Line data Source code
1 : !--------------------------------------------------------------------------------------------------!
2 : ! CP2K: A general program to perform molecular dynamics simulations !
3 : ! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
4 : ! !
5 : ! SPDX-License-Identifier: GPL-2.0-or-later !
6 : !--------------------------------------------------------------------------------------------------!
7 :
8 : ! **************************************************************************************************
9 : !> \brief Routines for the real time propagation.
10 : !> \author Florian Schiffmann (02.09)
11 : ! **************************************************************************************************
12 :
13 : MODULE rt_propagation
14 : USE bibliography, ONLY: Andermatt2016,&
15 : cite_reference
16 : USE cp_control_types, ONLY: dft_control_type,&
17 : rtp_control_type
18 : USE cp_dbcsr_api, ONLY: dbcsr_copy,&
19 : dbcsr_p_type
20 : USE cp_external_control, ONLY: external_control
21 : USE cp_fm_types, ONLY: cp_fm_set_all,&
22 : cp_fm_to_fm,&
23 : cp_fm_type
24 : USE cp_log_handling, ONLY: cp_get_default_logger,&
25 : cp_logger_type,&
26 : cp_to_string
27 : USE cp_output_handling, ONLY: cp_add_iter_level,&
28 : cp_iterate,&
29 : cp_p_file,&
30 : cp_print_key_generate_filename,&
31 : cp_print_key_should_output,&
32 : cp_print_key_unit_nr,&
33 : cp_rm_iter_level
34 : USE efield_utils, ONLY: calculate_ecore_efield
35 : USE force_env_methods, ONLY: force_env_calc_energy_force
36 : USE force_env_types, ONLY: force_env_get,&
37 : force_env_type
38 : USE global_types, ONLY: global_environment_type
39 : USE hfx_admm_utils, ONLY: hfx_admm_init
40 : USE input_constants, ONLY: real_time_propagation,&
41 : use_restart_wfn,&
42 : use_rt_restart,&
43 : use_scf_wfn
44 : USE input_cp2k_restarts, ONLY: write_restart
45 : USE input_section_types, ONLY: section_vals_get,&
46 : section_vals_get_subs_vals,&
47 : section_vals_type,&
48 : section_vals_val_get,&
49 : section_vals_val_set
50 : USE kinds, ONLY: default_path_length,&
51 : dp
52 : USE machine, ONLY: m_walltime
53 : USE md_environment_types, ONLY: md_environment_type
54 : USE pw_env_types, ONLY: pw_env_type
55 : USE qs_core_hamiltonian, ONLY: qs_matrix_h_allocate_imag_from_real
56 : USE qs_energy_init, ONLY: qs_energies_init
57 : USE qs_energy_types, ONLY: qs_energy_type
58 : USE qs_environment_types, ONLY: get_qs_env,&
59 : qs_environment_type
60 : USE qs_external_potential, ONLY: external_c_potential,&
61 : external_e_potential
62 : USE qs_ks_methods, ONLY: qs_ks_allocate_basics,&
63 : qs_ks_update_qs_env
64 : USE qs_ks_types, ONLY: qs_ks_did_change,&
65 : qs_ks_env_type,&
66 : set_ks_env
67 : USE qs_mo_io, ONLY: wfn_restart_file_name
68 : USE qs_mo_types, ONLY: get_mo_set,&
69 : init_mo_set,&
70 : mo_set_type
71 : USE qs_rho_methods, ONLY: allocate_rho_ao_imag_from_real
72 : USE qs_rho_types, ONLY: qs_rho_set,&
73 : qs_rho_type
74 : USE rt_delta_pulse, ONLY: apply_delta_pulse
75 : USE rt_hfx_utils, ONLY: rtp_hfx_rebuild
76 : USE rt_projection_mo_utils, ONLY: init_mo_projection
77 : USE rt_propagation_methods, ONLY: propagation_step
78 : USE rt_propagation_output, ONLY: rt_prop_output
79 : USE rt_propagation_types, ONLY: get_rtp,&
80 : rt_prop_create,&
81 : rt_prop_type,&
82 : rtp_create_SinvH_imag,&
83 : rtp_history_create
84 : USE rt_propagation_utils, ONLY: calc_S_derivs,&
85 : calc_update_rho,&
86 : calc_update_rho_sparse,&
87 : get_restart_wfn
88 : USE rt_propagation_velocity_gauge, ONLY: velocity_gauge_ks_matrix
89 : USE rt_propagator_init, ONLY: init_propagators,&
90 : rt_initialize_rho_from_mos
91 : #include "../base/base_uses.f90"
92 :
93 : IMPLICIT NONE
94 :
95 : PRIVATE
96 :
97 : CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'rt_propagation'
98 :
99 : PUBLIC :: rt_prop_setup
100 :
101 : CONTAINS
102 :
103 : ! **************************************************************************************************
104 : !> \brief creates rtp_type, gets the initial state, either by reading MO's
105 : !> from file or calling SCF run
106 : !> \param force_env ...
