Line data Source code
1 : !--------------------------------------------------------------------------------------------------!
2 : ! CP2K: A general program to perform molecular dynamics simulations !
3 : ! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
4 : ! !
5 : ! SPDX-License-Identifier: GPL-2.0-or-later !
6 : !--------------------------------------------------------------------------------------------------!
7 :
8 : ! **************************************************************************************************
9 : !> \brief Main module for PAO Machine Learning
10 : !> \author Ole Schuett
11 : ! **************************************************************************************************
12 : MODULE pao_ml
13 : USE atomic_kind_types, ONLY: atomic_kind_type,&
14 : get_atomic_kind
15 : USE basis_set_types, ONLY: gto_basis_set_type
16 : USE cell_methods, ONLY: cell_create
17 : USE cell_types, ONLY: cell_type
18 : USE cp_dbcsr_api, ONLY: dbcsr_iterator_blocks_left,&
19 : dbcsr_iterator_next_block,&
20 : dbcsr_iterator_start,&
21 : dbcsr_iterator_stop,&
22 : dbcsr_iterator_type,&
23 : dbcsr_type
24 : USE kinds, ONLY: default_path_length,&
25 : default_string_length,&
26 : dp
27 : USE machine, ONLY: m_flush
28 : USE message_passing, ONLY: mp_para_env_type
29 : USE pao_input, ONLY: id2str,&
30 : pao_ml_gp,&
31 : pao_ml_lazy,&
32 : pao_ml_nn,&
33 : pao_ml_prior_mean,&
34 : pao_ml_prior_zero,&
35 : pao_rotinv_param
36 : USE pao_io, ONLY: pao_ioblock_type,&
37 : pao_iokind_type,&
38 : pao_kinds_ensure_equal,&
39 : pao_read_raw
40 : USE pao_ml_descriptor, ONLY: pao_ml_calc_descriptor
41 : USE pao_ml_gaussprocess, ONLY: pao_ml_gp_gradient,&
42 : pao_ml_gp_predict,&
43 : pao_ml_gp_train
44 : USE pao_ml_neuralnet, ONLY: pao_ml_nn_gradient,&
45 : pao_ml_nn_predict,&
46 : pao_ml_nn_train
47 : USE pao_types, ONLY: pao_env_type,&
48 : training_matrix_type
49 : USE particle_types, ONLY: particle_type
50 : USE qs_environment_types, ONLY: get_qs_env,&
51 : qs_environment_type
52 : USE qs_kind_types, ONLY: get_qs_kind,&
53 : qs_kind_type
54 : #include "./base/base_uses.f90"
55 :
56 : IMPLICIT NONE
57 :
58 : PRIVATE
59 :
60 : CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'pao_ml'
61 :
62 : PUBLIC :: pao_ml_init, pao_ml_predict, pao_ml_forces
63 :
64 : ! linked list used to group training points by kind
65 : TYPE training_point_type
66 : TYPE(training_point_type), POINTER :: next => Null()
67 : REAL(dp), DIMENSION(:), ALLOCATABLE :: input
68 : REAL(dp), DIMENSION(:), ALLOCATABLE :: output
69 : END TYPE training_point_type
70 :
71 : TYPE training_list_type
72 : CHARACTER(LEN=default_string_length) :: kindname = ""
73 : TYPE(training_point_type), POINTER :: head => Null()
74 : INTEGER :: npoints = 0
75 : END TYPE training_list_type
76 :
77 : CONTAINS
78 :
79 : ! **************************************************************************************************
80 : !> \brief Initializes the learning machinery
81 : !> \param pao ...
82 : !> \param qs_env ...
83 : ! **************************************************************************************************
84 96 : SUBROUTINE pao_ml_init(pao, qs_env)
85 : TYPE(pao_env_type), POINTER :: pao
86 : TYPE(qs_environment_type), POINTER :: qs_env
87 :
88 : INTEGER :: i
89 96 : TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
90 : TYPE(mp_para_env_type), POINTER :: para_env
91 : TYPE(training_list_type), ALLOCATABLE, &
92 96 : DIMENSION(:) :: training_lists
93 :
94 96 : IF (SIZE(pao%ml_training_set) == 0) RETURN
95 :
96 18 : IF (pao%iw > 0) WRITE (pao%iw, *) 'PAO|ML| Initializing maschine learning...'
