LCOV - code coverage report
Current view: top level - src - qs_environment.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:b8e0b09) Lines: 737 802 91.9 %
Date: 2024-08-31 06:31:37 Functions: 3 3 100.0 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2024 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \par History
      10             : !>      - Merged with the Quickstep MODULE method_specification (17.01.2002,MK)
      11             : !>      - USE statements cleaned, added
      12             : !>        (25.09.2002,MK)
      13             : !>      - Added more LSD structure (01.2003,Joost VandeVondele)
      14             : !>      - New molecule data types introduced (Sep. 2003,MK)
      15             : !>      - Cleaning; getting rid of pnode (02.10.2003,MK)
      16             : !>      - Sub-system setup added (08.10.2003,MK)
      17             : !> \author MK (18.05.2000)
      18             : ! **************************************************************************************************
      19             : MODULE qs_environment
      20             :    USE almo_scf_env_methods,            ONLY: almo_scf_env_create
      21             :    USE atom_kind_orbitals,              ONLY: calculate_atomic_relkin
      22             :    USE atomic_kind_types,               ONLY: atomic_kind_type
      23             :    USE auto_basis,                      ONLY: create_lri_aux_basis_set,&
      24             :                                               create_ri_aux_basis_set
      25             :    USE basis_set_container_types,       ONLY: add_basis_set_to_container
      26             :    USE basis_set_types,                 ONLY: basis_sort_zet,&
      27             :                                               get_gto_basis_set,&
      28             :                                               gto_basis_set_type
      29             :    USE bibliography,                    ONLY: Iannuzzi2006,&
      30             :                                               Iannuzzi2007,&
      31             :                                               cite_reference,&
      32             :                                               cp2kqs2020
      33             :    USE cell_types,                      ONLY: cell_type
      34             :    USE cp_blacs_env,                    ONLY: cp_blacs_env_create,&
      35             :                                               cp_blacs_env_release,&
      36             :                                               cp_blacs_env_type
      37             :    USE cp_control_types,                ONLY: dft_control_type,&
      38             :                                               dftb_control_type,&
      39             :                                               gapw_control_type,&
      40             :                                               qs_control_type,&
      41             :                                               semi_empirical_control_type,&
      42             :                                               xtb_control_type
      43             :    USE cp_control_utils,                ONLY: &
      44             :         read_ddapc_section, read_dft_control, read_mgrid_section, read_qs_section, &
      45             :         read_tddfpt2_control, read_tddfpt_control, write_admm_control, write_dft_control, &
      46             :         write_qs_control
      47             :    USE cp_ddapc_types,                  ONLY: cp_ddapc_ewald_create
      48             :    USE cp_log_handling,                 ONLY: cp_get_default_logger,&
      49             :                                               cp_logger_get_default_io_unit,&
      50             :                                               cp_logger_type
      51             :    USE cp_output_handling,              ONLY: cp_p_file,&
      52             :                                               cp_print_key_finished_output,&
      53             :                                               cp_print_key_should_output,&
      54             :                                               cp_print_key_unit_nr
      55             :    USE cp_subsys_types,                 ONLY: cp_subsys_type
      56             :    USE cp_symmetry,                     ONLY: write_symmetry
      57             :    USE distribution_1d_types,           ONLY: distribution_1d_release,&
      58             :                                               distribution_1d_type
      59             :    USE distribution_methods,            ONLY: distribute_molecules_1d
      60             :    USE dm_ls_scf_create,                ONLY: ls_scf_create
      61             :    USE ec_env_types,                    ONLY: energy_correction_type
      62             :    USE ec_environment,                  ONLY: ec_env_create,&
      63             :                                               ec_write_input
      64             :    USE et_coupling_types,               ONLY: et_coupling_create
      65             :    USE ewald_environment_types,         ONLY: ewald_env_create,&
      66             :                                               ewald_env_get,&
      67             :                                               ewald_env_set,&
      68             :                                               ewald_environment_type,&
      69             :                                               read_ewald_section,&
      70             :                                               read_ewald_section_tb
      71             :    USE ewald_pw_methods,                ONLY: ewald_pw_grid_update
      72             :    USE ewald_pw_types,                  ONLY: ewald_pw_create,&
      73             :                                               ewald_pw_type
      74             :    USE exstates_types,                  ONLY: excited_energy_type,&
      75             :                                               exstate_create
      76             :    USE external_potential_types,        ONLY: get_potential,&
      77             :                                               init_potential,&
      78             :                                               set_potential
      79             :    USE fist_nonbond_env_types,          ONLY: fist_nonbond_env_create,&
      80             :                                               fist_nonbond_env_type
      81             :    USE gamma,                           ONLY: init_md_ftable
      82             :    USE global_types,                    ONLY: global_environment_type
      83             :    USE hartree_local_methods,           ONLY: init_coulomb_local
      84             :    USE header,                          ONLY: dftb_header,&
      85             :                                               qs_header,&
      86             :                                               se_header,&
      87             :                                               xtb_header
      88             :    USE hfx_types,                       ONLY: compare_hfx_sections,&
      89             :                                               hfx_create
      90             :    USE input_constants,                 ONLY: &
      91             :         dispersion_d2, dispersion_d3, dispersion_d3bj, do_et_ddapc, do_method_am1, do_method_dftb, &
      92             :         do_method_gapw, do_method_gapw_xc, do_method_gpw, do_method_lrigpw, do_method_mndo, &
      93             :         do_method_mndod, do_method_ofgpw, do_method_pdg, do_method_pm3, do_method_pm6, &
      94             :         do_method_pm6fm, do_method_pnnl, do_method_rigpw, do_method_rm1, do_method_xtb, &
      95             :         do_qmmm_gauss, do_qmmm_swave, general_roks, kg_tnadd_embed_ri, rel_none, rel_trans_atom, &
      96             :         vdw_pairpot_dftd2, vdw_pairpot_dftd3, vdw_pairpot_dftd3bj, wfi_aspc_nr, &
      97             :         wfi_linear_ps_method_nr, wfi_linear_wf_method_nr, wfi_ps_method_nr, &
      98             :         wfi_use_guess_method_nr, xc_vdw_fun_none, xc_vdw_fun_nonloc, xc_vdw_fun_pairpot
      99             :    USE input_section_types,             ONLY: section_vals_get,&
     100             :                                               section_vals_get_subs_vals,&
     101             :                                               section_vals_type,&
     102             :                                               section_vals_val_get
     103             :    USE kg_environment,                  ONLY: kg_env_create
     104             :    USE kinds,                           ONLY: default_string_length,&
     105             :                                               dp
     106             :    USE kpoint_methods,                  ONLY: kpoint_env_initialize,&
     107             :                                               kpoint_initialize,&
     108             :                                               kpoint_initialize_mos
     109             :    USE kpoint_types,                    ONLY: get_kpoint_info,&
     110             :                                               kpoint_create,&
     111             :                                               kpoint_type,&
     112             :                                               read_kpoint_section,&
     113             :                                               write_kpoint_info
     114             :    USE lri_environment_init,            ONLY: lri_env_basis,&
     115             :                                               lri_env_init
     116             :    USE lri_environment_types,           ONLY: lri_environment_type
     117             :    USE machine,                         ONLY: m_flush
     118             :    USE mathconstants,                   ONLY: pi
     119             :    USE message_passing,                 ONLY: mp_para_env_type
     120             :    USE molecule_kind_types,             ONLY: molecule_kind_type,&
     121             :                                               write_molecule_kind_set
     122             :    USE molecule_types,                  ONLY: molecule_type
     123             :    USE mp2_setup,                       ONLY: read_mp2_section
     124             :    USE mp2_types,                       ONLY: mp2_env_create,&
     125             :                                               mp2_type
     126             :    USE multipole_types,                 ONLY: do_multipole_none
     127             :    USE orbital_pointers,                ONLY: init_orbital_pointers
     128             :    USE orbital_transformation_matrices, ONLY: init_spherical_harmonics
     129             :    USE particle_methods,                ONLY: write_particle_distances,&
     130             :                                               write_qs_particle_coordinates,&
     131             :                                               write_structure_data
     132             :    USE particle_types,                  ONLY: particle_type
     133             :    USE pw_env_types,                    ONLY: pw_env_type
     134             :    USE qmmm_types_low,                  ONLY: qmmm_env_qm_type
     135             :    USE qs_basis_rotation_methods,       ONLY: qs_basis_rotation
     136             :    USE qs_dftb_parameters,              ONLY: qs_dftb_param_init
     137             :    USE qs_dftb_types,                   ONLY: qs_dftb_pairpot_type
     138             :    USE qs_dispersion_nonloc,            ONLY: qs_dispersion_nonloc_init
     139             :    USE qs_dispersion_pairpot,           ONLY: qs_dispersion_pairpot_init
     140             :    USE qs_dispersion_types,             ONLY: qs_dispersion_type
     141             :    USE qs_dispersion_utils,             ONLY: qs_dispersion_env_set,&
     142             :                                               qs_write_dispersion
     143             :    USE qs_energy_types,                 ONLY: allocate_qs_energy,&
     144             :                                               qs_energy_type
     145             :    USE qs_environment_methods,          ONLY: qs_env_setup
     146             :    USE qs_environment_types,            ONLY: get_qs_env,&
     147             :                                               qs_environment_type,&
     148             :                                               set_qs_env
     149             :    USE qs_force_types,                  ONLY: qs_force_type
     150             :    USE qs_gcp_types,                    ONLY: qs_gcp_type
     151             :    USE qs_gcp_utils,                    ONLY: qs_gcp_env_set,&
     152             :                                               qs_gcp_init
     153             :    USE qs_interactions,                 ONLY: init_interaction_radii,&
     154             :                                               init_se_nlradius,&
     155             :                                               write_core_charge_radii,&
     156             :                                               write_paw_radii,&
     157             :                                               write_pgf_orb_radii,&
     158             :                                               write_ppl_radii,&
     159             :                                               write_ppnl_radii
     160             :    USE qs_kind_types,                   ONLY: &
     161             :         check_qs_kind_set, get_qs_kind, get_qs_kind_set, init_gapw_basis_set, init_gapw_nlcc, &
     162             :         init_qs_kind_set, qs_kind_type, set_qs_kind, write_gto_basis_sets, write_qs_kind_set
     163             :    USE qs_ks_types,                     ONLY: qs_ks_env_create,&
     164             :                                               qs_ks_env_type,&
     165             :                                               set_ks_env
     166             :    USE qs_local_rho_types,              ONLY: local_rho_type
     167             :    USE qs_mo_types,                     ONLY: allocate_mo_set,&
     168             :                                               mo_set_type
     169             :    USE qs_rho0_ggrid,                   ONLY: rho0_s_grid_create
     170             :    USE qs_rho0_methods,                 ONLY: init_rho0
     171             :    USE qs_rho0_types,                   ONLY: rho0_mpole_type
     172             :    USE qs_rho_atom_methods,             ONLY: init_rho_atom
     173             :    USE qs_rho_atom_types,               ONLY: rho_atom_type
     174             :    USE qs_subsys_methods,               ONLY: qs_subsys_create
     175             :    USE qs_subsys_types,                 ONLY: qs_subsys_get,&
     176             :                                               qs_subsys_set,&
     177             :                                               qs_subsys_type
     178             :    USE qs_wf_history_methods,           ONLY: wfi_create,&
     179             :                                               wfi_create_for_kp
     180             :    USE qs_wf_history_types,             ONLY: qs_wf_history_type,&
     181             :                                               wfi_release
     182             :    USE rel_control_types,               ONLY: rel_c_create,&
     183             :                                               rel_c_read_parameters,&
     184             :                                               rel_control_type
     185             :    USE scf_control_types,               ONLY: scf_c_create,&
     186             :                                               scf_c_read_parameters,&
     187             :                                               scf_c_write_parameters,&
     188             :                                               scf_control_type
     189             :    USE semi_empirical_expns3_methods,   ONLY: semi_empirical_expns3_setup
     190             :    USE semi_empirical_int_arrays,       ONLY: init_se_intd_array
     191             :    USE semi_empirical_mpole_methods,    ONLY: nddo_mpole_setup
     192             :    USE semi_empirical_mpole_types,      ONLY: nddo_mpole_type
     193             :    USE semi_empirical_store_int_types,  ONLY: semi_empirical_si_create,&
     194             :                                               semi_empirical_si_type
     195             :    USE semi_empirical_types,            ONLY: se_taper_create,&
     196             :                                               se_taper_type
     197             :    USE semi_empirical_utils,            ONLY: se_cutoff_compatible
     198             :    USE transport,                       ONLY: transport_env_create
     199             :    USE xtb_parameters,                  ONLY: init_xtb_basis,&
     200             :                                               xtb_parameters_init,&
     201             :                                               xtb_parameters_read,&
     202             :                                               xtb_parameters_set
     203             :    USE xtb_types,                       ONLY: allocate_xtb_atom_param
     204             : #include "./base/base_uses.f90"
     205             : 
     206             :    IMPLICIT NONE
     207             : 
     208             :    PRIVATE
     209             : 
     210             :    ! *** Global parameters ***
     211             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'qs_environment'
     212             : 
     213             :    ! *** Public subroutines ***
     214             :    PUBLIC :: qs_init
     215             : 
     216             : CONTAINS
     217             : 
     218             : ! **************************************************************************************************
     219             : !> \brief Read the input and the database files for the setup of the
     220             : !>      QUICKSTEP environment.
     221             : !> \param qs_env ...
     222             : !> \param para_env ...
     223             : !> \param root_section ...
     224             : !> \param globenv ...
     225             : !> \param cp_subsys ...
     226             : !> \param kpoint_env ...
     227             : !> \param cell ...
     228             : !> \param cell_ref ...
     229             : !> \param qmmm ...
     230             : !> \param qmmm_env_qm ...
     231             : !> \param force_env_section ...
     232             : !> \param subsys_section ...
     233             : !> \param use_motion_section ...
