LCOV - code coverage report
Current view: top level - src - mp2.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:2fce0f8) Lines: 306 321 95.3 %
Date: 2024-12-21 06:28:57 Functions: 3 3 100.0 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2024 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief Routines to calculate MP2 energy
      10             : !> \par History
      11             : !>      05.2011 created [Mauro Del Ben]
      12             : !> \author Mauro Del Ben
      13             : ! **************************************************************************************************
      14             : MODULE mp2
      15             :    USE admm_types,                      ONLY: admm_type
      16             :    USE admm_utils,                      ONLY: admm_correct_for_eigenvalues,&
      17             :                                               admm_uncorrect_for_eigenvalues
      18             :    USE atomic_kind_types,               ONLY: atomic_kind_type,&
      19             :                                               get_atomic_kind_set
      20             :    USE bibliography,                    ONLY: Bussy2023,&
      21             :                                               DelBen2012,&
      22             :                                               DelBen2015b,&
      23             :                                               Rybkin2016,&
      24             :                                               Stein2022,&
      25             :                                               Stein2024,&
      26             :                                               cite_reference
      27             :    USE cp_blacs_env,                    ONLY: cp_blacs_env_type
      28             :    USE cp_control_types,                ONLY: dft_control_type
      29             :    USE cp_dbcsr_api,                    ONLY: dbcsr_get_info,&
      30             :                                               dbcsr_p_type
      31             :    USE cp_dbcsr_operations,             ONLY: copy_dbcsr_to_fm
      32             :    USE cp_fm_basic_linalg,              ONLY: cp_fm_triangular_invert
      33             :    USE cp_fm_cholesky,                  ONLY: cp_fm_cholesky_decompose
      34             :    USE cp_fm_diag,                      ONLY: cp_fm_power
      35             :    USE cp_fm_struct,                    ONLY: cp_fm_struct_create,&
      36             :                                               cp_fm_struct_release,&
      37             :                                               cp_fm_struct_type
      38             :    USE cp_fm_types,                     ONLY: cp_fm_create,&
      39             :                                               cp_fm_get_submatrix,&
      40             :                                               cp_fm_release,&
      41             :                                               cp_fm_set_all,&
      42             :                                               cp_fm_type
      43             :    USE cp_log_handling,                 ONLY: cp_get_default_logger,&
      44             :                                               cp_logger_type
      45             :    USE cp_output_handling,              ONLY: cp_print_key_finished_output,&
      46             :                                               cp_print_key_unit_nr
      47             :    USE hfx_exx,                         ONLY: calculate_exx
      48             :    USE hfx_types,                       ONLY: &
      49             :         alloc_containers, dealloc_containers, hfx_basis_info_type, hfx_basis_type, &
      50             :         hfx_container_type, hfx_create_basis_types, hfx_init_container, hfx_release_basis_types, &
      51             :         hfx_type
      52             :    USE input_constants,                 ONLY: cholesky_inverse,&
      53             :                                               cholesky_off,&
      54             :                                               do_eri_gpw,&
      55             :                                               do_eri_mme,&
      56             :                                               rpa_exchange_axk,&
      57             :                                               rpa_exchange_none,&
      58             :                                               rpa_exchange_sosex,&
      59             :                                               sigma_none
      60             :    USE input_section_types,             ONLY: section_vals_get,&
      61             :                                               section_vals_get_subs_vals,&
      62             :                                               section_vals_type
      63             :    USE kinds,                           ONLY: dp,&
      64             :                                               int_8
      65             :    USE kpoint_types,                    ONLY: kpoint_type
      66             :    USE machine,                         ONLY: m_flush,&
      67             :                                               m_memory,&
      68             :                                               m_walltime
      69             :    USE message_passing,                 ONLY: mp_para_env_type
      70             :    USE mp2_direct_method,               ONLY: mp2_direct_energy
      71             :    USE mp2_gpw,                         ONLY: mp2_gpw_main
      72             :    USE mp2_optimize_ri_basis,           ONLY: optimize_ri_basis_main
      73             :    USE mp2_types,                       ONLY: mp2_biel_type,&
      74             :                                               mp2_method_direct,&
      75             :                                               mp2_method_gpw,&
      76             :                                               mp2_ri_optimize_basis,&
      77             :                                               mp2_type,&
      78             :                                               ri_mp2_laplace,&
      79             :                                               ri_mp2_method_gpw,&
      80             :                                               ri_rpa_method_gpw
      81             :    USE particle_types,                  ONLY: particle_type
      82             :    USE qs_energy_types,                 ONLY: qs_energy_type
      83             :    USE qs_environment_types,            ONLY: get_qs_env,&
      84             :                                               qs_environment_type
      85             :    USE qs_kind_types,                   ONLY: qs_kind_type
      86             :    USE qs_mo_types,                     ONLY: allocate_mo_set,&
      87             :                                               deallocate_mo_set,&
      88             :                                               get_mo_set,&
      89             :                                               init_mo_set,&
      90             :                                               mo_set_type
      91             :    USE qs_scf_methods,                  ONLY: eigensolver,&
      92             :                                               eigensolver_symm
      93             :    USE qs_scf_types,                    ONLY: qs_scf_env_type
      94             :    USE rpa_gw_sigma_x,                  ONLY: compute_vec_Sigma_x_minus_vxc_gw
      95             :    USE scf_control_types,               ONLY: scf_control_type
      96             :    USE virial_types,                    ONLY: virial_type
      97             : 
      98             : !$ USE OMP_LIB, ONLY: omp_get_max_threads, omp_get_thread_num, omp_get_num_threads
      99             : 
     100             : #include "./base/base_uses.f90"
     101             : 
     102             :    IMPLICIT NONE
     103             : 
     104             :    PRIVATE
     105             : 
     106             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'mp2'
     107             : 
     108             :    PUBLIC :: mp2_main
     109             : 
     110             : CONTAINS
     111             : 
     112             : ! **************************************************************************************************
     113             : !> \brief the main entry point for MP2 calculations
     114             : !> \param qs_env ...
     115             : !> \param calc_forces ...