97 :
98 18 : IF (pao%parameterization /= pao_rotinv_param) &
99 0 : CPABORT("PAO maschine learning requires ROTINV parametrization")
100 :
101 18 : CALL get_qs_env(qs_env, para_env=para_env, atomic_kind_set=atomic_kind_set)
102 :
103 : ! create training-set data-structure
104 74 : ALLOCATE (training_lists(SIZE(atomic_kind_set)))
105 38 : DO i = 1, SIZE(training_lists)
106 38 : CALL get_atomic_kind(atomic_kind_set(i), name=training_lists(i)%kindname)
107 : END DO
108 :
109 : ! parses training files, calculates descriptors and stores all training-points as linked lists
110 52 : DO i = 1, SIZE(pao%ml_training_set)
111 52 : CALL add_to_training_list(pao, qs_env, training_lists, filename=pao%ml_training_set(i)%fn)
112 : END DO
113 :
114 : ! ensure there there are training points for all kinds that use pao
115 18 : CALL sanity_check(qs_env, training_lists)
116 :
117 : ! turns linked lists into matrices and syncs them across ranks
118 18 : CALL training_list2matrix(training_lists, pao%ml_training_matrices, para_env)
119 :
120 : ! calculate and subtract prior
121 18 : CALL pao_ml_substract_prior(pao%ml_prior, pao%ml_training_matrices)
122 :
123 : ! print some statistics about the training set and dump it upon request
124 18 : CALL pao_ml_print(pao, pao%ml_training_matrices)
125 :
126 : ! use training-set to train model
127 18 : CALL pao_ml_train(pao)
128 :
129 114 : END SUBROUTINE pao_ml_init
130 :
131 : ! **************************************************************************************************
132 : !> \brief Reads the given file and adds its training points to linked lists.
133 : !> \param pao ...
134 : !> \param qs_env ...
135 : !> \param training_lists ...
136 : !> \param filename ...
137 : ! **************************************************************************************************
138 34 : SUBROUTINE add_to_training_list(pao, qs_env, training_lists, filename)
139 : TYPE(pao_env_type), POINTER :: pao
140 : TYPE(qs_environment_type), POINTER :: qs_env
141 : TYPE(training_list_type), DIMENSION(:) :: training_lists
142 : CHARACTER(LEN=default_path_length) :: filename
143 :
144 : CHARACTER(LEN=default_string_length) :: param
145 : INTEGER :: iatom, ikind, natoms, nkinds, nparams
146 34 : INTEGER, ALLOCATABLE, DIMENSION(:) :: atom2kind, kindsmap
147 : INTEGER, DIMENSION(2) :: ml_range
148 34 : REAL(dp), ALLOCATABLE, DIMENSION(:, :) :: hmat, positions
149 34 : TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
150 : TYPE(cell_type), POINTER :: cell
151 : TYPE(mp_para_env_type), POINTER :: para_env
152 34 : TYPE(pao_ioblock_type), ALLOCATABLE, DIMENSION(:) :: xblocks
153 34 : TYPE(pao_iokind_type), ALLOCATABLE, DIMENSION(:) :: kinds
154 34 : TYPE(particle_type), DIMENSION(:), POINTER :: my_particle_set
155 34 : TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
156 : TYPE(training_point_type), POINTER :: new_point
157 :
158 34 : NULLIFY (new_point, cell)
159 :
160 17 : IF (pao%iw > 0) WRITE (pao%iw, '(A,A)') " PAO|ML| Reading training frame from file: ", TRIM(filename)
161 :
162 34 : CALL get_qs_env(qs_env, para_env=para_env)
163 :
164 : ! parse training data on first rank
165 34 : IF (para_env%is_source()) THEN
166 17 : CALL pao_read_raw(filename, param, hmat, kinds, atom2kind, positions, xblocks, ml_range)
167 :
168 : ! check parametrization
169 17 : IF (TRIM(param) .NE. TRIM(ADJUSTL(id2str(pao%parameterization)))) &
170 17 : CPABORT("Restart PAO parametrization does not match")
171 :
172 : ! map read-in kinds onto kinds of this run
173 17 : CALL match_kinds(pao, qs_env, kinds, kindsmap)
174 17 : nkinds = SIZE(kindsmap)
175 17 : natoms = SIZE(positions, 1)
176 : END IF
177 :
178 : ! broadcast parsed raw training data
179 34 : CALL para_env%bcast(nkinds)
180 34 : CALL para_env%bcast(natoms)
181 34 : IF (.NOT. para_env%is_source()) THEN
182 17 : ALLOCATE (hmat(3, 3))
183 51 : ALLOCATE (kindsmap(nkinds))
184 51 : ALLOCATE (positions(natoms, 3))
185 51 : ALLOCATE (atom2kind(natoms))
186 : END IF
187 34 : CALL para_env%bcast(hmat)
188 34 : CALL para_env%bcast(kindsmap)
189 34 : CALL para_env%bcast(atom2kind)
190 34 : CALL para_env%bcast(positions)
191 34 : CALL para_env%bcast(ml_range)
192 :
193 34 : IF (ml_range(1) /= 1 .OR. ml_range(2) /= natoms) THEN
194 0 : CPWARN("Skipping some atoms for PAO-ML training.")