     234             : !> \author Creation (22.05.2000,MK)
     235             : ! **************************************************************************************************
     236       46102 :    SUBROUTINE qs_init(qs_env, para_env, root_section, globenv, cp_subsys, kpoint_env, cell, cell_ref, &
     237             :                       qmmm, qmmm_env_qm, force_env_section, subsys_section, use_motion_section)
     238             : 
     239             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     240             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     241             :       TYPE(section_vals_type), OPTIONAL, POINTER         :: root_section
     242             :       TYPE(global_environment_type), OPTIONAL, POINTER   :: globenv
     243             :       TYPE(cp_subsys_type), OPTIONAL, POINTER            :: cp_subsys
     244             :       TYPE(kpoint_type), OPTIONAL, POINTER               :: kpoint_env
     245             :       TYPE(cell_type), OPTIONAL, POINTER                 :: cell, cell_ref
     246             :       LOGICAL, INTENT(IN), OPTIONAL                      :: qmmm
     247             :       TYPE(qmmm_env_qm_type), OPTIONAL, POINTER          :: qmmm_env_qm
     248             :       TYPE(section_vals_type), POINTER                   :: force_env_section, subsys_section
     249             :       LOGICAL, INTENT(IN)                                :: use_motion_section
     250             : 
     251             :       CHARACTER(LEN=default_string_length)               :: basis_type
     252             :       INTEGER                                            :: ikind, method_id, nelectron_total, &
     253             :                                                             nkind, nkp_grid(3)
     254             :       LOGICAL :: do_admm_rpa, do_ec_hfx, do_et, do_exx, do_hfx, do_kpoints, is_identical, is_semi, &
     255             :          mp2_present, my_qmmm, qmmm_decoupl, same_except_frac, silent, use_ref_cell
     256        6586 :       REAL(KIND=dp), DIMENSION(:, :), POINTER            :: rtmat
     257        6586 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
     258             :       TYPE(cell_type), POINTER                           :: my_cell, my_cell_ref
     259             :       TYPE(cp_blacs_env_type), POINTER                   :: blacs_env
     260             :       TYPE(dft_control_type), POINTER                    :: dft_control
     261             :       TYPE(energy_correction_type), POINTER              :: ec_env
     262             :       TYPE(excited_energy_type), POINTER                 :: exstate_env
     263             :       TYPE(kpoint_type), POINTER                         :: kpoints
     264             :       TYPE(lri_environment_type), POINTER                :: lri_env
     265        6586 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     266        6586 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     267             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
     268             :       TYPE(qs_subsys_type), POINTER                      :: subsys
     269             :       TYPE(qs_wf_history_type), POINTER                  :: wf_history
     270             :       TYPE(rel_control_type), POINTER                    :: rel_control
     271             :       TYPE(scf_control_type), POINTER                    :: scf_control
     272             :       TYPE(section_vals_type), POINTER :: dft_section, ec_hfx_section, ec_section, &
     273             :          et_coupling_section, hfx_section, kpoint_section, mp2_section, rpa_hfx_section, &
     274             :          transport_section
     275             : 
     276        6586 :       NULLIFY (my_cell, my_cell_ref, atomic_kind_set, particle_set, &
     277        6586 :                qs_kind_set, kpoint_section, dft_section, ec_section, &
     278        6586 :                subsys, ks_env, dft_control, blacs_env)
     279             : 
     280        6586 :       CALL set_qs_env(qs_env, input=force_env_section)
     281        6586 :       IF (.NOT. ASSOCIATED(subsys_section)) THEN
     282         104 :          subsys_section => section_vals_get_subs_vals(force_env_section, "SUBSYS")
     283             :       END IF
     284             : 
     285             :       ! QMMM
     286        6586 :       my_qmmm = .FALSE.
     287        6586 :       IF (PRESENT(qmmm)) my_qmmm = qmmm
     288        6586 :       qmmm_decoupl = .FALSE.
     289        6586 :       IF (PRESENT(qmmm_env_qm)) THEN
     290         394 :          IF (qmmm_env_qm%qmmm_coupl_type == do_qmmm_gauss .OR. &
     291             :              qmmm_env_qm%qmmm_coupl_type == do_qmmm_swave) THEN
     292             :             ! For GAUSS/SWAVE methods there could be a DDAPC decoupling requested
     293         458 :             qmmm_decoupl = my_qmmm .AND. qmmm_env_qm%periodic .AND. qmmm_env_qm%multipole
     294             :          END IF
     295         394 :          qs_env%qmmm_env_qm => qmmm_env_qm
     296             :       END IF
     297        6586 :       CALL set_qs_env(qs_env=qs_env, qmmm=my_qmmm)
     298             : 
     299             :       ! Possibly initialize arrays for SE
     300        6586 :       CALL section_vals_val_get(force_env_section, "DFT%QS%METHOD", i_val=method_id)
     301         998 :       SELECT CASE (method_id)
     302             :       CASE (do_method_rm1, do_method_am1, do_method_mndo, do_method_pdg, &
     303             :             do_method_pm3, do_method_pm6, do_method_pm6fm, do_method_mndod, do_method_pnnl)
     304         998 :          CALL init_se_intd_array()
     305         998 :          is_semi = .TRUE.
     306             :       CASE (do_method_xtb, do_method_dftb)
     307         470 :          is_semi = .TRUE.
     308             :       CASE DEFAULT
     309        6586 :          is_semi = .FALSE.
     310             :       END SELECT
     311             : 
     312       26344 :       ALLOCATE (subsys)
     313             :       CALL qs_subsys_create(subsys, para_env, &
     314             :                             force_env_section=force_env_section, &
     315             :                             subsys_section=subsys_section, &
     316             :                             use_motion_section=use_motion_section, &
     317             :                             root_section=root_section, &
     318             :                             cp_subsys=cp_subsys, cell=cell, cell_ref=cell_ref, &
     319        6586 :                             elkind=is_semi)
     320             : 
     321        6586 :       ALLOCATE (ks_env)
     322        6586 :       CALL qs_ks_env_create(ks_env)
     323        6586 :       CALL set_ks_env(ks_env, subsys=subsys)
     324        6586 :       CALL set_qs_env(qs_env, ks_env=ks_env)
     325             : 
     326             :       CALL qs_subsys_get(subsys, &
     327             :                          cell=my_cell, &
     328             :                          cell_ref=my_cell_ref, &
     329             :                          use_ref_cell=use_ref_cell, &
     330             :                          atomic_kind_set=atomic_kind_set, &
     331             :                          qs_kind_set=qs_kind_set, &
     332        6586 :                          particle_set=particle_set)
     333             : 
     334        6586 :       CALL set_ks_env(ks_env, para_env=para_env)
     335        6586 :       IF (PRESENT(globenv)) THEN
     336             :          CALL cp_blacs_env_create(blacs_env, para_env, globenv%blacs_grid_layout, &
     337        6584 :                                   globenv%blacs_repeatable)
     338             :       ELSE
     339           2 :          CALL cp_blacs_env_create(blacs_env, para_env)
     340             :       END IF
     341        6586 :       CALL set_ks_env(ks_env, blacs_env=blacs_env)
     342        6586 :       CALL cp_blacs_env_release(blacs_env)
     343             : 
     344             :       !   *** Setup the grids for the G-space Interpolation if any
     345             :       CALL cp_ddapc_ewald_create(qs_env%cp_ddapc_ewald, qmmm_decoupl, my_cell, &
     346        6586 :                                  force_env_section, subsys_section, para_env)
     347             : 
     348             :       ! kpoints
     349        6586 :       IF (PRESENT(kpoint_env)) THEN
     350           2 :          silent = .TRUE.
     351           2 :          kpoints => kpoint_env
     352           2 :          CALL set_qs_env(qs_env=qs_env, kpoints=kpoints)
     353           2 :          CALL kpoint_initialize(kpoints, particle_set, my_cell)
     354             :       ELSE
     355        6584 :          silent = .FALSE.
     356        6584 :          NULLIFY (kpoints)
     357        6584 :          CALL kpoint_create(kpoints)
     358        6584 :          CALL set_qs_env(qs_env=qs_env, kpoints=kpoints)
     359        6584 :          kpoint_section => section_vals_get_subs_vals(qs_env%input, "DFT%KPOINTS")
     360        6584 :          CALL read_kpoint_section(kpoints, kpoint_section, my_cell%hmat)
     361        6584 :          CALL kpoint_initialize(kpoints, particle_set, my_cell)
     362        6584 :          dft_section => section_vals_get_subs_vals(qs_env%input, "DFT")
     363        6584 :          CALL write_kpoint_info(kpoints, dft_section)
     364             :       END IF
     365             : 
     366             :       CALL qs_init_subsys(qs_env, para_env, subsys, my_cell, my_cell_ref, use_ref_cell, &
     367        6586 :                           subsys_section, silent=silent)
     368             : 
     369        6586 :       CALL get_qs_env(qs_env, dft_control=dft_control)
     370        6586 :       IF (method_id == do_method_lrigpw .OR. dft_control%qs_control%lri_optbas) THEN
     371          46 :          CALL get_qs_env(qs_env=qs_env, lri_env=lri_env)
     372          46 :          CALL lri_env_basis("LRI", qs_env, lri_env, qs_kind_set)
     373        6540 :       ELSE IF (method_id == do_method_rigpw) THEN
     374             :          CALL cp_warn(__LOCATION__, "Experimental code: "// &
     375           0 :                       "RIGPW should only be used for testing.")
     376           0 :          CALL get_qs_env(qs_env=qs_env, lri_env=lri_env)
     377           0 :          CALL lri_env_basis("RI", qs_env, lri_env, qs_kind_set)
     378             :       END IF
     379             : 
     380        6586 :       IF (my_qmmm .AND. PRESENT(qmmm_env_qm) .AND. .NOT. dft_control%qs_control%commensurate_mgrids) THEN
     381         132 :          IF (qmmm_env_qm%qmmm_coupl_type == do_qmmm_gauss .OR. qmmm_env_qm%qmmm_coupl_type == do_qmmm_swave) THEN
     382             :             CALL cp_abort(__LOCATION__, "QM/MM with coupling GAUSS or S-WAVE requires "// &
     383           0 :                           "keyword FORCE_EVAL/DFT/MGRID/COMMENSURATE to be enabled.")
     384             :          END IF
     385             :       END IF
     386             : 
     387             :       ! more kpoint stuff
     388        6586 :       CALL get_qs_env(qs_env=qs_env, do_kpoints=do_kpoints, blacs_env=blacs_env)
     389        6586 :       IF (do_kpoints) THEN
     390         154 :          CALL kpoint_env_initialize(kpoints, para_env, blacs_env, with_aux_fit=dft_control%do_admm)
     391         154 :          CALL kpoint_initialize_mos(kpoints, qs_env%mos)
     392         154 :          CALL get_qs_env(qs_env=qs_env, wf_history=wf_history)
     393         154 :          CALL wfi_create_for_kp(wf_history)
     394             :       END IF
     395             :       ! basis set symmetry rotations
     396        6586 :       IF (do_kpoints) THEN
     397         154 :          CALL qs_basis_rotation(qs_env, kpoints)
     398             :       END IF
     399             : 
     400             :       do_hfx = .FALSE.
     401        6586 :       hfx_section => section_vals_get_subs_vals(qs_env%input, "DFT%XC%HF")
     402        6586 :       CALL section_vals_get(hfx_section, explicit=do_hfx)
     403        6586 :       CALL get_qs_env(qs_env, dft_control=dft_control, scf_control=scf_control, nelectron_total=nelectron_total)
     404        6586 :       IF (do_hfx) THEN
     405             :          ! Retrieve particle_set and atomic_kind_set (needed for both kinds of initialization)
     406        4736 :          nkp_grid = 1
     407        1184 :          IF (do_kpoints) CALL get_kpoint_info(kpoints, nkp_grid=nkp_grid)
     408        1184 :          IF (dft_control%do_admm) THEN
     409         434 :             basis_type = 'AUX_FIT'
     410             :          ELSE
     411         750 :             basis_type = 'ORB'
     412             :          END IF
     413             :          CALL hfx_create(qs_env%x_data, para_env, hfx_section, atomic_kind_set, &
     414             :                          qs_kind_set, particle_set, dft_control, my_cell, orb_basis=basis_type, &
     415        1184 :                          nelectron_total=nelectron_total, nkp_grid=nkp_grid)
     416             :       END IF
     417             : 
     418        6586 :       mp2_section => section_vals_get_subs_vals(qs_env%input, "DFT%XC%WF_CORRELATION")
     419        6586 :       CALL section_vals_get(mp2_section, explicit=mp2_present)
     420        6586 :       IF (mp2_present) THEN
     421         438 :          CPASSERT(ASSOCIATED(qs_env%mp2_env))
     422         438 :          CALL read_mp2_section(qs_env%input, qs_env%mp2_env)
     423             :          ! create the EXX section if necessary
     424             :          do_exx = .FALSE.
     425         438 :          rpa_hfx_section => section_vals_get_subs_vals(qs_env%input, "DFT%XC%WF_CORRELATION%RI_RPA%HF")
     426         438 :          CALL section_vals_get(rpa_hfx_section, explicit=do_exx)
     427         438 :          IF (do_exx) THEN
     428             : 
     429             :             ! do_exx in call of hfx_create decides whether to go without ADMM (do_exx=.TRUE.) or with
     430             :             ! ADMM (do_exx=.FALSE.)
     431         132 :             CALL section_vals_val_get(mp2_section, "RI_RPA%ADMM", l_val=do_admm_rpa)
     432             : 
     433             :             ! Reuse the HFX integrals from the qs_env if applicable
     434         132 :             qs_env%mp2_env%ri_rpa%reuse_hfx = .TRUE.
     435         132 :             IF (.NOT. do_hfx) qs_env%mp2_env%ri_rpa%reuse_hfx = .FALSE.
     436         132 :             CALL compare_hfx_sections(hfx_section, rpa_hfx_section, is_identical, same_except_frac)
     437         132 :             IF (.NOT. (is_identical .OR. same_except_frac)) qs_env%mp2_env%ri_rpa%reuse_hfx = .FALSE.
     438         132 :             IF (dft_control%do_admm .AND. .NOT. do_admm_rpa) qs_env%mp2_env%ri_rpa%reuse_hfx = .FALSE.
     439             : 
     440         132 :             IF (.NOT. qs_env%mp2_env%ri_rpa%reuse_hfx) THEN
     441         114 :                IF (do_admm_rpa) THEN
     442          10 :                   basis_type = 'AUX_FIT'
     443             :                ELSE
     444         104 :                   basis_type = 'ORB'
     445             :                END IF
     446             :                CALL hfx_create(qs_env%mp2_env%ri_rpa%x_data, para_env, rpa_hfx_section, atomic_kind_set, &
     447             :                                qs_kind_set, particle_set, dft_control, my_cell, orb_basis=basis_type, &
     448         114 :                                nelectron_total=nelectron_total)
     449             :             ELSE
     450          18 :                qs_env%mp2_env%ri_rpa%x_data => qs_env%x_data
     451             :             END IF
     452             :          END IF
     453             :       END IF
     454             : 
     455        6586 :       IF (dft_control%qs_control%do_kg) THEN
     456          66 :          CALL cite_reference(Iannuzzi2006)
     457          66 :          CALL kg_env_create(qs_env, qs_env%kg_env, qs_kind_set, qs_env%input)
     458             :       END IF
     459             : 
     460        6586 :       dft_section => section_vals_get_subs_vals(qs_env%input, "DFT")
     461             :       CALL section_vals_val_get(dft_section, "EXCITED_STATES%_SECTION_PARAMETERS_", &
     462        6586 :                                 l_val=qs_env%excited_state)
     463        6586 :       NULLIFY (exstate_env)
     464        6586 :       CALL exstate_create(exstate_env, qs_env%excited_state, dft_section)
     465        6586 :       CALL set_qs_env(qs_env, exstate_env=exstate_env)
     466             : 
     467             :       et_coupling_section => section_vals_get_subs_vals(qs_env%input, &
     468        6586 :                                                         "PROPERTIES%ET_COUPLING")
     469        6586 :       CALL section_vals_get(et_coupling_section, explicit=do_et)
     470        6586 :       IF (do_et) CALL et_coupling_create(qs_env%et_coupling)
     471             : 
     472        6586 :       transport_section => section_vals_get_subs_vals(qs_env%input, "DFT%TRANSPORT")
     473        6586 :       CALL section_vals_get(transport_section, explicit=qs_env%do_transport)
     474        6586 :       IF (qs_env%do_transport) THEN
     475           0 :          CALL transport_env_create(qs_env)
     476             :       END IF
     477             : 
     478        6586 :       IF (dft_control%qs_control%do_ls_scf) THEN
     479         336 :          CALL ls_scf_create(qs_env)
     480             :       END IF
     481             : 
     482        6586 :       NULLIFY (ec_env)
     483        6586 :       dft_section => section_vals_get_subs_vals(qs_env%input, "DFT")
     484             :       CALL section_vals_val_get(dft_section, "ENERGY_CORRECTION%_SECTION_PARAMETERS_", &
     485        6586 :                                 l_val=qs_env%energy_correction)
     486        6586 :       ec_section => section_vals_get_subs_vals(qs_env%input, "DFT%ENERGY_CORRECTION")
     487        6586 :       CALL ec_env_create(qs_env, ec_env, dft_section, ec_section)
     488        6586 :       CALL set_qs_env(qs_env, ec_env=ec_env)
     489             : 
     490        6586 :       IF (qs_env%energy_correction) THEN
     491             :          ! Energy correction with Hartree-Fock exchange
     492         232 :          ec_hfx_section => section_vals_get_subs_vals(ec_section, "XC%HF")
     493         232 :          CALL section_vals_get(ec_hfx_section, explicit=do_ec_hfx)
     494             : 
     495         232 :          IF (ec_env%do_ec_hfx) THEN
     496             : 
     497             :             ! Hybrid functionals require same basis
     498          16 :             IF (ec_env%basis_inconsistent) THEN
     499             :                CALL cp_abort(__LOCATION__, &
     500             :                              "Energy correction methods with hybrid functionals: "// &
     501             :                              "correction and ground state need to use the same basis. "// &
     502           0 :                              "Checked by comparing basis set names only.")