107 : !> \author Florian Schiffmann (02.09)
108 : ! **************************************************************************************************
109 :
110 594 : SUBROUTINE rt_prop_setup(force_env)
111 : TYPE(force_env_type), POINTER :: force_env
112 :
113 : INTEGER :: aspc_order
114 : LOGICAL :: magnetic, vel_reprs
115 : TYPE(dft_control_type), POINTER :: dft_control
116 : TYPE(global_environment_type), POINTER :: globenv
117 : TYPE(qs_energy_type), POINTER :: energy
118 : TYPE(qs_environment_type), POINTER :: qs_env
119 : TYPE(rt_prop_type), POINTER :: rtp
120 : TYPE(rtp_control_type), POINTER :: rtp_control
121 : TYPE(section_vals_type), POINTER :: hfx_sections, input, ls_scf_section, &
122 : md_section, motion_section, &
123 : print_moments_section
124 :
125 198 : NULLIFY (qs_env, rtp_control, dft_control)
126 :
127 198 : CALL cite_reference(Andermatt2016)
128 :
129 198 : CALL force_env_get(force_env=force_env, qs_env=qs_env, globenv=globenv)
130 198 : CALL get_qs_env(qs_env, dft_control=dft_control, energy=energy)
131 198 : rtp_control => dft_control%rtp_control
132 :
133 : ! Takes care that an initial wavefunction/density is available
134 : ! Can either be by performing an scf loop or reading a restart
135 198 : CALL rt_initial_guess(qs_env, force_env, rtp_control)
136 :
137 : ! Initializes the extrapolation
138 198 : NULLIFY (rtp)
139 198 : CALL get_qs_env(qs_env=qs_env, rtp=rtp, input=input)
140 198 : aspc_order = rtp_control%aspc_order
141 198 : CALL rtp_history_create(rtp, aspc_order)
142 :
143 : ! Reads the simulation parameters from the input
144 198 : motion_section => section_vals_get_subs_vals(force_env%root_section, "MOTION")
145 198 : md_section => section_vals_get_subs_vals(motion_section, "MD")
146 198 : hfx_sections => section_vals_get_subs_vals(force_env%root_section, "FORCE_EVAL%DFT%XC%HF")
147 198 : print_moments_section => section_vals_get_subs_vals(force_env%root_section, "FORCE_EVAL%DFT%PRINT%MOMENTS")
148 198 : CALL section_vals_val_get(md_section, "TIMESTEP", r_val=qs_env%rtp%dt)
149 198 : CALL section_vals_val_get(md_section, "STEP_START_VAL", i_val=qs_env%rtp%i_start)
150 198 : CALL section_vals_val_get(md_section, "STEPS", i_val=rtp%nsteps)
151 198 : CALL section_vals_val_get(md_section, "MAX_STEPS", i_val=rtp%max_steps)
152 :
153 198 : ls_scf_section => section_vals_get_subs_vals(input, "DFT%LS_SCF")
154 198 : CALL section_vals_val_get(ls_scf_section, "EPS_FILTER", r_val=rtp%filter_eps)