195 : END IF
196 :
197 : ! create cell from read-in h-matrix
198 34 : CALL cell_create(cell, hmat)
199 :
200 : ! create a particle_set based on read-in positions and refere to kinds of this run
201 34 : CALL get_qs_env(qs_env, atomic_kind_set=atomic_kind_set, qs_kind_set=qs_kind_set)
202 476 : ALLOCATE (my_particle_set(natoms))
203 102 : DO iatom = 1, natoms
204 68 : ikind = kindsmap(atom2kind(iatom))
205 68 : my_particle_set(iatom)%atomic_kind => atomic_kind_set(ikind)
206 306 : my_particle_set(iatom)%r = positions(iatom, :)
207 : END DO
208 :
209 : ! fill linked list with training points
210 : ! Afterwards all ranks will have lists with the same number of entries,
211 : ! however the input and output arrays will only be allocated on one rank per entry.
212 : ! We farm out the expensive calculation of the descriptor across ranks.
213 102 : DO iatom = 1, natoms
214 68 : IF (iatom < ml_range(1) .OR. ml_range(2) < iatom) CYCLE
215 68 : ALLOCATE (new_point)
216 :
217 : ! training-point input, calculate descriptor only on one rank
218 68 : IF (MOD(iatom - 1, para_env%num_pe) == para_env%mepos) THEN
219 : CALL pao_ml_calc_descriptor(pao, &
220 : my_particle_set, &
221 : qs_kind_set, &
222 : cell, &
223 : iatom=iatom, &
224 34 : descriptor=new_point%input)
225 : END IF
226 :
227 : ! copy training-point output on first rank
228 68 : IF (para_env%is_source()) THEN
229 34 : nparams = SIZE(xblocks(iatom)%p, 1)
230 102 : ALLOCATE (new_point%output(nparams))
231 272 : new_point%output(:) = xblocks(iatom)%p(:, 1)
232 : END IF
233 :
234 : ! add to linked list
235 68 : ikind = kindsmap(atom2kind(iatom))
236 68 : training_lists(ikind)%npoints = training_lists(ikind)%npoints + 1
237 68 : new_point%next => training_lists(ikind)%head
238 102 : training_lists(ikind)%head => new_point
239 : END DO
240 :
241 34 : DEALLOCATE (cell, my_particle_set, hmat, kindsmap, positions, atom2kind)
242 :
243 119 : END SUBROUTINE add_to_training_list
244 :
245 : ! **************************************************************************************************
246 : !> \brief Make read-in kinds on to atomic-kinds of this run
247 : !> \param pao ...
248 : !> \param qs_env ...
249 : !> \param kinds ...
250 : !> \param kindsmap ...