     116             : !> \author Mauro Del Ben
     117             : ! **************************************************************************************************
     118         694 :    SUBROUTINE mp2_main(qs_env, calc_forces)
     119             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     120             :       LOGICAL, INTENT(IN)                                :: calc_forces
     121             : 
     122             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'mp2_main'
     123             : 
     124             :       INTEGER :: bin, cholesky_method, dimen, handle, handle2, i, i_thread, iatom, ikind, irep, &
     125             :          ispin, max_nset, my_bin_size, n_rep_hf, n_threads, nao, natom, ndep, nfullcols_total, &
     126             :          nfullrows_total, nkind, nspins, unit_nr
     127             :       INTEGER(KIND=int_8)                                :: mem
     128         694 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: kind_of, nelec
     129             :       LOGICAL :: calc_ex, do_admm, do_admm_rpa_exx, do_dynamic_load_balancing, do_exx, do_gw, &
     130             :          do_im_time, do_kpoints_cubic_RPA, free_hfx_buffer, reuse_hfx, update_xc_energy
     131             :       REAL(KIND=dp) :: E_admm_from_GW(2), E_ex_from_GW, Emp2, Emp2_AA, Emp2_AA_Cou, Emp2_AA_ex, &
     132             :          Emp2_AB, Emp2_AB_Cou, Emp2_AB_ex, Emp2_BB, Emp2_BB_Cou, Emp2_BB_ex, Emp2_Cou, Emp2_ex, &
     133             :          Emp2_S, Emp2_T, maxocc, mem_real, t1, t2, t3
     134         694 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :)        :: Auto
     135         694 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :)     :: C
     136         694 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: mo_eigenvalues
     137             :       TYPE(admm_type), POINTER                           :: admm_env
     138         694 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
     139             :       TYPE(cp_blacs_env_type), POINTER                   :: blacs_env
     140             :       TYPE(cp_fm_struct_type), POINTER                   :: fm_struct
     141             :       TYPE(cp_fm_type)                                   :: fm_matrix_ks, fm_matrix_s, fm_matrix_work
     142             :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
     143             :       TYPE(cp_logger_type), POINTER                      :: logger
     144         694 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_ks, matrix_s
     145         694 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: matrix_ks_transl, matrix_s_kp
     146             :       TYPE(dft_control_type), POINTER                    :: dft_control
     147             :       TYPE(hfx_basis_info_type)                          :: basis_info
     148         694 :       TYPE(hfx_basis_type), DIMENSION(:), POINTER        :: basis_parameter
     149         694 :       TYPE(hfx_container_type), DIMENSION(:), POINTER    :: integral_containers
     150             :       TYPE(hfx_container_type), POINTER                  :: maxval_container
     151             :       TYPE(hfx_type), POINTER                            :: actual_x_data
     152             :       TYPE(kpoint_type), POINTER                         :: kpoints
     153         694 :       TYPE(mo_set_type), ALLOCATABLE, DIMENSION(:)       :: mos_mp2
     154         694 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
     155         694 :       TYPE(mp2_biel_type)                                :: mp2_biel
     156             :       TYPE(mp2_type), POINTER                            :: mp2_env
     157             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     158         694 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     159             :       TYPE(qs_energy_type), POINTER                      :: energy
     160         694 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     161             :       TYPE(qs_scf_env_type), POINTER                     :: scf_env
     162             :       TYPE(scf_control_type), POINTER                    :: scf_control
     163             :       TYPE(section_vals_type), POINTER                   :: hfx_sections, input
     164             :       TYPE(virial_type), POINTER                         :: virial
     165             : 
     166             :       ! If SCF has not converged we should abort MP2 calculation
     167         694 :       IF (qs_env%mp2_env%hf_fail) THEN
     168             :          CALL cp_abort(__LOCATION__, "SCF not converged: "// &
     169           0 :                        "not possible to run MP2")
     170             :       END IF
     171             : 
     172         694 :       NULLIFY (virial, dft_control, blacs_env, kpoints)
     173         694 :       CALL timeset(routineN, handle)
     174         694 :       logger => cp_get_default_logger()
     175             : 
     176         694 :       CALL cite_reference(DelBen2012)
     177             : 
     178         694 :       do_kpoints_cubic_RPA = qs_env%mp2_env%ri_rpa_im_time%do_im_time_kpoints
     179             : 
     180             :       ! for cubic RPA and GW, we have kpoints and therefore, we get other matrices later
     181         694 :       IF (do_kpoints_cubic_RPA) THEN
     182             : 
     183             :          CALL get_qs_env(qs_env, &
     184             :                          input=input, &
     185             :                          atomic_kind_set=atomic_kind_set, &
     186             :                          qs_kind_set=qs_kind_set, &
     187             :                          dft_control=dft_control, &
     188             :                          particle_set=particle_set, &
     189             :                          para_env=para_env, &
     190             :                          blacs_env=blacs_env, &
     191             :                          energy=energy, &
     192             :                          kpoints=kpoints, &
     193             :                          scf_env=scf_env, &
     194             :                          scf_control=scf_control, &
     195             :                          matrix_ks_kp=matrix_ks_transl, &
     196             :                          matrix_s_kp=matrix_s_kp, &
     197           4 :                          mp2_env=mp2_env)
     198             : 
     199             :          CALL get_gamma(matrix_s, matrix_ks, mos, &
     200           4 :                         matrix_s_kp, matrix_ks_transl, kpoints)
     201             : 
     202             :       ELSE
     203             : 
     204             :          CALL get_qs_env(qs_env, &
     205             :                          input=input, &
     206             :                          atomic_kind_set=atomic_kind_set, &
     207             :                          qs_kind_set=qs_kind_set, &
     208             :                          dft_control=dft_control, &
     209             :                          particle_set=particle_set, &
     210             :                          para_env=para_env, &
     211             :                          blacs_env=blacs_env, &
     212             :                          energy=energy, &
     213             :                          mos=mos, &
     214             :                          scf_env=scf_env, &
     215             :                          scf_control=scf_control, &
     216             :                          virial=virial, &
     217             :                          matrix_ks=matrix_ks, &
     218             :                          matrix_s=matrix_s, &
     219             :                          mp2_env=mp2_env, &
     220         690 :                          admm_env=admm_env)
     221             : 
     222             :       END IF
     223             : 
     224             :       unit_nr = cp_print_key_unit_nr(logger, input, "DFT%XC%WF_CORRELATION%PRINT", &
     225         694 :                                      extension=".mp2Log")
     226             : 
     227         694 :       IF (unit_nr > 0) THEN
     228         347 :          IF (mp2_env%method .NE. ri_rpa_method_gpw) THEN
     229         223 :             WRITE (unit_nr, *)
     230         223 :             WRITE (unit_nr, *)
     231         223 :             WRITE (unit_nr, '(T2,A)') 'MP2 section'
     232         223 :             WRITE (unit_nr, '(T2,A)') '-----------'
     233         223 :             WRITE (unit_nr, *)
     234             :          ELSE
     235         124 :             WRITE (unit_nr, *)
     236         124 :             WRITE (unit_nr, *)
     237         124 :             WRITE (unit_nr, '(T2,A)') 'RI-RPA section'
     238         124 :             WRITE (unit_nr, '(T2,A)') '--------------'
     239         124 :             WRITE (unit_nr, *)
     240             :          END IF
     241             :       END IF
     242             : 
     243         694 :       IF (calc_forces) THEN
     244         314 :          CALL cite_reference(DelBen2015b)
     245         314 :          CALL cite_reference(Rybkin2016)
     246         314 :          CALL cite_reference(Stein2022)
     247         314 :          CALL cite_reference(Bussy2023)
     248         314 :          CALL cite_reference(Stein2024)
     249             :          !Gradients available for RI-MP2, and low-scaling Laplace MP2/RPA
     250         314 :          IF (.NOT. (mp2_env%method == ri_mp2_method_gpw .OR. &
     251             :                     mp2_env%method == ri_rpa_method_gpw .OR. mp2_env%method == ri_mp2_laplace)) THEN
     252           0 :             CPABORT("No forces/gradients for the selected method.")