155 198 : IF (.NOT. qs_env%rtp%linear_scaling) rtp%filter_eps = 0.0_dp
156 198 : IF (rtp_control%acc_ref < 1) rtp_control%acc_ref = 1
157 198 : rtp%filter_eps_small = rtp%filter_eps/rtp_control%acc_ref
158 198 : CALL section_vals_val_get(ls_scf_section, "EPS_LANCZOS", r_val=rtp%lanzcos_threshold)
159 198 : CALL section_vals_val_get(ls_scf_section, "MAX_ITER_LANCZOS", i_val=rtp%lanzcos_max_iter)
160 198 : CALL section_vals_val_get(ls_scf_section, "SIGN_SQRT_ORDER", i_val=rtp%newton_schulz_order)
161 198 : CALL section_vals_get(hfx_sections, explicit=rtp%do_hfx)
162 198 : CALL section_vals_val_get(print_moments_section, "MAGNETIC", l_val=magnetic)
163 198 : CALL section_vals_val_get(print_moments_section, "VEL_REPRS", l_val=vel_reprs)
164 :
165 : rtp%track_imag_density = (magnetic) .OR. (vel_reprs) .OR. (rtp_control%velocity_gauge) &
166 198 : .OR. (rtp%do_hfx) .OR. (.NOT. rtp_control%fixed_ions)
167 198 : rtp%propagate_complex_ks = rtp%do_hfx .OR. rtp_control%velocity_gauge
168 :
169 : CALL rt_init_complex_quantities(qs_env, imag_p=rtp%track_imag_density, &
170 198 : imag_ks=rtp%propagate_complex_ks, imag_h=rtp_control%velocity_gauge)
171 :
172 : ! Hmm, not really like to initialize with the structure of S but I reckon it is
173 : ! done everywhere like this
174 198 : IF (rtp%do_hfx) CALL rtp_hfx_rebuild(qs_env)
175 :
176 : ! Setup the MO projection environment if required
177 198 : IF (rtp_control%is_proj_mo) CALL init_mo_projection(qs_env, rtp_control)
178 :
179 198 : CALL init_propagation_run(qs_env)
180 198 : IF (.NOT. rtp_control%fixed_ions) THEN
181 : !derivativs of the overlap needed for EMD
182 72 : CALL calc_S_derivs(qs_env)
183 : ! a bit hidden, but computes SinvH and SinvB (calc_SinvH for CN,EM and ARNOLDI)
184 : ! make_etrs_exp in case of ETRS in combination with TAYLOR and PADE
185 : END IF
186 198 : CALL init_propagators(qs_env)
187 198 : IF (rtp_control%fixed_ions) THEN
188 126 : CALL run_propagation(qs_env, force_env, globenv)
189 : ELSE
190 72 : rtp_control%initial_step = .TRUE.
191 72 : CALL force_env_calc_energy_force(force_env, calc_force=.TRUE.)
192 72 : rtp_control%initial_step = .FALSE.
193 72 : rtp%energy_old = energy%total
194 : END IF
195 :
196 198 : END SUBROUTINE rt_prop_setup
197 :
198 : ! **************************************************************************************************
199 : !> \brief calculates the matrices needed in the first step of EMD/RTP
200 : !> \param qs_env ...