251 : ! **************************************************************************************************
252 17 : SUBROUTINE match_kinds(pao, qs_env, kinds, kindsmap)
253 : TYPE(pao_env_type), POINTER :: pao
254 : TYPE(qs_environment_type), POINTER :: qs_env
255 : TYPE(pao_iokind_type), DIMENSION(:) :: kinds
256 : INTEGER, ALLOCATABLE, DIMENSION(:) :: kindsmap
257 :
258 : CHARACTER(LEN=default_string_length) :: name
259 : INTEGER :: ikind, jkind
260 17 : TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
261 :
262 17 : CALL get_qs_env(qs_env, atomic_kind_set=atomic_kind_set)
263 :
264 17 : CPASSERT(.NOT. ALLOCATED(kindsmap))
265 51 : ALLOCATE (kindsmap(SIZE(kinds)))
266 34 : kindsmap(:) = -1
267 :
268 34 : DO ikind = 1, SIZE(kinds)
269 35 : DO jkind = 1, SIZE(atomic_kind_set)
270 18 : CALL get_atomic_kind(atomic_kind_set(jkind), name=name)
271 : ! match kinds via their name
272 18 : IF (TRIM(kinds(ikind)%name) .EQ. TRIM(name)) THEN
273 17 : CALL pao_kinds_ensure_equal(pao, qs_env, jkind, kinds(ikind))
274 17 : kindsmap(ikind) = jkind
275 17 : EXIT
276 : END IF
277 : END DO
278 : END DO
279 :
280 34 : IF (ANY(kindsmap < 1)) &
281 0 : CPABORT("PAO: Could not match all kinds from training set")
282 17 : END SUBROUTINE match_kinds
283 :
284 : ! **************************************************************************************************
285 : !> \brief Checks that there is at least one training point per pao-enabled kind
286 : !> \param qs_env ...
287 : !> \param training_lists ...
288 : ! **************************************************************************************************
289 18 : SUBROUTINE sanity_check(qs_env, training_lists)
290 : TYPE(qs_environment_type), POINTER :: qs_env
291 : TYPE(training_list_type), DIMENSION(:), TARGET :: training_lists
292 :
293 : INTEGER :: ikind, pao_basis_size
294 : TYPE(gto_basis_set_type), POINTER :: basis_set
295 18 : TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
296 : TYPE(training_list_type), POINTER :: training_list
297 :
298 18 : CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set)
299 :
300 38 : DO ikind = 1, SIZE(training_lists)
301 20 : training_list => training_lists(ikind)
302 20 : IF (training_list%npoints > 0) CYCLE ! it's ok
303 2 : CALL get_qs_kind(qs_kind_set(ikind), basis_set=basis_set, pao_basis_size=pao_basis_size)
304 2 : IF (pao_basis_size /= basis_set%nsgf) & ! if this kind has pao enabled...
305 20 : CPABORT("Found no training-points for kind: "//TRIM(training_list%kindname))
306 : END DO
307 :
308 18 : END SUBROUTINE sanity_check
309 :
310 : ! **************************************************************************************************
311 : !> \brief Turns the linked lists of training points into matrices
312 : !> \param training_lists ...
313 : !> \param training_matrices ...
314 : !> \param para_env ...
315 : ! **************************************************************************************************
316 18 : SUBROUTINE training_list2matrix(training_lists, training_matrices, para_env)
317 : TYPE(training_list_type), ALLOCATABLE, &
318 : DIMENSION(:), TARGET :: training_lists
319 : TYPE(training_matrix_type), ALLOCATABLE, &
320 : DIMENSION(:), TARGET :: training_matrices
321 : TYPE(mp_para_env_type), POINTER :: para_env
322 :
323 : INTEGER :: i, ikind, inp_size, ninputs, noutputs, &
324 : npoints, out_size
325 : TYPE(training_list_type), POINTER :: training_list
326 : TYPE(training_matrix_type), POINTER :: training_matrix
327 : TYPE(training_point_type), POINTER :: cur_point, prev_point
328 :
329 18 : CPASSERT(ALLOCATED(training_lists) .AND. .NOT. ALLOCATED(training_matrices))
330 :
331 74 : ALLOCATE (training_matrices(SIZE(training_lists)))
332 :
333 38 : DO ikind = 1, SIZE(training_lists)
334 20 : training_list => training_lists(ikind)
335 20 : training_matrix => training_matrices(ikind)