     503             :             END IF
     504             : 
     505             :             ! Similar to RPA_HFX we can check if HFX integrals from the qs_env can be reused
     506          16 :             IF (ec_env%do_ec_admm .AND. .NOT. dft_control%do_admm) THEN
     507           0 :                CALL cp_abort(__LOCATION__, "Need an ADMM input section for ADMM EC to work")
     508             :             END IF
     509             : 
     510          16 :             ec_env%reuse_hfx = .TRUE.
     511          16 :             IF (.NOT. do_hfx) ec_env%reuse_hfx = .FALSE.
     512          16 :             CALL compare_hfx_sections(hfx_section, ec_hfx_section, is_identical, same_except_frac)
     513          16 :             IF (.NOT. (is_identical .OR. same_except_frac)) ec_env%reuse_hfx = .FALSE.
     514          16 :             IF (dft_control%do_admm .AND. .NOT. ec_env%do_ec_admm) ec_env%reuse_hfx = .FALSE.
     515             : 
     516          16 :             IF (.NOT. ec_env%reuse_hfx) THEN
     517           6 :                IF (ec_env%do_ec_admm) THEN
     518           2 :                   basis_type = 'AUX_FIT'
     519             :                ELSE
     520           4 :                   basis_type = 'ORB'
     521             :                END IF
     522             :                CALL hfx_create(ec_env%x_data, para_env, ec_hfx_section, atomic_kind_set, &
     523             :                                qs_kind_set, particle_set, dft_control, my_cell, orb_basis=basis_type, &
     524           6 :                                nelectron_total=nelectron_total)
     525             :             ELSE
     526          10 :                ec_env%x_data => qs_env%x_data
     527             :             END IF
     528             :          END IF
     529             : 
     530             :          ! Print information of the EC section
     531         232 :          CALL ec_write_input(ec_env)
     532             : 
     533             :       END IF
     534             : 
     535        6586 :       IF (dft_control%qs_control%do_almo_scf) THEN
     536          66 :          CALL almo_scf_env_create(qs_env)
     537             :       END IF
     538             : 
     539             :       ! see if we have atomic relativistic corrections
     540        6586 :       CALL get_qs_env(qs_env, rel_control=rel_control)
     541        6586 :       IF (rel_control%rel_method /= rel_none) THEN
     542          16 :          IF (rel_control%rel_transformation == rel_trans_atom) THEN
     543          16 :             nkind = SIZE(atomic_kind_set)
     544          42 :             DO ikind = 1, nkind
     545          26 :                NULLIFY (rtmat)
     546          26 :                CALL calculate_atomic_relkin(atomic_kind_set(ikind), qs_kind_set(ikind), rel_control, rtmat)
     547          42 :                IF (ASSOCIATED(rtmat)) CALL set_qs_kind(qs_kind_set(ikind), reltmat=rtmat)
     548             :             END DO
     549             :          END IF
     550             :       END IF
     551             : 
     552        6586 :    END SUBROUTINE qs_init
     553             : 
     554             : ! **************************************************************************************************
     555             : !> \brief Initialize the qs environment (subsys)
     556             : !> \param qs_env ...
     557             : !> \param para_env ...
     558             : !> \param subsys ...
     559             : !> \param cell ...
     560             : !> \param cell_ref ...
     561             : !> \param use_ref_cell ...
     562             : !> \param subsys_section ...
     563             : !> \param silent ...
     564             : !> \author Creation (22.05.2000,MK)
     565             : ! **************************************************************************************************
     566        6586 :    SUBROUTINE qs_init_subsys(qs_env, para_env, subsys, cell, cell_ref, use_ref_cell, subsys_section, &
     567             :                              silent)
     568             : 
     569             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     570             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     571             :       TYPE(qs_subsys_type), POINTER                      :: subsys
     572             :       TYPE(cell_type), POINTER                           :: cell, cell_ref
     573             :       LOGICAL, INTENT(in)                                :: use_ref_cell
     574             :       TYPE(section_vals_type), POINTER                   :: subsys_section
     575             :       LOGICAL, INTENT(in), OPTIONAL                      :: silent
     576             : 
     577             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'qs_init_subsys'
     578             : 
     579             :       CHARACTER(len=2)                                   :: element_symbol
     580             :       INTEGER :: handle, ikind, ispin, iw, lmax_sphere, maxl, maxlgto, maxlgto_lri, maxlppl, &
     581             :          maxlppnl, method_id, multiplicity, my_ival, n_ao, n_mo_add, natom, nelectron, ngauss, &
     582             :          nkind, output_unit, sort_basis, tnadd_method
     583             :       INTEGER, DIMENSION(2)                              :: n_mo, nelectron_spin
     584             :       LOGICAL :: all_potential_present, be_silent, do_kpoints, do_ri_hfx, do_ri_mp2, do_ri_rpa, &
     585             :          do_ri_sos_mp2, do_rpa_ri_exx, do_wfc_im_time, e1terms, has_unit_metric, lribas, &
     586             :          mp2_present, orb_gradient
     587             :       REAL(KIND=dp)                                      :: alpha, ccore, ewald_rcut, fxx, maxocc, &
     588             :                                                             rcut, total_zeff_corr, verlet_skin, &
     589             :                                                             zeff_correction
     590        6586 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
     591             :       TYPE(cp_logger_type), POINTER                      :: logger
     592             :       TYPE(dft_control_type), POINTER                    :: dft_control
     593             :       TYPE(dftb_control_type), POINTER                   :: dftb_control
     594             :       TYPE(distribution_1d_type), POINTER                :: local_molecules, local_particles
     595             :       TYPE(ewald_environment_type), POINTER              :: ewald_env
     596             :       TYPE(ewald_pw_type), POINTER                       :: ewald_pw
     597             :       TYPE(fist_nonbond_env_type), POINTER               :: se_nonbond_env
     598             :       TYPE(gapw_control_type), POINTER                   :: gapw_control
     599             :       TYPE(gto_basis_set_type), POINTER                  :: aux_fit_basis, lri_aux_basis, &
     600             :                                                             ri_aux_basis_set, ri_hfx_basis, &
     601             :                                                             ri_xas_basis, tmp_basis_set
     602             :       TYPE(local_rho_type), POINTER                      :: local_rho_set
     603             :       TYPE(lri_environment_type), POINTER                :: lri_env
     604        6586 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos, mos_last_converged
     605        6586 :       TYPE(molecule_kind_type), DIMENSION(:), POINTER    :: molecule_kind_set
     606        6586 :       TYPE(molecule_type), DIMENSION(:), POINTER         :: molecule_set
     607             :       TYPE(mp2_type), POINTER                            :: mp2_env
     608             :       TYPE(nddo_mpole_type), POINTER                     :: se_nddo_mpole
     609        6586 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     610             :       TYPE(pw_env_type), POINTER                         :: pw_env
     611             :       TYPE(qs_control_type), POINTER                     :: qs_control
     612             :       TYPE(qs_dftb_pairpot_type), DIMENSION(:, :), &
     613        6586 :          POINTER                                         :: dftb_potential
     614             :       TYPE(qs_dispersion_type), POINTER                  :: dispersion_env
     615             :       TYPE(qs_energy_type), POINTER                      :: energy
     616        6586 :       TYPE(qs_force_type), DIMENSION(:), POINTER         :: force
     617             :       TYPE(qs_gcp_type), POINTER                         :: gcp_env
     618        6586 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     619             :       TYPE(qs_kind_type), POINTER                        :: qs_kind
     620             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
     621             :       TYPE(qs_wf_history_type), POINTER                  :: wf_history
     622             :       TYPE(rho0_mpole_type), POINTER                     :: rho0_mpole
     623        6586 :       TYPE(rho_atom_type), DIMENSION(:), POINTER         :: rho_atom_set
     624             :       TYPE(scf_control_type), POINTER                    :: scf_control
     625             :       TYPE(se_taper_type), POINTER                       :: se_taper
     626             :       TYPE(section_vals_type), POINTER :: dft_section, et_coupling_section, et_ddapc_section, &
     627             :          ewald_section, lri_section, mp2_section, nl_section, poisson_section, pp_section, &
     628             :          print_section, qs_section, se_section, tddfpt_section, xc_section, xtb_section
     629             :       TYPE(semi_empirical_control_type), POINTER         :: se_control
     630             :       TYPE(semi_empirical_si_type), POINTER              :: se_store_int_env
     631             :       TYPE(xtb_control_type), POINTER                    :: xtb_control
     632             : 
     633        6586 :       CALL timeset(routineN, handle)
     634        6586 :       NULLIFY (logger)
     635        6586 :       logger => cp_get_default_logger()
     636        6586 :       output_unit = cp_logger_get_default_io_unit(logger)
     637             : 
     638        6586 :       be_silent = .FALSE.
     639        6586 :       IF (PRESENT(silent)) be_silent = silent
     640             : 
     641        6586 :       CALL cite_reference(cp2kqs2020)
     642             : 
     643             :       ! Initialise the Quickstep environment
     644        6586 :       NULLIFY (mos, se_taper)
     645        6586 :       NULLIFY (dft_control)
     646        6586 :       NULLIFY (energy)
     647        6586 :       NULLIFY (force)
     648        6586 :       NULLIFY (local_molecules)
     649        6586 :       NULLIFY (local_particles)
     650        6586 :       NULLIFY (scf_control)
     651        6586 :       NULLIFY (dft_section)
     652        6586 :       NULLIFY (et_coupling_section)
     653        6586 :       NULLIFY (ks_env)
     654        6586 :       NULLIFY (mos_last_converged)
     655        6586 :       dft_section => section_vals_get_subs_vals(qs_env%input, "DFT")
     656        6586 :       qs_section => section_vals_get_subs_vals(dft_section, "QS")
     657        6586 :       et_coupling_section => section_vals_get_subs_vals(qs_env%input, "PROPERTIES%ET_COUPLING")
     658             :       ! reimplemented TDDFPT
     659        6586 :       tddfpt_section => section_vals_get_subs_vals(qs_env%input, "PROPERTIES%TDDFPT")
     660             : 
     661             :       CALL qs_subsys_get(subsys, particle_set=particle_set, &
     662             :                          qs_kind_set=qs_kind_set, &
     663             :                          atomic_kind_set=atomic_kind_set, &
     664             :                          molecule_set=molecule_set, &
     665        6586 :                          molecule_kind_set=molecule_kind_set)
     666             : 
     667             :       !   *** Read the input section with the DFT control parameters ***
     668        6586 :       CALL read_dft_control(dft_control, dft_section)
     669             : 
     670             :       ! original implementation of TDDFPT
     671        6586 :       IF (dft_control%do_tddfpt_calculation) THEN
     672          12 :          CALL read_tddfpt_control(dft_control%tddfpt_control, dft_section)
     673             :       END IF
     674             : 
     675             :       !   *** Print the Quickstep program banner (copyright and version number) ***
     676        6586 :       IF (.NOT. be_silent) THEN
     677        6584 :          iw = cp_print_key_unit_nr(logger, dft_section, "PRINT%PROGRAM_BANNER", extension=".Log")
     678        6584 :          CALL section_vals_val_get(qs_section, "METHOD", i_val=method_id)
     679        5116 :          SELECT CASE (method_id)
     680             :          CASE DEFAULT
     681        5116 :             CALL qs_header(iw)
     682             :          CASE (do_method_rm1, do_method_am1, do_method_mndo, do_method_pdg, &
     683             :                do_method_pm3, do_method_pm6, do_method_pm6fm, do_method_mndod, do_method_pnnl)
     684         998 :             CALL se_header(iw)
     685             :          CASE (do_method_dftb)
     686         222 :             CALL dftb_header(iw)
     687             :          CASE (do_method_xtb)
     688        6584 :             CALL xtb_header(iw)
     689             :          END SELECT
     690             :          CALL cp_print_key_finished_output(iw, logger, dft_section, &
     691        6584 :                                            "PRINT%PROGRAM_BANNER")
     692             :       END IF
     693             : 
     694             :       ! set periodicity flag
     695       26344 :       dft_control%qs_control%periodicity = SUM(cell%perd)
     696             : 
     697             :       !  Read the input section with the Quickstep control parameters
     698        6586 :       CALL read_qs_section(dft_control%qs_control, qs_section)
     699        6586 :       IF (dft_control%do_sccs .AND. dft_control%qs_control%gapw) THEN
     700           0 :          CPABORT("SCCS is not yet implemented with GAPW")
     701             :       END IF
     702        6586 :       CALL get_qs_env(qs_env=qs_env, do_kpoints=do_kpoints)
     703        6586 :       IF (do_kpoints) THEN
     704             :          ! reset some of the settings for wfn extrapolation for kpoints
     705         246 :          SELECT CASE (dft_control%qs_control%wf_interpolation_method_nr)
     706             :          CASE (wfi_linear_wf_method_nr, wfi_linear_ps_method_nr, wfi_ps_method_nr, wfi_aspc_nr)
     707         154 :             dft_control%qs_control%wf_interpolation_method_nr = wfi_use_guess_method_nr
     708             :          END SELECT
     709             :       END IF
     710             : 
     711             :       !   *******  check if any kind of electron transfer calculation has to be performed
     712        6586 :       CALL section_vals_val_get(et_coupling_section, "TYPE_OF_CONSTRAINT", i_val=my_ival)
     713        6586 :       dft_control%qs_control%et_coupling_calc = .FALSE.
     714        6586 :       IF (my_ival == do_et_ddapc) THEN
     715           0 :          et_ddapc_section => section_vals_get_subs_vals(et_coupling_section, "DDAPC_RESTRAINT_A")
     716           0 :          dft_control%qs_control%et_coupling_calc = .TRUE.
     717           0 :          dft_control%qs_control%ddapc_restraint = .TRUE.
