho, occeq
115 : REAL(KIND=dp) :: alpha, amax, eps_filter, filter_eps, &
116 : trace
117 28 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :) :: border, fnorm, mcharge, prmao
118 28 : REAL(KIND=dp), DIMENSION(:), POINTER :: occupation_numbers
119 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
120 : TYPE(cp_fm_struct_type), POINTER :: fm_struct_a, fm_struct_b, fm_struct_c
121 : TYPE(cp_fm_type) :: fm1, fm2, fm3, fm4
122 : TYPE(cp_fm_type), POINTER :: fm_mos
123 : TYPE(dbcsr_distribution_type), POINTER :: dbcsr_dist
124 28 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: mao_coef, pqmat, quambo, sqmat
125 28 : TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: matrix_s
126 : TYPE(dbcsr_type) :: psmat, sinv, smao, smaox, spmat
127 : TYPE(dbcsr_type), POINTER :: smat
128 : TYPE(dft_control_type), POINTER :: dft_control
129 28 : TYPE(mo_set_type), ALLOCATABLE, DIMENSION(:) :: mbas
130 28 : TYPE(mo_set_type), DIMENSION(:), POINTER :: mos
131 : TYPE(mp_para_env_type), POINTER :: para_env
132 28 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
133 28 : TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
134 : TYPE(qs_ks_env_type), POINTER :: ks_env
135 : TYPE(section_vals_type), POINTER :: molden_section
136 :
137 : ! only do MINBAS analysis if explicitly requested
138 28 : CALL section_vals_get(input_section, explicit=explicit)
139 28 : IF (.NOT. explicit) RETURN
140 :
141 : ! k-points?
142 0 : CALL get_qs_env(qs_env, dft_control=dft_control)
143 0 : nspin = dft_control%nspins
144 0 : nimages = dft_control%nimages
145 0 : IF (nimages > 1) THEN
146 0 : IF (unit_nr > 0) THEN
147 : WRITE (UNIT=unit_nr, FMT="(T2,A)") &
148 0 : "K-Points: Localized Minimal Basis Analysis not available."
149 : END IF
150 : END IF
151 0 : IF (nimages > 1) RETURN
152 :
153 0 : CALL timeset(routineN, handle)
154 :
155 0 : IF (unit_nr > 0) THEN
156 0 : WRITE (unit_nr, '(/,T2,A)') '!-----------------------------------------------------------------------------!'
157 0 : WRITE (UNIT=unit_nr, FMT="(T26,A)") "LOCALIZED MINIMAL BASIS ANALYSIS"
158 0 : WRITE (UNIT=unit_nr, FMT="(T18,A)") "W.C. Lu et al, J. Chem. Phys. 120, 2629 (2004)"
159 0 : WRITE (unit_nr, '(T2,A)') '!-----------------------------------------------------------------------------!'
160 : END IF
161 0 : CALL cite_reference(Lu2004)
162 :
163 : ! input options
164 0 : CALL section_vals_val_get(input_section, "EPS_FILTER", r_val=eps_filter)
165 0 : CALL section_vals_val_get(input_section, "FULL_ORTHOGONALIZATION", l_val=full_ortho)
166 0 : CALL section_vals_val_get(input_section, "BOND_ORDER", l_val=do_bondorder)
167 :
168 : ! generate MAOs and QUAMBOs
169 0 : CALL get_qs_env(qs_env, mos=mos)
170 0 : NULLIFY (quambo, mao_coef)
171 : CALL minbas_calculation(qs_env, mos, quambo, mao=mao_coef, iounit=unit_nr, &
172 0 : full_ortho=full_ortho, eps_filter=eps_filter)
173 0 : IF (ASSOCIATED(quambo)) THEN
174 0 : CALL get_mo_set(mo_set=mos(1), nao=nao, nmo=nmo)
175 0 : CALL get_qs_env(qs_env=qs_env, ks_env=ks_env)
176 0 : CALL get_qs_env(qs_env=qs_env, qs_kind_set=qs_kind_set, natom=natom)
