LCOV - code coverage report
Current view: top level - src - qs_environment.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:4dc10b3) Lines: 776 839 92.5 %
Date: 2024-11-21 06:45:46 Functions: 3 3 100.0 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2024 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \par History
      10             : !>      - Merged with the Quickstep MODULE method_specification (17.01.2002,MK)
      11             : !>      - USE statements cleaned, added
      12             : !>        (25.09.2002,MK)
      13             : !>      - Added more LSD structure (01.2003,Joost VandeVondele)
      14             : !>      - New molecule data types introduced (Sep. 2003,MK)
      15             : !>      - Cleaning; getting rid of pnode (02.10.2003,MK)
      16             : !>      - Sub-system setup added (08.10.2003,MK)
      17             : !> \author MK (18.05.2000)
      18             : ! **************************************************************************************************
      19             : MODULE qs_environment
      20             :    USE almo_scf_env_methods,            ONLY: almo_scf_env_create
      21             :    USE atom_kind_orbitals,              ONLY: calculate_atomic_relkin
      22             :    USE atomic_kind_types,               ONLY: atomic_kind_type
      23             :    USE auto_basis,                      ONLY: create_lri_aux_basis_set,&
      24             :                                               create_ri_aux_basis_set
      25             :    USE basis_set_container_types,       ONLY: add_basis_set_to_container
      26             :    USE basis_set_types,                 ONLY: basis_sort_zet,&
      27             :                                               create_primitive_basis_set,&
      28             :                                               deallocate_gto_basis_set,&
      29             :                                               gto_basis_set_type
      30             :    USE bibliography,                    ONLY: Iannuzzi2006,&
      31             :                                               Iannuzzi2007,&
      32             :                                               cite_reference,&
      33             :                                               cp2kqs2020
      34             :    USE cell_types,                      ONLY: cell_type
      35             :    USE cp_blacs_env,                    ONLY: cp_blacs_env_create,&
      36             :                                               cp_blacs_env_release,&
      37             :                                               cp_blacs_env_type
      38             :    USE cp_control_types,                ONLY: dft_control_type,&
      39             :                                               dftb_control_type,&
      40             :                                               gapw_control_type,&
      41             :                                               qs_control_type,&
      42             :                                               semi_empirical_control_type,&
      43             :                                               xtb_control_type
      44             :    USE cp_control_utils,                ONLY: &
      45             :         read_ddapc_section, read_dft_control, read_mgrid_section, read_qs_section, &
      46             :         read_tddfpt2_control, read_tddfpt_control, write_admm_control, write_dft_control, &
      47             :         write_qs_control
      48             :    USE cp_ddapc_types,                  ONLY: cp_ddapc_ewald_create
      49             :    USE cp_log_handling,                 ONLY: cp_get_default_logger,&
      50             :                                               cp_logger_get_default_io_unit,&
      51             :                                               cp_logger_type
      52             :    USE cp_output_handling,              ONLY: cp_p_file,&
      53             :                                               cp_print_key_finished_output,&
      54             :                                               cp_print_key_should_output,&
      55             :                                               cp_print_key_unit_nr
      56             :    USE cp_subsys_types,                 ONLY: cp_subsys_type
      57             :    USE cp_symmetry,                     ONLY: write_symmetry
      58             :    USE distribution_1d_types,           ONLY: distribution_1d_release,&
      59             :                                               distribution_1d_type
      60             :    USE distribution_methods,            ONLY: distribute_molecules_1d
      61             :    USE dm_ls_scf_create,                ONLY: ls_scf_create
      62             :    USE ec_env_types,                    ONLY: energy_correction_type
      63             :    USE ec_environment,                  ONLY: ec_env_create,&
      64             :                                               ec_write_input
      65             :    USE et_coupling_types,               ONLY: et_coupling_create
      66             :    USE ewald_environment_types,         ONLY: ewald_env_create,&
      67             :                                               ewald_env_get,&
      68             :                                               ewald_env_set,&
      69             :                                               ewald_environment_type,&
      70             :                                               read_ewald_section,&
      71             :                                               read_ewald_section_tb
      72             :    USE ewald_pw_methods,                ONLY: ewald_pw_grid_update
      73             :    USE ewald_pw_types,                  ONLY: ewald_pw_create,&
      74             :                                               ewald_pw_type
      75             :    USE exstates_types,                  ONLY: excited_energy_type,&
      76             :                                               exstate_create
      77             :    USE external_potential_types,        ONLY: get_potential,&
      78             :                                               init_potential,&
      79             :                                               set_potential
      80             :    USE fist_nonbond_env_types,          ONLY: fist_nonbond_env_create,&
      81             :                                               fist_nonbond_env_type
      82             :    USE gamma,                           ONLY: init_md_ftable
      83             :    USE global_types,                    ONLY: global_environment_type
      84             :    USE hartree_local_methods,           ONLY: init_coulomb_local
      85             :    USE header,                          ONLY: dftb_header,&
      86             :                                               qs_header,&
      87             :                                               se_header,&
      88             :                                               xtb_header
      89             :    USE hfx_types,                       ONLY: compare_hfx_sections,&
      90             :                                               hfx_create
      91             :    USE input_constants,                 ONLY: &
      92             :         dispersion_d2, dispersion_d3, dispersion_d3bj, do_et_ddapc, do_method_am1, do_method_dftb, &
      93             :         do_method_gapw, do_method_gapw_xc, do_method_gpw, do_method_lrigpw, do_method_mndo, &
      94             :         do_method_mndod, do_method_ofgpw, do_method_pdg, do_method_pm3, do_method_pm6, &
      95             :         do_method_pm6fm, do_method_pnnl, do_method_rigpw, do_method_rm1, do_method_xtb, &
      96             :         do_qmmm_gauss, do_qmmm_swave, general_roks, hden_atomic, kg_tnadd_embed_ri, rel_none, &
      97             :         rel_trans_atom, vdw_pairpot_dftd2, vdw_pairpot_dftd3, vdw_pairpot_dftd3bj, &
      98             :         vdw_pairpot_dftd4, wfi_aspc_nr, wfi_linear_ps_method_nr, wfi_linear_wf_method_nr, &
      99             :         wfi_ps_method_nr, wfi_use_guess_method_nr, xc_vdw_fun_none, xc_vdw_fun_nonloc, &
     100             :         xc_vdw_fun_pairpot, xtb_vdw_type_d3, xtb_vdw_type_d4, xtb_vdw_type_none
     101             :    USE input_section_types,             ONLY: section_vals_get,&
     102             :                                               section_vals_get_subs_vals,&
     103             :                                               section_vals_type,&
     104             :                                               section_vals_val_get
     105             :    USE kg_environment,                  ONLY: kg_env_create
     106             :    USE kinds,                           ONLY: default_string_length,&
     107             :                                               dp
     108             :    USE kpoint_methods,                  ONLY: kpoint_env_initialize,&
     109             :                                               kpoint_initialize,&
     110             :                                               kpoint_initialize_mos
     111             :    USE kpoint_types,                    ONLY: get_kpoint_info,&
     112             :                                               kpoint_create,&
     113             :                                               kpoint_type,&
     114             :                                               read_kpoint_section,&
     115             :                                               write_kpoint_info
     116             :    USE lri_environment_init,            ONLY: lri_env_basis,&
     117             :                                               lri_env_init
     118             :    USE lri_environment_types,           ONLY: lri_environment_type
     119             :    USE machine,                         ONLY: m_flush
     120             :    USE mathconstants,                   ONLY: pi
     121             :    USE message_passing,                 ONLY: mp_para_env_type
     122             :    USE molecule_kind_types,             ONLY: molecule_kind_type,&
     123             :                                               write_molecule_kind_set
     124             :    USE molecule_types,                  ONLY: molecule_type
     125             :    USE mp2_setup,                       ONLY: read_mp2_section
     126             :    USE mp2_types,                       ONLY: mp2_env_create,&
     127             :                                               mp2_type
     128             :    USE multipole_types,                 ONLY: do_multipole_none
     129             :    USE orbital_pointers,                ONLY: init_orbital_pointers
     130             :    USE orbital_transformation_matrices, ONLY: init_spherical_harmonics
     131             :    USE particle_methods,                ONLY: write_particle_distances,&
     132             :                                               write_qs_particle_coordinates,&
     133             :                                               write_structure_data
     134             :    USE particle_types,                  ONLY: particle_type
     135             :    USE pw_env_types,                    ONLY: pw_env_type
     136             :    USE qmmm_types_low,                  ONLY: qmmm_env_qm_type
     137             :    USE qs_basis_rotation_methods,       ONLY: qs_basis_rotation
     138             :    USE qs_dftb_parameters,              ONLY: qs_dftb_param_init
     139             :    USE qs_dftb_types,                   ONLY: qs_dftb_pairpot_type
     140             :    USE qs_dispersion_nonloc,            ONLY: qs_dispersion_nonloc_init
     141             :    USE qs_dispersion_pairpot,           ONLY: qs_dispersion_pairpot_init
     142             :    USE qs_dispersion_types,             ONLY: qs_dispersion_type
     143             :    USE qs_dispersion_utils,             ONLY: qs_dispersion_env_set,&
     144             :                                               qs_write_dispersion
     145             :    USE qs_energy_types,                 ONLY: allocate_qs_energy,&
     146             :                                               qs_energy_type
     147             :    USE qs_environment_methods,          ONLY: qs_env_setup
     148             :    USE qs_environment_types,            ONLY: get_qs_env,&
     149             :                                               qs_environment_type,&
     150             :                                               set_qs_env
     151             :    USE qs_force_types,                  ONLY: qs_force_type
     152             :    USE qs_gcp_types,                    ONLY: qs_gcp_type
     153             :    USE qs_gcp_utils,                    ONLY: qs_gcp_env_set,&
     154             :                                               qs_gcp_init
     155             :    USE qs_harris_types,                 ONLY: harris_rhoin_init,&
     156             :                                               harris_type
     157             :    USE qs_harris_utils,                 ONLY: harris_env_create,&
     158             :                                               harris_write_input
     159             :    USE qs_interactions,                 ONLY: init_interaction_radii,&
     160             :                                               init_se_nlradius,&
     161             :                                               write_core_charge_radii,&
     162             :                                               write_paw_radii,&
     163             :                                               write_pgf_orb_radii,&
     164             :                                               write_ppl_radii,&
     165             :                                               write_ppnl_radii
     166             :    USE qs_kind_types,                   ONLY: &
     167             :         check_qs_kind_set, get_qs_kind, get_qs_kind_set, init_gapw_basis_set, init_gapw_nlcc, &
     168             :         init_qs_kind_set, qs_kind_type, set_qs_kind, write_gto_basis_sets, write_qs_kind_set
     169             :    USE qs_ks_types,                     ONLY: qs_ks_env_create,&
     170             :                                               qs_ks_env_type,&
     171             :                                               set_ks_env
     172             :    USE qs_local_rho_types,              ONLY: local_rho_type
     173             :    USE qs_mo_types,                     ONLY: allocate_mo_set,&
     174             :                                               mo_set_type
     175             :    USE qs_rho0_ggrid,                   ONLY: rho0_s_grid_create
     176             :    USE qs_rho0_methods,                 ONLY: init_rho0
     177             :    USE qs_rho0_types,                   ONLY: rho0_mpole_type
     178             :    USE qs_rho_atom_methods,             ONLY: init_rho_atom
     179             :    USE qs_rho_atom_types,               ONLY: rho_atom_type
     180             :    USE qs_subsys_methods,               ONLY: qs_subsys_create
     181             :    USE qs_subsys_types,                 ONLY: qs_subsys_get,&
     182             :                                               qs_subsys_set,&
     183             :                                               qs_subsys_type
     184             :    USE qs_wf_history_methods,           ONLY: wfi_create,&
     185             :                                               wfi_create_for_kp
     186             :    USE qs_wf_history_types,             ONLY: qs_wf_history_type,&
     187             :                                               wfi_release
     188             :    USE rel_control_types,               ONLY: rel_c_create,&
     189             :                                               rel_c_read_parameters,&
     190             :                                               rel_control_type
     191             :    USE scf_control_types,               ONLY: scf_c_create,&
     192             :                                               scf_c_read_parameters,&
     193             :                                               scf_c_write_parameters,&
     194             :                                               scf_control_type
     195             :    USE semi_empirical_expns3_methods,   ONLY: semi_empirical_expns3_setup
     196             :    USE semi_empirical_int_arrays,       ONLY: init_se_intd_array
     197             :    USE semi_empirical_mpole_methods,    ONLY: nddo_mpole_setup
     198             :    USE semi_empirical_mpole_types,      ONLY: nddo_mpole_type
     199             :    USE semi_empirical_store_int_types,  ONLY: semi_empirical_si_create,&
     200             :                                               semi_empirical_si_type
     201             :    USE semi_empirical_types,            ONLY: se_taper_create,&
     202             :                                               se_taper_type
     203             :    USE semi_empirical_utils,            ONLY: se_cutoff_compatible
     204             :    USE transport,                       ONLY: transport_env_create
     205             :    USE xtb_parameters,                  ONLY: init_xtb_basis,&
     206             :                                               xtb_parameters_init,&
     207             :                                               xtb_parameters_set
     208             :    USE xtb_potentials,                  ONLY: xtb_pp_radius
     209             :    USE xtb_types,                       ONLY: allocate_xtb_atom_param
     210             : #include "./base/base_uses.f90"
     211             : 
     212             :    IMPLICIT NONE
     213             : 
     214             :    PRIVATE
     215             : 
     216             :    ! *** Global parameters ***
     217             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'qs_environment'
     218             : 
     219             :    ! *** Public subroutines ***
     220             :    PUBLIC :: qs_init
     221             : 
     222             : CONTAINS
     223             : 
     224             : ! **************************************************************************************************
     225             : !> \brief Read the input and the database files for the setup of the
     226             : !>      QUICKSTEP environment.
     227             : !> \param qs_env ...
     228             : !> \param para_env ...
     229             : !> \param root_section ...
     230             : !> \param globenv ...
     231             : !> \param cp_subsys ...
     232             : !> \param kpoint_env ...
     233             : !> \param cell ...
     234             : !> \param cell_ref ...
     235             : !> \param qmmm ...
     236             : !> \param qmmm_env_qm ...
     237             : !> \param force_env_section ...
     238             : !> \param subsys_section ...
     239             : !> \param use_motion_section ...