201 : !> \author Florian Schiffmann (02.09)
202 : ! **************************************************************************************************
203 :
204 198 : SUBROUTINE init_propagation_run(qs_env)
205 : TYPE(qs_environment_type), POINTER :: qs_env
206 :
207 : REAL(KIND=dp), PARAMETER :: zero = 0.0_dp
208 :
209 : INTEGER :: i, ispin, re
210 : INTEGER, DIMENSION(2) :: nelectron_spin
211 198 : TYPE(cp_fm_type), DIMENSION(:), POINTER :: mos_new, mos_old
212 198 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_ks, rho_new, rho_old
213 : TYPE(dft_control_type), POINTER :: dft_control
214 198 : TYPE(mo_set_type), DIMENSION(:), POINTER :: mos
215 : TYPE(rt_prop_type), POINTER :: rtp
216 : TYPE(rtp_control_type), POINTER :: rtp_control
217 :
218 198 : NULLIFY (dft_control, rtp, rtp_control)
219 :
220 198 : CALL cite_reference(Andermatt2016)
221 :
222 : CALL get_qs_env(qs_env, &
223 : rtp=rtp, &
224 198 : dft_control=dft_control)
225 198 : rtp_control => dft_control%rtp_control
226 :
227 198 : IF (rtp_control%initial_wfn == use_scf_wfn) THEN
228 162 : IF (rtp_control%apply_delta_pulse .OR. rtp_control%apply_delta_pulse_mag) THEN
229 54 : CALL apply_delta_pulse(qs_env, rtp, rtp_control)
230 : ELSE
231 108 : IF (.NOT. rtp%linear_scaling) THEN
232 74 : CALL get_rtp(rtp=rtp, mos_old=mos_old)
233 74 : CALL get_qs_env(qs_env, mos=mos)
234 162 : DO i = 1, SIZE(mos)
235 88 : CALL cp_fm_to_fm(mos(i)%mo_coeff, mos_old(2*i - 1))
236 162 : CALL cp_fm_set_all(mos_old(2*i), zero, zero)
237 : END DO
238 : END IF
239 : END IF
240 : END IF
241 :
242 198 : IF (.NOT. rtp%linear_scaling) THEN
243 108 : CALL get_rtp(rtp=rtp, mos_old=mos_old, mos_new=mos_new)
244 384 : DO i = 1, SIZE(mos_old)
245 384 : CALL cp_fm_to_fm(mos_old(i), mos_new(i))
246 : END DO
247 108 : CALL calc_update_rho(qs_env)
248 : ELSE
249 90 : IF (rtp_control%initial_wfn == use_scf_wfn) THEN
250 : CALL get_qs_env(qs_env, &
251 : matrix_ks=matrix_ks, &
252 : mos=mos, &
253 74 : nelectron_spin=nelectron_spin)
254 74 : IF (ASSOCIATED(mos)) THEN
255 : !The wavefunction was minimized by an mo based algorith. P is therefore calculated from the mos
256 64 : IF (ASSOCIATED(rtp%mos)) THEN
257 40 : IF (ASSOCIATED(rtp%mos%old)) THEN
258 : ! Delta kick was applied and the results is in rtp%mos%old
259 40 : CALL rt_initialize_rho_from_mos(rtp, mos, mos_old=rtp%mos%old)
260 : ELSE
261 0 : CALL rt_initialize_rho_from_mos(rtp, mos)
262 : END IF
263 : ELSE
264 24 : CALL rt_initialize_rho_from_mos(rtp, mos)
265 : END IF
266 : ELSE
267 : !The wavefunction was minimized using a linear scaling method. The density matrix is therefore taken from the ls_scf_env.
268 10 : CALL get_rtp(rtp=rtp, rho_old=rho_old, rho_new=rho_new)
269 24 : DO ispin = 1, SIZE(rho_old)/2
270 14 : re = 2*ispin - 1
271 14 : CALL dbcsr_copy(rho_old(re)%matrix, qs_env%ls_scf_env%matrix_p(ispin))
272 24 : CALL dbcsr_copy(rho_new(re)%matrix, qs_env%ls_scf_env%matrix_p(ispin))
273 : END DO
274 : END IF
275 74 : CALL calc_update_rho_sparse(qs_env)
276 : END IF
277 : END IF
278 : ! Modify KS matrix to include the additional terms in the velocity gauge
279 198 : IF (rtp_control%velocity_gauge) THEN
280 : ! As matrix_h and matrix_h_im are not updated by qs_ks_update_qs_env()
281 : ! the non-gauge transformed non-local part has to be subtracted here
282 8 : CALL velocity_gauge_ks_matrix(qs_env, subtract_nl_term=.TRUE.)
283 : END IF
284 198 : CALL qs_ks_update_qs_env(qs_env, calculate_forces=.FALSE.)