177 0 : CALL get_ks_env(ks_env=ks_env, particle_set=particle_set, dbcsr_dist=dbcsr_dist)
178 0 : ALLOCATE (row_blk_sizes(natom), col_blk_sizes(natom))
179 0 : CALL get_particle_set(particle_set, qs_kind_set, nsgf=row_blk_sizes)
180 0 : CALL get_particle_set(particle_set, qs_kind_set, nmao=col_blk_sizes)
181 0 : nmao = SUM(col_blk_sizes)
182 :
183 0 : NULLIFY (pqmat, sqmat)
184 0 : CALL dbcsr_allocate_matrix_set(sqmat, nspin)
185 0 : CALL dbcsr_allocate_matrix_set(pqmat, nspin)
186 0 : DO ispin = 1, nspin
187 0 : ALLOCATE (sqmat(ispin)%matrix)
188 : CALL dbcsr_create(matrix=sqmat(ispin)%matrix, &
189 : name="SQMAT", dist=dbcsr_dist, matrix_type=dbcsr_type_symmetric, &
190 0 : row_blk_size=col_blk_sizes, col_blk_size=col_blk_sizes, nze=0)
191 0 : ALLOCATE (pqmat(ispin)%matrix)
192 : CALL dbcsr_create(matrix=pqmat(ispin)%matrix, &
193 : name="PQMAT", dist=dbcsr_dist, matrix_type=dbcsr_type_symmetric, &
194 0 : row_blk_size=col_blk_sizes, col_blk_size=col_blk_sizes, nze=0)
195 : END DO
196 0 : DEALLOCATE (row_blk_sizes, col_blk_sizes)
197 :
198 : ! Start wfn analysis
199 0 : IF (unit_nr > 0) THEN
200 0 : WRITE (unit_nr, '(/,T2,A)') 'Localized Minimal Basis Wavefunction Analysis'
201 : END IF
202 :
203 : ! localization of basis
204 0 : DO ispin = 1, nspin
205 0 : amax = dbcsr_get_occupation(quambo(ispin)%matrix)
206 0 : IF (unit_nr > 0) THEN
207 : WRITE (unit_nr, '(/,T2,A,I2,T69,F10.3,A2,/)') &
208 0 : 'Occupation of Basis Function Representation (Spin) ', ispin, amax*100._dp, ' %'
209 : END IF
210 : END DO
211 :
212 0 : CALL get_qs_env(qs_env, matrix_s_kp=matrix_s)
213 0 : CALL get_qs_env(qs_env=qs_env, para_env=para_env, blacs_env=blacs_env)
214 : CALL cp_fm_struct_create(fm_struct_a, nrow_global=nao, ncol_global=nmao, &
215 0 : para_env=para_env, context=blacs_env)
216 0 : CALL cp_fm_create(fm1, fm_struct_a)
217 : CALL cp_fm_struct_create(fm_struct_b, nrow_global=nmao, ncol_global=nmo, &
218 0 : para_env=para_env, context=blacs_env)
219 0 : CALL cp_fm_create(fm2, fm_struct_b)
220 0 : CALL cp_fm_create(fm3, fm_struct_b)
221 : CALL cp_fm_struct_create(fm_struct_c, nrow_global=nmo, ncol_global=nmo, &
222 0 : para_env=para_env, context=blacs_env)
223 0 : CALL cp_fm_create(fm4, fm_struct_c)
224 0 : ALLOCATE (fnorm(nmo, nspin), ecount(natom, 3, nspin), prmao(natom, nspin))
225 0 : ecount = 0
226 0 : prmao = 0.0_dp
227 0 : DO ispin = 1, nspin
228 0 : CALL dbcsr_create(smao, name="S*QM", template=mao_coef(1)%matrix)
229 0 : smat => matrix_s(1, 1)%matrix
230 0 : CALL dbcsr_multiply("N", "N", 1.0_dp, smat, quambo(ispin)%matrix, 0.0_dp, smao)
231 : ! calculate atomic extend of basis
232 0 : CALL pm_extend(quambo(ispin)%matrix, smao, ecount(:, :, ispin))
233 0 : CALL dbcsr_create(sinv, name="QM*S*QM", template=sqmat(ispin)%matrix)
234 0 : CALL dbcsr_multiply("T", "N", 1.0_dp, quambo(ispin)%matrix, smao, 0.0_dp, sqmat(ispin)%matrix)
235 : ! atomic MAO projection
236 0 : CALL project_mao(mao_coef(ispin)%matrix, smao, sqmat(ispin)%matrix, prmao(:, ispin))
237 : ! invert overlap
238 0 : CALL invert_Hotelling(sinv, sqmat(ispin)%matrix, 1.e-6_dp, silent=.TRUE.)