     240             : !> \author Creation (22.05.2000,MK)
     241             : ! **************************************************************************************************
     242       46802 :    SUBROUTINE qs_init(qs_env, para_env, root_section, globenv, cp_subsys, kpoint_env, cell, cell_ref, &
     243             :                       qmmm, qmmm_env_qm, force_env_section, subsys_section, use_motion_section)
     244             : 
     245             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     246             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     247             :       TYPE(section_vals_type), OPTIONAL, POINTER         :: root_section
     248             :       TYPE(global_environment_type), OPTIONAL, POINTER   :: globenv
     249             :       TYPE(cp_subsys_type), OPTIONAL, POINTER            :: cp_subsys
     250             :       TYPE(kpoint_type), OPTIONAL, POINTER               :: kpoint_env
     251             :       TYPE(cell_type), OPTIONAL, POINTER                 :: cell, cell_ref
     252             :       LOGICAL, INTENT(IN), OPTIONAL                      :: qmmm
     253             :       TYPE(qmmm_env_qm_type), OPTIONAL, POINTER          :: qmmm_env_qm
     254             :       TYPE(section_vals_type), POINTER                   :: force_env_section, subsys_section
     255             :       LOGICAL, INTENT(IN)                                :: use_motion_section
     256             : 
     257             :       CHARACTER(LEN=default_string_length)               :: basis_type
     258             :       INTEGER                                            :: ikind, method_id, nelectron_total, &
     259             :                                                             nkind, nkp_grid(3)
     260             :       LOGICAL :: do_admm_rpa, do_ec_hfx, do_et, do_exx, do_hfx, do_kpoints, is_identical, is_semi, &
     261             :          mp2_present, my_qmmm, qmmm_decoupl, same_except_frac, silent, use_ref_cell
     262        6686 :       REAL(KIND=dp), DIMENSION(:, :), POINTER            :: rtmat
     263        6686 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
     264             :       TYPE(cell_type), POINTER                           :: my_cell, my_cell_ref
     265             :       TYPE(cp_blacs_env_type), POINTER                   :: blacs_env
     266             :       TYPE(dft_control_type), POINTER                    :: dft_control
     267             :       TYPE(distribution_1d_type), POINTER                :: local_particles
     268             :       TYPE(energy_correction_type), POINTER              :: ec_env
     269             :       TYPE(excited_energy_type), POINTER                 :: exstate_env
     270             :       TYPE(harris_type), POINTER                         :: harris_env
     271             :       TYPE(kpoint_type), POINTER                         :: kpoints
     272             :       TYPE(lri_environment_type), POINTER                :: lri_env
     273        6686 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     274        6686 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     275             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
     276             :       TYPE(qs_subsys_type), POINTER                      :: subsys
     277             :       TYPE(qs_wf_history_type), POINTER                  :: wf_history
     278             :       TYPE(rel_control_type), POINTER                    :: rel_control
     279             :       TYPE(scf_control_type), POINTER                    :: scf_control
     280             :       TYPE(section_vals_type), POINTER :: dft_section, ec_hfx_section, ec_section, &
     281             :          et_coupling_section, hfx_section, kpoint_section, mp2_section, rpa_hfx_section, &
     282             :          transport_section
     283             : 
     284        6686 :       NULLIFY (my_cell, my_cell_ref, atomic_kind_set, particle_set, &
     285        6686 :                qs_kind_set, kpoint_section, dft_section, ec_section, &
     286        6686 :                subsys, ks_env, dft_control, blacs_env)
     287             : 
     288        6686 :       CALL set_qs_env(qs_env, input=force_env_section)
     289        6686 :       IF (.NOT. ASSOCIATED(subsys_section)) THEN
     290         104 :          subsys_section => section_vals_get_subs_vals(force_env_section, "SUBSYS")
     291             :       END IF
     292             : 
     293             :       ! QMMM
     294        6686 :       my_qmmm = .FALSE.
     295        6686 :       IF (PRESENT(qmmm)) my_qmmm = qmmm
     296        6686 :       qmmm_decoupl = .FALSE.
     297        6686 :       IF (PRESENT(qmmm_env_qm)) THEN
     298         394 :          IF (qmmm_env_qm%qmmm_coupl_type == do_qmmm_gauss .OR. &
     299             :              qmmm_env_qm%qmmm_coupl_type == do_qmmm_swave) THEN
     300             :             ! For GAUSS/SWAVE methods there could be a DDAPC decoupling requested
     301         458 :             qmmm_decoupl = my_qmmm .AND. qmmm_env_qm%periodic .AND. qmmm_env_qm%multipole
     302             :          END IF
     303         394 :          qs_env%qmmm_env_qm => qmmm_env_qm
     304             :       END IF
     305        6686 :       CALL set_qs_env(qs_env=qs_env, qmmm=my_qmmm)
     306             : 
     307             :       ! Possibly initialize arrays for SE
     308        6686 :       CALL section_vals_val_get(force_env_section, "DFT%QS%METHOD", i_val=method_id)
     309         998 :       SELECT CASE (method_id)
     310             :       CASE (do_method_rm1, do_method_am1, do_method_mndo, do_method_pdg, &
     311             :             do_method_pm3, do_method_pm6, do_method_pm6fm, do_method_mndod, do_method_pnnl)
     312         998 :          CALL init_se_intd_array()
     313         998 :          is_semi = .TRUE.
     314             :       CASE (do_method_xtb, do_method_dftb)
     315         506 :          is_semi = .TRUE.
     316             :       CASE DEFAULT
     317        6686 :          is_semi = .FALSE.
     318             :       END SELECT
     319             : 
     320       26744 :       ALLOCATE (subsys)
     321             :       CALL qs_subsys_create(subsys, para_env, &
     322             :                             force_env_section=force_env_section, &
     323             :                             subsys_section=subsys_section, &
     324             :                             use_motion_section=use_motion_section, &
     325             :                             root_section=root_section, &
     326             :                             cp_subsys=cp_subsys, cell=cell, cell_ref=cell_ref, &
     327        6686 :                             elkind=is_semi)
     328             : 
     329        6686 :       ALLOCATE (ks_env)
     330        6686 :       CALL qs_ks_env_create(ks_env)
     331        6686 :       CALL set_ks_env(ks_env, subsys=subsys)
     332        6686 :       CALL set_qs_env(qs_env, ks_env=ks_env)
     333             : 
     334             :       CALL qs_subsys_get(subsys, &
     335             :                          cell=my_cell, &
     336             :                          cell_ref=my_cell_ref, &
     337             :                          use_ref_cell=use_ref_cell, &
     338             :                          atomic_kind_set=atomic_kind_set, &
     339             :                          qs_kind_set=qs_kind_set, &
     340        6686 :                          particle_set=particle_set)
     341             : 
     342        6686 :       CALL set_ks_env(ks_env, para_env=para_env)
     343        6686 :       IF (PRESENT(globenv)) THEN
     344             :          CALL cp_blacs_env_create(blacs_env, para_env, globenv%blacs_grid_layout, &
     345        6684 :                                   globenv%blacs_repeatable)
     346             :       ELSE
     347           2 :          CALL cp_blacs_env_create(blacs_env, para_env)
     348             :       END IF
     349        6686 :       CALL set_ks_env(ks_env, blacs_env=blacs_env)
     350        6686 :       CALL cp_blacs_env_release(blacs_env)
     351             : 
     352             :       !   *** Setup the grids for the G-space Interpolation if any
     353             :       CALL cp_ddapc_ewald_create(qs_env%cp_ddapc_ewald, qmmm_decoupl, my_cell, &
     354        6686 :                                  force_env_section, subsys_section, para_env)
     355             : 
     356             :       ! kpoints
     357        6686 :       IF (PRESENT(kpoint_env)) THEN
     358           2 :          silent = .TRUE.
     359           2 :          kpoints => kpoint_env
     360           2 :          CALL set_qs_env(qs_env=qs_env, kpoints=kpoints)
     361           2 :          CALL kpoint_initialize(kpoints, particle_set, my_cell)
     362             :       ELSE
     363        6684 :          silent = .FALSE.
     364        6684 :          NULLIFY (kpoints)
     365        6684 :          CALL kpoint_create(kpoints)
     366        6684 :          CALL set_qs_env(qs_env=qs_env, kpoints=kpoints)
     367        6684 :          kpoint_section => section_vals_get_subs_vals(qs_env%input, "DFT%KPOINTS")
     368        6684 :          CALL read_kpoint_section(kpoints, kpoint_section, my_cell%hmat)
     369        6684 :          CALL kpoint_initialize(kpoints, particle_set, my_cell)
     370        6684 :          dft_section => section_vals_get_subs_vals(qs_env%input, "DFT")
     371        6684 :          CALL write_kpoint_info(kpoints, dft_section)
     372             :       END IF
     373             : 
     374             :       CALL qs_init_subsys(qs_env, para_env, subsys, my_cell, my_cell_ref, use_ref_cell, &
     375        6686 :                           subsys_section, silent=silent)
     376             : 
     377        6686 :       CALL get_qs_env(qs_env, dft_control=dft_control)
     378        6686 :       IF (method_id == do_method_lrigpw .OR. dft_control%qs_control%lri_optbas) THEN
     379          46 :          CALL get_qs_env(qs_env=qs_env, lri_env=lri_env)
     380          46 :          CALL lri_env_basis("LRI", qs_env, lri_env, qs_kind_set)
     381        6640 :       ELSE IF (method_id == do_method_rigpw) THEN
     382             :          CALL cp_warn(__LOCATION__, "Experimental code: "// &
     383           0 :                       "RIGPW should only be used for testing.")
     384           0 :          CALL get_qs_env(qs_env=qs_env, lri_env=lri_env)
     385           0 :          CALL lri_env_basis("RI", qs_env, lri_env, qs_kind_set)
     386             :       END IF
     387             : 
     388        6686 :       IF (my_qmmm .AND. PRESENT(qmmm_env_qm) .AND. .NOT. dft_control%qs_control%commensurate_mgrids) THEN
     389         132 :          IF (qmmm_env_qm%qmmm_coupl_type == do_qmmm_gauss .OR. qmmm_env_qm%qmmm_coupl_type == do_qmmm_swave) THEN
     390             :             CALL cp_abort(__LOCATION__, "QM/MM with coupling GAUSS or S-WAVE requires "// &
     391           0 :                           "keyword FORCE_EVAL/DFT/MGRID/COMMENSURATE to be enabled.")
     392             :          END IF
     393             :       END IF
     394             : 
     395             :       ! more kpoint stuff
     396        6686 :       CALL get_qs_env(qs_env=qs_env, do_kpoints=do_kpoints, blacs_env=blacs_env)
     397        6686 :       IF (do_kpoints) THEN
     398         160 :          CALL kpoint_env_initialize(kpoints, para_env, blacs_env, with_aux_fit=dft_control%do_admm)
     399         160 :          CALL kpoint_initialize_mos(kpoints, qs_env%mos)
     400         160 :          CALL get_qs_env(qs_env=qs_env, wf_history=wf_history)
     401         160 :          CALL wfi_create_for_kp(wf_history)
     402             :       END IF
     403             :       ! basis set symmetry rotations
     404        6686 :       IF (do_kpoints) THEN
     405         160 :          CALL qs_basis_rotation(qs_env, kpoints)
     406             :       END IF
     407             : 
     408             :       do_hfx = .FALSE.
     409        6686 :       hfx_section => section_vals_get_subs_vals(qs_env%input, "DFT%XC%HF")
     410        6686 :       CALL section_vals_get(hfx_section, explicit=do_hfx)
     411        6686 :       CALL get_qs_env(qs_env, dft_control=dft_control, scf_control=scf_control, nelectron_total=nelectron_total)
     412        6686 :       IF (do_hfx) THEN
     413             :          ! Retrieve particle_set and atomic_kind_set (needed for both kinds of initialization)
     414        4736 :          nkp_grid = 1
     415        1184 :          IF (do_kpoints) CALL get_kpoint_info(kpoints, nkp_grid=nkp_grid)
     416        1184 :          IF (dft_control%do_admm) THEN
     417         434 :             basis_type = 'AUX_FIT'
     418             :          ELSE
     419         750 :             basis_type = 'ORB'
     420             :          END IF
     421             :          CALL hfx_create(qs_env%x_data, para_env, hfx_section, atomic_kind_set, &
     422             :                          qs_kind_set, particle_set, dft_control, my_cell, orb_basis=basis_type, &
     423        1184 :                          nelectron_total=nelectron_total, nkp_grid=nkp_grid)
     424             :       END IF
     425             : 
     426        6686 :       mp2_section => section_vals_get_subs_vals(qs_env%input, "DFT%XC%WF_CORRELATION")
     427        6686 :       CALL section_vals_get(mp2_section, explicit=mp2_present)
     428        6686 :       IF (mp2_present) THEN
     429         466 :          CPASSERT(ASSOCIATED(qs_env%mp2_env))
     430         466 :          CALL read_mp2_section(qs_env%input, qs_env%mp2_env)
     431             :          ! create the EXX section if necessary
     432             :          do_exx = .FALSE.
     433         466 :          rpa_hfx_section => section_vals_get_subs_vals(qs_env%input, "DFT%XC%WF_CORRELATION%RI_RPA%HF")
     434         466 :          CALL section_vals_get(rpa_hfx_section, explicit=do_exx)
     435         466 :          IF (do_exx) THEN
     436             : 
     437             :             ! do_exx in call of hfx_create decides whether to go without ADMM (do_exx=.TRUE.) or with
     438             :             ! ADMM (do_exx=.FALSE.)
     439         138 :             CALL section_vals_val_get(mp2_section, "RI_RPA%ADMM", l_val=do_admm_rpa)
     440             : 
     441             :             ! Reuse the HFX integrals from the qs_env if applicable
     442         138 :             qs_env%mp2_env%ri_rpa%reuse_hfx = .TRUE.
     443         138 :             IF (.NOT. do_hfx) qs_env%mp2_env%ri_rpa%reuse_hfx = .FALSE.
     444         138 :             CALL compare_hfx_sections(hfx_section, rpa_hfx_section, is_identical, same_except_frac)
     445         138 :             IF (.NOT. (is_identical .OR. same_except_frac)) qs_env%mp2_env%ri_rpa%reuse_hfx = .FALSE.
     446         138 :             IF (dft_control%do_admm .AND. .NOT. do_admm_rpa) qs_env%mp2_env%ri_rpa%reuse_hfx = .FALSE.
     447             : 
     448         138 :             IF (.NOT. qs_env%mp2_env%ri_rpa%reuse_hfx) THEN
     449         120 :                IF (do_admm_rpa) THEN
     450          10 :                   basis_type = 'AUX_FIT'
     451             :                ELSE
     452         110 :                   basis_type = 'ORB'
     453             :                END IF
     454             :                CALL hfx_create(qs_env%mp2_env%ri_rpa%x_data, para_env, rpa_hfx_section, atomic_kind_set, &
     455             :                                qs_kind_set, particle_set, dft_control, my_cell, orb_basis=basis_type, &
     456         120 :                                nelectron_total=nelectron_total)
     457             :             ELSE
     458          18 :                qs_env%mp2_env%ri_rpa%x_data => qs_env%x_data
     459             :             END IF
     460             :          END IF
     461             :       END IF
     462             : 
     463        6686 :       IF (dft_control%qs_control%do_kg) THEN
     464          66 :          CALL cite_reference(Iannuzzi2006)
     465          66 :          CALL kg_env_create(qs_env, qs_env%kg_env, qs_kind_set, qs_env%input)
     466             :       END IF
     467             : 
     468        6686 :       dft_section => section_vals_get_subs_vals(qs_env%input, "DFT")
     469             :       CALL section_vals_val_get(dft_section, "EXCITED_STATES%_SECTION_PARAMETERS_", &
     470        6686 :                                 l_val=qs_env%excited_state)
     471        6686 :       NULLIFY (exstate_env)
     472        6686 :       CALL exstate_create(exstate_env, qs_env%excited_state, dft_section)
     473        6686 :       CALL set_qs_env(qs_env, exstate_env=exstate_env)
     474             : 
     475             :       et_coupling_section => section_vals_get_subs_vals(qs_env%input, &
     476        6686 :                                                         "PROPERTIES%ET_COUPLING")
     477        6686 :       CALL section_vals_get(et_coupling_section, explicit=do_et)
     478        6686 :       IF (do_et) CALL et_coupling_create(qs_env%et_coupling)
     479             : 
     480        6686 :       transport_section => section_vals_get_subs_vals(qs_env%input, "DFT%TRANSPORT")
     481        6686 :       CALL section_vals_get(transport_section, explicit=qs_env%do_transport)
     482        6686 :       IF (qs_env%do_transport) THEN
     483           0 :          CALL transport_env_create(qs_env)
     484             :       END IF
     485             : 
     486        6686 :       IF (dft_control%qs_control%do_ls_scf) THEN
     487         344 :          CALL ls_scf_create(qs_env)
     488             :       END IF
     489             : 
     490        6686 :       CALL get_qs_env(qs_env, harris_env=harris_env)
     491        6686 :       IF (qs_env%harris_method) THEN
     492             :          ! initialize the Harris input density and potential integrals
     493           6 :          CALL get_qs_env(qs_env, local_particles=local_particles)
     494             :          CALL harris_rhoin_init(harris_env%rhoin, "RHOIN", qs_kind_set, atomic_kind_set, &
     495           6 :                                 local_particles, dft_control%nspins)
     496             :          ! Print information of the HARRIS section
     497           6 :          CALL harris_write_input(harris_env)
     498             :       END IF
     499             : 
     500        6686 :       NULLIFY (ec_env)
     501        6686 :       dft_section => section_vals_get_subs_vals(qs_env%input, "DFT")
     502             :       CALL section_vals_val_get(dft_section, "ENERGY_CORRECTION%_SECTION_PARAMETERS_", &
     503        6686 :                                 l_val=qs_env%energy_correction)
     504        6686 :       ec_section => section_vals_get_subs_vals(qs_env%input, "DFT%ENERGY_CORRECTION")
     505        6686 :       CALL ec_env_create(qs_env, ec_env, dft_section, ec_section)
     506        6686 :       CALL set_qs_env(qs_env, ec_env=ec_env)
     507             : 
     508        6686 :       IF (qs_env%energy_correction) THEN
     509             :          ! Energy correction with Hartree-Fock exchange
     510         236 :          ec_hfx_section => section_vals_get_subs_vals(ec_section, "XC%HF")
     511         236 :          CALL section_vals_get(ec_hfx_section, explicit=do_ec_hfx)
     512             : 
     513         236 :          IF (ec_env%do_ec_hfx) THEN
     514             : 
     515             :             ! Hybrid functionals require same basis
     516          16 :             IF (ec_env%basis_inconsistent) THEN
     517             :                CALL cp_abort(__LOCATION__, &
     518             :                              "Energy correction methods with hybrid functionals: "// &
     519             :                              "correction and ground state need to use the same basis. "// &
     520           0 :                              "Checked by comparing basis set names only.")