     253             :          END IF
     254             :       END IF
     255             : 
     256         694 :       IF (.NOT. do_kpoints_cubic_RPA) THEN
     257         690 :          IF (virial%pv_availability .AND. (.NOT. virial%pv_numer) .AND. mp2_env%eri_method == do_eri_mme) THEN
     258           0 :             CPABORT("analytical stress not implemented with ERI_METHOD = MME")
     259             :          END IF
     260             :       END IF
     261             : 
     262         694 :       IF (mp2_env%do_im_time .AND. mp2_env%eri_method .NE. do_eri_gpw) THEN
     263         122 :          mp2_env%mp2_num_proc = 1
     264             :       END IF
     265             : 
     266         694 :       IF (mp2_env%mp2_num_proc < 1 .OR. mp2_env%mp2_num_proc > para_env%num_pe) THEN
     267           0 :          CPWARN("GROUP_SIZE is reset because of a too small or too large value.")
     268           0 :          mp2_env%mp2_num_proc = MAX(MIN(para_env%num_pe, mp2_env%mp2_num_proc), 1)
     269             :       END IF
     270             : 
     271         694 :       IF (MOD(para_env%num_pe, mp2_env%mp2_num_proc) /= 0) THEN
     272           0 :          CPABORT("GROUP_SIZE must be a divisor of the total number of MPI ranks!")
     273             :       END IF
     274             : 
     275         694 :       IF (.NOT. mp2_env%do_im_time) THEN
     276         560 :          IF (unit_nr > 0) WRITE (unit_nr, '(T3,A,T76,I5)') 'Used number of processes per group:', mp2_env%mp2_num_proc
     277         840 :          IF (unit_nr > 0) WRITE (unit_nr, '(T3,A,T68,F9.2,A4)') 'Maximum allowed memory usage per MPI process:', &
     278         560 :             mp2_env%mp2_memory, ' MiB'
     279             :       END IF
     280             : 
     281             :       IF ((mp2_env%method .NE. mp2_method_gpw) .AND. &
     282             :           (mp2_env%method .NE. ri_mp2_method_gpw) .AND. &
     283         694 :           (mp2_env%method .NE. ri_rpa_method_gpw) .AND. &
     284             :           (mp2_env%method .NE. ri_mp2_laplace)) THEN
     285          24 :          CALL m_memory(mem)
     286          24 :          mem_real = (mem + 1024*1024 - 1)/(1024*1024)
     287          24 :          CALL para_env%max(mem_real)
     288          24 :          mp2_env%mp2_memory = mp2_env%mp2_memory - mem_real
     289          24 :          IF (mp2_env%mp2_memory < 0.0_dp) mp2_env%mp2_memory = 1.0_dp
     290             : 
     291          36 :          IF (unit_nr > 0) WRITE (unit_nr, '(T3,A,T68,F9.2,A4)') 'Available memory per MPI process for MP2:', &
     292          24 :             mp2_env%mp2_memory, ' MiB'
     293             :       END IF
     294             : 
     295         694 :       IF (unit_nr > 0) CALL m_flush(unit_nr)
     296             : 
     297         694 :       nspins = dft_control%nspins
     298         694 :       natom = SIZE(particle_set, 1)
     299             : 
     300         694 :       CALL get_atomic_kind_set(atomic_kind_set, kind_of=kind_of)
     301         694 :       nkind = SIZE(atomic_kind_set, 1)
     302             : 
     303         694 :       do_admm_rpa_exx = mp2_env%ri_rpa%do_admm
     304         694 :       IF (do_admm_rpa_exx .AND. .NOT. dft_control%do_admm) THEN
     305           0 :          CPABORT("Need an ADMM input section for ADMM RI_RPA EXX to work")
     306             :       END IF
     307             :       IF (do_admm_rpa_exx) THEN
     308          18 :          CALL hfx_create_basis_types(basis_parameter, basis_info, qs_kind_set, "AUX_FIT")
     309             :       ELSE
     310         676 :          CALL hfx_create_basis_types(basis_parameter, basis_info, qs_kind_set, "ORB")
     311             :       END IF
     312             : 
     313         694 :       dimen = 0
     314         694 :       max_nset = 0
     315        2718 :       DO iatom = 1, natom
     316        2024 :          ikind = kind_of(iatom)
     317        7824 :          dimen = dimen + SUM(basis_parameter(ikind)%nsgf)
     318        2718 :          max_nset = MAX(max_nset, basis_parameter(ikind)%nset)
     319             :       END DO
     320             : 
     321         694 :       CALL get_mo_set(mo_set=mos(1), nao=nao)
     322             : 
     323             :       ! diagonalize the KS matrix in order to have the full set of MO's
     324             :       ! get S and KS matrices in fm_type (create also a working array)
     325         694 :       NULLIFY (fm_struct)
     326         694 :       CALL dbcsr_get_info(matrix_s(1)%matrix, nfullrows_total=nfullrows_total, nfullcols_total=nfullcols_total)
     327             :       CALL cp_fm_struct_create(fm_struct, context=blacs_env, nrow_global=nfullrows_total, &
     328         694 :                                ncol_global=nfullcols_total, para_env=para_env)
     329         694 :       CALL cp_fm_create(fm_matrix_s, fm_struct, name="fm_matrix_s")
     330         694 :       CALL copy_dbcsr_to_fm(matrix_s(1)%matrix, fm_matrix_s)
     331             : 
     332         694 :       CALL cp_fm_create(fm_matrix_ks, fm_struct, name="fm_matrix_ks")
     333             : 
     334         694 :       CALL cp_fm_create(fm_matrix_work, fm_struct, name="fm_matrix_work")
     335         694 :       CALL cp_fm_set_all(matrix=fm_matrix_work, alpha=0.0_dp)
     336             : 
     337         694 :       CALL cp_fm_struct_release(fm_struct)
     338             : 
     339         694 :       IF (scf_env%cholesky_method == cholesky_off) THEN
     340           0 :          CALL cp_fm_power(fm_matrix_s, fm_matrix_work, -0.5_dp, scf_control%eps_eigval, ndep)
     341           0 :          cholesky_method = cholesky_off
     342             :       ELSE
     343             :          ! calculate S^(-1/2) (cholesky decomposition)