239 0 : CALL dbcsr_create(smaox, name="S*QM*SINV", template=smao)
240 0 : CALL dbcsr_multiply("N", "N", 1.0_dp, smao, sinv, 0.0_dp, smaox)
241 0 : CALL copy_dbcsr_to_fm(smaox, fm1)
242 0 : CALL get_mo_set(mos(ispin), mo_coeff=fm_mos, homo=homo)
243 0 : CALL parallel_gemm("T", "N", nmao, nmo, nao, 1.0_dp, fm1, fm_mos, 0.0_dp, fm2)
244 0 : CALL cp_dbcsr_sm_fm_multiply(sqmat(ispin)%matrix, fm2, fm3, nmo)
245 0 : CALL parallel_gemm("T", "N", nmo, nmo, nmao, 1.0_dp, fm2, fm3, 0.0_dp, fm4)
246 0 : CALL cp_fm_get_diag(fm4, fnorm(1:nmo, ispin))
247 : ! fm2 are the projected MOs (in MAO basis); orthogonalize the occupied subspace
248 0 : CALL make_basis_lowdin(vmatrix=fm2, ncol=homo, matrix_s=sqmat(ispin)%matrix)
249 : ! pmat
250 0 : CALL get_mo_set(mos(ispin), occupation_numbers=occupation_numbers, maxocc=alpha)
251 0 : occeq = ALL(occupation_numbers(1:homo) == alpha)
252 0 : CALL dbcsr_copy(pqmat(ispin)%matrix, sqmat(ispin)%matrix)
253 0 : CALL dbcsr_set(pqmat(ispin)%matrix, 0.0_dp)
254 0 : IF (occeq) THEN
255 : CALL cp_dbcsr_plus_fm_fm_t(sparse_matrix=pqmat(ispin)%matrix, matrix_v=fm2, &
256 0 : ncol=homo, alpha=alpha, keep_sparsity=.FALSE.)
257 : ELSE
258 0 : CALL cp_fm_to_fm(fm2, fm3)
259 0 : CALL cp_fm_column_scale(fm3, occupation_numbers(1:homo))
260 0 : alpha = 1.0_dp
261 : CALL cp_dbcsr_plus_fm_fm_t(sparse_matrix=pqmat(ispin)%matrix, matrix_v=fm2, &
262 0 : matrix_g=fm3, ncol=homo, alpha=alpha, keep_sparsity=.TRUE.)
263 : END IF
264 :
265 0 : CALL dbcsr_release(smao)
266 0 : CALL dbcsr_release(smaox)
267 0 : CALL dbcsr_release(sinv)
268 : END DO
269 : ! Basis extension
270 0 : CALL para_env%sum(ecount)
271 0 : IF (unit_nr > 0) THEN
272 0 : IF (nspin == 1) THEN
273 0 : WRITE (unit_nr, '(T2,A,T20,A,T40,A,T60,A)') 'Ref. Atom', ' # > 0.100 ', ' # > 0.010 ', ' # > 0.001 '
274 0 : DO i = 1, natom
275 0 : WRITE (unit_nr, '(T2,I8,T20,I10,T40,I10,T60,I10)') i, ecount(i, 1:3, 1)
276 : END DO
277 : ELSE
278 0 : WRITE (unit_nr, '(T2,A,T20,A,T40,A,T60,A)') 'Ref. Atom', ' # > 0.100 ', ' # > 0.010 ', ' # > 0.001 '
279 0 : DO i = 1, natom
280 : WRITE (unit_nr, '(T2,I8,T20,2I6,T40,2I6,T60,2I6)') &
281 0 : i, ecount(i, 1, 1:2), ecount(i, 2, 1:2), ecount(i, 3, 1:2)
282 : END DO
283 : END IF
284 : END IF
285 : ! MAO projection
286 0 : CALL para_env%sum(prmao)
287 0 : IF (unit_nr > 0) THEN
288 0 : DO ispin = 1, nspin
289 0 : WRITE (unit_nr, '(/,T2,A,I2)') 'Projection on same atom MAO orbitals: Spin ', ispin
290 0 : DO i = 1, natom, 2
291 0 : IF (i < natom) THEN
292 : WRITE (unit_nr, '(T2,A,I8,T20,A,F10.6,T42,A,I8,T60,A,F10.6)') &
293 0 : " Atom:", i, "Projection:", prmao(i, ispin), " Atom:", i + 1, "Projection:", prmao(i + 1, ispin)
294 : ELSE
295 0 : WRITE (unit_nr, '(T2,A,I8,T20,A,F10.6)') " Atom:", i, "Projection:", prmao(i, ispin)
296 : END IF
297 : END DO
298 : END DO
299 : END IF