336 20 : training_matrix%kindname = training_list%kindname ! copy kindname
337 20 : npoints = training_list%npoints ! number of points
338 20 : IF (npoints == 0) THEN
339 2 : ALLOCATE (training_matrix%inputs(0, 0))
340 2 : ALLOCATE (training_matrix%outputs(0, 0))
341 2 : CYCLE
342 : END IF
343 :
344 : ! figure out size of input and output
345 18 : inp_size = 0; out_size = 0
346 18 : IF (ALLOCATED(training_list%head%input)) &
347 9 : inp_size = SIZE(training_list%head%input)
348 18 : IF (ALLOCATED(training_list%head%output)) &
349 9 : out_size = SIZE(training_list%head%output)
350 18 : CALL para_env%sum(inp_size)
351 18 : CALL para_env%sum(out_size)
352 :
353 : ! allocate matices to hold all training points
354 72 : ALLOCATE (training_matrix%inputs(inp_size, npoints))
355 72 : ALLOCATE (training_matrix%outputs(out_size, npoints))
356 3258 : training_matrix%inputs(:, :) = 0.0_dp
357 562 : training_matrix%outputs(:, :) = 0.0_dp
358 :
359 : ! loop over all training points, consume linked-list in the process
360 18 : ninputs = 0; noutputs = 0
361 18 : cur_point => training_list%head
362 18 : NULLIFY (training_list%head)
363 86 : DO i = 1, npoints
364 68 : IF (ALLOCATED(cur_point%input)) THEN
365 3240 : training_matrix%inputs(:, i) = cur_point%input(:)
366 34 : ninputs = ninputs + 1
367 : END IF
368 68 : IF (ALLOCATED(cur_point%output)) THEN
369 544 : training_matrix%outputs(:, i) = cur_point%output(:)
370 34 : noutputs = noutputs + 1
371 : END IF
372 : ! advance to next entry and deallocate the current one
373 68 : prev_point => cur_point
374 68 : cur_point => cur_point%next
375 86 : DEALLOCATE (prev_point)
376 : END DO
377 18 : training_list%npoints = 0 ! list is now empty
378 :
379 : ! sync training_matrix across ranks
380 18 : CALL para_env%sum(training_matrix%inputs)
381 18 : CALL para_env%sum(training_matrix%outputs)
382 :
383 : ! sanity check
384 18 : CALL para_env%sum(noutputs)
385 18 : CALL para_env%sum(ninputs)
386 36 : CPASSERT(noutputs == npoints .AND. ninputs == npoints)
387 : END DO
388 :
389 18 : END SUBROUTINE training_list2matrix
390 :
391 : ! **************************************************************************************************
392 : !> \brief TODO
393 : !> \param ml_prior ...
394 : !> \param training_matrices ...
395 : ! **************************************************************************************************
396 18 : SUBROUTINE pao_ml_substract_prior(ml_prior, training_matrices)
397 : INTEGER, INTENT(IN) :: ml_prior
398 : TYPE(training_matrix_type), DIMENSION(:), TARGET :: training_matrices
399 :
400 : INTEGER :: i, ikind, npoints, out_size
401 : TYPE(training_matrix_type), POINTER :: training_matrix
402 :
403 38 : DO ikind = 1, SIZE(training_matrices)
404 20 : training_matrix => training_matrices(ikind)
405 20 : out_size = SIZE(training_matrix%outputs, 1)
406 20 : npoints = SIZE(training_matrix%outputs, 2)
407 20 : IF (npoints == 0) CYCLE
408 54 : ALLOCATE (training_matrix%prior(out_size))
409 :
410 : ! calculate prior
411 18 : SELECT CASE (ml_prior)
412 : CASE (pao_ml_prior_zero)
413 96 : training_matrix%prior(:) = 0.0_dp
414 : CASE (pao_ml_prior_mean)
415 188 : training_matrix%prior(:) = SUM(training_matrix%outputs, 2)/REAL(npoints, dp)
416 : CASE DEFAULT
417 18 : CPABORT("PAO: unknown prior")
418 : END SELECT
419 :
420 : ! subtract prior from all training points
421 104 : DO i = 1, npoints
422 564 : training_matrix%outputs(:, i) = training_matrix%outputs(:, i) - training_matrix%prior
423 : END DO
424 : END DO
425 :
426 18 : END SUBROUTINE pao_ml_substract_prior
427 :
428 : ! **************************************************************************************************
429 : !> \brief Print some statistics about the training set and dump it upon request
430 : !> \param pao ...
431 : !> \param training_matrices ...