     521             :             END IF
     522             : 
     523             :             ! Similar to RPA_HFX we can check if HFX integrals from the qs_env can be reused
     524          16 :             IF (ec_env%do_ec_admm .AND. .NOT. dft_control%do_admm) THEN
     525           0 :                CALL cp_abort(__LOCATION__, "Need an ADMM input section for ADMM EC to work")
     526             :             END IF
     527             : 
     528          16 :             ec_env%reuse_hfx = .TRUE.
     529          16 :             IF (.NOT. do_hfx) ec_env%reuse_hfx = .FALSE.
     530          16 :             CALL compare_hfx_sections(hfx_section, ec_hfx_section, is_identical, same_except_frac)
     531          16 :             IF (.NOT. (is_identical .OR. same_except_frac)) ec_env%reuse_hfx = .FALSE.
     532          16 :             IF (dft_control%do_admm .AND. .NOT. ec_env%do_ec_admm) ec_env%reuse_hfx = .FALSE.
     533             : 
     534          16 :             IF (.NOT. ec_env%reuse_hfx) THEN
     535           6 :                IF (ec_env%do_ec_admm) THEN
     536           2 :                   basis_type = 'AUX_FIT'
     537             :                ELSE
     538           4 :                   basis_type = 'ORB'
     539             :                END IF
     540             :                CALL hfx_create(ec_env%x_data, para_env, ec_hfx_section, atomic_kind_set, &
     541             :                                qs_kind_set, particle_set, dft_control, my_cell, orb_basis=basis_type, &
     542           6 :                                nelectron_total=nelectron_total)
     543             :             ELSE
     544          10 :                ec_env%x_data => qs_env%x_data
     545             :             END IF
     546             :          END IF
     547             : 
     548             :          ! Print information of the EC section
     549         236 :          CALL ec_write_input(ec_env)
     550             : 
     551             :       END IF
     552             : 
     553        6686 :       IF (dft_control%qs_control%do_almo_scf) THEN
     554          66 :          CALL almo_scf_env_create(qs_env)
     555             :       END IF
     556             : 
     557             :       ! see if we have atomic relativistic corrections
     558        6686 :       CALL get_qs_env(qs_env, rel_control=rel_control)
     559        6686 :       IF (rel_control%rel_method /= rel_none) THEN
     560          16 :          IF (rel_control%rel_transformation == rel_trans_atom) THEN
     561          16 :             nkind = SIZE(atomic_kind_set)
     562          42 :             DO ikind = 1, nkind
     563          26 :                NULLIFY (rtmat)
     564          26 :                CALL calculate_atomic_relkin(atomic_kind_set(ikind), qs_kind_set(ikind), rel_control, rtmat)
     565          42 :                IF (ASSOCIATED(rtmat)) CALL set_qs_kind(qs_kind_set(ikind), reltmat=rtmat)
     566             :             END DO
     567             :          END IF
     568             :       END IF
     569             : 
     570        6686 :    END SUBROUTINE qs_init
     571             : 
     572             : ! **************************************************************************************************
     573             : !> \brief Initialize the qs environment (subsys)
     574             : !> \param qs_env ...
     575             : !> \param para_env ...
     576             : !> \param subsys ...
     577             : !> \param cell ...
     578             : !> \param cell_ref ...
     579             : !> \param use_ref_cell ...
     580             : !> \param subsys_section ...
     581             : !> \param silent ...
     582             : !> \author Creation (22.05.2000,MK)
     583             : ! **************************************************************************************************
     584        6686 :    SUBROUTINE qs_init_subsys(qs_env, para_env, subsys, cell, cell_ref, use_ref_cell, subsys_section, &
     585             :                              silent)
     586             : 
     587             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     588             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     589             :       TYPE(qs_subsys_type), POINTER                      :: subsys
     590             :       TYPE(cell_type), POINTER                           :: cell, cell_ref
     591             :       LOGICAL, INTENT(in)                                :: use_ref_cell
     592             :       TYPE(section_vals_type), POINTER                   :: subsys_section
     593             :       LOGICAL, INTENT(in), OPTIONAL                      :: silent
     594             : 
     595             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'qs_init_subsys'
     596             : 
     597             :       CHARACTER(len=2)                                   :: element_symbol
     598             :       INTEGER :: gfn_type, handle, ikind, ispin, iw, lmax_sphere, maxl, maxlgto, maxlgto_lri, &
     599             :          maxlppl, maxlppnl, method_id, multiplicity, my_ival, n_ao, n_mo_add, natom, nelectron, &
     600             :          ngauss, nkind, output_unit, sort_basis, tnadd_method
     601             :       INTEGER, DIMENSION(2)                              :: n_mo, nelectron_spin
     602             :       LOGICAL :: all_potential_present, be_silent, do_kpoints, do_ri_hfx, do_ri_mp2, do_ri_rpa, &
     603             :          do_ri_sos_mp2, do_rpa_ri_exx, do_wfc_im_time, e1terms, has_unit_metric, lribas, &
     604             :          mp2_present, orb_gradient
     605             :       REAL(KIND=dp)                                      :: alpha, ccore, ewald_rcut, fxx, maxocc, &
     606             :                                                             rcut, total_zeff_corr, verlet_skin, &
     607             :                                                             zeff_correction
     608        6686 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
     609             :       TYPE(cp_logger_type), POINTER                      :: logger
     610             :       TYPE(dft_control_type), POINTER                    :: dft_control
     611             :       TYPE(dftb_control_type), POINTER                   :: dftb_control
     612             :       TYPE(distribution_1d_type), POINTER                :: local_molecules, local_particles
     613             :       TYPE(ewald_environment_type), POINTER              :: ewald_env
     614             :       TYPE(ewald_pw_type), POINTER                       :: ewald_pw
     615             :       TYPE(fist_nonbond_env_type), POINTER               :: se_nonbond_env
     616             :       TYPE(gapw_control_type), POINTER                   :: gapw_control
     617             :       TYPE(gto_basis_set_type), POINTER                  :: aux_fit_basis, lri_aux_basis, &
     618             :                                                             rhoin_basis, ri_aux_basis_set, &
     619             :                                                             ri_hfx_basis, ri_xas_basis, &
     620             :                                                             tmp_basis_set
     621             :       TYPE(harris_type), POINTER                         :: harris_env
     622             :       TYPE(local_rho_type), POINTER                      :: local_rho_set
     623             :       TYPE(lri_environment_type), POINTER                :: lri_env
     624        6686 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos, mos_last_converged
     625        6686 :       TYPE(molecule_kind_type), DIMENSION(:), POINTER    :: molecule_kind_set
     626        6686 :       TYPE(molecule_type), DIMENSION(:), POINTER         :: molecule_set
     627             :       TYPE(mp2_type), POINTER                            :: mp2_env
     628             :       TYPE(nddo_mpole_type), POINTER                     :: se_nddo_mpole
     629        6686 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     630             :       TYPE(pw_env_type), POINTER                         :: pw_env
     631             :       TYPE(qs_control_type), POINTER                     :: qs_control
     632             :       TYPE(qs_dftb_pairpot_type), DIMENSION(:, :), &
     633        6686 :          POINTER                                         :: dftb_potential
     634             :       TYPE(qs_dispersion_type), POINTER                  :: dispersion_env
     635             :       TYPE(qs_energy_type), POINTER                      :: energy
     636        6686 :       TYPE(qs_force_type), DIMENSION(:), POINTER         :: force
     637             :       TYPE(qs_gcp_type), POINTER                         :: gcp_env
     638        6686 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     639             :       TYPE(qs_kind_type), POINTER                        :: qs_kind
     640             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
     641             :       TYPE(qs_wf_history_type), POINTER                  :: wf_history
     642             :       TYPE(rho0_mpole_type), POINTER                     :: rho0_mpole
     643        6686 :       TYPE(rho_atom_type), DIMENSION(:), POINTER         :: rho_atom_set
     644             :       TYPE(scf_control_type), POINTER                    :: scf_control
     645             :       TYPE(se_taper_type), POINTER                       :: se_taper
     646             :       TYPE(section_vals_type), POINTER :: dft_section, et_coupling_section, et_ddapc_section, &
     647             :          ewald_section, harris_section, lri_section, mp2_section, nl_section, poisson_section, &
     648             :          pp_section, print_section, qs_section, se_section, tddfpt_section, xc_section
     649             :       TYPE(semi_empirical_control_type), POINTER         :: se_control
     650             :       TYPE(semi_empirical_si_type), POINTER              :: se_store_int_env
     651             :       TYPE(xtb_control_type), POINTER                    :: xtb_control
     652             : 
     653        6686 :       CALL timeset(routineN, handle)
     654        6686 :       NULLIFY (logger)
     655        6686 :       logger => cp_get_default_logger()
     656        6686 :       output_unit = cp_logger_get_default_io_unit(logger)
     657             : 
     658        6686 :       be_silent = .FALSE.
     659        6686 :       IF (PRESENT(silent)) be_silent = silent
     660             : 
     661        6686 :       CALL cite_reference(cp2kqs2020)
     662             : 
     663             :       ! Initialise the Quickstep environment
     664        6686 :       NULLIFY (mos, se_taper)
     665        6686 :       NULLIFY (dft_control)
     666        6686 :       NULLIFY (energy)
     667        6686 :       NULLIFY (force)
     668        6686 :       NULLIFY (local_molecules)
     669        6686 :       NULLIFY (local_particles)
     670        6686 :       NULLIFY (scf_control)
     671        6686 :       NULLIFY (dft_section)
     672        6686 :       NULLIFY (et_coupling_section)
     673        6686 :       NULLIFY (ks_env)
     674        6686 :       NULLIFY (mos_last_converged)
     675        6686 :       dft_section => section_vals_get_subs_vals(qs_env%input, "DFT")
     676        6686 :       qs_section => section_vals_get_subs_vals(dft_section, "QS")
     677        6686 :       et_coupling_section => section_vals_get_subs_vals(qs_env%input, "PROPERTIES%ET_COUPLING")
     678             :       ! reimplemented TDDFPT
     679        6686 :       tddfpt_section => section_vals_get_subs_vals(qs_env%input, "PROPERTIES%TDDFPT")
     680             : 
     681             :       CALL qs_subsys_get(subsys, particle_set=particle_set, &
     682             :                          qs_kind_set=qs_kind_set, &
     683             :                          atomic_kind_set=atomic_kind_set, &
     684             :                          molecule_set=molecule_set, &
     685        6686 :                          molecule_kind_set=molecule_kind_set)
     686             : 
     687             :       !   *** Read the input section with the DFT control parameters ***
     688        6686 :       CALL read_dft_control(dft_control, dft_section)
     689             : 
     690             :       ! original implementation of TDDFPT
     691        6686 :       IF (dft_control%do_tddfpt_calculation) THEN
     692          12 :          CALL read_tddfpt_control(dft_control%tddfpt_control, dft_section)
     693             :       END IF
     694             :       ! set periodicity flag
     695       26744 :       dft_control%qs_control%periodicity = SUM(cell%perd)
     696             : 
     697             :       !  Read the input section with the Quickstep control parameters
     698        6686 :       CALL read_qs_section(dft_control%qs_control, qs_section)
     699             : 
     700             :       !   *** Print the Quickstep program banner (copyright and version number) ***
     701        6686 :       IF (.NOT. be_silent) THEN
     702        6684 :          iw = cp_print_key_unit_nr(logger, dft_section, "PRINT%PROGRAM_BANNER", extension=".Log")
     703        6684 :          CALL section_vals_val_get(qs_section, "METHOD", i_val=method_id)
     704        5180 :          SELECT CASE (method_id)
     705             :          CASE DEFAULT
     706        5180 :             CALL qs_header(iw)
     707             :          CASE (do_method_rm1, do_method_am1, do_method_mndo, do_method_pdg, &
     708             :                do_method_pm3, do_method_pm6, do_method_pm6fm, do_method_mndod, do_method_pnnl)
     709         998 :             CALL se_header(iw)
     710             :          CASE (do_method_dftb)
     711         222 :             CALL dftb_header(iw)
     712             :          CASE (do_method_xtb)
     713         284 :             gfn_type = dft_control%qs_control%xtb_control%gfn_type
     714        6684 :             CALL xtb_header(iw, gfn_type)
     715             :          END SELECT
     716             :          CALL cp_print_key_finished_output(iw, logger, dft_section, &
     717        6684 :                                            "PRINT%PROGRAM_BANNER")
     718             :       END IF
     719             : 
     720        6686 :       IF (dft_control%do_sccs .AND. dft_control%qs_control%gapw) THEN
     721           0 :          CPABORT("SCCS is not yet implemented with GAPW")
     722             :       END IF
     723        6686 :       CALL get_qs_env(qs_env=qs_env, do_kpoints=do_kpoints)
     724        6686 :       IF (do_kpoints) THEN
     725             :          ! reset some of the settings for wfn extrapolation for kpoints
     726         258 :          SELECT CASE (dft_control%qs_control%wf_interpolation_method_nr)
     727             :          CASE (wfi_linear_wf_method_nr, wfi_linear_ps_method_nr, wfi_ps_method_nr, wfi_aspc_nr)
     728         160 :             dft_control%qs_control%wf_interpolation_method_nr = wfi_use_guess_method_nr
     729             :          END SELECT
     730             :       END IF
     731             : 
     732             :       !   *******  check if any kind of electron transfer calculation has to be performed
     733        6686 :       CALL section_vals_val_get(et_coupling_section, "TYPE_OF_CONSTRAINT", i_val=my_ival)
     734        6686 :       dft_control%qs_control%et_coupling_calc = .FALSE.
     735        6686 :       IF (my_ival == do_et_ddapc) THEN
     736           0 :          et_ddapc_section => section_vals_get_subs_vals(et_coupling_section, "DDAPC_RESTRAINT_A")
     737           0 :          dft_control%qs_control%et_coupling_calc = .TRUE.
     738           0 :          dft_control%qs_control%ddapc_restraint = .TRUE.