300 : ! MO expansion completness
301 0 : DO ispin = 1, nspin
302 0 : CALL get_mo_set(mos(ispin), homo=homo, nmo=nmo)
303 0 : IF (unit_nr > 0) THEN
304 0 : WRITE (unit_nr, '(/,T2,A,I2)') 'MO expansion in Localized Minimal Basis: Spin ', ispin
305 0 : WRITE (unit_nr, '(T64,A)') 'Occupied Orbitals'
306 0 : WRITE (unit_nr, '(8F10.6)') fnorm(1:homo, ispin)
307 0 : WRITE (unit_nr, '(T65,A)') 'Virtual Orbitals'
308 0 : WRITE (unit_nr, '(8F10.6)') fnorm(homo + 1:nmo, ispin)
309 : END IF
310 : END DO
311 : ! Mulliken population
312 0 : IF (unit_nr > 0) THEN
313 0 : WRITE (unit_nr, '(/,T2,A)') 'Mulliken Population Analysis '
314 : END IF
315 0 : ALLOCATE (mcharge(natom, nspin))
316 0 : DO ispin = 1, nspin
317 0 : CALL dbcsr_dot(pqmat(ispin)%matrix, sqmat(ispin)%matrix, trace)
318 0 : IF (unit_nr > 0) THEN
319 0 : WRITE (unit_nr, '(T2,A,I2,T66,F15.4)') 'Number of Electrons: Trace(PS) Spin ', ispin, trace
320 : END IF
321 0 : CALL mulliken_charges(pqmat(ispin)%matrix, sqmat(ispin)%matrix, para_env, mcharge(:, ispin))
322 : END DO
323 : CALL print_atomic_charges(particle_set, qs_kind_set, unit_nr, "Minimal Basis Mulliken Charges", &
324 0 : electronic_charges=mcharge)
325 : ! Mayer bond orders
326 0 : IF (do_bondorder) THEN
327 0 : ALLOCATE (border(natom, natom))
328 0 : border = 0.0_dp
329 0 : CALL dbcsr_create(psmat, name="PS", template=sqmat(1)%matrix, matrix_type=dbcsr_type_no_symmetry)
330 0 : CALL dbcsr_create(spmat, name="SP", template=sqmat(1)%matrix, matrix_type=dbcsr_type_no_symmetry)
331 0 : filter_eps = 1.e-6_dp
332 0 : DO ispin = 1, nspin
333 : CALL dbcsr_multiply("N", "N", 1.0_dp, pqmat(ispin)%matrix, sqmat(ispin)%matrix, 0.0_dp, psmat, &
334 0 : filter_eps=filter_eps)
335 : CALL dbcsr_multiply("N", "N", 1.0_dp, sqmat(ispin)%matrix, pqmat(ispin)%matrix, 0.0_dp, spmat, &
336 0 : filter_eps=filter_eps)
337 0 : CALL compute_bond_order(psmat, spmat, border)
338 : END DO
339 0 : CALL para_env%sum(border)
340 0 : border = border*REAL(nspin, KIND=dp)
341 0 : CALL dbcsr_release(psmat)
342 0 : CALL dbcsr_release(spmat)
343 0 : CALL print_bond_orders(particle_set, unit_nr, border)
344 0 : DEALLOCATE (border)
345 : END IF
346 :
347 : ! for printing purposes we now copy the QUAMBOs into MO format
348 0 : ALLOCATE (mbas(nspin))
349 0 : DO ispin = 1, nspin
350 0 : CALL allocate_mo_set(mbas(ispin), nao, nmao, nmao, 0.0_dp, 1.0_dp, 0.0_dp)
351 0 : CALL set_mo_set(mbas(ispin), homo=nmao)
352 0 : ALLOCATE (mbas(ispin)%eigenvalues(nmao))
353 0 : mbas(ispin)%eigenvalues = 0.0_dp
354 0 : ALLOCATE (mbas(ispin)%occupation_numbers(nmao))
355 0 : mbas(ispin)%occupation_numbers = 1.0_dp
356 0 : CALL cp_fm_create(mbas(ispin)%mo_coeff, fm_struct_a)
357 0 : CALL copy_dbcsr_to_fm(quambo(ispin)%matrix, mbas(ispin)%mo_coeff)
358 : END DO
359 :
360 : ! Print basis functions: cube files
361 0 : DO ispin = 1, nspin