432 : ! **************************************************************************************************
433 18 : SUBROUTINE pao_ml_print(pao, training_matrices)
434 : TYPE(pao_env_type), POINTER :: pao
435 : TYPE(training_matrix_type), DIMENSION(:), TARGET :: training_matrices
436 :
437 : INTEGER :: i, ikind, N, npoints
438 : TYPE(training_matrix_type), POINTER :: training_matrix
439 :
440 : ! dump training data
441 18 : IF (pao%iw_mldata > 0) THEN
442 2 : DO ikind = 1, SIZE(training_matrices)
443 1 : training_matrix => training_matrices(ikind)
444 1 : npoints = SIZE(training_matrix%outputs, 2)
445 6 : DO i = 1, npoints
446 4 : WRITE (pao%iw_mldata, *) "PAO|ML| training-point kind: ", TRIM(training_matrix%kindname), &
447 4 : " point:", i, " in:", training_matrix%inputs(:, i), &
448 9 : " out:", training_matrix%outputs(:, i)
449 : END DO
450 : END DO
451 1 : CALL m_flush(pao%iw_mldata)
452 : END IF
453 :
454 : ! print stats
455 18 : IF (pao%iw > 0) THEN
456 19 : DO ikind = 1, SIZE(training_matrices)
457 10 : training_matrix => training_matrices(ikind)
458 30 : N = SIZE(training_matrix%inputs)
459 10 : IF (N == 0) CYCLE
460 : WRITE (pao%iw, "(A,I3,A,E10.1,1X,E10.1,1X,E10.1)") " PAO|ML| Descriptor for kind: "// &
461 9 : TRIM(training_matrix%kindname)//" size: ", &
462 9 : SIZE(training_matrix%inputs, 1), " min/mean/max: ", &
463 1629 : MINVAL(training_matrix%inputs), &
464 1629 : SUM(training_matrix%inputs)/REAL(N, dp), &
465 1648 : MAXVAL(training_matrix%inputs)
466 : END DO
467 : END IF
468 :
469 18 : END SUBROUTINE pao_ml_print
470 :
471 : ! **************************************************************************************************
472 : !> \brief Calls the actual learning algorthim to traing on the given matrices
473 : !> \param pao ...
474 : ! **************************************************************************************************
475 18 : SUBROUTINE pao_ml_train(pao)
476 : TYPE(pao_env_type), POINTER :: pao
477 :
478 : CHARACTER(len=*), PARAMETER :: routineN = 'pao_ml_train'
479 :
480 : INTEGER :: handle
481 :
482 18 : CALL timeset(routineN, handle)
483 :
484 28 : SELECT CASE (pao%ml_method)
485 : CASE (pao_ml_gp)
486 10 : CALL pao_ml_gp_train(pao)
487 : CASE (pao_ml_nn)
488 4 : CALL pao_ml_nn_train(pao)
489 : CASE (pao_ml_lazy)
490 : ! nothing to do
491 : CASE DEFAULT
492 18 : CPABORT("PAO: unknown machine learning scheme")
493 : END SELECT
494 :
495 18 : CALL timestop(handle)
496 :
497 18 : END SUBROUTINE pao_ml_train
498 :
499 : ! **************************************************************************************************
500 : !> \brief Fills pao%matrix_X based on machine learning predictions
501 : !> \param pao ...
502 : !> \param qs_env ...
503 : ! **************************************************************************************************
504 138 : SUBROUTINE pao_ml_predict(pao, qs_env)
505 : TYPE(pao_env_type), POINTER :: pao
506 : TYPE(qs_environment_type), POINTER :: qs_env
507 :
508 : CHARACTER(len=*), PARAMETER :: routineN = 'pao_ml_predict'
509 :
510 : INTEGER :: acol, arow, handle, iatom, ikind, natoms
511 138 : REAL(dp), ALLOCATABLE, DIMENSION(:) :: descriptor, variances
512 138 : REAL(dp), DIMENSION(:, :), POINTER :: block_X
513 138 : TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
514 : TYPE(cell_type), POINTER :: cell
515 : TYPE(dbcsr_iterator_type) :: iter
516 : TYPE(mp_para_env_type), POINTER :: para_env
517 138 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
518 138 : TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
519 :
520 138 : CALL timeset(routineN, handle)
521 :
522 : CALL get_qs_env(qs_env, &