     739           0 :          CALL read_ddapc_section(dft_control%qs_control, ddapc_restraint_section=et_ddapc_section)
     740             :       END IF
     741             : 
     742        6686 :       CALL read_mgrid_section(dft_control%qs_control, dft_section)
     743             : 
     744             :       ! reimplemented TDDFPT
     745        6686 :       CALL read_tddfpt2_control(dft_control%tddfpt2_control, tddfpt_section, dft_control%qs_control)
     746             : 
     747             :       !   Create relativistic control section
     748             :       BLOCK
     749             :          TYPE(rel_control_type), POINTER :: rel_control
     750        6686 :          ALLOCATE (rel_control)
     751        6686 :          CALL rel_c_create(rel_control)
     752        6686 :          CALL rel_c_read_parameters(rel_control, dft_section)
     753        6686 :          CALL set_qs_env(qs_env, rel_control=rel_control)
     754             :       END BLOCK
     755             : 
     756             :       !   *** Read DFTB parameter files ***
     757        6686 :       IF (dft_control%qs_control%method_id == do_method_dftb) THEN
     758         222 :          NULLIFY (ewald_env, ewald_pw, dftb_potential)
     759         222 :          dftb_control => dft_control%qs_control%dftb_control
     760             :          CALL qs_dftb_param_init(atomic_kind_set, qs_kind_set, dftb_control, dftb_potential, &
     761         222 :                                  subsys_section=subsys_section, para_env=para_env)
     762         222 :          CALL set_qs_env(qs_env, dftb_potential=dftb_potential)
     763             :          ! check for Ewald
     764         222 :          IF (dftb_control%do_ewald) THEN
     765        1888 :             ALLOCATE (ewald_env)
     766         118 :             CALL ewald_env_create(ewald_env, para_env)
     767         118 :             poisson_section => section_vals_get_subs_vals(dft_section, "POISSON")
     768         118 :             CALL ewald_env_set(ewald_env, poisson_section=poisson_section)
     769         118 :             ewald_section => section_vals_get_subs_vals(poisson_section, "EWALD")
     770         118 :             print_section => section_vals_get_subs_vals(qs_env%input, "PRINT%GRID_INFORMATION")
     771         118 :             CALL get_qs_kind_set(qs_kind_set, basis_rcut=ewald_rcut)
     772         118 :             CALL read_ewald_section_tb(ewald_env, ewald_section, cell_ref%hmat)
     773         118 :             ALLOCATE (ewald_pw)
     774         118 :             CALL ewald_pw_create(ewald_pw, ewald_env, cell, cell_ref, print_section=print_section)
     775         118 :             CALL set_qs_env(qs_env, ewald_env=ewald_env, ewald_pw=ewald_pw)
     776             :          END IF
     777        6464 :       ELSEIF (dft_control%qs_control%method_id == do_method_xtb) THEN
     778             :          !   *** Read xTB parameter file ***
     779         284 :          xtb_control => dft_control%qs_control%xtb_control
     780         284 :          NULLIFY (ewald_env, ewald_pw)
     781         284 :          CALL get_qs_env(qs_env, nkind=nkind)
     782         976 :          DO ikind = 1, nkind
     783         692 :             qs_kind => qs_kind_set(ikind)
     784             :             ! Setup proper xTB parameters
     785         692 :             CPASSERT(.NOT. ASSOCIATED(qs_kind%xtb_parameter))
     786         692 :             CALL allocate_xtb_atom_param(qs_kind%xtb_parameter)
     787             :             ! Set default parameters
     788         692 :             gfn_type = dft_control%qs_control%xtb_control%gfn_type
     789         692 :             CALL get_qs_kind(qs_kind, element_symbol=element_symbol)
     790             :             CALL xtb_parameters_init(qs_kind%xtb_parameter, gfn_type, element_symbol, &
     791             :                                      xtb_control%parameter_file_path, xtb_control%parameter_file_name, &
     792         692 :                                      para_env)
     793             :             ! set dependent parameters
     794         692 :             CALL xtb_parameters_set(qs_kind%xtb_parameter)
     795             :             ! Generate basis set
     796         692 :             NULLIFY (tmp_basis_set)
     797         692 :             IF (qs_kind%xtb_parameter%z == 1) THEN
     798             :                ! special case hydrogen
     799         254 :                ngauss = xtb_control%h_sto_ng
     800             :             ELSE
     801         438 :                ngauss = xtb_control%sto_ng
     802             :             END IF
     803         692 :             IF (qs_kind%xtb_parameter%defined) THEN
     804         690 :                CALL init_xtb_basis(qs_kind%xtb_parameter, tmp_basis_set, ngauss)
     805         690 :                CALL add_basis_set_to_container(qs_kind%basis_sets, tmp_basis_set, "ORB")
     806             :             ELSE
     807           2 :                CALL set_qs_kind(qs_kind, ghost=.TRUE.)
     808           2 :                IF (ASSOCIATED(qs_kind%all_potential)) THEN
     809           2 :                   DEALLOCATE (qs_kind%all_potential%elec_conf)
     810           2 :                   DEALLOCATE (qs_kind%all_potential)
     811             :                END IF
     812             :             END IF
     813             :             ! potential
     814         976 :             IF (qs_kind%xtb_parameter%defined) THEN
     815         690 :                zeff_correction = 0.0_dp
     816             :                CALL init_potential(qs_kind%all_potential, itype="BARE", &
     817         690 :                                    zeff=qs_kind%xtb_parameter%zeff, zeff_correction=zeff_correction)
     818         690 :                CALL get_potential(qs_kind%all_potential, alpha_core_charge=alpha)
     819         690 :                ccore = qs_kind%xtb_parameter%zeff*SQRT((alpha/pi)**3)
     820         690 :                CALL set_potential(qs_kind%all_potential, ccore_charge=ccore)
     821         690 :                qs_kind%xtb_parameter%zeff = qs_kind%xtb_parameter%zeff - zeff_correction
     822             :             END IF
     823             :          END DO
     824             :          !
     825             :          ! set repulsive potential range
     826             :          !
     827        1136 :          ALLOCATE (xtb_control%rcpair(nkind, nkind))
     828         284 :          CALL xtb_pp_radius(qs_kind_set, xtb_control%rcpair, xtb_control%eps_pair, xtb_control%kf)
     829             :          ! check for Ewald
     830         284 :          IF (xtb_control%do_ewald) THEN
     831        2368 :             ALLOCATE (ewald_env)
     832         148 :             CALL ewald_env_create(ewald_env, para_env)
     833         148 :             poisson_section => section_vals_get_subs_vals(dft_section, "POISSON")
     834         148 :             CALL ewald_env_set(ewald_env, poisson_section=poisson_section)
     835         148 :             ewald_section => section_vals_get_subs_vals(poisson_section, "EWALD")
     836         148 :             print_section => section_vals_get_subs_vals(qs_env%input, "PRINT%GRID_INFORMATION")
     837         148 :             IF (gfn_type == 0) THEN
     838          20 :                CALL read_ewald_section_tb(ewald_env, ewald_section, cell_ref%hmat, pset="EEQ")
     839             :             ELSE
     840         128 :                CALL read_ewald_section_tb(ewald_env, ewald_section, cell_ref%hmat)
     841             :             END IF
     842         148 :             ALLOCATE (ewald_pw)
     843         148 :             CALL ewald_pw_create(ewald_pw, ewald_env, cell, cell_ref, print_section=print_section)
     844         148 :             CALL set_qs_env(qs_env, ewald_env=ewald_env, ewald_pw=ewald_pw)
     845             :          END IF
     846             :       END IF
     847             : 
     848             :       ! lri or ri env initialization
     849        6686 :       lri_section => section_vals_get_subs_vals(qs_section, "LRIGPW")
     850             :       IF (dft_control%qs_control%method_id == do_method_lrigpw .OR. &
     851        6686 :           dft_control%qs_control%lri_optbas .OR. &
     852             :           dft_control%qs_control%method_id == do_method_rigpw) THEN
     853          46 :          CALL lri_env_init(lri_env, lri_section)
     854          46 :          CALL set_qs_env(qs_env, lri_env=lri_env)
     855             :       END IF
     856             : 
     857             :       !   *** Check basis and fill in missing parts ***
     858        6686 :       CALL check_qs_kind_set(qs_kind_set, dft_control, subsys_section=subsys_section)
     859             : 
     860             :       !   *** Check that no all-electron potential is present if GPW or GAPW_XC
     861        6686 :       CALL get_qs_kind_set(qs_kind_set, all_potential_present=all_potential_present)
     862             :       IF ((dft_control%qs_control%method_id == do_method_gpw) .OR. &
     863        6686 :           (dft_control%qs_control%method_id == do_method_gapw_xc) .OR. &
     864             :           (dft_control%qs_control%method_id == do_method_ofgpw)) THEN
     865        4328 :          IF (all_potential_present) THEN
     866           0 :             CPABORT("All-electron calculations with GPW, GAPW_XC, and OFGPW are not implemented")
     867             :          END IF
     868             :       END IF
     869             : 
     870             :       ! DFT+U
     871        6686 :       CALL get_qs_kind_set(qs_kind_set, dft_plus_u_atom_present=dft_control%dft_plus_u)
     872             : 
     873        6686 :       IF (dft_control%do_admm) THEN
     874             :          ! Check if ADMM basis is available
     875         442 :          CALL get_qs_env(qs_env, nkind=nkind)
     876        1254 :          DO ikind = 1, nkind
     877         812 :             NULLIFY (aux_fit_basis)
     878         812 :             qs_kind => qs_kind_set(ikind)
     879         812 :             CALL get_qs_kind(qs_kind, basis_set=aux_fit_basis, basis_type="AUX_FIT")
     880        1254 :             IF (.NOT. (ASSOCIATED(aux_fit_basis))) THEN
     881             :                ! AUX_FIT basis set is not available
     882           0 :                CPABORT("AUX_FIT basis set is not defined. ")
     883             :             END IF
     884             :          END DO
     885             :       END IF
     886             : 
     887        6686 :       lribas = .FALSE.
     888        6686 :       e1terms = .FALSE.
     889        6686 :       IF (dft_control%qs_control%method_id == do_method_lrigpw) THEN
     890          40 :          lribas = .TRUE.
     891          40 :          CALL get_qs_env(qs_env, lri_env=lri_env)
     892          40 :          e1terms = lri_env%exact_1c_terms
     893             :       END IF
     894        6686 :       IF (dft_control%qs_control%do_kg) THEN
     895          66 :          CALL section_vals_val_get(dft_section, "KG_METHOD%TNADD_METHOD", i_val=tnadd_method)
     896          66 :          IF (tnadd_method == kg_tnadd_embed_ri) lribas = .TRUE.
     897             :       END IF
     898        6684 :       IF (lribas) THEN
     899             :          ! Check if LRI_AUX basis is available, auto-generate if needed
     900          42 :          CALL get_qs_env(qs_env, nkind=nkind)
     901         122 :          DO ikind = 1, nkind
     902          80 :             NULLIFY (lri_aux_basis)
     903          80 :             qs_kind => qs_kind_set(ikind)
     904          80 :             CALL get_qs_kind(qs_kind, basis_set=lri_aux_basis, basis_type="LRI_AUX")
     905         122 :             IF (.NOT. (ASSOCIATED(lri_aux_basis))) THEN
     906             :                ! LRI_AUX basis set is not yet loaded
     907             :                CALL cp_warn(__LOCATION__, "Automatic Generation of LRI_AUX basis. "// &
     908          18 :                             "This is experimental code.")
     909             :                ! Generate a default basis
     910          18 :                CALL create_lri_aux_basis_set(lri_aux_basis, qs_kind, dft_control%auto_basis_lri_aux, e1terms)
     911          18 :                CALL add_basis_set_to_container(qs_kind%basis_sets, lri_aux_basis, "LRI_AUX")
     912             :             END IF
     913             :          END DO
     914             :       END IF
     915             : 
     916        6686 :       CALL section_vals_val_get(qs_env%input, "DFT%XC%HF%RI%_SECTION_PARAMETERS_", l_val=do_ri_hfx)
     917             :       CALL section_vals_val_get(qs_env%input, "DFT%XC%WF_CORRELATION%RI_RPA%HF%RI%_SECTION_PARAMETERS_", &
     918        6686 :                                 l_val=do_rpa_ri_exx)
     919        6686 :       IF (do_ri_hfx .OR. do_rpa_ri_exx) THEN
     920         100 :          CALL get_qs_env(qs_env, nkind=nkind)
     921         100 :          CALL section_vals_val_get(qs_env%input, "DFT%SORT_BASIS", i_val=sort_basis)
     922         270 :          DO ikind = 1, nkind
     923         170 :             NULLIFY (ri_hfx_basis)
     924         170 :             qs_kind => qs_kind_set(ikind)
     925             :             CALL get_qs_kind(qs_kind=qs_kind, basis_set=ri_hfx_basis, &
     926         170 :                              basis_type="RI_HFX")
     927        6856 :             IF (.NOT. (ASSOCIATED(ri_hfx_basis))) THEN
     928         166 :                CALL get_qs_kind_set(qs_kind_set, maxlgto=maxlgto)
     929         166 :                IF (dft_control%do_admm) THEN
     930             :                   CALL create_ri_aux_basis_set(ri_hfx_basis, qs_kind, dft_control%auto_basis_ri_hfx, &
     931          56 :                                                basis_type="AUX_FIT", basis_sort=sort_basis)
     932             :                ELSE
     933             :                   CALL create_ri_aux_basis_set(ri_hfx_basis, qs_kind, dft_control%auto_basis_ri_hfx, &
     934         110 :                                                basis_sort=sort_basis)
     935             :                END IF
     936         166 :                CALL add_basis_set_to_container(qs_kind%basis_sets, ri_hfx_basis, "RI_HFX")
     937             :             END IF
     938             :          END DO
     939             :       END IF
     940             : 
     941        6686 :       IF (dft_control%qs_control%method_id == do_method_rigpw) THEN
     942             :          ! Check if RI_HXC basis is available, auto-generate if needed
     943           0 :          CALL get_qs_env(qs_env, nkind=nkind)
     944           0 :          DO ikind = 1, nkind
     945           0 :             NULLIFY (ri_hfx_basis)
     946           0 :             qs_kind => qs_kind_set(ikind)
     947           0 :             CALL get_qs_kind(qs_kind, basis_set=ri_hfx_basis, basis_type="RI_HXC")
     948           0 :             IF (.NOT. (ASSOCIATED(ri_hfx_basis))) THEN
     949             :                ! Generate a default basis
     950           0 :                CALL create_ri_aux_basis_set(ri_hfx_basis, qs_kind, dft_control%auto_basis_ri_hxc)
     951           0 :                CALL add_basis_set_to_container(qs_kind%basis_sets, ri_hfx_basis, "RI_HXC")
     952             :             END IF
     953             :          END DO
     954             :       END IF
     955             : 
     956             :       ! Harris method
     957        6686 :       NULLIFY (harris_env)
     958             :       CALL section_vals_val_get(dft_section, "HARRIS_METHOD%_SECTION_PARAMETERS_", &
     959        6686 :                                 l_val=qs_env%harris_method)
     960        6686 :       harris_section => section_vals_get_subs_vals(dft_section, "HARRIS_METHOD")
     961        6686 :       CALL harris_env_create(qs_env, harris_env, harris_section)
     962        6686 :       CALL set_qs_env(qs_env, harris_env=harris_env)
     963             :       !