362 0 : CALL get_mo_set(mbas(ispin), mo_coeff=fm_mos)
363 0 : CALL post_minbas_cubes(qs_env, input_section, fm_mos, ispin)
364 : END DO
365 : ! Print basis functions: molden format
366 0 : molden_section => section_vals_get_subs_vals(input_section, "MINBAS_MOLDEN")
367 0 : CALL write_mos_molden(mbas, qs_kind_set, particle_set, molden_section)
368 0 : DO ispin = 1, nspin
369 0 : CALL deallocate_mo_set(mbas(ispin))
370 : END DO
371 0 : DEALLOCATE (mbas)
372 :
373 0 : DEALLOCATE (fnorm, ecount, prmao, mcharge)
374 0 : CALL cp_fm_release(fm1)
375 0 : CALL cp_fm_release(fm2)
376 0 : CALL cp_fm_release(fm3)
377 0 : CALL cp_fm_release(fm4)
378 0 : CALL cp_fm_struct_release(fm_struct_a)
379 0 : CALL cp_fm_struct_release(fm_struct_b)
380 0 : CALL cp_fm_struct_release(fm_struct_c)
381 :
382 : ! clean up
383 0 : CALL dbcsr_deallocate_matrix_set(sqmat)
384 0 : CALL dbcsr_deallocate_matrix_set(pqmat)
385 0 : CALL dbcsr_deallocate_matrix_set(mao_coef)
386 0 : CALL dbcsr_deallocate_matrix_set(quambo)
387 :
388 : END IF
389 :
390 0 : IF (unit_nr > 0) THEN
391 : WRITE (unit_nr, '(/,T2,A)') &
392 0 : '!--------------------------END OF MINBAS ANALYSIS-----------------------------!'
393 : END IF
394 :
395 0 : CALL timestop(handle)
396 :
397 56 : END SUBROUTINE minbas_analysis
398 :
399 : ! **************************************************************************************************
400 : !> \brief ...
401 : !> \param quambo ...
402 : !> \param smao ...
403 : !> \param ecount ...
404 : ! **************************************************************************************************
405 0 : SUBROUTINE pm_extend(quambo, smao, ecount)
406 : TYPE(dbcsr_type) :: quambo, smao
407 : INTEGER, DIMENSION(:, :), INTENT(INOUT) :: ecount
408 :
409 : INTEGER :: iatom, jatom, n
410 : LOGICAL :: found
411 : REAL(KIND=dp) :: wij
412 0 : REAL(KIND=dp), DIMENSION(:, :), POINTER :: qblock, sblock
413 : TYPE(dbcsr_iterator_type) :: dbcsr_iter
414 :
415 0 : CALL dbcsr_iterator_start(dbcsr_iter, quambo)
416 0 : DO WHILE (dbcsr_iterator_blocks_left(dbcsr_iter))
417 0 : CALL dbcsr_iterator_next_block(dbcsr_iter, iatom, jatom, qblock)
418 0 : CALL dbcsr_get_block_p(matrix=smao, row=iatom, col=jatom, BLOCK=sblock, found=found)
419 0 : IF (found) THEN
420 0 : n = SIZE(qblock, 2)
421 0 : wij = ABS(SUM(qblock*sblock))/REAL(n, KIND=dp)
422 0 : IF (wij > 0.1_dp) THEN
423 0 : ecount(jatom, 1) = ecount(jatom, 1) + 1
424 0 : ELSEIF (wij > 0.01_dp) THEN
425 0 : ecount(jatom, 2) = ecount(jatom, 2) + 1
426 0 : ELSEIF (wij > 0.001_dp) THEN
427 0 : ecount(jatom, 3) = ecount(jatom, 3) + 1
428 : END IF
429 : END IF
430 : END DO
431 0 : CALL dbcsr_iterator_stop(dbcsr_iter)
432 :
433 0 : END SUBROUTINE pm_extend
434 :
435 : ! **************************************************************************************************
436 : !> \brief ...