     344         694 :          CALL cp_fm_cholesky_decompose(fm_matrix_s)
     345         694 :          CALL cp_fm_triangular_invert(fm_matrix_s)
     346         694 :          cholesky_method = cholesky_inverse
     347             :       END IF
     348             : 
     349        2934 :       ALLOCATE (mos_mp2(nspins))
     350        2082 :       ALLOCATE (nelec(nspins))
     351        1546 :       DO ispin = 1, nspins
     352             : 
     353             :          ! If ADMM we should make the ks matrix up-to-date
     354         852 :          IF (dft_control%do_admm) THEN
     355          94 :             CALL admm_correct_for_eigenvalues(ispin, admm_env, matrix_ks(ispin)%matrix)
     356             :          END IF
     357             : 
     358         852 :          CALL copy_dbcsr_to_fm(matrix_ks(ispin)%matrix, fm_matrix_ks)
     359             : 
     360         852 :          IF (dft_control%do_admm) THEN
     361          94 :             CALL admm_uncorrect_for_eigenvalues(ispin, admm_env, matrix_ks(ispin)%matrix)
     362             :          END IF
     363             : 
     364         852 :          CALL get_mo_set(mo_set=mos(ispin), maxocc=maxocc, nelectron=nelec(ispin))
     365             : 
     366             :          CALL allocate_mo_set(mo_set=mos_mp2(ispin), &
     367             :                               nao=nao, &
     368             :                               nmo=nao, &
     369             :                               nelectron=nelec(ispin), &
     370             :                               n_el_f=REAL(nelec(ispin), dp), &
     371             :                               maxocc=maxocc, &
     372         852 :                               flexible_electron_count=dft_control%relax_multiplicity)
     373             : 
     374         852 :          CALL get_mo_set(mos_mp2(ispin), nao=nao)
     375             :          CALL cp_fm_struct_create(fm_struct, nrow_global=nao, &
     376             :                                   ncol_global=nao, para_env=para_env, &
     377         852 :                                   context=blacs_env)
     378             : 
     379             :          CALL init_mo_set(mos_mp2(ispin), &
     380             :                           fm_struct=fm_struct, &
     381         852 :                           name="mp2_mos")
     382         852 :          CALL cp_fm_struct_release(fm_struct)
     383             : 
     384        3250 :          IF (cholesky_method == cholesky_inverse) THEN
     385             : 
     386             :             ! diagonalize KS matrix
     387             :             CALL eigensolver(matrix_ks_fm=fm_matrix_ks, &
     388             :                              mo_set=mos_mp2(ispin), &
     389             :                              ortho=fm_matrix_s, &
     390             :                              work=fm_matrix_work, &
     391             :                              cholesky_method=cholesky_method, &
     392             :                              do_level_shift=.FALSE., &
     393             :                              level_shift=0.0_dp, &
     394         852 :                              use_jacobi=.FALSE.)
     395             : 
     396           0 :          ELSE IF (cholesky_method == cholesky_off) THEN
     397             : 
     398             :             CALL eigensolver_symm(matrix_ks_fm=fm_matrix_ks, &
     399             :                                   mo_set=mos_mp2(ispin), &
     400             :                                   ortho=fm_matrix_s, &
     401             :                                   work=fm_matrix_work, &
     402             :                                   do_level_shift=.FALSE., &
     403             :                                   level_shift=0.0_dp, &
     404             :                                   use_jacobi=.FALSE., &
     405           0 :                                   jacobi_threshold=0.0_dp)
     406             : 
     407             :          END IF
     408             : 
     409             :       END DO
     410             : 
     411         694 :       CALL cp_fm_release(fm_matrix_s)
     412         694 :       CALL cp_fm_release(fm_matrix_ks)
     413         694 :       CALL cp_fm_release(fm_matrix_work)
     414             : 
     415         694 :       hfx_sections => section_vals_get_subs_vals(input, "DFT%XC%HF")
     416             : 
     417             :       !   build the table of index
     418         694 :       t1 = m_walltime()
     419        2776 :       ALLOCATE (mp2_biel%index_table(natom, max_nset))
     420             : 
     421         694 :       CALL build_index_table(natom, max_nset, mp2_biel%index_table, basis_parameter, kind_of)
     422             : 
     423             :       ! free the hfx_container (for now if forces are required we don't release the HFX stuff)
     424         694 :       free_hfx_buffer = .FALSE.
     425         694 :       IF (ASSOCIATED(qs_env%x_data)) THEN
     426         420 :          free_hfx_buffer = .TRUE.
     427         420 :          IF (calc_forces .AND. (.NOT. mp2_env%ri_grad%free_hfx_buffer)) free_hfx_buffer = .FALSE.
     428         420 :          IF (qs_env%x_data(1, 1)%do_hfx_ri) free_hfx_buffer = .FALSE.
     429         420 :          IF (calc_forces .AND. mp2_env%do_im_time) free_hfx_buffer = .FALSE.
     430         420 :          IF (mp2_env%ri_rpa%reuse_hfx) free_hfx_buffer = .FALSE.
     431             :       END IF
     432             : 
     433         694 :       IF (.NOT. do_kpoints_cubic_RPA) THEN
     434         690 :       IF (virial%pv_numer) THEN
     435             :          ! in the case of numerical stress we don't have to free the HFX integrals
     436          72 :          free_hfx_buffer = .FALSE.