285 :
286 198 : END SUBROUTINE init_propagation_run
287 :
288 : ! **************************************************************************************************
289 : !> \brief performs the real RTP run, gets information from MD section
290 : !> uses MD as iteration level
291 : !> \param qs_env ...
292 : !> \param force_env ...
293 : !> \param globenv ...
294 : !> \author Florian Schiffmann (02.09)
295 : ! **************************************************************************************************
296 :
297 126 : SUBROUTINE run_propagation(qs_env, force_env, globenv)
298 : TYPE(qs_environment_type), POINTER :: qs_env
299 : TYPE(force_env_type), POINTER :: force_env
300 : TYPE(global_environment_type), POINTER :: globenv
301 :
302 : CHARACTER(len=*), PARAMETER :: routineN = 'run_propagation'
303 :
304 : INTEGER :: aspc_order, handle, i_iter, i_step, &
305 : max_iter, max_steps, output_unit
306 : LOGICAL :: should_stop
307 : REAL(Kind=dp) :: eps_ener, time_iter_start, &
308 : time_iter_stop, used_time
309 : TYPE(cp_logger_type), POINTER :: logger
310 : TYPE(dft_control_type), POINTER :: dft_control
311 : TYPE(pw_env_type), POINTER :: pw_env
312 : TYPE(qs_energy_type), POINTER :: energy
313 : TYPE(rt_prop_type), POINTER :: rtp
314 : TYPE(rtp_control_type), POINTER :: rtp_control
315 : TYPE(section_vals_type), POINTER :: input, rtp_section
316 :
317 126 : should_stop = .FALSE.
318 126 : CALL timeset(routineN, handle)
319 :
320 126 : CALL cite_reference(Andermatt2016)
321 :
322 126 : NULLIFY (logger, dft_control, energy, rtp, rtp_control, input, rtp_section)
323 126 : logger => cp_get_default_logger()
324 :
325 126 : CALL get_qs_env(qs_env=qs_env, dft_control=dft_control, rtp=rtp, energy=energy, input=input)
326 :
327 126 : rtp_control => dft_control%rtp_control
328 126 : max_steps = MIN(rtp%nsteps, rtp%max_steps)
329 126 : max_iter = rtp_control%max_iter
330 126 : eps_ener = rtp_control%eps_ener
331 :
332 126 : aspc_order = rtp_control%aspc_order
333 :
334 126 : rtp%energy_old = energy%total
335 126 : time_iter_start = m_walltime()
336 126 : CALL cp_add_iter_level(logger%iter_info, "MD")
337 126 : CALL cp_iterate(logger%iter_info, iter_nr=0)
338 126 : IF (rtp%i_start >= max_steps) CALL cp_abort(__LOCATION__, &
339 0 : "maximum step number smaller than initial step value")
340 :
341 126 : rtp_section => section_vals_get_subs_vals(input, "DFT%REAL_TIME_PROPAGATION")
342 : output_unit = cp_print_key_unit_nr(logger, rtp_section, "PRINT%PROGRAM_RUN_INFO", &
343 126 : extension=".scfLog")
344 :
345 470 : DO i_step = rtp%i_start + 1, max_steps
346 344 : IF (output_unit > 0) THEN
347 : WRITE (output_unit, FMT="(/,(T2,A,T40,I6))") &
348 172 : "Real time propagation step:", i_step
349 : END IF
350 344 : energy%efield_core = 0.0_dp
351 344 : qs_env%sim_time = REAL(i_step, dp)*rtp%dt
352 344 : CALL get_qs_env(qs_env, pw_env=pw_env)
353 344 : pw_env%poisson_env%parameters%dbc_params%time = qs_env%sim_time
354 344 : qs_env%sim_step = i_step
355 344 : rtp%istep = i_step - rtp%i_start
356 344 : CALL calculate_ecore_efield(qs_env, .FALSE.)
357 344 : IF (dft_control%apply_external_potential) THEN
358 0 : IF (.NOT. dft_control%expot_control%static) THEN
359 0 : dft_control%eval_external_potential = .TRUE.