     718           0 :          CALL read_ddapc_section(dft_control%qs_control, ddapc_restraint_section=et_ddapc_section)
     719             :       END IF
     720             : 
     721        6586 :       CALL read_mgrid_section(dft_control%qs_control, dft_section)
     722             : 
     723             :       ! reimplemented TDDFPT
     724        6586 :       CALL read_tddfpt2_control(dft_control%tddfpt2_control, tddfpt_section, dft_control%qs_control)
     725             : 
     726             :       !   Create relativistic control section
     727             :       BLOCK
     728             :          TYPE(rel_control_type), POINTER :: rel_control
     729        6586 :          ALLOCATE (rel_control)
     730        6586 :          CALL rel_c_create(rel_control)
     731        6586 :          CALL rel_c_read_parameters(rel_control, dft_section)
     732        6586 :          CALL set_qs_env(qs_env, rel_control=rel_control)
     733             :       END BLOCK
     734             : 
     735             :       !   *** Read DFTB parameter files ***
     736        6586 :       IF (dft_control%qs_control%method_id == do_method_dftb) THEN
     737         222 :          NULLIFY (ewald_env, ewald_pw, dftb_potential)
     738         222 :          dftb_control => dft_control%qs_control%dftb_control
     739             :          CALL qs_dftb_param_init(atomic_kind_set, qs_kind_set, dftb_control, dftb_potential, &
     740         222 :                                  subsys_section=subsys_section, para_env=para_env)
     741         222 :          CALL set_qs_env(qs_env, dftb_potential=dftb_potential)
     742             :          ! check for Ewald
     743         222 :          IF (dftb_control%do_ewald) THEN
     744        1888 :             ALLOCATE (ewald_env)
     745         118 :             CALL ewald_env_create(ewald_env, para_env)
     746         118 :             poisson_section => section_vals_get_subs_vals(dft_section, "POISSON")
     747         118 :             CALL ewald_env_set(ewald_env, poisson_section=poisson_section)
     748         118 :             ewald_section => section_vals_get_subs_vals(poisson_section, "EWALD")
     749         118 :             print_section => section_vals_get_subs_vals(qs_env%input, "PRINT%GRID_INFORMATION")
     750         118 :             CALL get_qs_kind_set(qs_kind_set, basis_rcut=ewald_rcut)
     751         118 :             CALL read_ewald_section_tb(ewald_env, ewald_section, cell_ref%hmat)
     752         118 :             ALLOCATE (ewald_pw)
     753         118 :             CALL ewald_pw_create(ewald_pw, ewald_env, cell, cell_ref, print_section=print_section)
     754         118 :             CALL set_qs_env(qs_env, ewald_env=ewald_env, ewald_pw=ewald_pw)
     755             :          END IF
     756        6364 :       ELSEIF (dft_control%qs_control%method_id == do_method_xtb) THEN
     757             :          !   *** Read xTB parameter file ***
     758         248 :          xtb_control => dft_control%qs_control%xtb_control
     759         248 :          NULLIFY (ewald_env, ewald_pw)
     760         248 :          CALL get_qs_env(qs_env, nkind=nkind)
     761         840 :          DO ikind = 1, nkind
     762         592 :             qs_kind => qs_kind_set(ikind)
     763             :             ! Setup proper xTB parameters
     764         592 :             CPASSERT(.NOT. ASSOCIATED(qs_kind%xtb_parameter))
     765         592 :             CALL allocate_xtb_atom_param(qs_kind%xtb_parameter)
     766             :             ! Set default parameters
     767         592 :             CALL get_qs_kind(qs_kind, element_symbol=element_symbol)
     768             :             CALL xtb_parameters_init(qs_kind%xtb_parameter, element_symbol, &
     769             :                                      xtb_control%parameter_file_path, xtb_control%parameter_file_name, &
     770         592 :                                      para_env)
     771             :             ! Read specific parameters from input
     772         592 :             xtb_section => section_vals_get_subs_vals(qs_section, "xTB")
     773         592 :             CALL xtb_parameters_read(qs_kind%xtb_parameter, element_symbol, xtb_section)
     774             :             ! set dependent parameters
     775         592 :             CALL xtb_parameters_set(qs_kind%xtb_parameter)
     776             :             ! Generate basis set
     777         592 :             NULLIFY (tmp_basis_set)
     778         592 :             IF (qs_kind%xtb_parameter%z == 1) THEN
     779             :                ! special case hydrogen
     780         226 :                ngauss = xtb_control%h_sto_ng
     781             :             ELSE
     782         366 :                ngauss = xtb_control%sto_ng
     783             :             END IF
     784         592 :             IF (qs_kind%xtb_parameter%defined) THEN
     785         590 :                CALL init_xtb_basis(qs_kind%xtb_parameter, tmp_basis_set, ngauss)
     786         590 :                CALL add_basis_set_to_container(qs_kind%basis_sets, tmp_basis_set, "ORB")
     787             :             ELSE
     788           2 :                CALL set_qs_kind(qs_kind, ghost=.TRUE.)
     789           2 :                IF (ASSOCIATED(qs_kind%all_potential)) THEN
     790           2 :                   DEALLOCATE (qs_kind%all_potential%elec_conf)
     791           2 :                   DEALLOCATE (qs_kind%all_potential)
     792             :                END IF
     793             :             END IF
     794             :             ! potential
     795         840 :             IF (qs_kind%xtb_parameter%defined) THEN
     796         590 :                zeff_correction = 0.0_dp
     797             :                CALL init_potential(qs_kind%all_potential, itype="BARE", &
     798         590 :                                    zeff=qs_kind%xtb_parameter%zeff, zeff_correction=zeff_correction)
     799         590 :                CALL get_potential(qs_kind%all_potential, alpha_core_charge=alpha)
     800         590 :                ccore = qs_kind%xtb_parameter%zeff*SQRT((alpha/pi)**3)
     801         590 :                CALL set_potential(qs_kind%all_potential, ccore_charge=ccore)
     802             :                qs_kind%xtb_parameter%zeff = qs_kind%xtb_parameter%zeff - zeff_correction
     803             :             END IF
     804             :          END DO
     805             :          !
     806             :          ! check for Ewald
     807         248 :          IF (xtb_control%do_ewald) THEN
     808        2016 :             ALLOCATE (ewald_env)
     809         126 :             CALL ewald_env_create(ewald_env, para_env)
     810         126 :             poisson_section => section_vals_get_subs_vals(dft_section, "POISSON")
     811         126 :             CALL ewald_env_set(ewald_env, poisson_section=poisson_section)
     812         126 :             ewald_section => section_vals_get_subs_vals(poisson_section, "EWALD")
     813         126 :             print_section => section_vals_get_subs_vals(qs_env%input, "PRINT%GRID_INFORMATION")
     814         126 :             CALL read_ewald_section_tb(ewald_env, ewald_section, cell_ref%hmat)
     815         126 :             ALLOCATE (ewald_pw)
     816         126 :             CALL ewald_pw_create(ewald_pw, ewald_env, cell, cell_ref, print_section=print_section)
     817         126 :             CALL set_qs_env(qs_env, ewald_env=ewald_env, ewald_pw=ewald_pw)
     818             :          END IF
     819             :       END IF
     820             : 
     821             :       ! lri or ri env initialization
     822        6586 :       lri_section => section_vals_get_subs_vals(qs_section, "LRIGPW")
     823             :       IF (dft_control%qs_control%method_id == do_method_lrigpw .OR. &
     824        6586 :           dft_control%qs_control%lri_optbas .OR. &
     825             :           dft_control%qs_control%method_id == do_method_rigpw) THEN
     826          46 :          CALL lri_env_init(lri_env, lri_section)
     827          46 :          CALL set_qs_env(qs_env, lri_env=lri_env)
     828             :       END IF
     829             : 
     830             :       !   *** Check basis and fill in missing parts ***
     831        6586 :       CALL check_qs_kind_set(qs_kind_set, dft_control, subsys_section=subsys_section)
     832             : 
     833             :       !   *** Check that no all-electron potential is present if GPW or GAPW_XC
     834        6586 :       CALL get_qs_kind_set(qs_kind_set, all_potential_present=all_potential_present)
     835             :       IF ((dft_control%qs_control%method_id == do_method_gpw) .OR. &
     836        6586 :           (dft_control%qs_control%method_id == do_method_gapw_xc) .OR. &
     837             :           (dft_control%qs_control%method_id == do_method_ofgpw)) THEN
     838        4270 :          IF (all_potential_present) THEN
     839           0 :             CPABORT("All-electron calculations with GPW, GAPW_XC, and OFGPW are not implemented")
     840             :          END IF
     841             :       END IF
     842             : 
     843             :       ! DFT+U
     844        6586 :       CALL get_qs_kind_set(qs_kind_set, dft_plus_u_atom_present=dft_control%dft_plus_u)
     845             : 
     846        6586 :       IF (dft_control%do_admm) THEN
     847             :          ! Check if ADMM basis is available
     848         442 :          CALL get_qs_env(qs_env, nkind=nkind)
     849        1254 :          DO ikind = 1, nkind
     850         812 :             NULLIFY (aux_fit_basis)
     851         812 :             qs_kind => qs_kind_set(ikind)
     852         812 :             CALL get_qs_kind(qs_kind, basis_set=aux_fit_basis, basis_type="AUX_FIT")
     853        1254 :             IF (.NOT. (ASSOCIATED(aux_fit_basis))) THEN
     854             :                ! AUX_FIT basis set is not available
     855           0 :                CPABORT("AUX_FIT basis set is not defined. ")
     856             :             END IF
     857             :          END DO
     858             :       END IF
     859             : 
     860        6586 :       lribas = .FALSE.
     861        6586 :       e1terms = .FALSE.
     862        6586 :       IF (dft_control%qs_control%method_id == do_method_lrigpw) THEN
     863          40 :          lribas = .TRUE.
     864          40 :          CALL get_qs_env(qs_env, lri_env=lri_env)
     865          40 :          e1terms = lri_env%exact_1c_terms
     866             :       END IF
     867        6586 :       IF (dft_control%qs_control%do_kg) THEN
     868          66 :          CALL section_vals_val_get(dft_section, "KG_METHOD%TNADD_METHOD", i_val=tnadd_method)
     869          66 :          IF (tnadd_method == kg_tnadd_embed_ri) lribas = .TRUE.
     870             :       END IF
     871        6584 :       IF (lribas) THEN
     872             :          ! Check if LRI_AUX basis is available, auto-generate if needed
     873          42 :          CALL get_qs_env(qs_env, nkind=nkind)
     874         122 :          DO ikind = 1, nkind
     875          80 :             NULLIFY (lri_aux_basis)
     876          80 :             qs_kind => qs_kind_set(ikind)
     877          80 :             CALL get_qs_kind(qs_kind, basis_set=lri_aux_basis, basis_type="LRI_AUX")
     878         122 :             IF (.NOT. (ASSOCIATED(lri_aux_basis))) THEN
     879             :                ! LRI_AUX basis set is not yet loaded
     880             :                CALL cp_warn(__LOCATION__, "Automatic Generation of LRI_AUX basis. "// &
     881          18 :                             "This is experimental code.")
     882             :                ! Generate a default basis
     883          18 :                CALL create_lri_aux_basis_set(lri_aux_basis, qs_kind, dft_control%auto_basis_lri_aux, e1terms)
     884          18 :                CALL add_basis_set_to_container(qs_kind%basis_sets, lri_aux_basis, "LRI_AUX")
     885             :             END IF
     886             :          END DO
     887             :       END IF
     888             : 
     889        6586 :       CALL section_vals_val_get(qs_env%input, "DFT%XC%HF%RI%_SECTION_PARAMETERS_", l_val=do_ri_hfx)
     890             :       CALL section_vals_val_get(qs_env%input, "DFT%XC%WF_CORRELATION%RI_RPA%HF%RI%_SECTION_PARAMETERS_", &
     891        6586 :                                 l_val=do_rpa_ri_exx)
     892        6586 :       IF (do_ri_hfx .OR. do_rpa_ri_exx) THEN
     893         100 :          CALL get_qs_env(qs_env, nkind=nkind)
     894         100 :          CALL section_vals_val_get(qs_env%input, "DFT%SORT_BASIS", i_val=sort_basis)
     895         270 :          DO ikind = 1, nkind
     896         170 :             NULLIFY (ri_hfx_basis)
     897         170 :             qs_kind => qs_kind_set(ikind)
     898             :             CALL get_qs_kind(qs_kind=qs_kind, basis_set=ri_hfx_basis, &
     899         170 :                              basis_type="RI_HFX")
     900        6756 :             IF (.NOT. (ASSOCIATED(ri_hfx_basis))) THEN
     901         166 :                CALL get_qs_kind_set(qs_kind_set, maxlgto=maxlgto)
     902         166 :                IF (dft_control%do_admm) THEN
     903             :                   CALL create_ri_aux_basis_set(ri_hfx_basis, qs_kind, dft_control%auto_basis_ri_hfx, &
     904          56 :                                                basis_type="AUX_FIT", basis_sort=sort_basis)
     905             :                ELSE
     906             :                   CALL create_ri_aux_basis_set(ri_hfx_basis, qs_kind, dft_control%auto_basis_ri_hfx, &
     907         110 :                                                basis_sort=sort_basis)
     908             :                END IF
     909         166 :                CALL add_basis_set_to_container(qs_kind%basis_sets, ri_hfx_basis, "RI_HFX")
     910             :             END IF
     911             :          END DO
     912             :       END IF
     913             : 
     914        6586 :       IF (dft_control%qs_control%method_id == do_method_rigpw) THEN
     915             :          ! Check if RI_HXC basis is available, auto-generate if needed
     916           0 :          CALL get_qs_env(qs_env, nkind=nkind)
     917           0 :          DO ikind = 1, nkind
     918           0 :             NULLIFY (ri_hfx_basis)
     919           0 :             qs_kind => qs_kind_set(ikind)
     920           0 :             CALL get_qs_kind(qs_kind, basis_set=ri_hfx_basis, basis_type="RI_HXC")
     921           0 :             IF (.NOT. (ASSOCIATED(ri_hfx_basis))) THEN
     922             :                ! RI_HXC basis set is not yet loaded
     923             :                CALL cp_warn(__LOCATION__, "Automatic Generation of RI_HXC basis. "// &
     924           0 :                             "This is experimental code.")