     437          72 :          mp2_env%ri_grad%free_hfx_buffer = free_hfx_buffer
     438             :       END IF
     439             :       END IF
     440             : 
     441             :       ! calculate the matrix sigma_x - vxc for G0W0
     442         694 :       t3 = 0
     443         694 :       IF (mp2_env%ri_rpa%do_ri_g0w0) THEN
     444         116 :          CALL compute_vec_Sigma_x_minus_vxc_gw(qs_env, mp2_env, mos_mp2, E_ex_from_GW, E_admm_from_GW, t3, unit_nr)
     445             :       END IF
     446             : 
     447         694 :       IF (free_hfx_buffer) THEN
     448         220 :          CALL timeset(routineN//"_free_hfx", handle2)
     449         220 :          CALL section_vals_get(hfx_sections, n_repetition=n_rep_hf)
     450         220 :          n_threads = 1
     451         220 : !$       n_threads = omp_get_max_threads()
     452             : 
     453         440 :          DO irep = 1, n_rep_hf
     454         660 :             DO i_thread = 0, n_threads - 1
     455         220 :                actual_x_data => qs_env%x_data(irep, i_thread + 1)
     456             : 
     457         220 :                do_dynamic_load_balancing = .TRUE.
     458         220 :                IF (n_threads == 1 .OR. actual_x_data%memory_parameter%do_disk_storage) do_dynamic_load_balancing = .FALSE.
     459             : 
     460             :                IF (do_dynamic_load_balancing) THEN
     461           0 :                   my_bin_size = SIZE(actual_x_data%distribution_energy)
     462             :                ELSE
     463         220 :                   my_bin_size = 1
     464             :                END IF
     465             : 
     466         440 :                IF (.NOT. actual_x_data%memory_parameter%do_all_on_the_fly) THEN
     467         218 :                   CALL dealloc_containers(actual_x_data%store_ints, actual_x_data%memory_parameter%actual_memory_usage)
     468             :                END IF
     469             :             END DO
     470             :          END DO
     471         220 :          CALL timestop(handle2)
     472             :       END IF
     473             : 
     474         694 :       Emp2 = 0.D+00
     475         694 :       Emp2_Cou = 0.D+00
     476         694 :       Emp2_ex = 0.D+00
     477         694 :       calc_ex = .TRUE.
     478             : 
     479         694 :       t1 = m_walltime()
     480         712 :       SELECT CASE (mp2_env%method)
     481             :       CASE (mp2_method_direct)
     482          18 :          IF (unit_nr > 0) WRITE (unit_nr, *)
     483             : 
     484          72 :          ALLOCATE (Auto(dimen, nspins))
     485          90 :          ALLOCATE (C(dimen, dimen, nspins))
     486             : 
     487          40 :          DO ispin = 1, nspins
     488             :             ! get the alpha coeff and eigenvalues
     489             :             CALL get_mo_set(mo_set=mos_mp2(ispin), &
     490             :                             eigenvalues=mo_eigenvalues, &
     491          22 :                             mo_coeff=mo_coeff)
     492             : 
     493          22 :             CALL cp_fm_get_submatrix(mo_coeff, C(:, :, ispin), 1, 1, dimen, dimen, .FALSE.)
     494        1072 :             Auto(:, ispin) = mo_eigenvalues(:)
     495             :          END DO
     496             : 
     497          18 :          IF (nspins == 2) THEN
     498           4 :             IF (unit_nr > 0) WRITE (unit_nr, '(T3,A)') 'Unrestricted Canonical Direct Methods:'
     499             :             ! for now, require the mos to be always present
     500             : 
     501             :             ! calculate the alpha-alpha MP2
     502           4 :             Emp2_AA = 0.0_dp
     503           4 :             Emp2_AA_Cou = 0.0_dp
     504           4 :             Emp2_AA_ex = 0.0_dp
     505             :             CALL mp2_direct_energy(dimen, nelec(1), nelec(1), mp2_biel, &
     506             :                                    mp2_env, C(:, :, 1), Auto(:, 1), Emp2_AA, Emp2_AA_Cou, Emp2_AA_ex, &
     507           4 :                                    qs_env, para_env, unit_nr)
     508           4 :             IF (unit_nr > 0) WRITE (unit_nr, '(T3,A,T56,F25.14)') 'MP2 Energy Alpha-Alpha = ', Emp2_AA
     509           4 :             IF (unit_nr > 0) WRITE (unit_nr, *)
     510             : 
     511           4 :             Emp2_BB = 0.0_dp
     512           4 :             Emp2_BB_Cou = 0.0_dp
     513           4 :             Emp2_BB_ex = 0.0_dp
     514             :             CALL mp2_direct_energy(dimen, nelec(2), nelec(2), mp2_biel, mp2_env, &
     515             :                                    C(:, :, 2), Auto(:, 2), Emp2_BB, Emp2_BB_Cou, Emp2_BB_ex, &
     516           4 :                                    qs_env, para_env, unit_nr)
     517           4 :             IF (unit_nr > 0) WRITE (unit_nr, '(T3,A,T56,F25.14)') 'MP2 Energy Beta-Beta= ', Emp2_BB
     518           4 :             IF (unit_nr > 0) WRITE (unit_nr, *)
     519             : 
     520           4 :             Emp2_AB = 0.0_dp
     521           4 :             Emp2_AB_Cou = 0.0_dp
     522           4 :             Emp2_AB_ex = 0.0_dp
     523             :             CALL mp2_direct_energy(dimen, nelec(1), nelec(2), mp2_biel, mp2_env, C(:, :, 1), &
     524             :                                    Auto(:, 1), Emp2_AB, Emp2_AB_Cou, Emp2_AB_ex, &
     525           4 :                                    qs_env, para_env, unit_nr, C(:, :, 2), Auto(:, 2))
     526           4 :             IF (unit_nr > 0) WRITE (unit_nr, '(T3,A,T56,F25.14)') 'MP2 Energy Alpha-Beta= ', Emp2_AB
     527           4 :             IF (unit_nr > 0) WRITE (unit_nr, *)
     528             : 
     529           4 :             Emp2 = Emp2_AA + Emp2_BB + Emp2_AB*2.0_dp !+Emp2_BA
     530           4 :             Emp2_Cou = Emp2_AA_Cou + Emp2_BB_Cou + Emp2_AB_Cou*2.0_dp !+Emp2_BA
     531           4 :             Emp2_ex = Emp2_AA_ex + Emp2_BB_ex + Emp2_AB_ex*2.0_dp !+Emp2_BA
     532             : 
     533           4 :             Emp2_S = Emp2_AB*2.0_dp
     534           4 :             Emp2_T = Emp2_AA + Emp2_BB
     535             : 
     536             :          ELSE
     537             : 
     538          14 :             IF (unit_nr > 0) WRITE (unit_nr, '(T3,A)') 'Canonical Direct Methods:'
     539             : 
     540             :             CALL mp2_direct_energy(dimen, nelec(1)/2, nelec(1)/2, mp2_biel, mp2_env, &
     541             :                                    C(:, :, 1), Auto(:, 1), Emp2, Emp2_Cou, Emp2_ex, &
     542          14 :                                    qs_env, para_env, unit_nr)
     543             : 
     544             :          END IF
     545             : 
     546          18 :          DEALLOCATE (C, Auto)
     547             : 
     548             :       CASE (mp2_ri_optimize_basis)
     549             :          ! optimize ri basis set or tests for RI-MP2 gradients
     550           6 :          IF (unit_nr > 0) THEN
     551           3 :             WRITE (unit_nr, *)
     552           3 :             WRITE (unit_nr, '(T3,A)') 'Optimization of the auxiliary RI-MP2 basis'
     553           3 :             WRITE (unit_nr, *)
     554             :          END IF
     555             : 
     556          24 :          ALLOCATE (Auto(dimen, nspins))
     557          30 :          ALLOCATE (C(dimen, dimen, nspins))
     558             : 
     559          18 :          DO ispin = 1, nspins
     560             :             ! get the alpha coeff and eigenvalues
     561             :             CALL get_mo_set(mo_set=mos_mp2(ispin), &
     562             :                             eigenvalues=mo_eigenvalues, &
     563          12 :                             mo_coeff=mo_coeff)
     564             : 
     565          12 :             CALL cp_fm_get_submatrix(mo_coeff, C(:, :, ispin), 1, 1, dimen, dimen, .FALSE.)