523 : para_env=para_env, &
524 : cell=cell, &
525 : particle_set=particle_set, &
526 : atomic_kind_set=atomic_kind_set, &
527 : qs_kind_set=qs_kind_set, &
528 138 : natom=natoms)
529 :
530 : ! fill matrix_X
531 414 : ALLOCATE (variances(natoms))
532 416 : variances(:) = 0.0_dp
533 : !$OMP PARALLEL DEFAULT(NONE) SHARED(pao,qs_env,particle_set,qs_kind_set,cell,variances) &
534 138 : !$OMP PRIVATE(iter,arow,acol,iatom,ikind,descriptor,block_X)
535 : CALL dbcsr_iterator_start(iter, pao%matrix_X)
536 : DO WHILE (dbcsr_iterator_blocks_left(iter))
537 : CALL dbcsr_iterator_next_block(iter, arow, acol, block_X)
538 : iatom = arow; CPASSERT(arow == acol)
539 : CALL get_atomic_kind(particle_set(iatom)%atomic_kind, kind_number=ikind)
540 : IF (SIZE(block_X) == 0) CYCLE ! pao disabled for iatom
541 :
542 : ! calculate descriptor
543 : CALL pao_ml_calc_descriptor(pao, &
544 : particle_set, &
545 : qs_kind_set, &
546 : cell, &
547 : iatom, &
548 : descriptor)
549 :
550 : ! call actual machine learning for prediction
551 : CALL pao_ml_predict_low(pao, ikind=ikind, &
552 : descriptor=descriptor, &
553 : output=block_X(:, 1), &
554 : variance=variances(iatom))
555 :
556 : DEALLOCATE (descriptor)
557 :
558 : !add prior
559 : block_X(:, 1) = block_X(:, 1) + pao%ml_training_matrices(ikind)%prior
560 : END DO
561 : CALL dbcsr_iterator_stop(iter)
562 : !$OMP END PARALLEL
563 :
564 : ! print variances
565 138 : CALL para_env%sum(variances)
566 138 : IF (pao%iw_mlvar > 0) THEN
567 3 : DO iatom = 1, natoms
568 3 : WRITE (pao%iw_mlvar, *) "PAO|ML| atom:", iatom, " prediction variance:", variances(iatom)
569 : END DO
570 1 : CALL m_flush(pao%iw_mlvar)
571 : END IF
572 :
573 : ! one-line summary
574 207 : IF (pao%iw > 0) WRITE (pao%iw, "(A,E20.10,A,T71,I10)") " PAO|ML| max prediction variance:", &
575 554 : MAXVAL(variances), " for atom:", MAXLOC(variances)
576 :
577 554 : IF (MAXVAL(variances) > pao%ml_tolerance) &
578 0 : CPABORT("Variance of prediction above ML_TOLERANCE.")
579 :
580 138 : DEALLOCATE (variances)
581 :
582 138 : CALL timestop(handle)
583 :
584 276 : END SUBROUTINE pao_ml_predict
585 :
586 : ! **************************************************************************************************
587 : !> \brief Queries the actual learning algorthim to make a prediction
588 : !> \param pao ...
589 : !> \param ikind ...
590 : !> \param descriptor ...
591 : !> \param output ...
592 : !> \param variance ...
593 : ! **************************************************************************************************
594 138 : SUBROUTINE pao_ml_predict_low(pao, ikind, descriptor, output, variance)
595 : TYPE(pao_env_type), POINTER :: pao
596 : INTEGER, INTENT(IN) :: ikind
597 : REAL(dp), DIMENSION(:), INTENT(IN) :: descriptor
598 : REAL(dp), DIMENSION(:), INTENT(OUT) :: output
599 : REAL(dp), INTENT(OUT) :: variance
600 :
601 220 : SELECT CASE (pao%ml_method)
602 : CASE (pao_ml_gp)
603 82 : CALL pao_ml_gp_predict(pao, ikind, descriptor, output, variance)
604 : CASE (pao_ml_nn)
605 28 : CALL pao_ml_nn_predict(pao, ikind, descriptor, output, variance)
606 : CASE (pao_ml_lazy)
607 224 : output = 0.0_dp ! let's be really lazy and just rely on the prior
608 28 : variance = 0
609 : CASE DEFAULT
610 138 : CPABORT("PAO: unknown machine learning scheme")
611 : END SELECT
612 :
613 138 : END SUBROUTINE pao_ml_predict_low
614 :
615 : ! **************************************************************************************************
616 : !> \brief Calculate forces contributed by machine learning
617 : !> \param pao ...
618 : !> \param qs_env ...
619 : !> \param matrix_G ...
620 : !> \param forces ...