360 : END IF
361 : END IF
362 344 : CALL external_c_potential(qs_env, calculate_forces=.FALSE.)
363 344 : CALL external_e_potential(qs_env)
364 344 : CALL cp_iterate(logger%iter_info, last=(i_step == max_steps), iter_nr=i_step)
365 344 : rtp%converged = .FALSE.
366 1144 : DO i_iter = 1, max_iter
367 1144 : IF (i_step == rtp%i_start + 1 .AND. i_iter == 2 .AND. rtp_control%hfx_redistribute) &
368 0 : CALL qs_ks_did_change(qs_env%ks_env, s_mstruct_changed=.TRUE.)
369 1144 : rtp%iter = i_iter
370 1144 : CALL propagation_step(qs_env, rtp, rtp_control)
371 1144 : CALL qs_ks_update_qs_env(qs_env, calculate_forces=.FALSE.)
372 1144 : rtp%energy_new = energy%total
373 1144 : IF (rtp%converged) EXIT
374 1144 : CALL rt_prop_output(qs_env, real_time_propagation, rtp%delta_iter)
375 : END DO
376 470 : IF (rtp%converged) THEN
377 344 : CALL external_control(should_stop, "MD", globenv=globenv)
378 344 : IF (should_stop) CALL cp_iterate(logger%iter_info, last=.TRUE., iter_nr=i_step)
379 344 : time_iter_stop = m_walltime()
380 344 : used_time = time_iter_stop - time_iter_start
381 344 : time_iter_start = time_iter_stop
382 344 : CALL rt_prop_output(qs_env, real_time_propagation, delta_iter=rtp%delta_iter, used_time=used_time)
383 344 : CALL rt_write_input_restart(force_env=force_env, qs_env=qs_env)
384 344 : IF (should_stop) EXIT
385 : ELSE
386 : EXIT
387 : END IF
388 : END DO
389 126 : CALL cp_rm_iter_level(logger%iter_info, "MD")
390 :
391 126 : IF (.NOT. rtp%converged) &
392 : CALL cp_abort(__LOCATION__, "propagation did not converge, "// &
393 0 : "either increase MAX_ITER or use a smaller TIMESTEP")
394 :
395 126 : CALL timestop(handle)
396 :
397 126 : END SUBROUTINE run_propagation
398 :
399 : ! **************************************************************************************************
400 : !> \brief overwrites some values in the input file such that the .restart
401 : !> file will contain the appropriate information
402 : !> \param md_env ...
403 : !> \param qs_env ...
404 : !> \param force_env ...
405 : !> \author Florian Schiffmann (02.09)
406 : ! **************************************************************************************************
407 :
408 344 : SUBROUTINE rt_write_input_restart(md_env, qs_env, force_env)
409 : TYPE(md_environment_type), OPTIONAL, POINTER :: md_env
410 : TYPE(qs_environment_type), OPTIONAL, POINTER :: qs_env
411 : TYPE(force_env_type), POINTER :: force_env
412 :
413 : CHARACTER(len=default_path_length) :: file_name
414 344 : REAL(KIND=dp), DIMENSION(:), POINTER :: tmp_vals
415 : TYPE(cp_logger_type), POINTER :: logger
416 : TYPE(dft_control_type), POINTER :: dft_control
417 : TYPE(section_vals_type), POINTER :: dft_section, efield_section, &
418 : motion_section, print_key, &
419 : root_section, rt_section
420 :
421 344 : CALL get_qs_env(qs_env=qs_env, dft_control=dft_control)
422 344 : root_section => force_env%root_section
423 344 : motion_section => section_vals_get_subs_vals(root_section, "MOTION")
424 344 : dft_section => section_vals_get_subs_vals(root_section, "FORCE_EVAL%DFT")
425 344 : rt_section => section_vals_get_subs_vals(root_section, "FORCE_EVAL%DFT%REAL_TIME_PROPAGATION")
426 :
427 344 : CALL section_vals_val_set(rt_section, "INITIAL_WFN", i_val=use_rt_restart)
428 344 : CALL section_vals_val_set(rt_section, "APPLY_DELTA_PULSE", l_val=.FALSE.)