     566         174 :             Auto(:, ispin) = mo_eigenvalues(:)
     567             :          END DO
     568             : 
     569             :          ! optimize basis
     570           6 :          IF (nspins == 2) THEN
     571             :             CALL optimize_ri_basis_main(Emp2, Emp2_Cou, Emp2_ex, Emp2_S, Emp2_T, dimen, natom, nelec(1), &
     572             :                                         mp2_biel, mp2_env, C(:, :, 1), Auto(:, 1), &
     573             :                                         kind_of, qs_env, para_env, unit_nr, &
     574           6 :                                         nelec(2), C(:, :, 2), Auto(:, 2))
     575             : 
     576             :          ELSE
     577             :             CALL optimize_ri_basis_main(Emp2, Emp2_Cou, Emp2_ex, Emp2_S, Emp2_T, dimen, natom, nelec(1)/2, &
     578             :                                         mp2_biel, mp2_env, C(:, :, 1), Auto(:, 1), &
     579           0 :                                         kind_of, qs_env, para_env, unit_nr)
     580             :          END IF
     581             : 
     582           6 :          DEALLOCATE (Auto, C)
     583             : 
     584             :       CASE (mp2_method_gpw)
     585             :          ! check if calculate the exchange contribution
     586          14 :          IF (mp2_env%scale_T == 0.0_dp .AND. (nspins == 2)) calc_ex = .FALSE.
     587             : 
     588             :          ! go with mp2_gpw
     589             :          CALL mp2_gpw_main(qs_env, mp2_env, Emp2, Emp2_Cou, Emp2_EX, Emp2_S, Emp2_T, &
     590         364 :                            mos_mp2, para_env, unit_nr, calc_forces, calc_ex)
     591             : 
     592             :       CASE (ri_mp2_method_gpw)
     593             :          ! check if calculate the exchange contribution
     594         350 :          IF (mp2_env%scale_T == 0.0_dp .AND. (nspins == 2)) calc_ex = .FALSE.
     595             : 
     596             :          ! go with mp2_gpw
     597             :          CALL mp2_gpw_main(qs_env, mp2_env, Emp2, Emp2_Cou, Emp2_EX, Emp2_S, Emp2_T, &
     598         350 :                            mos_mp2, para_env, unit_nr, calc_forces, calc_ex, do_ri_mp2=.TRUE.)
     599             : 
     600             :       CASE (ri_rpa_method_gpw)
     601             :          ! perform RI-RPA energy calculation (since most part of the calculation
     602             :          ! is actually equal to the RI-MP2-GPW we decided to put RPA in the MP2
     603             :          ! section to avoid code replication)
     604             : 
     605         248 :          calc_ex = .FALSE.
     606             : 
     607             :          ! go with ri_rpa_gpw
     608             :          CALL mp2_gpw_main(qs_env, mp2_env, Emp2, Emp2_Cou, Emp2_EX, Emp2_S, Emp2_T, &
     609         248 :                            mos_mp2, para_env, unit_nr, calc_forces, calc_ex, do_ri_rpa=.TRUE.)
     610             :          ! Scale energy contributions
     611         248 :          Emp2 = Emp2*mp2_env%ri_rpa%scale_rpa
     612         248 :          mp2_env%ri_rpa%ener_exchange = mp2_env%ri_rpa%ener_exchange*mp2_env%ri_rpa%scale_rpa
     613             : 
     614             :       CASE (ri_mp2_laplace)
     615             :          ! perform RI-SOS-Laplace-MP2 energy calculation, most part of the code in common
     616             :          ! with the RI-RPA part
     617             : 
     618             :          ! In SOS-MP2 only the coulomb-like contribution of the MP2 energy is computed
     619          58 :          calc_ex = .FALSE.
     620             : 
     621             :          ! go with sos_laplace_mp2_gpw
     622             :          CALL mp2_gpw_main(qs_env, mp2_env, Emp2, Emp2_Cou, Emp2_EX, Emp2_S, Emp2_T, &
     623          58 :                            mos_mp2, para_env, unit_nr, calc_forces, calc_ex, do_ri_sos_laplace_mp2=.TRUE.)