     925             :                ! Generate a default basis
     926           0 :                CALL create_ri_aux_basis_set(ri_hfx_basis, qs_kind, dft_control%auto_basis_ri_hxc)
     927           0 :                CALL add_basis_set_to_container(qs_kind%basis_sets, ri_hfx_basis, "RI_HXC")
     928             :             END IF
     929             :          END DO
     930             :       END IF
     931             : 
     932        6586 :       mp2_section => section_vals_get_subs_vals(qs_env%input, "DFT%XC%WF_CORRELATION")
     933        6586 :       CALL section_vals_get(mp2_section, explicit=mp2_present)
     934        6586 :       IF (mp2_present) THEN
     935             : 
     936             :          ! basis should be sorted for imaginary time RPA/GW
     937         438 :          CALL section_vals_val_get(qs_env%input, "DFT%SORT_BASIS", i_val=sort_basis)
     938             :          CALL section_vals_val_get(qs_env%input, "DFT%XC%WF_CORRELATION%LOW_SCALING%_SECTION_PARAMETERS_", &
     939         438 :                                    l_val=do_wfc_im_time)
     940             : 
     941         438 :          IF (do_wfc_im_time .AND. sort_basis /= basis_sort_zet) THEN
     942             :             CALL cp_warn(__LOCATION__, &
     943          10 :                          "Low-scaling RPA requires SORT_BASIS EXP keyword (in DFT input section) for good performance")
     944             :          END IF
     945             : 
     946             :          ! Check if RI_AUX basis (for MP2/RPA) is given, auto-generate if not
     947         438 :          CALL mp2_env_create(qs_env%mp2_env)
     948         438 :          CALL get_qs_env(qs_env, mp2_env=mp2_env, nkind=nkind)
     949         438 :          CALL section_vals_val_get(qs_env%input, "DFT%XC%WF_CORRELATION%RI_MP2%_SECTION_PARAMETERS_", l_val=do_ri_mp2)
     950         438 :          CALL section_vals_val_get(qs_env%input, "DFT%XC%WF_CORRELATION%RI_SOS_MP2%_SECTION_PARAMETERS_", l_val=do_ri_sos_mp2)
     951         438 :          CALL section_vals_val_get(qs_env%input, "DFT%XC%WF_CORRELATION%RI_RPA%_SECTION_PARAMETERS_", l_val=do_ri_rpa)
     952         438 :          IF (do_ri_mp2 .OR. do_ri_sos_mp2 .OR. do_ri_rpa) THEN
     953        1174 :             DO ikind = 1, nkind
     954         774 :                NULLIFY (ri_aux_basis_set)
     955         774 :                qs_kind => qs_kind_set(ikind)
     956             :                CALL get_qs_kind(qs_kind=qs_kind, basis_set=ri_aux_basis_set, &
     957         774 :                                 basis_type="RI_AUX")
     958        1212 :                IF (.NOT. (ASSOCIATED(ri_aux_basis_set))) THEN
     959             :                   ! RI_AUX basis set is not yet loaded
     960             :                   ! Generate a default basis
     961           8 :                   CALL create_ri_aux_basis_set(ri_aux_basis_set, qs_kind, dft_control%auto_basis_ri_aux, basis_sort=sort_basis)
     962           8 :                   CALL add_basis_set_to_container(qs_kind%basis_sets, ri_aux_basis_set, "RI_AUX")
     963             :                END IF
     964             :             END DO
     965             :          END IF
     966             : 
     967             :       END IF
     968             : 
     969        6586 :       IF (dft_control%do_xas_tdp_calculation) THEN
     970             :          ! Check if RI_XAS basis is given, auto-generate if not
     971          50 :          CALL get_qs_env(qs_env, nkind=nkind)
     972         128 :          DO ikind = 1, nkind
     973          78 :             NULLIFY (ri_xas_basis)
     974          78 :             qs_kind => qs_kind_set(ikind)
     975          78 :             CALL get_qs_kind(qs_kind, basis_Set=ri_xas_basis, basis_type="RI_XAS")
     976         128 :             IF (.NOT. ASSOCIATED(ri_xas_basis)) THEN
     977             :                ! Generate a default basis
     978          76 :                CALL create_ri_aux_basis_set(ri_xas_basis, qs_kind, dft_control%auto_basis_ri_xas)
     979          76 :                CALL add_basis_set_to_container(qs_kind%basis_sets, ri_xas_basis, "RI_XAS")
     980             :             END IF
     981             :          END DO
     982             :       END IF
     983             : 
     984             :       !   *** Initialize the spherical harmonics and ***
     985             :       !   *** the orbital transformation matrices    ***
     986        6586 :       CALL get_qs_kind_set(qs_kind_set, maxlgto=maxlgto, maxlppl=maxlppl, maxlppnl=maxlppnl)
     987             : 
     988        6586 :       lmax_sphere = dft_control%qs_control%gapw_control%lmax_sphere
     989        6586 :       IF (lmax_sphere .LT. 0) THEN
     990        6468 :          lmax_sphere = 2*maxlgto
     991        6468 :          dft_control%qs_control%gapw_control%lmax_sphere = lmax_sphere
     992             :       END IF
     993        6586 :       IF (dft_control%qs_control%method_id == do_method_lrigpw .OR. dft_control%qs_control%lri_optbas) THEN
     994          46 :          CALL get_qs_kind_set(qs_kind_set, maxlgto=maxlgto_lri, basis_type="LRI_AUX")
     995             :          !take maxlgto from lri basis if larger (usually)
     996          46 :          maxlgto = MAX(maxlgto, maxlgto_lri)
     997        6540 :       ELSE IF (dft_control%qs_control%method_id == do_method_rigpw) THEN
     998           0 :          CALL get_qs_kind_set(qs_kind_set, maxlgto=maxlgto_lri, basis_type="RI_HXC")
     999           0 :          maxlgto = MAX(maxlgto, maxlgto_lri)
    1000             :       END IF
    1001        6586 :       IF (dft_control%do_xas_tdp_calculation) THEN
    1002             :          !done as a precaution
    1003          50 :          CALL get_qs_kind_set(qs_kind_set, maxlgto=maxlgto_lri, basis_type="RI_XAS")
    1004          50 :          maxlgto = MAX(maxlgto, maxlgto_lri)
    1005             :       END IF
    1006        6586 :       maxl = MAX(2*maxlgto, maxlppl, maxlppnl, lmax_sphere) + 1
    1007             : 
    1008        6586 :       CALL init_orbital_pointers(maxl)
    1009             : 
    1010        6586 :       CALL init_spherical_harmonics(maxl, 0)
    1011             : 
    1012             :       !   *** Initialise the qs_kind_set ***
    1013        6586 :       CALL init_qs_kind_set(qs_kind_set)
    1014             : 
    1015             :       !   *** Initialise GAPW soft basis and projectors
    1016        6586 :       IF (dft_control%qs_control%method_id == do_method_gapw .OR. &
    1017             :           dft_control%qs_control%method_id == do_method_gapw_xc) THEN
    1018         914 :          qs_control => dft_control%qs_control
    1019         914 :          CALL init_gapw_basis_set(qs_kind_set, qs_control, qs_env%input)
    1020             :       END IF
    1021             : 
    1022             :       !   *** Initialize the pretabulation for the calculation of the   ***
    1023             :       !   *** incomplete Gamma function F_n(t) after McMurchie-Davidson ***
    1024        6586 :       CALL get_qs_kind_set(qs_kind_set, maxlgto=maxlgto)
    1025        6586 :       maxl = MAX(3*maxlgto + 1, 0)
    1026        6586 :       CALL init_md_ftable(maxl)
    1027             : 
    1028             :       !   *** Initialize the atomic interaction radii ***
    1029        6586 :       CALL init_interaction_radii(dft_control%qs_control, qs_kind_set)
    1030             :       !
    1031        6586 :       IF (dft_control%qs_control%method_id == do_method_xtb) THEN
    1032             :          ! cutoff radius
    1033         840 :          DO ikind = 1, nkind
    1034         592 :             qs_kind => qs_kind_set(ikind)
    1035         840 :             IF (qs_kind%xtb_parameter%defined) THEN
    1036         590 :                CALL get_qs_kind(qs_kind, basis_set=tmp_basis_set)
    1037         590 :                IF (xtb_control%old_coulomb_damping) THEN
    1038           0 :                   CALL get_gto_basis_set(tmp_basis_set, kind_radius=rcut)
    1039           0 :                   qs_kind%xtb_parameter%rcut = rcut
    1040             :                ELSE
    1041         590 :                   rcut = xtb_control%coulomb_sr_cut
    1042         590 :                   fxx = 2.0_dp*xtb_control%coulomb_sr_eps*qs_kind%xtb_parameter%eta**2
    1043         590 :                   fxx = 0.80_dp*(1.0_dp/fxx)**0.3333_dp
    1044             :                   rcut = MIN(rcut, xtb_control%coulomb_sr_cut)
    1045         590 :                   qs_kind%xtb_parameter%rcut = MIN(rcut, fxx)
    1046             :                END IF
    1047             :             ELSE
    1048           2 :                qs_kind%xtb_parameter%rcut = 0.0_dp
    1049             :             END IF
    1050             :          END DO
    1051             :       END IF
    1052             : 
    1053        6586 :       IF (.NOT. be_silent) THEN
    1054        6584 :          CALL write_pgf_orb_radii("orb", atomic_kind_set, qs_kind_set, subsys_section)
    1055        6584 :          CALL write_pgf_orb_radii("aux", atomic_kind_set, qs_kind_set, subsys_section)
    1056        6584 :          CALL write_pgf_orb_radii("lri", atomic_kind_set, qs_kind_set, subsys_section)
    1057        6584 :          CALL write_core_charge_radii(atomic_kind_set, qs_kind_set, subsys_section)
    1058        6584 :          CALL write_ppl_radii(atomic_kind_set, qs_kind_set, subsys_section)
    1059        6584 :          CALL write_ppnl_radii(atomic_kind_set, qs_kind_set, subsys_section)
    1060        6584 :          CALL write_paw_radii(atomic_kind_set, qs_kind_set, subsys_section)
    1061             :       END IF
    1062             : 
    1063             :       !   *** Distribute molecules and atoms using the new data structures ***
    1064             :       CALL distribute_molecules_1d(atomic_kind_set=atomic_kind_set, &
    1065             :                                    particle_set=particle_set, &
    1066             :                                    local_particles=local_particles, &
    1067             :                                    molecule_kind_set=molecule_kind_set, &
    1068             :                                    molecule_set=molecule_set, &
    1069             :                                    local_molecules=local_molecules, &
    1070        6586 :                                    force_env_section=qs_env%input)
    1071             : 
    1072             :       !   *** SCF parameters ***
    1073      190994 :       ALLOCATE (scf_control)
    1074             :       ! set (non)-self consistency
    1075        6586 :       IF (dft_control%qs_control%dftb) THEN
    1076         222 :          scf_control%non_selfconsistent = .NOT. dft_control%qs_control%dftb_control%self_consistent
    1077             :       END IF
    1078        6586 :       CALL scf_c_create(scf_control)
    1079        6586 :       CALL scf_c_read_parameters(scf_control, dft_section)
    1080             : 
    1081             :       !   *** Allocate the data structure for Quickstep energies ***
    1082        6586 :       CALL allocate_qs_energy(energy)
    1083             : 
    1084             :       ! check for orthogonal basis
    1085        6586 :       has_unit_metric = .FALSE.
    1086        6586 :       IF (dft_control%qs_control%semi_empirical) THEN
    1087         998 :          IF (dft_control%qs_control%se_control%orthogonal_basis) has_unit_metric = .TRUE.
    1088             :       END IF
    1089        6586 :       IF (dft_control%qs_control%dftb) THEN
    1090         222 :          IF (dft_control%qs_control%dftb_control%orthogonal_basis) has_unit_metric = .TRUE.
    1091             :       END IF
    1092        6586 :       CALL set_qs_env(qs_env, has_unit_metric=has_unit_metric)
    1093             : 
    1094             :       !   *** Activate the interpolation ***
    1095             :       CALL wfi_create(wf_history, &
    1096             :                       interpolation_method_nr= &
    1097             :                       dft_control%qs_control%wf_interpolation_method_nr, &
    1098             :                       extrapolation_order=dft_control%qs_control%wf_extrapolation_order, &
    1099        6586 :                       has_unit_metric=has_unit_metric)
    1100             : 
    1101             :       !   *** Set the current Quickstep environment ***
    1102             :       CALL set_qs_env(qs_env=qs_env, &
    1103             :                       scf_control=scf_control, &
    1104        6586 :                       wf_history=wf_history)
    1105             : 
    1106             :       CALL qs_subsys_set(subsys, &
    1107             :                          cell_ref=cell_ref, &
    1108             :                          use_ref_cell=use_ref_cell, &
    1109             :                          energy=energy, &
    1110        6586 :                          force=force)
    1111             : 
    1112        6586 :       CALL get_qs_env(qs_env, ks_env=ks_env)
    1113        6586 :       CALL set_ks_env(ks_env, dft_control=dft_control)
    1114             : 
    1115             :       CALL qs_subsys_set(subsys, local_molecules=local_molecules, &
    1116        6586 :                          local_particles=local_particles, cell=cell)
    1117             : 
    1118        6586 :       CALL distribution_1d_release(local_particles)
    1119        6586 :       CALL distribution_1d_release(local_molecules)
    1120        6586 :       CALL wfi_release(wf_history)
    1121             : 
    1122             :       CALL get_qs_env(qs_env=qs_env, &
    1123             :                       atomic_kind_set=atomic_kind_set, &
    1124             :                       dft_control=dft_control, &
    1125        6586 :                       scf_control=scf_control)
    1126             : 
    1127             :       ! decide what conditions need mo_derivs
    1128             :       ! right now, this only appears to be OT
    1129        6586 :       IF (dft_control%qs_control%do_ls_scf .OR. &
    1130             :           dft_control%qs_control%do_almo_scf) THEN
    1131         402 :          CALL set_qs_env(qs_env=qs_env, requires_mo_derivs=.FALSE.)
    1132             :       ELSE
    1133        6184 :          IF (scf_control%use_ot) THEN
    1134        1990 :             CALL set_qs_env(qs_env=qs_env, requires_mo_derivs=.TRUE.)
    1135             :          ELSE
    1136        4194 :             CALL set_qs_env(qs_env=qs_env, requires_mo_derivs=.FALSE.)
    1137             :          END IF
    1138             :       END IF
    1139             : 
    1140             :       ! XXXXXXX this is backwards XXXXXXXX
    1141        6586 :       dft_control%smear = scf_control%smear%do_smear
    1142             : 
    1143             :       ! Periodic efield needs equal occupation and orbital gradients
    1144        6586 :       IF (.NOT. (dft_control%qs_control%dftb .OR. dft_control%qs_control%xtb)) THEN
    1145        6116 :          IF (dft_control%apply_period_efield) THEN
    1146          26 :             CALL get_qs_env(qs_env=qs_env, requires_mo_derivs=orb_gradient)
    1147          26 :             IF (.NOT. orb_gradient) THEN
    1148             :                CALL cp_abort(__LOCATION__, "Periodic Efield needs orbital gradient and direct optimization."// &
    1149           0 :                              " Use the OT optimization method.")
    1150             :             END IF
    1151          26 :             IF (dft_control%smear) THEN
    1152             :                CALL cp_abort(__LOCATION__, "Periodic Efield needs equal occupation numbers."// &
    1153           0 :                              " Smearing option is not possible.")
    1154             :             END IF
    1155             :          END IF
    1156             :       END IF
    1157             : 
    1158             :       !   Initialize the GAPW local densities and potentials
    1159        6586 :       IF (dft_control%qs_control%method_id == do_method_gapw .OR. &
    1160             :           dft_control%qs_control%method_id == do_method_gapw_xc) THEN
    1161             :          !     *** Allocate and initialize the set of atomic densities ***
    1162         914 :          NULLIFY (rho_atom_set)
    1163         914 :          gapw_control => dft_control%qs_control%gapw_control
    1164         914 :          CALL init_rho_atom(rho_atom_set, atomic_kind_set, qs_kind_set, dft_control, para_env)
    1165         914 :          CALL set_qs_env(qs_env=qs_env, rho_atom_set=rho_atom_set)
    1166         914 :          IF (dft_control%qs_control%method_id /= do_method_gapw_xc) THEN
    1167         808 :             CALL get_qs_env(qs_env=qs_env, local_rho_set=local_rho_set, natom=natom)
    1168             :             !       *** Allocate and initialize the compensation density rho0 ***
    1169         808 :             CALL init_rho0(local_rho_set, qs_env, gapw_control)
    1170             :             !       *** Allocate and Initialize the local coulomb term ***
    1171         808 :             CALL init_coulomb_local(qs_env%hartree_local, natom)
    1172             :          END IF
    1173             :          ! NLCC
    1174         914 :          CALL init_gapw_nlcc(qs_kind_set)
    1175        5672 :       ELSE IF (dft_control%qs_control%method_id == do_method_lrigpw) THEN
    1176             :          ! allocate local ri environment
    1177             :          ! nothing to do here?