621 : ! **************************************************************************************************
622 18 : SUBROUTINE pao_ml_forces(pao, qs_env, matrix_G, forces)
623 : TYPE(pao_env_type), POINTER :: pao
624 : TYPE(qs_environment_type), POINTER :: qs_env
625 : TYPE(dbcsr_type) :: matrix_G
626 : REAL(dp), DIMENSION(:, :), INTENT(INOUT) :: forces
627 :
628 : CHARACTER(len=*), PARAMETER :: routineN = 'pao_ml_forces'
629 :
630 : INTEGER :: acol, arow, handle, iatom, ikind
631 18 : REAL(dp), ALLOCATABLE, DIMENSION(:) :: descr_grad, descriptor
632 18 : REAL(dp), DIMENSION(:, :), POINTER :: block_G
633 18 : TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
634 : TYPE(cell_type), POINTER :: cell
635 : TYPE(dbcsr_iterator_type) :: iter
636 : TYPE(mp_para_env_type), POINTER :: para_env
637 18 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
638 18 : TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
639 :
640 18 : CALL timeset(routineN, handle)
641 :
642 : CALL get_qs_env(qs_env, &
643 : para_env=para_env, &
644 : cell=cell, &
645 : particle_set=particle_set, &
646 : atomic_kind_set=atomic_kind_set, &
647 18 : qs_kind_set=qs_kind_set)
648 :
649 : !$OMP PARALLEL DEFAULT(NONE) SHARED(pao,matrix_G,particle_set,qs_kind_set,cell) &
650 : !$OMP REDUCTION(+:forces) &
651 18 : !$OMP PRIVATE(iter,arow,acol,iatom,ikind,block_G,descriptor,descr_grad)
652 : CALL dbcsr_iterator_start(iter, matrix_G)
653 : DO WHILE (dbcsr_iterator_blocks_left(iter))
654 : CALL dbcsr_iterator_next_block(iter, arow, acol, block_G)
655 : iatom = arow; CPASSERT(arow == acol)
656 : CALL get_atomic_kind(particle_set(iatom)%atomic_kind, kind_number=ikind)
657 : IF (SIZE(block_G) == 0) CYCLE ! pao disabled for iatom
658 :
659 : ! calculate descriptor
660 : CALL pao_ml_calc_descriptor(pao, &
661 : particle_set, &
662 : qs_kind_set, &
663 : cell, &
664 : iatom=iatom, &
665 : descriptor=descriptor)
666 :
667 : ! calcaulte derivate of machine learning prediction
668 : CALL pao_ml_gradient_low(pao, ikind=ikind, &
669 : descriptor=descriptor, &
670 : outer_deriv=block_G(:, 1), &
671 : gradient=descr_grad)
672 :
673 : ! calculate force contributions from descriptor
674 : CALL pao_ml_calc_descriptor(pao, &
675 : particle_set, &
676 : qs_kind_set, &
677 : cell, &
678 : iatom=iatom, &
679 : descr_grad=descr_grad, &
680 : forces=forces)
681 :
682 : DEALLOCATE (descriptor, descr_grad)
683 : END DO
684 : CALL dbcsr_iterator_stop(iter)
685 : !$OMP END PARALLEL
686 :
687 18 : CALL timestop(handle)
688 :
689 36 : END SUBROUTINE pao_ml_forces
690 :
691 : ! **************************************************************************************************
692 : !> \brief Calculate gradient of machine learning algorithm
693 : !> \param pao ...
694 : !> \param ikind ...
695 : !> \param descriptor ...
696 : !> \param outer_deriv ...
697 : !> \param gradient ...
698 : ! **************************************************************************************************
699 18 : SUBROUTINE pao_ml_gradient_low(pao, ikind, descriptor, outer_deriv, gradient)
700 : TYPE(pao_env_type), POINTER :: pao
701 : INTEGER, INTENT(IN) :: ikind
702 : REAL(dp), DIMENSION(:), INTENT(IN) :: descriptor, outer_deriv
703 : REAL(dp), ALLOCATABLE, DIMENSION(:) :: gradient
704 :
705 54 : ALLOCATE (gradient(SIZE(descriptor)))
706 :
707 28 : SELECT CASE (pao%ml_method)
708 : CASE (pao_ml_gp)
709 10 : CALL pao_ml_gp_gradient(pao, ikind, descriptor, outer_deriv, gradient)
710 : CASE (pao_ml_nn)
711 4 : CALL pao_ml_nn_gradient(pao, ikind, descriptor, outer_deriv, gradient)
712 : CASE (pao_ml_lazy)
713 26 : gradient = 0.0_dp
714 : CASE DEFAULT
715 18 : CPABORT("PAO: unknown machine learning scheme")
716 : END SELECT
717 :
718 18 : END SUBROUTINE pao_ml_gradient_low
719 :
720 0 : END MODULE pao_ml
|