     964        6686 :       IF (qs_env%harris_method) THEN
     965           6 :          CALL get_qs_env(qs_env, nkind=nkind)
     966             :          ! Check if RI_HXC basis is available, auto-generate if needed
     967          22 :          DO ikind = 1, nkind
     968          16 :             NULLIFY (tmp_basis_set)
     969          16 :             qs_kind => qs_kind_set(ikind)
     970          16 :             CALL get_qs_kind(qs_kind, basis_set=rhoin_basis, basis_type="RHOIN")
     971          22 :             IF (.NOT. (ASSOCIATED(rhoin_basis))) THEN
     972             :                ! Generate a default basis
     973          16 :                CALL create_ri_aux_basis_set(tmp_basis_set, qs_kind, dft_control%auto_basis_ri_hxc)
     974          16 :                IF (qs_env%harris_env%density_source == hden_atomic) THEN
     975          16 :                   CALL create_primitive_basis_set(tmp_basis_set, rhoin_basis, lmax=0)
     976          16 :                   CALL deallocate_gto_basis_set(tmp_basis_set)
     977             :                ELSE
     978           0 :                   rhoin_basis => tmp_basis_set
     979             :                END IF
     980          16 :                CALL add_basis_set_to_container(qs_kind%basis_sets, rhoin_basis, "RHOIN")
     981             :             END IF
     982             :          END DO
     983             :       END IF
     984             : 
     985        6686 :       mp2_section => section_vals_get_subs_vals(qs_env%input, "DFT%XC%WF_CORRELATION")
     986        6686 :       CALL section_vals_get(mp2_section, explicit=mp2_present)
     987        6686 :       IF (mp2_present) THEN
     988             : 
     989             :          ! basis should be sorted for imaginary time RPA/GW
     990         466 :          CALL section_vals_val_get(qs_env%input, "DFT%SORT_BASIS", i_val=sort_basis)
     991             :          CALL section_vals_val_get(qs_env%input, "DFT%XC%WF_CORRELATION%LOW_SCALING%_SECTION_PARAMETERS_", &
     992         466 :                                    l_val=do_wfc_im_time)
     993             : 
     994         466 :          IF (do_wfc_im_time .AND. sort_basis /= basis_sort_zet) THEN
     995             :             CALL cp_warn(__LOCATION__, &
     996          10 :                          "Low-scaling RPA requires SORT_BASIS EXP keyword (in DFT input section) for good performance")
     997             :          END IF
     998             : 
     999             :          ! Check if RI_AUX basis (for MP2/RPA) is given, auto-generate if not
    1000         466 :          CALL mp2_env_create(qs_env%mp2_env)
    1001         466 :          CALL get_qs_env(qs_env, mp2_env=mp2_env, nkind=nkind)
    1002         466 :          CALL section_vals_val_get(qs_env%input, "DFT%XC%WF_CORRELATION%RI_MP2%_SECTION_PARAMETERS_", l_val=do_ri_mp2)
    1003         466 :          CALL section_vals_val_get(qs_env%input, "DFT%XC%WF_CORRELATION%RI_SOS_MP2%_SECTION_PARAMETERS_", l_val=do_ri_sos_mp2)
    1004         466 :          CALL section_vals_val_get(qs_env%input, "DFT%XC%WF_CORRELATION%RI_RPA%_SECTION_PARAMETERS_", l_val=do_ri_rpa)
    1005         466 :          IF (do_ri_mp2 .OR. do_ri_sos_mp2 .OR. do_ri_rpa) THEN
    1006        1254 :             DO ikind = 1, nkind
    1007         826 :                NULLIFY (ri_aux_basis_set)
    1008         826 :                qs_kind => qs_kind_set(ikind)
    1009             :                CALL get_qs_kind(qs_kind=qs_kind, basis_set=ri_aux_basis_set, &
    1010         826 :                                 basis_type="RI_AUX")
    1011        1292 :                IF (.NOT. (ASSOCIATED(ri_aux_basis_set))) THEN
    1012             :                   ! RI_AUX basis set is not yet loaded
    1013             :                   ! Generate a default basis
    1014           8 :                   CALL create_ri_aux_basis_set(ri_aux_basis_set, qs_kind, dft_control%auto_basis_ri_aux, basis_sort=sort_basis)
    1015           8 :                   CALL add_basis_set_to_container(qs_kind%basis_sets, ri_aux_basis_set, "RI_AUX")
    1016             :                END IF
    1017             :             END DO
    1018             :          END IF
    1019             : 
    1020             :       END IF
    1021             : 
    1022        6686 :       IF (dft_control%do_xas_tdp_calculation) THEN
    1023             :          ! Check if RI_XAS basis is given, auto-generate if not
    1024          50 :          CALL get_qs_env(qs_env, nkind=nkind)
    1025         128 :          DO ikind = 1, nkind
    1026          78 :             NULLIFY (ri_xas_basis)
    1027          78 :             qs_kind => qs_kind_set(ikind)
    1028          78 :             CALL get_qs_kind(qs_kind, basis_Set=ri_xas_basis, basis_type="RI_XAS")
    1029         128 :             IF (.NOT. ASSOCIATED(ri_xas_basis)) THEN
    1030             :                ! Generate a default basis
    1031          76 :                CALL create_ri_aux_basis_set(ri_xas_basis, qs_kind, dft_control%auto_basis_ri_xas)
    1032          76 :                CALL add_basis_set_to_container(qs_kind%basis_sets, ri_xas_basis, "RI_XAS")
    1033             :             END IF
    1034             :          END DO
    1035             :       END IF
    1036             : 
    1037             :       !   *** Initialize the spherical harmonics and ***
    1038             :       !   *** the orbital transformation matrices    ***
    1039        6686 :       CALL get_qs_kind_set(qs_kind_set, maxlgto=maxlgto, maxlppl=maxlppl, maxlppnl=maxlppnl)
    1040             : 
    1041        6686 :       lmax_sphere = dft_control%qs_control%gapw_control%lmax_sphere
    1042        6686 :       IF (lmax_sphere .LT. 0) THEN
    1043        6568 :          lmax_sphere = 2*maxlgto
    1044        6568 :          dft_control%qs_control%gapw_control%lmax_sphere = lmax_sphere
    1045             :       END IF
    1046        6686 :       IF (dft_control%qs_control%method_id == do_method_lrigpw .OR. dft_control%qs_control%lri_optbas) THEN
    1047          46 :          CALL get_qs_kind_set(qs_kind_set, maxlgto=maxlgto_lri, basis_type="LRI_AUX")
    1048             :          !take maxlgto from lri basis if larger (usually)
    1049          46 :          maxlgto = MAX(maxlgto, maxlgto_lri)
    1050        6640 :       ELSE IF (dft_control%qs_control%method_id == do_method_rigpw) THEN
    1051           0 :          CALL get_qs_kind_set(qs_kind_set, maxlgto=maxlgto_lri, basis_type="RI_HXC")
    1052           0 :          maxlgto = MAX(maxlgto, maxlgto_lri)
    1053             :       END IF
    1054        6686 :       IF (dft_control%do_xas_tdp_calculation) THEN
    1055             :          !done as a precaution
    1056          50 :          CALL get_qs_kind_set(qs_kind_set, maxlgto=maxlgto_lri, basis_type="RI_XAS")
    1057          50 :          maxlgto = MAX(maxlgto, maxlgto_lri)
    1058             :       END IF
    1059        6686 :       maxl = MAX(2*maxlgto, maxlppl, maxlppnl, lmax_sphere) + 1
    1060             : 
    1061        6686 :       CALL init_orbital_pointers(maxl)
    1062             : 
    1063        6686 :       CALL init_spherical_harmonics(maxl, 0)
    1064             : 
    1065             :       !   *** Initialise the qs_kind_set ***
    1066        6686 :       CALL init_qs_kind_set(qs_kind_set)
    1067             : 
    1068             :       !   *** Initialise GAPW soft basis and projectors
    1069        6686 :       IF (dft_control%qs_control%method_id == do_method_gapw .OR. &
    1070             :           dft_control%qs_control%method_id == do_method_gapw_xc) THEN
    1071         920 :          qs_control => dft_control%qs_control
    1072         920 :          CALL init_gapw_basis_set(qs_kind_set, qs_control, qs_env%input)
    1073             :       END IF
    1074             : 
    1075             :       !   *** Initialize the pretabulation for the calculation of the   ***
    1076             :       !   *** incomplete Gamma function F_n(t) after McMurchie-Davidson ***
    1077        6686 :       CALL get_qs_kind_set(qs_kind_set, maxlgto=maxlgto)
    1078        6686 :       maxl = MAX(3*maxlgto + 1, 0)
    1079        6686 :       CALL init_md_ftable(maxl)
    1080             : 
    1081             :       !   *** Initialize the atomic interaction radii ***
    1082        6686 :       CALL init_interaction_radii(dft_control%qs_control, qs_kind_set)
    1083             :       !
    1084        6686 :       IF (dft_control%qs_control%method_id == do_method_xtb) THEN
    1085             :          ! cutoff radius
    1086         976 :          DO ikind = 1, nkind
    1087         692 :             qs_kind => qs_kind_set(ikind)
    1088         976 :             IF (qs_kind%xtb_parameter%defined) THEN
    1089         690 :                CALL get_qs_kind(qs_kind, basis_set=tmp_basis_set)
    1090         690 :                rcut = xtb_control%coulomb_sr_cut
    1091         690 :                fxx = 2.0_dp*xtb_control%coulomb_sr_eps*qs_kind%xtb_parameter%eta**2
    1092         690 :                fxx = 0.80_dp*(1.0_dp/fxx)**0.3333_dp
    1093         690 :                rcut = MIN(rcut, xtb_control%coulomb_sr_cut)
    1094         690 :                qs_kind%xtb_parameter%rcut = MIN(rcut, fxx)
    1095             :             ELSE
    1096           2 :                qs_kind%xtb_parameter%rcut = 0.0_dp
    1097             :             END IF
    1098             :          END DO
    1099             :       END IF
    1100             : 
    1101        6686 :       IF (.NOT. be_silent) THEN
    1102        6684 :          CALL write_pgf_orb_radii("orb", atomic_kind_set, qs_kind_set, subsys_section)
    1103        6684 :          CALL write_pgf_orb_radii("aux", atomic_kind_set, qs_kind_set, subsys_section)
    1104        6684 :          CALL write_pgf_orb_radii("lri", atomic_kind_set, qs_kind_set, subsys_section)
    1105        6684 :          CALL write_core_charge_radii(atomic_kind_set, qs_kind_set, subsys_section)
    1106        6684 :          CALL write_ppl_radii(atomic_kind_set, qs_kind_set, subsys_section)
    1107        6684 :          CALL write_ppnl_radii(atomic_kind_set, qs_kind_set, subsys_section)
    1108        6684 :          CALL write_paw_radii(atomic_kind_set, qs_kind_set, subsys_section)
    1109             :       END IF
    1110             : 
    1111             :       !   *** Distribute molecules and atoms using the new data structures ***
    1112             :       CALL distribute_molecules_1d(atomic_kind_set=atomic_kind_set, &
    1113             :                                    particle_set=particle_set, &
    1114             :                                    local_particles=local_particles, &
    1115             :                                    molecule_kind_set=molecule_kind_set, &
    1116             :                                    molecule_set=molecule_set, &
    1117             :                                    local_molecules=local_molecules, &
    1118        6686 :                                    force_env_section=qs_env%input)
    1119             : 
    1120             :       !   *** SCF parameters ***
    1121      193894 :       ALLOCATE (scf_control)
    1122             :       ! set (non)-self consistency
    1123        6686 :       IF (dft_control%qs_control%dftb) THEN
    1124         222 :          scf_control%non_selfconsistent = .NOT. dft_control%qs_control%dftb_control%self_consistent
    1125             :       END IF
    1126        6686 :       IF (dft_control%qs_control%xtb) THEN
    1127         284 :          scf_control%non_selfconsistent = (dft_control%qs_control%xtb_control%gfn_type == 0)
    1128             :       END IF
    1129        6686 :       IF (qs_env%harris_method) THEN
    1130           6 :          scf_control%non_selfconsistent = .TRUE.
    1131             :       END IF
    1132        6686 :       CALL scf_c_create(scf_control)
    1133        6686 :       CALL scf_c_read_parameters(scf_control, dft_section)
    1134             :       !   *** Allocate the data structure for Quickstep energies ***
    1135        6686 :       CALL allocate_qs_energy(energy)
    1136             : 
    1137             :       ! check for orthogonal basis
    1138        6686 :       has_unit_metric = .FALSE.
    1139        6686 :       IF (dft_control%qs_control%semi_empirical) THEN
    1140         998 :          IF (dft_control%qs_control%se_control%orthogonal_basis) has_unit_metric = .TRUE.
    1141             :       END IF
    1142        6686 :       IF (dft_control%qs_control%dftb) THEN
    1143         222 :          IF (dft_control%qs_control%dftb_control%orthogonal_basis) has_unit_metric = .TRUE.
    1144             :       END IF
    1145        6686 :       CALL set_qs_env(qs_env, has_unit_metric=has_unit_metric)
    1146             : 
    1147             :       !   *** Activate the interpolation ***
    1148             :       CALL wfi_create(wf_history, &
    1149             :                       interpolation_method_nr= &
    1150             :                       dft_control%qs_control%wf_interpolation_method_nr, &
    1151             :                       extrapolation_order=dft_control%qs_control%wf_extrapolation_order, &
    1152        6686 :                       has_unit_metric=has_unit_metric)
    1153             : 
    1154             :       !   *** Set the current Quickstep environment ***
    1155             :       CALL set_qs_env(qs_env=qs_env, &
    1156             :                       scf_control=scf_control, &
    1157        6686 :                       wf_history=wf_history)
    1158             : 
    1159             :       CALL qs_subsys_set(subsys, &
    1160             :                          cell_ref=cell_ref, &
    1161             :                          use_ref_cell=use_ref_cell, &
    1162             :                          energy=energy, &
    1163        6686 :                          force=force)
    1164             : 
    1165        6686 :       CALL get_qs_env(qs_env, ks_env=ks_env)
    1166        6686 :       CALL set_ks_env(ks_env, dft_control=dft_control)
    1167             : 
    1168             :       CALL qs_subsys_set(subsys, local_molecules=local_molecules, &
    1169        6686 :                          local_particles=local_particles, cell=cell)
    1170             : 
    1171        6686 :       CALL distribution_1d_release(local_particles)
    1172        6686 :       CALL distribution_1d_release(local_molecules)
    1173        6686 :       CALL wfi_release(wf_history)
    1174             : 
    1175             :       CALL get_qs_env(qs_env=qs_env, &
    1176             :                       atomic_kind_set=atomic_kind_set, &
    1177             :                       dft_control=dft_control, &
    1178        6686 :                       scf_control=scf_control)
    1179             : 
    1180             :       ! decide what conditions need mo_derivs
    1181             :       ! right now, this only appears to be OT
    1182        6686 :       IF (dft_control%qs_control%do_ls_scf .OR. &
    1183             :           dft_control%qs_control%do_almo_scf) THEN
    1184         410 :          CALL set_qs_env(qs_env=qs_env, requires_mo_derivs=.FALSE.)
    1185             :       ELSE
    1186        6276 :          IF (scf_control%use_ot) THEN
    1187        1996 :             CALL set_qs_env(qs_env=qs_env, requires_mo_derivs=.TRUE.)
    1188             :          ELSE
    1189        4280 :             CALL set_qs_env(qs_env=qs_env, requires_mo_derivs=.FALSE.)
    1190             :          END IF
    1191             :       END IF
    1192             : 
    1193             :       ! XXXXXXX this is backwards XXXXXXXX
    1194        6686 :       dft_control%smear = scf_control%smear%do_smear
    1195             : 
    1196             :       ! Periodic efield needs equal occupation and orbital gradients
    1197        6686 :       IF (.NOT. (dft_control%qs_control%dftb .OR. dft_control%qs_control%xtb)) THEN
    1198        6180 :          IF (dft_control%apply_period_efield) THEN
    1199          26 :             CALL get_qs_env(qs_env=qs_env, requires_mo_derivs=orb_gradient)
    1200          26 :             IF (.NOT. orb_gradient) THEN
    1201             :                CALL cp_abort(__LOCATION__, "Periodic Efield needs orbital gradient and direct optimization."// &
    1202           0 :                              " Use the OT optimization method.")
    1203             :             END IF
    1204          26 :             IF (dft_control%smear) THEN
    1205             :                CALL cp_abort(__LOCATION__, "Periodic Efield needs equal occupation numbers."// &
    1206           0 :                              " Smearing option is not possible.")
    1207             :             END IF
    1208             :          END IF
    1209             :       END IF
    1210             : 
    1211             :       !   Initialize the GAPW local densities and potentials
    1212        6686 :       IF (dft_control%qs_control%method_id == do_method_gapw .OR. &
    1213             :           dft_control%qs_control%method_id == do_method_gapw_xc) THEN
    1214             :          !     *** Allocate and initialize the set of atomic densities ***
    1215         920 :          NULLIFY (rho_atom_set)
    1216         920 :          gapw_control => dft_control%qs_control%gapw_control
    1217         920 :          CALL init_rho_atom(rho_atom_set, atomic_kind_set, qs_kind_set, dft_control, para_env)
    1218         920 :          CALL set_qs_env(qs_env=qs_env, rho_atom_set=rho_atom_set)
    1219         920 :          IF (dft_control%qs_control%method_id /= do_method_gapw_xc) THEN
    1220         814 :             CALL get_qs_env(qs_env=qs_env, local_rho_set=local_rho_set, natom=natom)
    1221             :             !       *** Allocate and initialize the compensation density rho0 ***
    1222         814 :             CALL init_rho0(local_rho_set, qs_env, gapw_control)
    1223             :             !       *** Allocate and Initialize the local coulomb term ***
    1224         814 :             CALL init_coulomb_local(qs_env%hartree_local, natom)
    1225             :          END IF
    1226             :          ! NLCC
    1227         920 :          CALL init_gapw_nlcc(qs_kind_set)
    1228        5766 :       ELSE IF (dft_control%qs_control%method_id == do_method_lrigpw) THEN
    1229             :          ! allocate local ri environment
    1230             :          ! nothing to do here?