    1178        5632 :       ELSE IF (dft_control%qs_control%method_id == do_method_rigpw) THEN
    1179             :          ! allocate ri environment
    1180             :          ! nothing to do here?
    1181        5632 :       ELSE IF (dft_control%qs_control%semi_empirical) THEN
    1182         998 :          NULLIFY (se_store_int_env, se_nddo_mpole, se_nonbond_env)
    1183         998 :          natom = SIZE(particle_set)
    1184         998 :          se_section => section_vals_get_subs_vals(qs_section, "SE")
    1185         998 :          se_control => dft_control%qs_control%se_control
    1186             : 
    1187             :          ! Make the cutoff radii choice a bit smarter
    1188         998 :          CALL se_cutoff_compatible(se_control, se_section, cell, output_unit)
    1189             : 
    1190        1994 :          SELECT CASE (dft_control%qs_control%method_id)
    1191             :          CASE DEFAULT
    1192             :          CASE (do_method_rm1, do_method_am1, do_method_mndo, do_method_pm3, &
    1193             :                do_method_pm6, do_method_pm6fm, do_method_mndod, do_method_pnnl)
    1194             :             ! Neighbor lists have to be MAX(interaction range, orbital range)
    1195             :             ! set new kind radius
    1196         998 :             CALL init_se_nlradius(se_control, atomic_kind_set, qs_kind_set, subsys_section)
    1197             :          END SELECT
    1198             :          ! Initialize to zero the max multipole to treat in the EWALD scheme..
    1199         998 :          se_control%max_multipole = do_multipole_none
    1200             :          ! check for Ewald
    1201         998 :          IF (se_control%do_ewald .OR. se_control%do_ewald_gks) THEN
    1202         512 :             ALLOCATE (ewald_env)
    1203          32 :             CALL ewald_env_create(ewald_env, para_env)
    1204          32 :             poisson_section => section_vals_get_subs_vals(dft_section, "POISSON")
    1205          32 :             CALL ewald_env_set(ewald_env, poisson_section=poisson_section)
    1206          32 :             ewald_section => section_vals_get_subs_vals(poisson_section, "EWALD")
    1207             :             print_section => section_vals_get_subs_vals(qs_env%input, &
    1208          32 :                                                         "PRINT%GRID_INFORMATION")
    1209          32 :             CALL read_ewald_section(ewald_env, ewald_section)
    1210             :             ! Create ewald grids
    1211          32 :             ALLOCATE (ewald_pw)
    1212             :             CALL ewald_pw_create(ewald_pw, ewald_env, cell, cell_ref, &
    1213          32 :                                  print_section=print_section)
    1214             :             ! Initialize ewald grids
    1215          32 :             CALL ewald_pw_grid_update(ewald_pw, ewald_env, cell%hmat)
    1216             :             ! Setup the nonbond environment (real space part of Ewald)
    1217          32 :             CALL ewald_env_get(ewald_env, rcut=ewald_rcut)
    1218             :             ! Setup the maximum level of multipoles to be treated in the periodic SE scheme
    1219          32 :             IF (se_control%do_ewald) THEN
    1220          30 :                CALL ewald_env_get(ewald_env, max_multipole=se_control%max_multipole)
    1221             :             END IF
    1222             :             CALL section_vals_val_get(se_section, "NEIGHBOR_LISTS%VERLET_SKIN", &
    1223          32 :                                       r_val=verlet_skin)
    1224          32 :             ALLOCATE (se_nonbond_env)
    1225             :             CALL fist_nonbond_env_create(se_nonbond_env, atomic_kind_set, do_nonbonded=.TRUE., &
    1226             :                                          do_electrostatics=.TRUE., verlet_skin=verlet_skin, ewald_rcut=ewald_rcut, &
    1227          32 :                                          ei_scale14=0.0_dp, vdw_scale14=0.0_dp, shift_cutoff=.FALSE.)
    1228             :             ! Create and Setup NDDO multipole environment
    1229          32 :             CALL nddo_mpole_setup(se_nddo_mpole, natom)
    1230             :             CALL set_qs_env(qs_env, ewald_env=ewald_env, ewald_pw=ewald_pw, &
    1231          32 :                             se_nonbond_env=se_nonbond_env, se_nddo_mpole=se_nddo_mpole)
    1232             :             ! Handle the residual integral part 1/R^3
    1233             :             CALL semi_empirical_expns3_setup(qs_kind_set, se_control, &
    1234          32 :                                              dft_control%qs_control%method_id)
    1235             :          END IF
    1236             :          ! Taper function
    1237             :          CALL se_taper_create(se_taper, se_control%integral_screening, se_control%do_ewald, &
    1238             :                               se_control%taper_cou, se_control%range_cou, &
    1239             :                               se_control%taper_exc, se_control%range_exc, &
    1240             :                               se_control%taper_scr, se_control%range_scr, &
    1241         998 :                               se_control%taper_lrc, se_control%range_lrc)
    1242         998 :          CALL set_qs_env(qs_env, se_taper=se_taper)
    1243             :          ! Store integral environment
    1244         998 :          CALL semi_empirical_si_create(se_store_int_env, se_section)
    1245         998 :          CALL set_qs_env(qs_env, se_store_int_env=se_store_int_env)
    1246             :       END IF
    1247             : 
    1248             :       !   Initialize possible dispersion parameters
    1249             :       IF (dft_control%qs_control%method_id == do_method_gpw .OR. &
    1250             :           dft_control%qs_control%method_id == do_method_gapw .OR. &
    1251             :           dft_control%qs_control%method_id == do_method_gapw_xc .OR. &
    1252             :           dft_control%qs_control%method_id == do_method_lrigpw .OR. &
    1253        6586 :           dft_control%qs_control%method_id == do_method_rigpw .OR. &
    1254             :           dft_control%qs_control%method_id == do_method_ofgpw) THEN
    1255       25590 :          ALLOCATE (dispersion_env)
    1256        5118 :          NULLIFY (xc_section)
    1257        5118 :          xc_section => section_vals_get_subs_vals(dft_section, "XC")
    1258        5118 :          CALL qs_dispersion_env_set(dispersion_env, xc_section)
    1259        5118 :          IF (dispersion_env%type == xc_vdw_fun_pairpot) THEN
    1260          80 :             NULLIFY (pp_section)
    1261          80 :             pp_section => section_vals_get_subs_vals(xc_section, "VDW_POTENTIAL%PAIR_POTENTIAL")
    1262          80 :             CALL qs_dispersion_pairpot_init(atomic_kind_set, qs_kind_set, dispersion_env, pp_section, para_env)
    1263        5038 :          ELSE IF (dispersion_env%type == xc_vdw_fun_nonloc) THEN
    1264          46 :             NULLIFY (nl_section)
    1265          46 :             nl_section => section_vals_get_subs_vals(xc_section, "VDW_POTENTIAL%NON_LOCAL")
    1266          46 :             CALL qs_dispersion_nonloc_init(dispersion_env, para_env)
    1267             :          END IF
    1268        5118 :          CALL set_qs_env(qs_env, dispersion_env=dispersion_env)
    1269        1468 :       ELSE IF (dft_control%qs_control%method_id == do_method_dftb) THEN
    1270        1110 :          ALLOCATE (dispersion_env)
    1271             :          ! set general defaults
    1272             :          dispersion_env%doabc = .FALSE.
    1273             :          dispersion_env%c9cnst = .FALSE.
    1274             :          dispersion_env%lrc = .FALSE.
    1275             :          dispersion_env%srb = .FALSE.
    1276             :          dispersion_env%verbose = .FALSE.
    1277             :          NULLIFY (dispersion_env%c6ab, dispersion_env%maxci, dispersion_env%r0ab, dispersion_env%rcov, &
    1278             :                   dispersion_env%r2r4, dispersion_env%cn, dispersion_env%cnkind, dispersion_env%cnlist, &
    1279             :                   dispersion_env%d3_exclude_pair)
    1280             :          NULLIFY (dispersion_env%q_mesh, dispersion_env%kernel, dispersion_env%d2phi_dk2, &
    1281             :                   dispersion_env%d2y_dx2, dispersion_env%dftd_section)
    1282             :          NULLIFY (dispersion_env%sab_vdw, dispersion_env%sab_cn)
    1283         222 :          IF (dftb_control%dispersion .AND. dftb_control%dispersion_type == dispersion_d3) THEN
    1284          14 :             dispersion_env%type = xc_vdw_fun_pairpot
    1285          14 :             dispersion_env%pp_type = vdw_pairpot_dftd3
    1286          14 :             dispersion_env%eps_cn = dftb_control%epscn
    1287          14 :             dispersion_env%s6 = dftb_control%sd3(1)
    1288          14 :             dispersion_env%sr6 = dftb_control%sd3(2)
    1289          14 :             dispersion_env%s8 = dftb_control%sd3(3)
    1290             :             dispersion_env%domol = .FALSE.
    1291          14 :             dispersion_env%kgc8 = 0._dp
    1292          14 :             dispersion_env%rc_disp = dftb_control%rcdisp
    1293          14 :             dispersion_env%exp_pre = 0._dp
    1294          14 :             dispersion_env%scaling = 0._dp
    1295          14 :             dispersion_env%nd3_exclude_pair = 0
    1296          14 :             dispersion_env%parameter_file_name = dftb_control%dispersion_parameter_file
    1297          14 :             CALL qs_dispersion_pairpot_init(atomic_kind_set, qs_kind_set, dispersion_env, para_env=para_env)
    1298         208 :          ELSEIF (dftb_control%dispersion .AND. dftb_control%dispersion_type == dispersion_d3bj) THEN
    1299           2 :             dispersion_env%type = xc_vdw_fun_pairpot
    1300           2 :             dispersion_env%pp_type = vdw_pairpot_dftd3bj
    1301           2 :             dispersion_env%eps_cn = dftb_control%epscn
    1302           2 :             dispersion_env%s6 = dftb_control%sd3bj(1)
    1303           2 :             dispersion_env%a1 = dftb_control%sd3bj(2)
    1304           2 :             dispersion_env%s8 = dftb_control%sd3bj(3)
    1305           2 :             dispersion_env%a2 = dftb_control%sd3bj(4)
    1306             :             dispersion_env%domol = .FALSE.
    1307           2 :             dispersion_env%kgc8 = 0._dp
    1308           2 :             dispersion_env%rc_disp = dftb_control%rcdisp
    1309           2 :             dispersion_env%exp_pre = 0._dp
    1310           2 :             dispersion_env%scaling = 0._dp
    1311           2 :             dispersion_env%nd3_exclude_pair = 0
    1312           2 :             dispersion_env%parameter_file_name = dftb_control%dispersion_parameter_file
    1313           2 :             CALL qs_dispersion_pairpot_init(atomic_kind_set, qs_kind_set, dispersion_env, para_env=para_env)
    1314         206 :          ELSEIF (dftb_control%dispersion .AND. dftb_control%dispersion_type == dispersion_d2) THEN
    1315           2 :             dispersion_env%type = xc_vdw_fun_pairpot
    1316           2 :             dispersion_env%pp_type = vdw_pairpot_dftd2
    1317           2 :             dispersion_env%exp_pre = dftb_control%exp_pre
    1318           2 :             dispersion_env%scaling = dftb_control%scaling
    1319           2 :             dispersion_env%parameter_file_name = dftb_control%dispersion_parameter_file
    1320           2 :             dispersion_env%rc_disp = dftb_control%rcdisp
    1321           2 :             CALL qs_dispersion_pairpot_init(atomic_kind_set, qs_kind_set, dispersion_env, para_env=para_env)
    1322             :          ELSE
    1323         204 :             dispersion_env%type = xc_vdw_fun_none
    1324             :          END IF
    1325         222 :          CALL set_qs_env(qs_env, dispersion_env=dispersion_env)
    1326        1246 :       ELSE IF (dft_control%qs_control%method_id == do_method_xtb) THEN
    1327        1240 :          ALLOCATE (dispersion_env)
    1328             :          ! set general defaults
    1329             :          dispersion_env%doabc = .FALSE.
    1330             :          dispersion_env%c9cnst = .FALSE.
    1331             :          dispersion_env%lrc = .FALSE.
    1332             :          dispersion_env%srb = .FALSE.
    1333             :          dispersion_env%verbose = .FALSE.
    1334             :          NULLIFY (dispersion_env%c6ab, dispersion_env%maxci, dispersion_env%r0ab, dispersion_env%rcov, &
    1335             :                   dispersion_env%r2r4, dispersion_env%cn, dispersion_env%cnkind, dispersion_env%cnlist, &
    1336             :                   dispersion_env%d3_exclude_pair)
    1337             :          NULLIFY (dispersion_env%q_mesh, dispersion_env%kernel, dispersion_env%d2phi_dk2, &
    1338             :                   dispersion_env%d2y_dx2, dispersion_env%dftd_section)
    1339             :          NULLIFY (dispersion_env%sab_vdw, dispersion_env%sab_cn)
    1340         248 :          dispersion_env%type = xc_vdw_fun_pairpot
    1341         248 :          dispersion_env%pp_type = vdw_pairpot_dftd3bj
    1342         248 :          dispersion_env%eps_cn = xtb_control%epscn
    1343         248 :          dispersion_env%s6 = xtb_control%s6
    1344         248 :          dispersion_env%s8 = xtb_control%s8
    1345         248 :          dispersion_env%a1 = xtb_control%a1
    1346         248 :          dispersion_env%a2 = xtb_control%a2
    1347             :          dispersion_env%domol = .FALSE.
    1348         248 :          dispersion_env%kgc8 = 0._dp
    1349         248 :          dispersion_env%rc_disp = xtb_control%rcdisp
    1350         248 :          dispersion_env%exp_pre = 0._dp
    1351         248 :          dispersion_env%scaling = 0._dp
    1352         248 :          dispersion_env%nd3_exclude_pair = 0
    1353         248 :          dispersion_env%parameter_file_name = xtb_control%dispersion_parameter_file
    1354         248 :          CALL qs_dispersion_pairpot_init(atomic_kind_set, qs_kind_set, dispersion_env, para_env=para_env)
    1355         248 :          CALL set_qs_env(qs_env, dispersion_env=dispersion_env)
    1356         998 :       ELSE IF (dft_control%qs_control%semi_empirical) THEN
    1357        4990 :          ALLOCATE (dispersion_env)
    1358             :          ! set general defaults
    1359             :          dispersion_env%doabc = .FALSE.
    1360             :          dispersion_env%c9cnst = .FALSE.
    1361             :          dispersion_env%lrc = .FALSE.
    1362             :          dispersion_env%srb = .FALSE.
    1363             :          dispersion_env%verbose = .FALSE.
    1364             :          NULLIFY (dispersion_env%c6ab, dispersion_env%maxci, dispersion_env%r0ab, dispersion_env%rcov, &
    1365             :                   dispersion_env%r2r4, dispersion_env%cn, dispersion_env%cnkind, dispersion_env%cnlist, &
    1366             :                   dispersion_env%d3_exclude_pair)
    1367             :          NULLIFY (dispersion_env%q_mesh, dispersion_env%kernel, dispersion_env%d2phi_dk2, &
    1368             :                   dispersion_env%d2y_dx2, dispersion_env%dftd_section)
    1369             :          NULLIFY (dispersion_env%sab_vdw, dispersion_env%sab_cn)
    1370         998 :          IF (se_control%dispersion) THEN
    1371           6 :             dispersion_env%type = xc_vdw_fun_pairpot
    1372           6 :             dispersion_env%pp_type = vdw_pairpot_dftd3
    1373           6 :             dispersion_env%eps_cn = se_control%epscn
    1374           6 :             dispersion_env%s6 = se_control%sd3(1)
    1375           6 :             dispersion_env%sr6 = se_control%sd3(2)
    1376           6 :             dispersion_env%s8 = se_control%sd3(3)
    1377             :             dispersion_env%domol = .FALSE.