429 344 : CALL section_vals_val_set(rt_section, "APPLY_DELTA_PULSE_MAG", l_val=.FALSE.)
430 344 : CALL section_vals_val_set(rt_section, "APPLY_WFN_MIX_INIT_RESTART", l_val=.FALSE.)
431 :
432 344 : logger => cp_get_default_logger()
433 :
434 : ! to continue propagating the TD wavefunction we need to read from the new .rtpwfn
435 344 : IF (BTEST(cp_print_key_should_output(logger%iter_info, &
436 : rt_section, "PRINT%RESTART"), cp_p_file)) THEN
437 126 : print_key => section_vals_get_subs_vals(rt_section, "PRINT%RESTART")
438 : file_name = cp_print_key_generate_filename(logger, print_key, &
439 126 : extension=".rtpwfn", my_local=.FALSE.)
440 126 : CALL section_vals_val_set(dft_section, "WFN_RESTART_FILE_NAME", c_val=TRIM(file_name))
441 : END IF
442 :
443 : ! coming from RTP
444 344 : IF (.NOT. PRESENT(md_env)) THEN
445 344 : CALL section_vals_val_set(motion_section, "MD%STEP_START_VAL", i_val=force_env%qs_env%sim_step)
446 : END IF
447 :
448 344 : IF (dft_control%apply_vector_potential) THEN
449 22 : efield_section => section_vals_get_subs_vals(root_section, "FORCE_EVAL%DFT%EFIELD")
450 : NULLIFY (tmp_vals)
451 22 : ALLOCATE (tmp_vals(3))
452 88 : tmp_vals = dft_control%efield_fields(1)%efield%vec_pot_initial
453 : CALL section_vals_val_set(efield_section, "VEC_POT_INITIAL", &
454 : r_vals_ptr=tmp_vals, &
455 22 : i_rep_section=1)
456 : END IF
457 :
458 344 : CALL write_restart(md_env=md_env, root_section=root_section)
459 :
460 344 : END SUBROUTINE rt_write_input_restart
461 :
462 : ! **************************************************************************************************
463 : !> \brief Creates the initial electronic states and allocates the necessary
464 : !> matrices
465 : !> \param qs_env ...
466 : !> \param force_env ...
467 : !> \param rtp_control ...
468 : !> \author Florian Schiffmann (02.09)
469 : ! **************************************************************************************************
470 :
471 198 : SUBROUTINE rt_initial_guess(qs_env, force_env, rtp_control)
472 : TYPE(qs_environment_type), POINTER :: qs_env
473 : TYPE(force_env_type), POINTER :: force_env
474 : TYPE(rtp_control_type), POINTER :: rtp_control
475 :
476 : INTEGER :: homo, ispin
477 : LOGICAL :: energy_consistency
478 : TYPE(cp_fm_type), POINTER :: mo_coeff
479 198 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_s
480 : TYPE(dft_control_type), POINTER :: dft_control
481 :
482 198 : NULLIFY (matrix_s, dft_control)
483 198 : CALL get_qs_env(qs_env, dft_control=dft_control)
484 :
485 360 : SELECT CASE (rtp_control%initial_wfn)
486 : CASE (use_scf_wfn)
487 162 : qs_env%sim_time = 0.0_dp
488 162 : qs_env%sim_step = 0
489 162 : energy_consistency = .TRUE.
490 : !in the linear scaling case we need a correct kohn-sham matrix, which we cannot get with consistent energies
491 162 : IF (rtp_control%linear_scaling) energy_consistency = .FALSE.
492 : CALL force_env_calc_energy_force(force_env, calc_force=.FALSE., &
493 162 : consistent_energies=energy_consistency)
494 162 : qs_env%run_rtp = .TRUE.