    1231        5726 :       ELSE IF (dft_control%qs_control%method_id == do_method_rigpw) THEN
    1232             :          ! allocate ri environment
    1233             :          ! nothing to do here?
    1234        5726 :       ELSE IF (dft_control%qs_control%semi_empirical) THEN
    1235         998 :          NULLIFY (se_store_int_env, se_nddo_mpole, se_nonbond_env)
    1236         998 :          natom = SIZE(particle_set)
    1237         998 :          se_section => section_vals_get_subs_vals(qs_section, "SE")
    1238         998 :          se_control => dft_control%qs_control%se_control
    1239             : 
    1240             :          ! Make the cutoff radii choice a bit smarter
    1241         998 :          CALL se_cutoff_compatible(se_control, se_section, cell, output_unit)
    1242             : 
    1243        1994 :          SELECT CASE (dft_control%qs_control%method_id)
    1244             :          CASE DEFAULT
    1245             :          CASE (do_method_rm1, do_method_am1, do_method_mndo, do_method_pm3, &
    1246             :                do_method_pm6, do_method_pm6fm, do_method_mndod, do_method_pnnl)
    1247             :             ! Neighbor lists have to be MAX(interaction range, orbital range)
    1248             :             ! set new kind radius
    1249         998 :             CALL init_se_nlradius(se_control, atomic_kind_set, qs_kind_set, subsys_section)
    1250             :          END SELECT
    1251             :          ! Initialize to zero the max multipole to treat in the EWALD scheme..
    1252         998 :          se_control%max_multipole = do_multipole_none
    1253             :          ! check for Ewald
    1254         998 :          IF (se_control%do_ewald .OR. se_control%do_ewald_gks) THEN
    1255         512 :             ALLOCATE (ewald_env)
    1256          32 :             CALL ewald_env_create(ewald_env, para_env)
    1257          32 :             poisson_section => section_vals_get_subs_vals(dft_section, "POISSON")
    1258          32 :             CALL ewald_env_set(ewald_env, poisson_section=poisson_section)
    1259          32 :             ewald_section => section_vals_get_subs_vals(poisson_section, "EWALD")
    1260             :             print_section => section_vals_get_subs_vals(qs_env%input, &
    1261          32 :                                                         "PRINT%GRID_INFORMATION")
    1262          32 :             CALL read_ewald_section(ewald_env, ewald_section)
    1263             :             ! Create ewald grids
    1264          32 :             ALLOCATE (ewald_pw)
    1265             :             CALL ewald_pw_create(ewald_pw, ewald_env, cell, cell_ref, &
    1266          32 :                                  print_section=print_section)
    1267             :             ! Initialize ewald grids
    1268          32 :             CALL ewald_pw_grid_update(ewald_pw, ewald_env, cell%hmat)
    1269             :             ! Setup the nonbond environment (real space part of Ewald)
    1270          32 :             CALL ewald_env_get(ewald_env, rcut=ewald_rcut)
    1271             :             ! Setup the maximum level of multipoles to be treated in the periodic SE scheme
    1272          32 :             IF (se_control%do_ewald) THEN
    1273          30 :                CALL ewald_env_get(ewald_env, max_multipole=se_control%max_multipole)
    1274             :             END IF
    1275             :             CALL section_vals_val_get(se_section, "NEIGHBOR_LISTS%VERLET_SKIN", &
    1276          32 :                                       r_val=verlet_skin)
    1277          32 :             ALLOCATE (se_nonbond_env)
    1278             :             CALL fist_nonbond_env_create(se_nonbond_env, atomic_kind_set, do_nonbonded=.TRUE., &
    1279             :                                          do_electrostatics=.TRUE., verlet_skin=verlet_skin, ewald_rcut=ewald_rcut, &
    1280          32 :                                          ei_scale14=0.0_dp, vdw_scale14=0.0_dp, shift_cutoff=.FALSE.)
    1281             :             ! Create and Setup NDDO multipole environment
    1282          32 :             CALL nddo_mpole_setup(se_nddo_mpole, natom)
    1283             :             CALL set_qs_env(qs_env, ewald_env=ewald_env, ewald_pw=ewald_pw, &
    1284          32 :                             se_nonbond_env=se_nonbond_env, se_nddo_mpole=se_nddo_mpole)
    1285             :             ! Handle the residual integral part 1/R^3
    1286             :             CALL semi_empirical_expns3_setup(qs_kind_set, se_control, &
    1287          32 :                                              dft_control%qs_control%method_id)
    1288             :          END IF
    1289             :          ! Taper function
    1290             :          CALL se_taper_create(se_taper, se_control%integral_screening, se_control%do_ewald, &
    1291             :                               se_control%taper_cou, se_control%range_cou, &
    1292             :                               se_control%taper_exc, se_control%range_exc, &
    1293             :                               se_control%taper_scr, se_control%range_scr, &
    1294         998 :                               se_control%taper_lrc, se_control%range_lrc)
    1295         998 :          CALL set_qs_env(qs_env, se_taper=se_taper)
    1296             :          ! Store integral environment
    1297         998 :          CALL semi_empirical_si_create(se_store_int_env, se_section)
    1298         998 :          CALL set_qs_env(qs_env, se_store_int_env=se_store_int_env)
    1299             :       END IF
    1300             : 
    1301             :       !   Initialize possible dispersion parameters
    1302             :       IF (dft_control%qs_control%method_id == do_method_gpw .OR. &
    1303             :           dft_control%qs_control%method_id == do_method_gapw .OR. &
    1304             :           dft_control%qs_control%method_id == do_method_gapw_xc .OR. &
    1305             :           dft_control%qs_control%method_id == do_method_lrigpw .OR. &
    1306        6686 :           dft_control%qs_control%method_id == do_method_rigpw .OR. &
    1307             :           dft_control%qs_control%method_id == do_method_ofgpw) THEN
    1308       25910 :          ALLOCATE (dispersion_env)
    1309        5182 :          NULLIFY (xc_section)
    1310        5182 :          xc_section => section_vals_get_subs_vals(dft_section, "XC")
    1311        5182 :          CALL qs_dispersion_env_set(dispersion_env, xc_section)
    1312        5182 :          IF (dispersion_env%type == xc_vdw_fun_pairpot) THEN
    1313          94 :             NULLIFY (pp_section)
    1314          94 :             pp_section => section_vals_get_subs_vals(xc_section, "VDW_POTENTIAL%PAIR_POTENTIAL")
    1315          94 :             CALL qs_dispersion_pairpot_init(atomic_kind_set, qs_kind_set, dispersion_env, pp_section, para_env)
    1316        5088 :          ELSE IF (dispersion_env%type == xc_vdw_fun_nonloc) THEN
    1317          46 :             NULLIFY (nl_section)
    1318          46 :             nl_section => section_vals_get_subs_vals(xc_section, "VDW_POTENTIAL%NON_LOCAL")
    1319          46 :             CALL qs_dispersion_nonloc_init(dispersion_env, para_env)
    1320             :          END IF
    1321        5182 :          CALL set_qs_env(qs_env, dispersion_env=dispersion_env)
    1322        1504 :       ELSE IF (dft_control%qs_control%method_id == do_method_dftb) THEN
    1323        1110 :          ALLOCATE (dispersion_env)
    1324             :          ! set general defaults
    1325             :          dispersion_env%doabc = .FALSE.
    1326             :          dispersion_env%c9cnst = .FALSE.
    1327             :          dispersion_env%lrc = .FALSE.
    1328             :          dispersion_env%srb = .FALSE.
    1329             :          dispersion_env%verbose = .FALSE.
    1330             :          NULLIFY (dispersion_env%c6ab, dispersion_env%maxci, dispersion_env%r0ab, dispersion_env%rcov, &
    1331             :                   dispersion_env%r2r4, dispersion_env%cn, dispersion_env%cnkind, dispersion_env%cnlist, &
    1332             :                   dispersion_env%d3_exclude_pair)
    1333             :          NULLIFY (dispersion_env%q_mesh, dispersion_env%kernel, dispersion_env%d2phi_dk2, &
    1334             :                   dispersion_env%d2y_dx2, dispersion_env%dftd_section)
    1335             :          NULLIFY (dispersion_env%sab_vdw, dispersion_env%sab_cn)
    1336         222 :          IF (dftb_control%dispersion .AND. dftb_control%dispersion_type == dispersion_d3) THEN
    1337          14 :             dispersion_env%type = xc_vdw_fun_pairpot
    1338          14 :             dispersion_env%pp_type = vdw_pairpot_dftd3
    1339          14 :             dispersion_env%eps_cn = dftb_control%epscn
    1340          14 :             dispersion_env%s6 = dftb_control%sd3(1)
    1341          14 :             dispersion_env%sr6 = dftb_control%sd3(2)
    1342          14 :             dispersion_env%s8 = dftb_control%sd3(3)
    1343             :             dispersion_env%domol = .FALSE.
    1344          14 :             dispersion_env%kgc8 = 0._dp
    1345          14 :             dispersion_env%rc_disp = dftb_control%rcdisp
    1346          14 :             dispersion_env%exp_pre = 0._dp
    1347          14 :             dispersion_env%scaling = 0._dp
    1348          14 :             dispersion_env%nd3_exclude_pair = 0
    1349          14 :             dispersion_env%parameter_file_name = dftb_control%dispersion_parameter_file
    1350          14 :             CALL qs_dispersion_pairpot_init(atomic_kind_set, qs_kind_set, dispersion_env, para_env=para_env)
    1351         208 :          ELSEIF (dftb_control%dispersion .AND. dftb_control%dispersion_type == dispersion_d3bj) THEN
    1352           2 :             dispersion_env%type = xc_vdw_fun_pairpot
    1353           2 :             dispersion_env%pp_type = vdw_pairpot_dftd3bj
    1354           2 :             dispersion_env%eps_cn = dftb_control%epscn
    1355           2 :             dispersion_env%s6 = dftb_control%sd3bj(1)
    1356           2 :             dispersion_env%a1 = dftb_control%sd3bj(2)
    1357           2 :             dispersion_env%s8 = dftb_control%sd3bj(3)
    1358           2 :             dispersion_env%a2 = dftb_control%sd3bj(4)
    1359             :             dispersion_env%domol = .FALSE.
    1360           2 :             dispersion_env%kgc8 = 0._dp
    1361           2 :             dispersion_env%rc_disp = dftb_control%rcdisp
    1362           2 :             dispersion_env%exp_pre = 0._dp
    1363           2 :             dispersion_env%scaling = 0._dp
    1364           2 :             dispersion_env%nd3_exclude_pair = 0
    1365           2 :             dispersion_env%parameter_file_name = dftb_control%dispersion_parameter_file
    1366           2 :             CALL qs_dispersion_pairpot_init(atomic_kind_set, qs_kind_set, dispersion_env, para_env=para_env)
    1367         206 :          ELSEIF (dftb_control%dispersion .AND. dftb_control%dispersion_type == dispersion_d2) THEN
    1368           2 :             dispersion_env%type = xc_vdw_fun_pairpot
    1369           2 :             dispersion_env%pp_type = vdw_pairpot_dftd2
    1370           2 :             dispersion_env%exp_pre = dftb_control%exp_pre
    1371           2 :             dispersion_env%scaling = dftb_control%scaling
    1372           2 :             dispersion_env%parameter_file_name = dftb_control%dispersion_parameter_file
    1373           2 :             dispersion_env%rc_disp = dftb_control%rcdisp
    1374           2 :             CALL qs_dispersion_pairpot_init(atomic_kind_set, qs_kind_set, dispersion_env, para_env=para_env)
    1375             :          ELSE
    1376         204 :             dispersion_env%type = xc_vdw_fun_none
    1377             :          END IF
    1378         222 :          CALL set_qs_env(qs_env, dispersion_env=dispersion_env)
    1379        1282 :       ELSE IF (dft_control%qs_control%method_id == do_method_xtb) THEN
    1380        1420 :          ALLOCATE (dispersion_env)
    1381             :          ! set general defaults
    1382             :          dispersion_env%doabc = .FALSE.
    1383             :          dispersion_env%c9cnst = .FALSE.
    1384             :          dispersion_env%lrc = .FALSE.
    1385             :          dispersion_env%srb = .FALSE.
    1386             :          dispersion_env%verbose = .FALSE.
    1387             :          NULLIFY (dispersion_env%c6ab, dispersion_env%maxci, &
    1388             :                   dispersion_env%r0ab, dispersion_env%rcov, &
    1389             :                   dispersion_env%r2r4, dispersion_env%cn, &
    1390             :                   dispersion_env%cnkind, dispersion_env%cnlist, &
    1391             :                   dispersion_env%d3_exclude_pair)
    1392             :          NULLIFY (dispersion_env%q_mesh, dispersion_env%kernel, dispersion_env%d2phi_dk2, &
    1393             :                   dispersion_env%d2y_dx2, dispersion_env%dftd_section)
    1394             :          NULLIFY (dispersion_env%sab_vdw, dispersion_env%sab_cn)
    1395         284 :          dispersion_env%type = xc_vdw_fun_pairpot
    1396         284 :          dispersion_env%eps_cn = xtb_control%epscn
    1397         284 :          dispersion_env%s6 = xtb_control%s6
    1398         284 :          dispersion_env%s8 = xtb_control%s8
    1399         284 :          dispersion_env%a1 = xtb_control%a1
    1400         284 :          dispersion_env%a2 = xtb_control%a2
    1401             :          dispersion_env%domol = .FALSE.
    1402         284 :          dispersion_env%kgc8 = 0._dp
    1403         284 :          dispersion_env%rc_disp = xtb_control%rcdisp
    1404         284 :          dispersion_env%rc_d4 = xtb_control%rcdisp
    1405         284 :          dispersion_env%exp_pre = 0._dp
    1406         284 :          dispersion_env%scaling = 0._dp
    1407         284 :          dispersion_env%nd3_exclude_pair = 0
    1408         284 :          dispersion_env%parameter_file_name = xtb_control%dispersion_parameter_file
    1409             :          !
    1410         564 :          SELECT CASE (xtb_control%vdw_type)
    1411             :          CASE (xtb_vdw_type_none, xtb_vdw_type_d3)
    1412         280 :             dispersion_env%pp_type = vdw_pairpot_dftd3bj
    1413         280 :             CALL qs_dispersion_pairpot_init(atomic_kind_set, qs_kind_set, dispersion_env, para_env=para_env)
    1414         280 :             IF (xtb_control%vdw_type == xtb_vdw_type_none) dispersion_env%type = xc_vdw_fun_none
    1415             :          CASE (xtb_vdw_type_d4)
    1416           4 :             dispersion_env%pp_type = vdw_pairpot_dftd4
    1417           4 :             dispersion_env%ref_functional = "none"
    1418             :             CALL qs_dispersion_pairpot_init(atomic_kind_set, qs_kind_set, &
    1419           4 :                                             dispersion_env, para_env=para_env)
    1420           4 :             dispersion_env%cnfun = 2
    1421             :          CASE DEFAULT
    1422         284 :             CPABORT("vdw type")
    1423             :          END SELECT
    1424         284 :          CALL set_qs_env(qs_env, dispersion_env=dispersion_env)
    1425         998 :       ELSE IF (dft_control%qs_control%semi_empirical) THEN
    1426        4990 :          ALLOCATE (dispersion_env)
    1427             :          ! set general defaults
    1428             :          dispersion_env%doabc = .FALSE.