437 : !> \param mao ...
438 : !> \param smao ...
439 : !> \param sovl ...
440 : !> \param prmao ...
441 : ! **************************************************************************************************
442 0 : SUBROUTINE project_mao(mao, smao, sovl, prmao)
443 : TYPE(dbcsr_type) :: mao, smao, sovl
444 : REAL(KIND=dp), DIMENSION(:), INTENT(INOUT) :: prmao
445 :
446 : INTEGER :: i, iatom, jatom, n
447 : LOGICAL :: found
448 : REAL(KIND=dp) :: wi
449 0 : REAL(KIND=dp), DIMENSION(:, :), POINTER :: qblock, sblock, so
450 : TYPE(dbcsr_iterator_type) :: dbcsr_iter
451 :
452 0 : CALL dbcsr_iterator_start(dbcsr_iter, mao)
453 0 : DO WHILE (dbcsr_iterator_blocks_left(dbcsr_iter))
454 0 : CALL dbcsr_iterator_next_block(dbcsr_iter, iatom, jatom, qblock)
455 0 : CPASSERT(iatom == jatom)
456 0 : CALL dbcsr_get_block_p(matrix=smao, row=iatom, col=jatom, BLOCK=sblock, found=found)
457 0 : IF (found) THEN
458 0 : CALL dbcsr_get_block_p(matrix=sovl, row=iatom, col=jatom, BLOCK=so, found=found)
459 0 : n = SIZE(qblock, 2)
460 0 : DO i = 1, n
461 0 : wi = SUM(qblock(:, i)*sblock(:, i))
462 0 : prmao(iatom) = prmao(iatom) + wi/so(i, i)
463 : END DO
464 : END IF
465 : END DO
466 0 : CALL dbcsr_iterator_stop(dbcsr_iter)
467 :
468 0 : END SUBROUTINE project_mao
469 :
470 : ! **************************************************************************************************
471 : !> \brief Computes and prints the Cube Files for the minimal basis set
472 : !> \param qs_env ...
473 : !> \param print_section ...
474 : !> \param minbas_coeff ...
475 : !> \param ispin ...
476 : ! **************************************************************************************************
477 0 : SUBROUTINE post_minbas_cubes(qs_env, print_section, minbas_coeff, ispin)
478 : TYPE(qs_environment_type), POINTER :: qs_env
479 : TYPE(section_vals_type), POINTER :: print_section
480 : TYPE(cp_fm_type), INTENT(IN) :: minbas_coeff
481 : INTEGER, INTENT(IN) :: ispin
482 :
483 : CHARACTER(LEN=default_path_length) :: filename, title
484 : INTEGER :: i, i_rep, ivec, iw, j, n_rep, natom
485 0 : INTEGER, DIMENSION(:), POINTER :: blk_sizes, first_bas, ilist, stride
486 : LOGICAL :: explicit, mpi_io
487 0 : TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
488 : TYPE(cell_type), POINTER :: cell
489 : TYPE(cp_logger_type), POINTER :: logger
490 : TYPE(dft_control_type), POINTER :: dft_control
491 : TYPE(particle_list_type), POINTER :: particles
492 0 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
493 : TYPE(pw_c1d_gs_type) :: wf_g
494 : TYPE(pw_env_type), POINTER :: pw_env
495 : TYPE(pw_pool_type), POINTER :: auxbas_pw_pool
496 : TYPE(pw_r3d_rs_type) :: wf_r
497 0 : TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
498 : TYPE(qs_subsys_type), POINTER :: subsys
499 : TYPE(section_vals_type), POINTER :: minbas_section
500 :
501 0 : minbas_section => section_vals_get_subs_vals(print_section, "MINBAS_CUBE")
502 0 : CALL section_vals_get(minbas_section, explicit=explicit)
503 0 : IF (.NOT. explicit) RETURN
504 :