    1378           6 :             dispersion_env%kgc8 = 0._dp
    1379           6 :             dispersion_env%rc_disp = se_control%rcdisp
    1380           6 :             dispersion_env%exp_pre = 0._dp
    1381           6 :             dispersion_env%scaling = 0._dp
    1382           6 :             dispersion_env%nd3_exclude_pair = 0
    1383           6 :             dispersion_env%parameter_file_name = se_control%dispersion_parameter_file
    1384           6 :             CALL qs_dispersion_pairpot_init(atomic_kind_set, qs_kind_set, dispersion_env, para_env=para_env)
    1385             :          ELSE
    1386         992 :             dispersion_env%type = xc_vdw_fun_none
    1387             :          END IF
    1388         998 :          CALL set_qs_env(qs_env, dispersion_env=dispersion_env)
    1389             :       END IF
    1390             : 
    1391             :       ! Initialize possible geomertical counterpoise correction potential
    1392             :       IF (dft_control%qs_control%method_id == do_method_gpw .OR. &
    1393             :           dft_control%qs_control%method_id == do_method_gapw .OR. &
    1394             :           dft_control%qs_control%method_id == do_method_gapw_xc .OR. &
    1395             :           dft_control%qs_control%method_id == do_method_lrigpw .OR. &
    1396        6586 :           dft_control%qs_control%method_id == do_method_rigpw .OR. &
    1397             :           dft_control%qs_control%method_id == do_method_ofgpw) THEN
    1398        5118 :          ALLOCATE (gcp_env)
    1399        5118 :          NULLIFY (xc_section)
    1400        5118 :          xc_section => section_vals_get_subs_vals(dft_section, "XC")
    1401        5118 :          CALL qs_gcp_env_set(gcp_env, xc_section)
    1402        5118 :          CALL qs_gcp_init(qs_env, gcp_env)
    1403        5118 :          CALL set_qs_env(qs_env, gcp_env=gcp_env)
    1404             :       END IF
    1405             : 
    1406             :       !   *** Allocate the MO data types ***
    1407        6586 :       CALL get_qs_kind_set(qs_kind_set, nsgf=n_ao, nelectron=nelectron)
    1408             : 
    1409             :       ! the total number of electrons
    1410        6586 :       nelectron = nelectron - dft_control%charge
    1411             : 
    1412        6586 :       IF (dft_control%multiplicity == 0) THEN
    1413        6012 :          IF (MODULO(nelectron, 2) == 0) THEN
    1414        5545 :             dft_control%multiplicity = 1
    1415             :          ELSE
    1416         467 :             dft_control%multiplicity = 2
    1417             :          END IF
    1418             :       END IF
    1419             : 
    1420        6586 :       multiplicity = dft_control%multiplicity
    1421             : 
    1422        6586 :       IF ((dft_control%nspins < 1) .OR. (dft_control%nspins > 2)) THEN
    1423           0 :          CPABORT("nspins should be 1 or 2 for the time being ...")
    1424             :       END IF
    1425             : 
    1426        6586 :       IF ((MODULO(nelectron, 2) /= 0) .AND. (dft_control%nspins == 1)) THEN
    1427           8 :          IF (.NOT. dft_control%qs_control%ofgpw .AND. .NOT. dft_control%smear) THEN
    1428           0 :             CPABORT("Use the LSD option for an odd number of electrons")
    1429             :          END IF
    1430             :       END IF
    1431             : 
    1432             :       ! The transition potential method to calculate XAS needs LSD
    1433        6586 :       IF (dft_control%do_xas_calculation) THEN
    1434          42 :          IF (dft_control%nspins == 1) THEN
    1435           0 :             CPABORT("Use the LSD option for XAS with transition potential")
    1436             :          END IF
    1437             :       END IF
    1438             : 
    1439             :       !   assigning the number of states per spin initial version, not yet very
    1440             :       !   general. Should work for an even number of electrons and a single
    1441             :       !   additional electron this set of options that requires full matrices,
    1442             :       !   however, makes things a bit ugly right now.... we try to make a
    1443             :       !   distinction between the number of electrons per spin and the number of
    1444             :       !   MOs per spin this should allow the use of fractional occupations later
    1445             :       !   on
    1446        6586 :       IF (dft_control%qs_control%ofgpw) THEN
    1447             : 
    1448           0 :          IF (dft_control%nspins == 1) THEN
    1449           0 :             maxocc = nelectron
    1450           0 :             nelectron_spin(1) = nelectron
    1451           0 :             nelectron_spin(2) = 0
    1452           0 :             n_mo(1) = 1
    1453           0 :             n_mo(2) = 0
    1454             :          ELSE
    1455           0 :             IF (MODULO(nelectron + multiplicity - 1, 2) /= 0) THEN
    1456           0 :                CPABORT("LSD: try to use a different multiplicity")
    1457             :             END IF
    1458           0 :             nelectron_spin(1) = (nelectron + multiplicity - 1)/2
    1459           0 :             nelectron_spin(2) = (nelectron - multiplicity + 1)/2
    1460           0 :             IF (nelectron_spin(1) < 0) THEN
    1461           0 :                CPABORT("LSD: too few electrons for this multiplicity")
    1462             :             END IF
    1463           0 :             maxocc = MAXVAL(nelectron_spin)
    1464           0 :             n_mo(1) = MIN(nelectron_spin(1), 1)
    1465           0 :             n_mo(2) = MIN(nelectron_spin(2), 1)
    1466             :          END IF
    1467             : 
    1468             :       ELSE
    1469             : 
    1470        6586 :          IF (dft_control%nspins == 1) THEN
    1471        5115 :             maxocc = 2.0_dp
    1472        5115 :             nelectron_spin(1) = nelectron
    1473        5115 :             nelectron_spin(2) = 0
    1474        5115 :             IF (MODULO(nelectron, 2) == 0) THEN
    1475        5107 :                n_mo(1) = nelectron/2
    1476             :             ELSE
    1477           8 :                n_mo(1) = INT(nelectron/2._dp) + 1
    1478             :             END IF
    1479        5115 :             n_mo(2) = 0
    1480             :          ELSE
    1481        1471 :             maxocc = 1.0_dp
    1482             : 
    1483             :             ! The simplist spin distribution is written here. Special cases will
    1484             :             ! need additional user input
    1485        1471 :             IF (MODULO(nelectron + multiplicity - 1, 2) /= 0) THEN
    1486           0 :                CPABORT("LSD: try to use a different multiplicity")
    1487             :             END IF
    1488             : 
    1489        1471 :             nelectron_spin(1) = (nelectron + multiplicity - 1)/2
    1490        1471 :             nelectron_spin(2) = (nelectron - multiplicity + 1)/2
    1491             : 
    1492        1471 :             IF (nelectron_spin(2) < 0) THEN
    1493           0 :                CPABORT("LSD: too few electrons for this multiplicity")
    1494             :             END IF
    1495             : 
    1496        1471 :             n_mo(1) = nelectron_spin(1)
    1497        1471 :             n_mo(2) = nelectron_spin(2)
    1498             : 
    1499             :          END IF
    1500             : 
    1501             :       END IF
    1502             : 
    1503             :       ! Read the total_zeff_corr here [SGh]
    1504        6586 :       CALL get_qs_kind_set(qs_kind_set, total_zeff_corr=total_zeff_corr)
    1505             :       ! store it in qs_env
    1506        6586 :       qs_env%total_zeff_corr = total_zeff_corr
    1507             : 
    1508             :       ! store the number of electrons once an for all
    1509             :       CALL qs_subsys_set(subsys, &
    1510             :                          nelectron_total=nelectron, &
    1511        6586 :                          nelectron_spin=nelectron_spin)
    1512             : 
    1513             :       ! Check and set number of added (unoccupied) MOs
    1514        6586 :       IF (dft_control%nspins == 2) THEN
    1515        1471 :          IF (scf_control%added_mos(2) < 0) THEN
    1516           0 :             n_mo_add = n_ao - n_mo(2)  ! use all available MOs
    1517        1471 :          ELSEIF (scf_control%added_mos(2) > 0) THEN
    1518             :             n_mo_add = scf_control%added_mos(2)
    1519             :          ELSE
    1520        1325 :             n_mo_add = scf_control%added_mos(1)
    1521             :          END IF
    1522        1471 :          IF (n_mo_add > n_ao - n_mo(2)) &
    1523          24 :             CPWARN("More ADDED_MOs requested for beta spin than available.")
    1524        1471 :          scf_control%added_mos(2) = MIN(n_mo_add, n_ao - n_mo(2))
    1525        1471 :          n_mo(2) = n_mo(2) + scf_control%added_mos(2)
    1526             :       END IF
    1527             : 
    1528             :       ! proceed alpha orbitals after the beta orbitals; this is essential to avoid
    1529             :       ! reduction in the number of available unoccupied molecular orbitals.
    1530             :       ! E.g. n_ao = 10, nelectrons = 10, multiplicity = 3 implies n_mo(1) = 6, n_mo(2) = 4;
    1531             :       ! added_mos(1:2) = (6,undef) should increase the number of molecular orbitals as
    1532             :       ! n_mo(1) = min(n_ao, n_mo(1) + added_mos(1)) = 10, n_mo(2) = 10.
    1533             :       ! However, if we try to proceed alpha orbitals first, this leads us n_mo(1:2) = (10,8)
    1534             :       ! due to the following assignment instruction above:
    1535             :       !   IF (scf_control%added_mos(2) > 0) THEN ... ELSE; n_mo_add = scf_control%added_mos(1); END IF
    1536        6586 :       IF (scf_control%added_mos(1) < 0) THEN
    1537          30 :          scf_control%added_mos(1) = n_ao - n_mo(1)  ! use all available MOs
    1538        6556 :       ELSEIF (scf_control%added_mos(1) > n_ao - n_mo(1)) THEN
    1539             :          CALL cp_warn(__LOCATION__, &
    1540             :                       "More added MOs requested than available. "// &
    1541             :                       "The full set of unoccupied MOs will be used. "// &
    1542             :                       "Use 'ADDED_MOS -1' to always use all available MOs "// &
    1543          98 :                       "and to get rid of this warning.")
    1544             :       END IF
    1545        6586 :       scf_control%added_mos(1) = MIN(scf_control%added_mos(1), n_ao - n_mo(1))
    1546        6586 :       n_mo(1) = n_mo(1) + scf_control%added_mos(1)
    1547             : 
    1548        6586 :       IF (dft_control%nspins == 2) THEN
    1549        1471 :          IF (n_mo(2) > n_mo(1)) &
    1550             :             CALL cp_warn(__LOCATION__, &
    1551             :                          "More beta than alpha MOs requested. "// &
    1552           0 :                          "The number of beta MOs will be reduced to the number alpha MOs.")
    1553        1471 :          n_mo(2) = MIN(n_mo(1), n_mo(2))
    1554        1471 :          CPASSERT(n_mo(1) >= nelectron_spin(1))
    1555        1471 :          CPASSERT(n_mo(2) >= nelectron_spin(2))
    1556             :       END IF
    1557             : 
    1558             :       ! kpoints
    1559        6586 :       CALL get_qs_env(qs_env=qs_env, do_kpoints=do_kpoints)
    1560        6586 :       IF (do_kpoints .AND. dft_control%nspins == 2) THEN
    1561             :          ! we need equal number of calculated states
    1562          20 :          IF (n_mo(2) /= n_mo(1)) &
    1563             :             CALL cp_warn(__LOCATION__, &
    1564             :                          "Kpoints: Different number of MOs requested. "// &
    1565           0 :                          "The number of beta MOs will be set to the number alpha MOs.")
    1566          20 :          n_mo(2) = n_mo(1)
    1567          20 :          CPASSERT(n_mo(1) >= nelectron_spin(1))
    1568          20 :          CPASSERT(n_mo(2) >= nelectron_spin(2))
    1569             :       END IF
    1570             : 
    1571             :       ! Compatibility checks for smearing
    1572        6586 :       IF (scf_control%smear%do_smear) THEN
    1573         262 :          IF (scf_control%added_mos(1) == 0) THEN
    1574           0 :             CPABORT("Extra MOs (ADDED_MOS) are required for smearing")
    1575             :          END IF
    1576             :       END IF
    1577             : 
    1578             :       !   *** Some options require that all MOs are computed ... ***
    1579             :       IF (BTEST(cp_print_key_should_output(logger%iter_info, dft_section, &
    1580             :                                            "PRINT%MO/CARTESIAN"), &
    1581             :                 cp_p_file) .OR. &
    1582             :           (scf_control%level_shift /= 0.0_dp) .OR. &
    1583        6586 :           (scf_control%diagonalization%eps_jacobi /= 0.0_dp) .OR. &
    1584             :           (dft_control%roks .AND. (.NOT. scf_control%use_ot))) THEN
    1585        6742 :          n_mo(:) = n_ao
    1586             :       END IF
    1587             : 
    1588             :       ! Compatibility checks for ROKS
    1589        6586 :       IF (dft_control%roks .AND. (.NOT. scf_control%use_ot)) THEN
    1590          36 :          IF (scf_control%roks_scheme == general_roks) &
    1591           0 :             CPWARN("General ROKS scheme is not yet tested!")
    1592             : 
    1593          36 :          IF (scf_control%smear%do_smear) THEN
    1594             :             CALL cp_abort(__LOCATION__, &
    1595             :                           "The options ROKS and SMEAR are not compatible. "// &
    1596           0 :                           "Try UKS instead of ROKS")
    1597             :          END IF
    1598             :       END IF
    1599        6586 :       IF (dft_control%low_spin_roks) THEN
    1600           8 :          SELECT CASE (dft_control%qs_control%method_id)
    1601             :          CASE DEFAULT
    1602             :          CASE (do_method_xtb, do_method_dftb)
    1603             :             CALL cp_abort(__LOCATION__, &
    1604           0 :                           "xTB/DFTB methods are not compatible with low spin ROKS.")
    1605             :          CASE (do_method_rm1, do_method_am1, do_method_mndo, do_method_pm3, &
    1606             :                do_method_pm6, do_method_pm6fm, do_method_mndod, do_method_pnnl)
    1607             :             CALL cp_abort(__LOCATION__, &
    1608           8 :                           "SE methods are not compatible with low spin ROKS.")
    1609             :          END SELECT
    1610             :       END IF
    1611             : 
    1612             :       ! in principle the restricted calculation could be performed
    1613             :       ! using just one set of MOs and special casing most of the code
    1614             :       ! right now we'll just take care of what is effectively an additional constraint
    1615             :       ! at as few places as possible, just duplicating the beta orbitals
    1616        6586 :       IF (dft_control%restricted .AND. (output_unit > 0)) THEN
    1617             :          ! it is really not yet tested till the end ! Joost
    1618          23 :          WRITE (output_unit, *) ""
    1619          23 :          WRITE (output_unit, *) " **************************************"
    1620          23 :          WRITE (output_unit, *) " restricted calculation cutting corners"
    1621          23 :          WRITE (output_unit, *) " experimental feature, check code      "
    1622          23 :          WRITE (output_unit, *) " **************************************"
    1623             :       END IF
    1624             : 
    1625             :       ! no point in allocating these things here ?