    1429             :          dispersion_env%c9cnst = .FALSE.
    1430             :          dispersion_env%lrc = .FALSE.
    1431             :          dispersion_env%srb = .FALSE.
    1432             :          dispersion_env%verbose = .FALSE.
    1433             :          NULLIFY (dispersion_env%c6ab, dispersion_env%maxci, dispersion_env%r0ab, dispersion_env%rcov, &
    1434             :                   dispersion_env%r2r4, dispersion_env%cn, dispersion_env%cnkind, dispersion_env%cnlist, &
    1435             :                   dispersion_env%d3_exclude_pair)
    1436             :          NULLIFY (dispersion_env%q_mesh, dispersion_env%kernel, dispersion_env%d2phi_dk2, &
    1437             :                   dispersion_env%d2y_dx2, dispersion_env%dftd_section)
    1438             :          NULLIFY (dispersion_env%sab_vdw, dispersion_env%sab_cn)
    1439         998 :          IF (se_control%dispersion) THEN
    1440           6 :             dispersion_env%type = xc_vdw_fun_pairpot
    1441           6 :             dispersion_env%pp_type = vdw_pairpot_dftd3
    1442           6 :             dispersion_env%eps_cn = se_control%epscn
    1443           6 :             dispersion_env%s6 = se_control%sd3(1)
    1444           6 :             dispersion_env%sr6 = se_control%sd3(2)
    1445           6 :             dispersion_env%s8 = se_control%sd3(3)
    1446             :             dispersion_env%domol = .FALSE.
    1447           6 :             dispersion_env%kgc8 = 0._dp
    1448           6 :             dispersion_env%rc_disp = se_control%rcdisp
    1449           6 :             dispersion_env%exp_pre = 0._dp
    1450           6 :             dispersion_env%scaling = 0._dp
    1451           6 :             dispersion_env%nd3_exclude_pair = 0
    1452           6 :             dispersion_env%parameter_file_name = se_control%dispersion_parameter_file
    1453           6 :             CALL qs_dispersion_pairpot_init(atomic_kind_set, qs_kind_set, dispersion_env, para_env=para_env)
    1454             :          ELSE
    1455         992 :             dispersion_env%type = xc_vdw_fun_none
    1456             :          END IF
    1457         998 :          CALL set_qs_env(qs_env, dispersion_env=dispersion_env)
    1458             :       END IF
    1459             : 
    1460             :       ! Initialize possible geomertical counterpoise correction potential
    1461             :       IF (dft_control%qs_control%method_id == do_method_gpw .OR. &
    1462             :           dft_control%qs_control%method_id == do_method_gapw .OR. &
    1463             :           dft_control%qs_control%method_id == do_method_gapw_xc .OR. &
    1464             :           dft_control%qs_control%method_id == do_method_lrigpw .OR. &
    1465        6686 :           dft_control%qs_control%method_id == do_method_rigpw .OR. &
    1466             :           dft_control%qs_control%method_id == do_method_ofgpw) THEN
    1467        5182 :          ALLOCATE (gcp_env)
    1468        5182 :          NULLIFY (xc_section)
    1469        5182 :          xc_section => section_vals_get_subs_vals(dft_section, "XC")
    1470        5182 :          CALL qs_gcp_env_set(gcp_env, xc_section)
    1471        5182 :          CALL qs_gcp_init(qs_env, gcp_env)
    1472        5182 :          CALL set_qs_env(qs_env, gcp_env=gcp_env)
    1473             :       END IF
    1474             : 
    1475             :       !   *** Allocate the MO data types ***
    1476        6686 :       CALL get_qs_kind_set(qs_kind_set, nsgf=n_ao, nelectron=nelectron)
    1477             : 
    1478             :       ! the total number of electrons
    1479        6686 :       nelectron = nelectron - dft_control%charge
    1480             : 
    1481        6686 :       IF (dft_control%multiplicity == 0) THEN
    1482        6104 :          IF (MODULO(nelectron, 2) == 0) THEN
    1483        5629 :             dft_control%multiplicity = 1
    1484             :          ELSE
    1485         475 :             dft_control%multiplicity = 2
    1486             :          END IF
    1487             :       END IF
    1488             : 
    1489        6686 :       multiplicity = dft_control%multiplicity
    1490             : 
    1491        6686 :       IF ((dft_control%nspins < 1) .OR. (dft_control%nspins > 2)) THEN
    1492           0 :          CPABORT("nspins should be 1 or 2 for the time being ...")
    1493             :       END IF
    1494             : 
    1495        6686 :       IF ((MODULO(nelectron, 2) /= 0) .AND. (dft_control%nspins == 1)) THEN
    1496          12 :          IF (.NOT. dft_control%qs_control%ofgpw .AND. .NOT. dft_control%smear) THEN
    1497           0 :             CPABORT("Use the LSD option for an odd number of electrons")
    1498             :          END IF
    1499             :       END IF
    1500             : 
    1501             :       ! The transition potential method to calculate XAS needs LSD
    1502        6686 :       IF (dft_control%do_xas_calculation) THEN
    1503          42 :          IF (dft_control%nspins == 1) THEN
    1504           0 :             CPABORT("Use the LSD option for XAS with transition potential")
    1505             :          END IF
    1506             :       END IF
    1507             : 
    1508             :       !   assigning the number of states per spin initial version, not yet very
    1509             :       !   general. Should work for an even number of electrons and a single
    1510             :       !   additional electron this set of options that requires full matrices,
    1511             :       !   however, makes things a bit ugly right now.... we try to make a
    1512             :       !   distinction between the number of electrons per spin and the number of
    1513             :       !   MOs per spin this should allow the use of fractional occupations later
    1514             :       !   on
    1515        6686 :       IF (dft_control%qs_control%ofgpw) THEN
    1516             : 
    1517           0 :          IF (dft_control%nspins == 1) THEN
    1518           0 :             maxocc = nelectron
    1519           0 :             nelectron_spin(1) = nelectron
    1520           0 :             nelectron_spin(2) = 0
    1521           0 :             n_mo(1) = 1
    1522           0 :             n_mo(2) = 0
    1523             :          ELSE
    1524           0 :             IF (MODULO(nelectron + multiplicity - 1, 2) /= 0) THEN
    1525           0 :                CPABORT("LSD: try to use a different multiplicity")
    1526             :             END IF
    1527           0 :             nelectron_spin(1) = (nelectron + multiplicity - 1)/2
    1528           0 :             nelectron_spin(2) = (nelectron - multiplicity + 1)/2
    1529           0 :             IF (nelectron_spin(1) < 0) THEN
    1530           0 :                CPABORT("LSD: too few electrons for this multiplicity")
    1531             :             END IF
    1532           0 :             maxocc = MAXVAL(nelectron_spin)
    1533           0 :             n_mo(1) = MIN(nelectron_spin(1), 1)
    1534           0 :             n_mo(2) = MIN(nelectron_spin(2), 1)
    1535             :          END IF
    1536             : 
    1537             :       ELSE
    1538             : 
    1539        6686 :          IF (dft_control%nspins == 1) THEN
    1540        5203 :             maxocc = 2.0_dp
    1541        5203 :             nelectron_spin(1) = nelectron
    1542        5203 :             nelectron_spin(2) = 0
    1543        5203 :             IF (MODULO(nelectron, 2) == 0) THEN
    1544        5191 :                n_mo(1) = nelectron/2
    1545             :             ELSE
    1546          12 :                n_mo(1) = INT(nelectron/2._dp) + 1
    1547             :             END IF
    1548        5203 :             n_mo(2) = 0
    1549             :          ELSE
    1550        1483 :             maxocc = 1.0_dp
    1551             : 
    1552             :             ! The simplist spin distribution is written here. Special cases will
    1553             :             ! need additional user input
    1554        1483 :             IF (MODULO(nelectron + multiplicity - 1, 2) /= 0) THEN
    1555           0 :                CPABORT("LSD: try to use a different multiplicity")
    1556             :             END IF
    1557             : 
    1558        1483 :             nelectron_spin(1) = (nelectron + multiplicity - 1)/2
    1559        1483 :             nelectron_spin(2) = (nelectron - multiplicity + 1)/2
    1560             : 
    1561        1483 :             IF (nelectron_spin(2) < 0) THEN
    1562           0 :                CPABORT("LSD: too few electrons for this multiplicity")
    1563             :             END IF
    1564             : 
    1565        1483 :             n_mo(1) = nelectron_spin(1)
    1566        1483 :             n_mo(2) = nelectron_spin(2)
    1567             : 
    1568             :          END IF
    1569             : 
    1570             :       END IF
    1571             : 
    1572             :       ! Read the total_zeff_corr here [SGh]
    1573        6686 :       CALL get_qs_kind_set(qs_kind_set, total_zeff_corr=total_zeff_corr)
    1574             :       ! store it in qs_env
    1575        6686 :       qs_env%total_zeff_corr = total_zeff_corr
    1576             : 
    1577             :       ! store the number of electrons once an for all
    1578             :       CALL qs_subsys_set(subsys, &
    1579             :                          nelectron_total=nelectron, &
    1580        6686 :                          nelectron_spin=nelectron_spin)
    1581             : 
    1582             :       ! Check and set number of added (unoccupied) MOs
    1583        6686 :       IF (dft_control%nspins == 2) THEN
    1584        1483 :          IF (scf_control%added_mos(2) < 0) THEN
    1585           0 :             n_mo_add = n_ao - n_mo(2)  ! use all available MOs
    1586        1483 :          ELSEIF (scf_control%added_mos(2) > 0) THEN
    1587             :             n_mo_add = scf_control%added_mos(2)
    1588             :          ELSE
    1589        1337 :             n_mo_add = scf_control%added_mos(1)
    1590             :          END IF
    1591        1483 :          IF (n_mo_add > n_ao - n_mo(2)) THEN
    1592          24 :             CPWARN("More ADDED_MOs requested for beta spin than available.")
    1593             :          END IF
    1594        1483 :          scf_control%added_mos(2) = MIN(n_mo_add, n_ao - n_mo(2))
    1595        1483 :          n_mo(2) = n_mo(2) + scf_control%added_mos(2)
    1596             :       END IF
    1597             : 
    1598             :       ! proceed alpha orbitals after the beta orbitals; this is essential to avoid
    1599             :       ! reduction in the number of available unoccupied molecular orbitals.
    1600             :       ! E.g. n_ao = 10, nelectrons = 10, multiplicity = 3 implies n_mo(1) = 6, n_mo(2) = 4;
    1601             :       ! added_mos(1:2) = (6,undef) should increase the number of molecular orbitals as
    1602             :       ! n_mo(1) = min(n_ao, n_mo(1) + added_mos(1)) = 10, n_mo(2) = 10.
    1603             :       ! However, if we try to proceed alpha orbitals first, this leads us n_mo(1:2) = (10,8)
    1604             :       ! due to the following assignment instruction above:
    1605             :       !   IF (scf_control%added_mos(2) > 0) THEN ... ELSE; n_mo_add = scf_control%added_mos(1); END IF
    1606        6686 :       IF (scf_control%added_mos(1) < 0) THEN
    1607          42 :          scf_control%added_mos(1) = n_ao - n_mo(1)  ! use all available MOs
    1608        6644 :       ELSEIF (scf_control%added_mos(1) > n_ao - n_mo(1)) THEN
    1609             :          CALL cp_warn(__LOCATION__, &
    1610             :                       "More added MOs requested than available. "// &
    1611             :                       "The full set of unoccupied MOs will be used. "// &
    1612             :                       "Use 'ADDED_MOS -1' to always use all available MOs "// &
    1613         108 :                       "and to get rid of this warning.")
    1614             :       END IF
    1615        6686 :       scf_control%added_mos(1) = MIN(scf_control%added_mos(1), n_ao - n_mo(1))
    1616        6686 :       n_mo(1) = n_mo(1) + scf_control%added_mos(1)
    1617             : 
    1618        6686 :       IF (dft_control%nspins == 2) THEN
    1619        1483 :          IF (n_mo(2) > n_mo(1)) &
    1620             :             CALL cp_warn(__LOCATION__, &
    1621             :                          "More beta than alpha MOs requested. "// &
    1622           0 :                          "The number of beta MOs will be reduced to the number alpha MOs.")
    1623        1483 :          n_mo(2) = MIN(n_mo(1), n_mo(2))
    1624        1483 :          CPASSERT(n_mo(1) >= nelectron_spin(1))
    1625        1483 :          CPASSERT(n_mo(2) >= nelectron_spin(2))
    1626             :       END IF
    1627             : 
    1628             :       ! kpoints
    1629        6686 :       CALL get_qs_env(qs_env=qs_env, do_kpoints=do_kpoints)
    1630        6686 :       IF (do_kpoints .AND. dft_control%nspins == 2) THEN
    1631             :          ! we need equal number of calculated states
    1632          20 :          IF (n_mo(2) /= n_mo(1)) &
    1633             :             CALL cp_warn(__LOCATION__, &
    1634             :                          "Kpoints: Different number of MOs requested. "// &
    1635           0 :                          "The number of beta MOs will be set to the number alpha MOs.")
    1636          20 :          n_mo(2) = n_mo(1)
    1637          20 :          CPASSERT(n_mo(1) >= nelectron_spin(1))
    1638          20 :          CPASSERT(n_mo(2) >= nelectron_spin(2))
    1639             :       END IF
    1640             : 
    1641             :       ! Compatibility checks for smearing
    1642        6686 :       IF (scf_control%smear%do_smear) THEN
    1643         274 :          IF (scf_control%added_mos(1) == 0) THEN
    1644           0 :             CPABORT("Extra MOs (ADDED_MOS) are required for smearing")
    1645             :          END IF
    1646             :       END IF
    1647             : 
    1648             :       !   *** Some options require that all MOs are computed ... ***
    1649             :       IF (BTEST(cp_print_key_should_output(logger%iter_info, dft_section, &
    1650             :                                            "PRINT%MO/CARTESIAN"), &
    1651             :                 cp_p_file) .OR. &
    1652             :           (scf_control%level_shift /= 0.0_dp) .OR. &
    1653        6686 :           (scf_control%diagonalization%eps_jacobi /= 0.0_dp) .OR. &
    1654             :           (dft_control%roks .AND. (.NOT. scf_control%use_ot))) THEN
    1655        6842 :          n_mo(:) = n_ao
    1656             :       END IF
    1657             : 
    1658             :       ! Compatibility checks for ROKS
    1659        6686 :       IF (dft_control%roks .AND. (.NOT. scf_control%use_ot)) THEN
    1660          36 :          IF (scf_control%roks_scheme == general_roks) THEN
    1661           0 :             CPWARN("General ROKS scheme is not yet tested!")
    1662             :          END IF
    1663          36 :          IF (scf_control%smear%do_smear) THEN
    1664             :             CALL cp_abort(__LOCATION__, &
    1665             :                           "The options ROKS and SMEAR are not compatible. "// &
    1666           0 :                           "Try UKS instead of ROKS")
    1667             :          END IF
    1668             :       END IF
    1669        6686 :       IF (dft_control%low_spin_roks) THEN
    1670           8 :          SELECT CASE (dft_control%qs_control%method_id)
    1671             :          CASE DEFAULT
    1672             :          CASE (do_method_xtb, do_method_dftb)
    1673             :             CALL cp_abort(__LOCATION__, &
    1674           0 :                           "xTB/DFTB methods are not compatible with low spin ROKS.")
    1675             :          CASE (do_method_rm1, do_method_am1, do_method_mndo, do_method_pm3, &
    1676             :                do_method_pm6, do_method_pm6fm, do_method_mndod, do_method_pnnl)
    1677             :             CALL cp_abort(__LOCATION__, &
    1678           8 :                           "SE methods are not compatible with low spin ROKS.")