495 162 : ALLOCATE (qs_env%rtp)
496 162 : CALL get_qs_env(qs_env, matrix_s=matrix_s)
497 162 : IF (dft_control%do_admm) THEN
498 6 : CALL hfx_admm_init(qs_env)
499 : CALL rt_prop_create(qs_env%rtp, qs_env%mos, qs_env%mpools, dft_control, matrix_s(1)%matrix, &
500 6 : rtp_control%linear_scaling, qs_env%admm_env%mos_aux_fit)
501 : ELSE
502 : CALL rt_prop_create(qs_env%rtp, qs_env%mos, qs_env%mpools, dft_control, matrix_s(1)%matrix, &
503 156 : rtp_control%linear_scaling)
504 : END IF
505 :
506 : CASE (use_restart_wfn, use_rt_restart)
507 36 : CALL qs_energies_init(qs_env, .FALSE.)
508 36 : IF (.NOT. rtp_control%linear_scaling .OR. rtp_control%initial_wfn == use_restart_wfn) THEN
509 86 : DO ispin = 1, SIZE(qs_env%mos)
510 52 : CALL get_mo_set(qs_env%mos(ispin), mo_coeff=mo_coeff, homo=homo)
511 86 : IF (.NOT. ASSOCIATED(mo_coeff)) THEN
512 : CALL init_mo_set(qs_env%mos(ispin), &
513 : qs_env%mpools%ao_mo_fm_pools(ispin)%pool, &
514 52 : name="qs_env%mo"//TRIM(ADJUSTL(cp_to_string(ispin))))
515 : END IF
516 : END DO
517 34 : IF (dft_control%do_admm) CALL hfx_admm_init(qs_env)
518 : END IF
519 36 : ALLOCATE (qs_env%rtp)
520 36 : CALL get_qs_env(qs_env, matrix_s=matrix_s)
521 : CALL rt_prop_create(qs_env%rtp, qs_env%mos, qs_env%mpools, dft_control, matrix_s(1)%matrix, &
522 36 : rtp_control%linear_scaling, qs_env%admm_env%mos_aux_fit)
523 36 : CALL get_restart_wfn(qs_env)
524 :
525 234 : qs_env%run_rtp = .TRUE.
526 : END SELECT
527 :
528 198 : END SUBROUTINE rt_initial_guess
529 :
530 : ! **************************************************************************************************
531 : !> \brief ...
532 : !> \param qs_env ...
533 : !> \param imag_p ...
534 : !> \param imag_ks ...
535 : !> \param imag_h ...
536 : ! **************************************************************************************************
537 198 : SUBROUTINE rt_init_complex_quantities(qs_env, imag_p, imag_ks, imag_h)
538 : TYPE(qs_environment_type), POINTER :: qs_env
539 : LOGICAL, INTENT(in) :: imag_p, imag_ks, imag_h
540 :
541 : TYPE(dft_control_type), POINTER :: dft_control
542 : TYPE(qs_ks_env_type), POINTER :: ks_env
543 : TYPE(qs_rho_type), POINTER :: rho
544 : TYPE(rt_prop_type), POINTER :: rtp
545 :
546 198 : NULLIFY (ks_env, rho, dft_control)
547 :
548 : CALL get_qs_env(qs_env, &
549 : dft_control=dft_control, &
550 : ks_env=ks_env, &
551 : rho=rho, &
552 198 : rtp=rtp)
553 :
554 : ! rho
555 198 : CALL qs_rho_set(rho, complex_rho_ao=imag_p)
556 198 : IF (imag_p) CALL allocate_rho_ao_imag_from_real(rho, qs_env)
557 :
558 : ! ks
559 198 : CALL set_ks_env(ks_env, complex_ks=imag_ks)
560 198 : IF (imag_ks) THEN
561 40 : CALL qs_ks_allocate_basics(qs_env, is_complex=imag_ks)
562 40 : IF (.NOT. dft_control%rtp_control%fixed_ions) &
563 22 : CALL rtp_create_SinvH_imag(rtp, dft_control%nspins)
564 : END IF
565 :
566 : ! h
567 198 : IF (imag_h) CALL qs_matrix_h_allocate_imag_from_real(qs_env)
568 :
569 198 : END SUBROUTINE rt_init_complex_quantities
570 :
571 : END MODULE rt_propagation
|