    1626        6586 :       IF (dft_control%qs_control%do_ls_scf) THEN
    1627         336 :          NULLIFY (mos)
    1628             :       ELSE
    1629       26457 :          ALLOCATE (mos(dft_control%nspins))
    1630       13957 :          DO ispin = 1, dft_control%nspins
    1631             :             CALL allocate_mo_set(mo_set=mos(ispin), &
    1632             :                                  nao=n_ao, &
    1633             :                                  nmo=n_mo(ispin), &
    1634             :                                  nelectron=nelectron_spin(ispin), &
    1635             :                                  n_el_f=REAL(nelectron_spin(ispin), dp), &
    1636             :                                  maxocc=maxocc, &
    1637       13957 :                                  flexible_electron_count=dft_control%relax_multiplicity)
    1638             :          END DO
    1639             :       END IF
    1640             : 
    1641        6586 :       CALL set_qs_env(qs_env, mos=mos)
    1642             : 
    1643             :       ! allocate mos when switch_surf_dip is triggered [SGh]
    1644        6586 :       IF (dft_control%switch_surf_dip) THEN
    1645           8 :          ALLOCATE (mos_last_converged(dft_control%nspins))
    1646           4 :          DO ispin = 1, dft_control%nspins
    1647             :             CALL allocate_mo_set(mo_set=mos_last_converged(ispin), &
    1648             :                                  nao=n_ao, &
    1649             :                                  nmo=n_mo(ispin), &
    1650             :                                  nelectron=nelectron_spin(ispin), &
    1651             :                                  n_el_f=REAL(nelectron_spin(ispin), dp), &
    1652             :                                  maxocc=maxocc, &
    1653           4 :                                  flexible_electron_count=dft_control%relax_multiplicity)
    1654             :          END DO
    1655           2 :          CALL set_qs_env(qs_env, mos_last_converged=mos_last_converged)
    1656             :       END IF
    1657             : 
    1658        6586 :       IF (.NOT. be_silent) THEN
    1659             :          ! Print the DFT control parameters
    1660        6584 :          CALL write_dft_control(dft_control, dft_section)
    1661             : 
    1662             :          ! Print the vdW control parameters
    1663             :          IF (dft_control%qs_control%method_id == do_method_gpw .OR. &
    1664             :              dft_control%qs_control%method_id == do_method_gapw .OR. &
    1665             :              dft_control%qs_control%method_id == do_method_gapw_xc .OR. &
    1666             :              dft_control%qs_control%method_id == do_method_lrigpw .OR. &
    1667             :              dft_control%qs_control%method_id == do_method_rigpw .OR. &
    1668             :              dft_control%qs_control%method_id == do_method_dftb .OR. &
    1669        6584 :              dft_control%qs_control%method_id == do_method_xtb .OR. &
    1670             :              dft_control%qs_control%method_id == do_method_ofgpw) THEN
    1671        5586 :             CALL get_qs_env(qs_env, dispersion_env=dispersion_env)
    1672        5586 :             CALL qs_write_dispersion(qs_env, dispersion_env)
    1673             :          END IF
    1674             : 
    1675             :          ! Print the Quickstep control parameters
    1676        6584 :          CALL write_qs_control(dft_control%qs_control, dft_section)
    1677             : 
    1678             :          ! Print the ADMM control parameters
    1679        6584 :          IF (dft_control%do_admm) THEN
    1680         442 :             CALL write_admm_control(dft_control%admm_control, dft_section)
    1681             :          END IF
    1682             : 
    1683             :          ! Print XES/XAS control parameters
    1684        6584 :          IF (dft_control%do_xas_calculation) THEN
    1685          42 :             CALL cite_reference(Iannuzzi2007)
    1686             :             !CALL write_xas_control(dft_control%xas_control,dft_section)
    1687             :          END IF
    1688             : 
    1689             :          ! Print the unnormalized basis set information (input data)
    1690        6584 :          CALL write_gto_basis_sets(qs_kind_set, subsys_section)
    1691             : 
    1692             :          ! Print the atomic kind set
    1693        6584 :          CALL write_qs_kind_set(qs_kind_set, subsys_section)
    1694             : 
    1695             :          ! Print the molecule kind set
    1696        6584 :          CALL write_molecule_kind_set(molecule_kind_set, subsys_section)
    1697             : 
    1698             :          ! Print the total number of kinds, atoms, basis functions etc.
    1699        6584 :          CALL write_total_numbers(qs_kind_set, particle_set, qs_env%input)
    1700             : 
    1701             :          ! Print the atomic coordinates
    1702        6584 :          CALL write_qs_particle_coordinates(particle_set, qs_kind_set, subsys_section, label="QUICKSTEP")
    1703             : 
    1704             :          ! Print the interatomic distances
    1705        6584 :          CALL write_particle_distances(particle_set, cell, subsys_section)
    1706             : 
    1707             :          ! Print the requested structure data
    1708        6584 :          CALL write_structure_data(particle_set, cell, subsys_section)
    1709             : 
    1710             :          ! Print symmetry information
    1711        6584 :          CALL write_symmetry(particle_set, cell, subsys_section)
    1712             : 
    1713             :          ! Print the SCF parameters
    1714        6584 :          IF ((.NOT. dft_control%qs_control%do_ls_scf) .AND. &
    1715             :              (.NOT. dft_control%qs_control%do_almo_scf)) THEN
    1716        6182 :             CALL scf_c_write_parameters(scf_control, dft_section)
    1717             :          END IF
    1718             :       END IF
    1719             : 
    1720             :       ! Sets up pw_env, qs_charges, mpools ...
    1721        6586 :       CALL qs_env_setup(qs_env)
    1722             : 
    1723             :       ! Allocate and initialise rho0 soft on the global grid
    1724        6586 :       IF (dft_control%qs_control%method_id == do_method_gapw) THEN
    1725         808 :          CALL get_qs_env(qs_env=qs_env, pw_env=pw_env, rho0_mpole=rho0_mpole)
    1726         808 :          CALL rho0_s_grid_create(pw_env, rho0_mpole)
    1727             :       END IF
    1728             : 
    1729        6586 :       IF (output_unit > 0) CALL m_flush(output_unit)
    1730        6586 :       CALL timestop(handle)
    1731             : 
    1732       65860 :    END SUBROUTINE qs_init_subsys
    1733             : 
    1734             : ! **************************************************************************************************
    1735             : !> \brief Write the total number of kinds, atoms, etc. to the logical unit
    1736             : !>      number lunit.
    1737             : !> \param qs_kind_set ...
    1738             : !> \param particle_set ...
    1739             : !> \param force_env_section ...
    1740             : !> \author Creation (06.10.2000)
    1741             : ! **************************************************************************************************
    1742        6584 :    SUBROUTINE write_total_numbers(qs_kind_set, particle_set, force_env_section)
    1743             : 
    1744             :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    1745             :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    1746             :       TYPE(section_vals_type), POINTER                   :: force_env_section
    1747             : 
    1748             :       INTEGER                                            :: maxlgto, maxlppl, maxlppnl, natom, ncgf, &
    1749             :                                                             nkind, npgf, nset, nsgf, nshell, &
    1750             :                                                             output_unit
    1751             :       TYPE(cp_logger_type), POINTER                      :: logger
    1752             : 
    1753        6584 :       NULLIFY (logger)
    1754        6584 :       logger => cp_get_default_logger()
    1755             :       output_unit = cp_print_key_unit_nr(logger, force_env_section, "PRINT%TOTAL_NUMBERS", &
    1756        6584 :                                          extension=".Log")
    1757             : 
    1758        6584 :       IF (output_unit > 0) THEN
    1759        3315 :          natom = SIZE(particle_set)
    1760        3315 :          nkind = SIZE(qs_kind_set)
    1761             : 
    1762             :          CALL get_qs_kind_set(qs_kind_set, &
    1763             :                               maxlgto=maxlgto, &
    1764             :                               ncgf=ncgf, &
    1765             :                               npgf=npgf, &
    1766             :                               nset=nset, &
    1767             :                               nsgf=nsgf, &
    1768             :                               nshell=nshell, &
    1769             :                               maxlppl=maxlppl, &
    1770        3315 :                               maxlppnl=maxlppnl)
    1771             : 
    1772             :          WRITE (UNIT=output_unit, FMT="(/,/,T2,A)") &
    1773        3315 :             "TOTAL NUMBERS AND MAXIMUM NUMBERS"
    1774             : 
    1775        3315 :          IF (nset + npgf + ncgf > 0) THEN
    1776             :             WRITE (UNIT=output_unit, FMT="(/,T3,A,(T30,A,T71,I10))") &
    1777        3315 :                "Total number of", &
    1778        3315 :                "- Atomic kinds:                  ", nkind, &
    1779        3315 :                "- Atoms:                         ", natom, &
    1780        3315 :                "- Shell sets:                    ", nset, &
    1781        3315 :                "- Shells:                        ", nshell, &
    1782        3315 :                "- Primitive Cartesian functions: ", npgf, &
    1783        3315 :                "- Cartesian basis functions:     ", ncgf, &
    1784        6630 :                "- Spherical basis functions:     ", nsgf
    1785           0 :          ELSE IF (nshell + nsgf > 0) THEN
    1786             :             WRITE (UNIT=output_unit, FMT="(/,T3,A,(T30,A,T71,I10))") &
    1787           0 :                "Total number of", &
    1788           0 :                "- Atomic kinds:                  ", nkind, &
    1789           0 :                "- Atoms:                         ", natom, &
    1790           0 :                "- Shells:                        ", nshell, &
    1791           0 :                "- Spherical basis functions:     ", nsgf
    1792             :          ELSE
    1793             :             WRITE (UNIT=output_unit, FMT="(/,T3,A,(T30,A,T71,I10))") &
    1794           0 :                "Total number of", &
    1795           0 :                "- Atomic kinds:                  ", nkind, &
    1796           0 :                "- Atoms:                         ", natom
    1797             :          END IF
    1798             : 
    1799        3315 :          IF ((maxlppl > -1) .AND. (maxlppnl > -1)) THEN
    1800             :             WRITE (UNIT=output_unit, FMT="(/,T3,A,(T30,A,T75,I6))") &
    1801        1853 :                "Maximum angular momentum of the", &
    1802        1853 :                "- Orbital basis functions:                   ", maxlgto, &
    1803        1853 :                "- Local part of the GTH pseudopotential:     ", maxlppl, &
    1804        3706 :                "- Non-local part of the GTH pseudopotential: ", maxlppnl
    1805        1462 :          ELSEIF (maxlppl > -1) THEN
    1806             :             WRITE (UNIT=output_unit, FMT="(/,T3,A,(T30,A,T75,I6))") &
    1807         455 :                "Maximum angular momentum of the", &
    1808         455 :                "- Orbital basis functions:                   ", maxlgto, &
    1809         910 :                "- Local part of the GTH pseudopotential:     ", maxlppl
    1810             :          ELSE
    1811             :             WRITE (UNIT=output_unit, FMT="(/,T3,A,T75,I6)") &
    1812        1007 :                "Maximum angular momentum of the orbital basis functions: ", maxlgto
    1813             :          END IF
    1814             : 
    1815             :          ! LRI_AUX BASIS
    1816             :          CALL get_qs_kind_set(qs_kind_set, &
    1817             :                               maxlgto=maxlgto, &
    1818             :                               ncgf=ncgf, &
    1819             :                               npgf=npgf, &
    1820             :                               nset=nset, &
    1821             :                               nsgf=nsgf, &
    1822             :                               nshell=nshell, &
    1823        3315 :                               basis_type="LRI_AUX")
    1824        3315 :          IF (nset + npgf + ncgf > 0) THEN
    1825             :             WRITE (UNIT=output_unit, FMT="(/,T3,A,/,T3,A,(T30,A,T71,I10))") &
    1826         135 :                "LRI_AUX Basis: ", &
    1827         135 :                "Total number of", &
    1828         135 :                "- Shell sets:                    ", nset, &
    1829         135 :                "- Shells:                        ", nshell, &
    1830         135 :                "- Primitive Cartesian functions: ", npgf, &
    1831         135 :                "- Cartesian basis functions:     ", ncgf, &
    1832         270 :                "- Spherical basis functions:     ", nsgf
    1833             :             WRITE (UNIT=output_unit, FMT="(T30,A,T75,I6)") &
    1834         135 :                "  Maximum angular momentum ", maxlgto
    1835             :          END IF
    1836             : 
    1837             :          ! RI_HXC BASIS
    1838             :          CALL get_qs_kind_set(qs_kind_set, &
    1839             :                               maxlgto=maxlgto, &
    1840             :                               ncgf=ncgf, &
    1841             :                               npgf=npgf, &
    1842             :                               nset=nset, &
    1843             :                               nsgf=nsgf, &
    1844             :                               nshell=nshell, &
    1845        3315 :                               basis_type="RI_HXC")
    1846        3315 :          IF (nset + npgf + ncgf > 0) THEN
    1847             :             WRITE (UNIT=output_unit, FMT="(/,T3,A,/,T3,A,(T30,A,T71,I10))") &
    1848         111 :                "RI_HXC Basis: ", &
    1849         111 :                "Total number of", &
    1850         111 :                "- Shell sets:                    ", nset, &
    1851         111 :                "- Shells:                        ", nshell, &
    1852         111 :                "- Primitive Cartesian functions: ", npgf, &
    1853         111 :                "- Cartesian basis functions:     ", ncgf, &
    1854         222 :                "- Spherical basis functions:     ", nsgf
    1855             :             WRITE (UNIT=output_unit, FMT="(T30,A,T75,I6)") &
    1856         111 :                "  Maximum angular momentum ", maxlgto
    1857             :          END IF
    1858             : 
    1859             :          ! AUX_FIT BASIS
    1860             :          CALL get_qs_kind_set(qs_kind_set, &
    1861             :                               maxlgto=maxlgto, &
    1862             :                               ncgf=ncgf, &
    1863             :                               npgf=npgf, &
    1864             :                               nset=nset, &
    1865             :                               nsgf=nsgf, &
    1866             :                               nshell=nshell, &
    1867        3315 :                               basis_type="AUX_FIT")
    1868        3315 :          IF (nset + npgf + ncgf > 0) THEN
    1869             :             WRITE (UNIT=output_unit, FMT="(/,T3,A,/,T3,A,(T30,A,T71,I10))") &
    1870         332 :                "AUX_FIT ADMM-Basis: ", &
    1871         332 :                "Total number of", &
    1872         332 :                "- Shell sets:                    ", nset, &
    1873         332 :                "- Shells:                        ", nshell, &
    1874         332 :                "- Primitive Cartesian functions: ", npgf, &
    1875         332 :                "- Cartesian basis functions:     ", ncgf, &
    1876         664 :                "- Spherical basis functions:     ", nsgf
    1877             :             WRITE (UNIT=output_unit, FMT="(T30,A,T75,I6)") &
    1878         332 :                "  Maximum angular momentum ", maxlgto
    1879             :          END IF
    1880             : 
    1881             :       END IF
    1882             :       CALL cp_print_key_finished_output(output_unit, logger, force_env_section, &
    1883        6584 :                                         "PRINT%TOTAL_NUMBERS")
    1884             : 
    1885        6584 :    END SUBROUTINE write_total_numbers
    1886             : 
    1887             : END MODULE qs_environment

Generated by: LCOV version 1.15