    1679             :          END SELECT
    1680             :       END IF
    1681             : 
    1682             :       ! in principle the restricted calculation could be performed
    1683             :       ! using just one set of MOs and special casing most of the code
    1684             :       ! right now we'll just take care of what is effectively an additional constraint
    1685             :       ! at as few places as possible, just duplicating the beta orbitals
    1686        6686 :       IF (dft_control%restricted .AND. (output_unit > 0)) THEN
    1687             :          ! it is really not yet tested till the end ! Joost
    1688          23 :          WRITE (output_unit, *) ""
    1689          23 :          WRITE (output_unit, *) " **************************************"
    1690          23 :          WRITE (output_unit, *) " restricted calculation cutting corners"
    1691          23 :          WRITE (output_unit, *) " experimental feature, check code      "
    1692          23 :          WRITE (output_unit, *) " **************************************"
    1693             :       END IF
    1694             : 
    1695             :       ! no point in allocating these things here ?
    1696        6686 :       IF (dft_control%qs_control%do_ls_scf) THEN
    1697         344 :          NULLIFY (mos)
    1698             :       ELSE
    1699       26837 :          ALLOCATE (mos(dft_control%nspins))
    1700       14153 :          DO ispin = 1, dft_control%nspins
    1701             :             CALL allocate_mo_set(mo_set=mos(ispin), &
    1702             :                                  nao=n_ao, &
    1703             :                                  nmo=n_mo(ispin), &
    1704             :                                  nelectron=nelectron_spin(ispin), &
    1705             :                                  n_el_f=REAL(nelectron_spin(ispin), dp), &
    1706             :                                  maxocc=maxocc, &
    1707       14153 :                                  flexible_electron_count=dft_control%relax_multiplicity)
    1708             :          END DO
    1709             :       END IF
    1710             : 
    1711        6686 :       CALL set_qs_env(qs_env, mos=mos)
    1712             : 
    1713             :       ! allocate mos when switch_surf_dip is triggered [SGh]
    1714        6686 :       IF (dft_control%switch_surf_dip) THEN
    1715           8 :          ALLOCATE (mos_last_converged(dft_control%nspins))
    1716           4 :          DO ispin = 1, dft_control%nspins
    1717             :             CALL allocate_mo_set(mo_set=mos_last_converged(ispin), &
    1718             :                                  nao=n_ao, &
    1719             :                                  nmo=n_mo(ispin), &
    1720             :                                  nelectron=nelectron_spin(ispin), &
    1721             :                                  n_el_f=REAL(nelectron_spin(ispin), dp), &
    1722             :                                  maxocc=maxocc, &
    1723           4 :                                  flexible_electron_count=dft_control%relax_multiplicity)
    1724             :          END DO
    1725           2 :          CALL set_qs_env(qs_env, mos_last_converged=mos_last_converged)
    1726             :       END IF
    1727             : 
    1728        6686 :       IF (.NOT. be_silent) THEN
    1729             :          ! Print the DFT control parameters
    1730        6684 :          CALL write_dft_control(dft_control, dft_section)
    1731             : 
    1732             :          ! Print the vdW control parameters
    1733             :          IF (dft_control%qs_control%method_id == do_method_gpw .OR. &
    1734             :              dft_control%qs_control%method_id == do_method_gapw .OR. &
    1735             :              dft_control%qs_control%method_id == do_method_gapw_xc .OR. &
    1736             :              dft_control%qs_control%method_id == do_method_lrigpw .OR. &
    1737             :              dft_control%qs_control%method_id == do_method_rigpw .OR. &
    1738             :              dft_control%qs_control%method_id == do_method_dftb .OR. &
    1739        6684 :              dft_control%qs_control%method_id == do_method_xtb .OR. &
    1740             :              dft_control%qs_control%method_id == do_method_ofgpw) THEN
    1741        5686 :             CALL get_qs_env(qs_env, dispersion_env=dispersion_env)
    1742        5686 :             CALL qs_write_dispersion(qs_env, dispersion_env)
    1743             :          END IF
    1744             : 
    1745             :          ! Print the Quickstep control parameters
    1746        6684 :          CALL write_qs_control(dft_control%qs_control, dft_section)
    1747             : 
    1748             :          ! Print the ADMM control parameters
    1749        6684 :          IF (dft_control%do_admm) THEN
    1750         442 :             CALL write_admm_control(dft_control%admm_control, dft_section)
    1751             :          END IF
    1752             : 
    1753             :          ! Print XES/XAS control parameters
    1754        6684 :          IF (dft_control%do_xas_calculation) THEN
    1755          42 :             CALL cite_reference(Iannuzzi2007)
    1756             :             !CALL write_xas_control(dft_control%xas_control,dft_section)
    1757             :          END IF
    1758             : 
    1759             :          ! Print the unnormalized basis set information (input data)
    1760        6684 :          CALL write_gto_basis_sets(qs_kind_set, subsys_section)
    1761             : 
    1762             :          ! Print the atomic kind set
    1763        6684 :          CALL write_qs_kind_set(qs_kind_set, subsys_section)
    1764             : 
    1765             :          ! Print the molecule kind set
    1766        6684 :          CALL write_molecule_kind_set(molecule_kind_set, subsys_section)
    1767             : 
    1768             :          ! Print the total number of kinds, atoms, basis functions etc.
    1769        6684 :          CALL write_total_numbers(qs_kind_set, particle_set, qs_env%input)
    1770             : 
    1771             :          ! Print the atomic coordinates
    1772        6684 :          CALL write_qs_particle_coordinates(particle_set, qs_kind_set, subsys_section, label="QUICKSTEP")
    1773             : 
    1774             :          ! Print the interatomic distances
    1775        6684 :          CALL write_particle_distances(particle_set, cell, subsys_section)
    1776             : 
    1777             :          ! Print the requested structure data
    1778        6684 :          CALL write_structure_data(particle_set, cell, subsys_section)
    1779             : 
    1780             :          ! Print symmetry information
    1781        6684 :          CALL write_symmetry(particle_set, cell, subsys_section)
    1782             : 
    1783             :          ! Print the SCF parameters
    1784        6684 :          IF ((.NOT. dft_control%qs_control%do_ls_scf) .AND. &
    1785             :              (.NOT. dft_control%qs_control%do_almo_scf)) THEN
    1786        6274 :             CALL scf_c_write_parameters(scf_control, dft_section)
    1787             :          END IF
    1788             :       END IF
    1789             : 
    1790             :       ! Sets up pw_env, qs_charges, mpools ...
    1791        6686 :       CALL qs_env_setup(qs_env)
    1792             : 
    1793             :       ! Allocate and initialise rho0 soft on the global grid
    1794        6686 :       IF (dft_control%qs_control%method_id == do_method_gapw) THEN
    1795         814 :          CALL get_qs_env(qs_env=qs_env, pw_env=pw_env, rho0_mpole=rho0_mpole)
    1796         814 :          CALL rho0_s_grid_create(pw_env, rho0_mpole)
    1797             :       END IF
    1798             : 
    1799        6686 :       IF (output_unit > 0) CALL m_flush(output_unit)
    1800        6686 :       CALL timestop(handle)
    1801             : 
    1802       66860 :    END SUBROUTINE qs_init_subsys
    1803             : 
    1804             : ! **************************************************************************************************
    1805             : !> \brief Write the total number of kinds, atoms, etc. to the logical unit
    1806             : !>      number lunit.
    1807             : !> \param qs_kind_set ...
    1808             : !> \param particle_set ...
    1809             : !> \param force_env_section ...
    1810             : !> \author Creation (06.10.2000)
    1811             : ! **************************************************************************************************
    1812        6684 :    SUBROUTINE write_total_numbers(qs_kind_set, particle_set, force_env_section)
    1813             : 
    1814             :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    1815             :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    1816             :       TYPE(section_vals_type), POINTER                   :: force_env_section
    1817             : 
    1818             :       INTEGER                                            :: maxlgto, maxlppl, maxlppnl, natom, ncgf, &
    1819             :                                                             nkind, npgf, nset, nsgf, nshell, &
    1820             :                                                             output_unit
    1821             :       TYPE(cp_logger_type), POINTER                      :: logger
    1822             : 
    1823        6684 :       NULLIFY (logger)
    1824        6684 :       logger => cp_get_default_logger()
    1825             :       output_unit = cp_print_key_unit_nr(logger, force_env_section, "PRINT%TOTAL_NUMBERS", &
    1826        6684 :                                          extension=".Log")
    1827             : 
    1828        6684 :       IF (output_unit > 0) THEN
    1829        3365 :          natom = SIZE(particle_set)
    1830        3365 :          nkind = SIZE(qs_kind_set)
    1831             : 
    1832             :          CALL get_qs_kind_set(qs_kind_set, &
    1833             :                               maxlgto=maxlgto, &
    1834             :                               ncgf=ncgf, &
    1835             :                               npgf=npgf, &
    1836             :                               nset=nset, &
    1837             :                               nsgf=nsgf, &
    1838             :                               nshell=nshell, &
    1839             :                               maxlppl=maxlppl, &
    1840        3365 :                               maxlppnl=maxlppnl)
    1841             : 
    1842             :          WRITE (UNIT=output_unit, FMT="(/,/,T2,A)") &
    1843        3365 :             "TOTAL NUMBERS AND MAXIMUM NUMBERS"
    1844             : 
    1845        3365 :          IF (nset + npgf + ncgf > 0) THEN
    1846             :             WRITE (UNIT=output_unit, FMT="(/,T3,A,(T30,A,T71,I10))") &
    1847        3365 :                "Total number of", &
    1848        3365 :                "- Atomic kinds:                  ", nkind, &
    1849        3365 :                "- Atoms:                         ", natom, &
    1850        3365 :                "- Shell sets:                    ", nset, &
    1851        3365 :                "- Shells:                        ", nshell, &
    1852        3365 :                "- Primitive Cartesian functions: ", npgf, &
    1853        3365 :                "- Cartesian basis functions:     ", ncgf, &
    1854        6730 :                "- Spherical basis functions:     ", nsgf
    1855           0 :          ELSE IF (nshell + nsgf > 0) THEN
    1856             :             WRITE (UNIT=output_unit, FMT="(/,T3,A,(T30,A,T71,I10))") &
    1857           0 :                "Total number of", &
    1858           0 :                "- Atomic kinds:                  ", nkind, &
    1859           0 :                "- Atoms:                         ", natom, &
    1860           0 :                "- Shells:                        ", nshell, &
    1861           0 :                "- Spherical basis functions:     ", nsgf
    1862             :          ELSE
    1863             :             WRITE (UNIT=output_unit, FMT="(/,T3,A,(T30,A,T71,I10))") &
    1864           0 :                "Total number of", &
    1865           0 :                "- Atomic kinds:                  ", nkind, &
    1866           0 :                "- Atoms:                         ", natom
    1867             :          END IF
    1868             : 
    1869        3365 :          IF ((maxlppl > -1) .AND. (maxlppnl > -1)) THEN
    1870             :             WRITE (UNIT=output_unit, FMT="(/,T3,A,(T30,A,T75,I6))") &
    1871        1878 :                "Maximum angular momentum of the", &
    1872        1878 :                "- Orbital basis functions:                   ", maxlgto, &
    1873        1878 :                "- Local part of the GTH pseudopotential:     ", maxlppl, &
    1874        3756 :                "- Non-local part of the GTH pseudopotential: ", maxlppnl
    1875        1487 :          ELSEIF (maxlppl > -1) THEN
    1876             :             WRITE (UNIT=output_unit, FMT="(/,T3,A,(T30,A,T75,I6))") &
    1877         462 :                "Maximum angular momentum of the", &
    1878         462 :                "- Orbital basis functions:                   ", maxlgto, &
    1879         924 :                "- Local part of the GTH pseudopotential:     ", maxlppl
    1880             :          ELSE
    1881             :             WRITE (UNIT=output_unit, FMT="(/,T3,A,T75,I6)") &
    1882        1025 :                "Maximum angular momentum of the orbital basis functions: ", maxlgto
    1883             :          END IF
    1884             : 
    1885             :          ! LRI_AUX BASIS
    1886             :          CALL get_qs_kind_set(qs_kind_set, &
    1887             :                               maxlgto=maxlgto, &
    1888             :                               ncgf=ncgf, &
    1889             :                               npgf=npgf, &
    1890             :                               nset=nset, &
    1891             :                               nsgf=nsgf, &
    1892             :                               nshell=nshell, &
    1893        3365 :                               basis_type="LRI_AUX")
    1894        3365 :          IF (nset + npgf + ncgf > 0) THEN
    1895             :             WRITE (UNIT=output_unit, FMT="(/,T3,A,/,T3,A,(T30,A,T71,I10))") &
    1896         135 :                "LRI_AUX Basis: ", &
    1897         135 :                "Total number of", &
    1898         135 :                "- Shell sets:                    ", nset, &
    1899         135 :                "- Shells:                        ", nshell, &
    1900         135 :                "- Primitive Cartesian functions: ", npgf, &
    1901         135 :                "- Cartesian basis functions:     ", ncgf, &
    1902         270 :                "- Spherical basis functions:     ", nsgf
    1903             :             WRITE (UNIT=output_unit, FMT="(T30,A,T75,I6)") &
    1904         135 :                "  Maximum angular momentum ", maxlgto
    1905             :          END IF
    1906             : 
    1907             :          ! RI_HXC BASIS
    1908             :          CALL get_qs_kind_set(qs_kind_set, &
    1909             :                               maxlgto=maxlgto, &
    1910             :                               ncgf=ncgf, &
    1911             :                               npgf=npgf, &
    1912             :                               nset=nset, &
    1913             :                               nsgf=nsgf, &
    1914             :                               nshell=nshell, &
    1915        3365 :                               basis_type="RI_HXC")
    1916        3365 :          IF (nset + npgf + ncgf > 0) THEN
    1917             :             WRITE (UNIT=output_unit, FMT="(/,T3,A,/,T3,A,(T30,A,T71,I10))") &
    1918         111 :                "RI_HXC Basis: ", &
    1919         111 :                "Total number of", &
    1920         111 :                "- Shell sets:                    ", nset, &
    1921         111 :                "- Shells:                        ", nshell, &
    1922         111 :                "- Primitive Cartesian functions: ", npgf, &
    1923         111 :                "- Cartesian basis functions:     ", ncgf, &
    1924         222 :                "- Spherical basis functions:     ", nsgf
    1925             :             WRITE (UNIT=output_unit, FMT="(T30,A,T75,I6)") &
    1926         111 :                "  Maximum angular momentum ", maxlgto
    1927             :          END IF
    1928             : 
    1929             :          ! AUX_FIT BASIS
    1930             :          CALL get_qs_kind_set(qs_kind_set, &
    1931             :                               maxlgto=maxlgto, &
    1932             :                               ncgf=ncgf, &
    1933             :                               npgf=npgf, &
    1934             :                               nset=nset, &
    1935             :                               nsgf=nsgf, &
    1936             :                               nshell=nshell, &
    1937        3365 :                               basis_type="AUX_FIT")
    1938        3365 :          IF (nset + npgf + ncgf > 0) THEN
    1939             :             WRITE (UNIT=output_unit, FMT="(/,T3,A,/,T3,A,(T30,A,T71,I10))") &
    1940         332 :                "AUX_FIT ADMM-Basis: ", &
    1941         332 :                "Total number of", &
    1942         332 :                "- Shell sets:                    ", nset, &
    1943         332 :                "- Shells:                        ", nshell, &
    1944         332 :                "- Primitive Cartesian functions: ", npgf, &
    1945         332 :                "- Cartesian basis functions:     ", ncgf, &
    1946         664 :                "- Spherical basis functions:     ", nsgf
    1947             :             WRITE (UNIT=output_unit, FMT="(T30,A,T75,I6)") &
    1948         332 :                "  Maximum angular momentum ", maxlgto
    1949             :          END IF
    1950             : 
    1951             :       END IF
    1952             :       CALL cp_print_key_finished_output(output_unit, logger, force_env_section, &
    1953        6684 :                                         "PRINT%TOTAL_NUMBERS")
    1954             : 
    1955        6684 :    END SUBROUTINE write_total_numbers
    1956             : 
    1957             : END MODULE qs_environment

Generated by: LCOV version 1.15