     624             : 
     625             :       CASE DEFAULT
     626         708 :          CPABORT("")
     627             :       END SELECT
     628             : 
     629         694 :       t2 = m_walltime()
     630         694 :       IF (unit_nr > 0) WRITE (unit_nr, *)
     631         694 :       IF (mp2_env%method .NE. ri_rpa_method_gpw) THEN
     632         446 :          IF (unit_nr > 0) WRITE (unit_nr, '(T3,A,T56,F25.6)') 'Total MP2 Time=', t2 - t1
     633         446 :          IF (mp2_env%method == ri_mp2_laplace) THEN
     634          58 :             Emp2_S = Emp2
     635          58 :             Emp2_T = 0.0_dp
     636          58 :             IF (unit_nr > 0) WRITE (unit_nr, '(T3,A,T56,F25.14)') 'MP2 Energy SO component (singlet) = ', Emp2_S
     637          58 :             IF (unit_nr > 0) WRITE (unit_nr, '(T3,A,T56,F25.14)') 'Scaling factor SO                 = ', mp2_env%scale_S
     638             :          ELSE
     639         388 :             IF (unit_nr > 0) WRITE (unit_nr, '(T3,A,T56,F25.14)') 'MP2 Coulomb Energy = ', Emp2_Cou/2.0_dp
     640         388 :             IF (unit_nr > 0) WRITE (unit_nr, '(T3,A,T56,F25.14)') 'MP2 Exchange Energy = ', Emp2_ex
     641         388 :             IF (nspins == 1) THEN
     642             :                ! valid only in the closed shell case
     643         288 :                Emp2_S = Emp2_Cou/2.0_dp
     644         288 :                IF (calc_ex) THEN
     645         288 :                   Emp2_T = Emp2_ex + Emp2_Cou/2.0_dp
     646             :                ELSE
     647             :                   ! unknown if Emp2_ex is not computed
     648           0 :                   Emp2_T = 0.0_dp
     649             :                END IF
     650             :             END IF
     651         388 :             IF (unit_nr > 0) WRITE (unit_nr, '(T3,A,T56,F25.14)') 'MP2 Energy SO component (singlet) = ', Emp2_S
     652         388 :             IF (unit_nr > 0) WRITE (unit_nr, '(T3,A,T56,F25.14)') 'MP2 Energy SS component (triplet) = ', Emp2_T
     653         388 :             IF (unit_nr > 0) WRITE (unit_nr, '(T3,A,T56,F25.14)') 'Scaling factor SO                 = ', mp2_env%scale_S
     654         388 :             IF (unit_nr > 0) WRITE (unit_nr, '(T3,A,T56,F25.14)') 'Scaling factor SS                 = ', mp2_env%scale_T
     655             :          END IF
     656         446 :          Emp2_S = Emp2_S*mp2_env%scale_S
     657         446 :          Emp2_T = Emp2_T*mp2_env%scale_T
     658         446 :          Emp2 = Emp2_S + Emp2_T
     659         446 :          IF (unit_nr > 0) WRITE (unit_nr, '(T3,A,T56,F25.14)') 'Second order perturbation energy  =   ', Emp2
     660             :       ELSE
     661         248 :          IF (unit_nr > 0) WRITE (unit_nr, '(T3,A,T56,F25.6)') 'Total RI-RPA Time=', t2 - t1
     662             : 
     663         248 :          update_xc_energy = .TRUE.
     664         248 :          IF (mp2_env%ri_rpa%do_ri_g0w0 .AND. .NOT. mp2_env%ri_g0w0%update_xc_energy) update_xc_energy = .FALSE.
     665          90 :          IF (.NOT. update_xc_energy) Emp2 = 0.0_dp
     666             : 
     667         248 :          IF (unit_nr > 0 .AND. update_xc_energy) WRITE (unit_nr, '(T3,A,T56,F25.14)') 'RI-RPA energy  =   ', Emp2
     668         248 :          IF (unit_nr > 0 .AND. mp2_env%ri_rpa%sigma_param /= sigma_none) THEN
     669           5 :             WRITE (unit_nr, '(T3,A,T56,F25.14)') 'Sigma corr. to RI-RPA energy  =   ', &
     670          10 :                mp2_env%ri_rpa%e_sigma_corr
     671             :          END IF
     672         248 :          IF (mp2_env%ri_rpa%exchange_correction == rpa_exchange_axk) THEN
     673          10 :             IF (unit_nr > 0) WRITE (unit_nr, '(T3,A,T56,F25.14)') 'RI-RPA-AXK energy=', mp2_env%ri_rpa%ener_exchange
     674         238 :          ELSE IF (mp2_env%ri_rpa%exchange_correction == rpa_exchange_sosex) THEN
     675           2 :             IF (unit_nr > 0) WRITE (unit_nr, '(T3,A,T56,F25.14)') 'RI-RPA-SOSEX energy=', mp2_env%ri_rpa%ener_exchange
     676             :          END IF
     677         248 :          IF (mp2_env%ri_rpa%do_rse) THEN
     678           6 :             IF (unit_nr > 0) WRITE (unit_nr, '(T3,A,T56,F25.14)') 'Diagonal singles correction (dRSE) = ', &
     679           4 :                mp2_env%ri_rpa%rse_corr_diag
     680           6 :             IF (unit_nr > 0) WRITE (unit_nr, '(T3,A,T56,F25.14)') 'Full singles correction (RSE) =', &
     681           4 :                mp2_env%ri_rpa%rse_corr
     682           4 :             IF (dft_control%do_admm) CPABORT("RPA RSE not implemented with RI_RPA%ADMM on")
     683             :          END IF
     684             :       END IF
     685         694 :       IF (unit_nr > 0) WRITE (unit_nr, *)
     686             : 
     687             :       ! we have it !!!!
     688         694 :       IF (mp2_env%ri_rpa%exchange_correction /= rpa_exchange_none) THEN
     689          12 :          Emp2 = Emp2 + mp2_env%ri_rpa%ener_exchange
     690             :       END IF
     691         694 :       IF (mp2_env%ri_rpa%do_rse) THEN
     692           4 :          Emp2 = Emp2 + mp2_env%ri_rpa%rse_corr
     693             :       END IF
     694         694 :       IF (mp2_env%ri_rpa%sigma_param /= sigma_none) THEN
     695             :          !WRITE (unit_nr, '(T3,A,T56,F25.14)') 'Sigma corr. to RI-RPA energy  =   ',&
     696          10 :          Emp2 = Emp2 + mp2_env%ri_rpa%e_sigma_corr
     697             :       END IF
     698         694 :       energy%mp2 = Emp2
     699         694 :       energy%total = energy%total + Emp2
     700             : 
     701        1546 :       DO ispin = 1, nspins
     702        1546 :          CALL deallocate_mo_set(mo_set=mos_mp2(ispin))
     703             :       END DO
     704         694 :       DEALLOCATE (mos_mp2)
     705             : 
     706             :       ! if necessary reallocate hfx buffer
     707         694 :       IF (free_hfx_buffer .AND. (.NOT. calc_forces) .AND. &
     708             :           (mp2_env%ri_g0w0%do_ri_Sigma_x .OR. .NOT. mp2_env%ri_rpa_im_time%do_kpoints_from_Gamma)) THEN
     709         120 :          CALL timeset(routineN//"_alloc_hfx", handle2)
     710         240 :          DO irep = 1, n_rep_hf
     711         360 :             DO i_thread = 0, n_threads - 1
     712         120 :                actual_x_data => qs_env%x_data(irep, i_thread + 1)
     713             : 
     714         120 :                do_dynamic_load_balancing = .TRUE.