505 0 : logger => cp_get_default_logger()
506 0 : stride => section_get_ivals(print_section, "MINBAS_CUBE%STRIDE")
507 :
508 : CALL get_qs_env(qs_env=qs_env, atomic_kind_set=atomic_kind_set, qs_kind_set=qs_kind_set, &
509 0 : subsys=subsys, cell=cell, particle_set=particle_set, pw_env=pw_env, dft_control=dft_control)
510 0 : CALL qs_subsys_get(subsys, particles=particles)
511 :
512 0 : CALL get_qs_env(qs_env=qs_env, natom=natom)
513 0 : ALLOCATE (blk_sizes(natom), first_bas(0:natom))
514 0 : CALL get_particle_set(particle_set, qs_kind_set, nmao=blk_sizes)
515 0 : first_bas(0) = 0
516 0 : DO i = 1, natom
517 0 : first_bas(i) = first_bas(i - 1) + blk_sizes(i)
518 : END DO
519 :
520 0 : CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool)
521 0 : CALL auxbas_pw_pool%create_pw(wf_r)
522 0 : CALL auxbas_pw_pool%create_pw(wf_g)
523 :
524 : ! loop over list of atoms
525 0 : CALL section_vals_val_get(minbas_section, "ATOM_LIST", n_rep_val=n_rep)
526 0 : IF (n_rep == 0) THEN
527 0 : DO i = 1, natom
528 0 : DO ivec = first_bas(i - 1) + 1, first_bas(i)
529 0 : WRITE (filename, '(a4,I5.5,a1,I1.1)') "MINBAS_", ivec, "_", ispin
530 0 : WRITE (title, *) "MINIMAL BASIS ", ivec, " atom ", i, " spin ", ispin
531 0 : mpi_io = .TRUE.
532 : iw = cp_print_key_unit_nr(logger, print_section, "MINBAS_CUBE", extension=".cube", &
533 : middle_name=TRIM(filename), file_position="REWIND", log_filename=.FALSE., &
534 0 : mpi_io=mpi_io)
535 : CALL calculate_wavefunction(minbas_coeff, ivec, wf_r, wf_g, atomic_kind_set, qs_kind_set, &
536 0 : cell, dft_control, particle_set, pw_env)
537 0 : CALL cp_pw_to_cube(wf_r, iw, title, particles=particles, stride=stride, mpi_io=mpi_io)
538 0 : CALL cp_print_key_finished_output(iw, logger, print_section, "MINBAS_CUBE", mpi_io=mpi_io)
539 : END DO
540 : END DO
541 : ELSE
542 0 : DO i_rep = 1, n_rep
543 0 : CALL section_vals_val_get(minbas_section, "ATOM_LIST", i_rep_val=i_rep, i_vals=ilist)
544 0 : DO i = 1, SIZE(ilist, 1)
545 0 : j = ilist(i)
546 0 : DO ivec = first_bas(j - 1) + 1, first_bas(j)
547 0 : WRITE (filename, '(a4,I5.5,a1,I1.1)') "MINBAS_", ivec, "_", ispin
548 0 : WRITE (title, *) "MINIMAL BASIS ", ivec, " atom ", j, " spin ", ispin
549 0 : mpi_io = .TRUE.
550 : iw = cp_print_key_unit_nr(logger, print_section, "MINBAS_CUBE", extension=".cube", &
551 : middle_name=TRIM(filename), file_position="REWIND", log_filename=.FALSE., &
552 0 : mpi_io=mpi_io)
553 : CALL calculate_wavefunction(minbas_coeff, ivec, wf_r, wf_g, atomic_kind_set, qs_kind_set, &
554 0 : cell, dft_control, particle_set, pw_env)
555 0 : CALL cp_pw_to_cube(wf_r, iw, title, particles=particles, stride=stride, mpi_io=mpi_io)
556 0 : CALL cp_print_key_finished_output(iw, logger, print_section, "MINBAS_CUBE", mpi_io=mpi_io)
557 : END DO
558 : END DO
559 : END DO
560 : END IF
561 0 : DEALLOCATE (blk_sizes, first_bas)
562 0 : CALL auxbas_pw_pool%give_back_pw(wf_r)
563 0 : CALL auxbas_pw_pool%give_back_pw(wf_g)
564 :
565 0 : END SUBROUTINE post_minbas_cubes
566 :
567 : END MODULE minbas_wfn_analysis
|