     715         120 :                IF (n_threads == 1 .OR. actual_x_data%memory_parameter%do_disk_storage) do_dynamic_load_balancing = .FALSE.
     716             : 
     717             :                IF (do_dynamic_load_balancing) THEN
     718           0 :                   my_bin_size = SIZE(actual_x_data%distribution_energy)
     719             :                ELSE
     720         120 :                   my_bin_size = 1
     721             :                END IF
     722             : 
     723         240 :                IF (.NOT. actual_x_data%memory_parameter%do_all_on_the_fly) THEN
     724         120 :                   CALL alloc_containers(actual_x_data%store_ints, my_bin_size)
     725             : 
     726         240 :                   DO bin = 1, my_bin_size
     727         120 :                      maxval_container => actual_x_data%store_ints%maxval_container(bin)
     728         120 :                      integral_containers => actual_x_data%store_ints%integral_containers(:, bin)
     729         120 :                      CALL hfx_init_container(maxval_container, actual_x_data%memory_parameter%actual_memory_usage, .FALSE.)
     730        7920 :                      DO i = 1, 64
     731        7800 :                         CALL hfx_init_container(integral_containers(i), actual_x_data%memory_parameter%actual_memory_usage, .FALSE.)
     732             :                      END DO
     733             :                   END DO
     734             :                END IF
     735             :             END DO
     736             :          END DO
     737         120 :          CALL timestop(handle2)
     738             :       END IF
     739             : 
     740         694 :       CALL hfx_release_basis_types(basis_parameter)
     741             : 
     742             :       ! if required calculate the EXX contribution from the DFT density
     743         694 :       IF (mp2_env%method == ri_rpa_method_gpw .AND. .NOT. calc_forces) THEN
     744             :          do_exx = .FALSE.
     745         200 :          hfx_sections => section_vals_get_subs_vals(input, "DFT%XC%WF_CORRELATION%RI_RPA%HF")
     746         200 :          CALL section_vals_get(hfx_sections, explicit=do_exx)
     747         200 :          IF (do_exx) THEN
     748         128 :             do_gw = mp2_env%ri_rpa%do_ri_g0w0
     749         128 :             do_admm = mp2_env%ri_rpa%do_admm
     750         128 :             reuse_hfx = qs_env%mp2_env%ri_rpa%reuse_hfx
     751         128 :             do_im_time = qs_env%mp2_env%do_im_time
     752             : 
     753             :             CALL calculate_exx(qs_env=qs_env, &
     754             :                                unit_nr=unit_nr, &
     755             :                                hfx_sections=hfx_sections, &
     756             :                                x_data=qs_env%mp2_env%ri_rpa%x_data, &
     757             :                                do_gw=do_gw, &
     758             :                                do_admm=do_admm, &
     759             :                                calc_forces=.FALSE., &
     760             :                                reuse_hfx=reuse_hfx, &
     761             :                                do_im_time=do_im_time, &
     762             :                                E_ex_from_GW=E_ex_from_GW, &
     763             :                                E_admm_from_GW=E_admm_from_GW, &
     764         128 :                                t3=t3)
     765             : 
     766             :          END IF
     767             :       END IF
     768             : 
     769             :       CALL cp_print_key_finished_output(unit_nr, logger, input, &
     770         694 :                                         "DFT%XC%WF_CORRELATION%PRINT")
     771             : 
     772         694 :       CALL timestop(handle)
     773             : 
     774        3470 :    END SUBROUTINE mp2_main
     775             : 
     776             : ! **************************************************************************************************
     777             : !> \brief ...
     778             : !> \param natom ...
     779             : !> \param max_nset ...
     780             : !> \param index_table ...
     781             : !> \param basis_parameter ...
     782             : !> \param kind_of ...
     783             : ! **************************************************************************************************
     784         694 :    PURE SUBROUTINE build_index_table(natom, max_nset, index_table, basis_parameter, kind_of)
     785             :       INTEGER, INTENT(IN)                                :: natom, max_nset
     786             :       INTEGER, DIMENSION(natom, max_nset), INTENT(OUT)   :: index_table
     787             :       TYPE(hfx_basis_type), DIMENSION(:), POINTER        :: basis_parameter
     788             :       INTEGER, DIMENSION(natom), INTENT(IN)              :: kind_of
     789             : 
     790             :       INTEGER                                            :: counter, iatom, ikind, iset, nset
     791             : 
     792        8752 :       index_table = -HUGE(0)
     793             :       counter = 0
     794        2718 :       DO iatom = 1, natom
     795        2024 :          ikind = kind_of(iatom)
     796        2024 :          nset = basis_parameter(ikind)%nset
     797        8518 :          DO iset = 1, nset
     798        5800 :             index_table(iatom, iset) = counter + 1
     799        7824 :             counter = counter + basis_parameter(ikind)%nsgf(iset)
     800             :          END DO
     801             :       END DO
     802             : 
     803         694 :    END SUBROUTINE build_index_table
     804             : 
     805             : ! **************************************************************************************************
     806             : !> \brief ...
     807             : !> \param matrix_s ...
     808             : !> \param matrix_ks ...
     809             : !> \param mos ...
     810             : !> \param matrix_s_kp ...
     811             : !> \param matrix_ks_transl ...
     812             : !> \param kpoints ...
     813             : ! **************************************************************************************************
     814           4 :    PURE SUBROUTINE get_gamma(matrix_s, matrix_ks, mos, matrix_s_kp, matrix_ks_transl, kpoints)
     815             : 
     816             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_s, matrix_ks
     817             :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
     818             :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: matrix_s_kp, matrix_ks_transl
     819             :       TYPE(kpoint_type), POINTER                         :: kpoints
     820             : 
     821             :       INTEGER                                            :: nspins
     822             : 
     823           4 :       nspins = SIZE(matrix_ks_transl, 1)
     824             : 
     825           4 :       matrix_ks(1:nspins) => matrix_ks_transl(1:nspins, 1)
     826           4 :       matrix_s(1:1) => matrix_s_kp(1:1, 1)
     827           4 :       mos(1:nspins) => kpoints%kp_env(1)%kpoint_env%mos(1:nspins, 1)
     828             : 
     829           4 :    END SUBROUTINE get_gamma
     830             : 
     831             : END MODULE mp2
     832             : 

Generated by: LCOV version 1.15