LCOV - code coverage report
Current view: top level - src - qs_epr_hyp.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:2fce0f8) Lines: 132 132 100.0 %
Date: 2024-12-21 06:28:57 Functions: 1 1 100.0 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2024 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief Calculates hyperfine values
      10             : !> \par History
      11             : !>      created 04-2006 [RD]
      12             : !>      adapted 02-2007 [JGH]
      13             : !> \author R. Declerck (Reinout.Declerck@UGent.be)
      14             : ! **************************************************************************************************
      15             : MODULE qs_epr_hyp
      16             :    USE atomic_kind_types,               ONLY: atomic_kind_type,&
      17             :                                               get_atomic_kind
      18             :    USE cell_types,                      ONLY: cell_type,&
      19             :                                               pbc
      20             :    USE cp_control_types,                ONLY: dft_control_type
      21             :    USE cp_log_handling,                 ONLY: cp_get_default_logger,&
      22             :                                               cp_logger_type
      23             :    USE cp_output_handling,              ONLY: cp_print_key_unit_nr
      24             :    USE input_section_types,             ONLY: section_vals_get_subs_vals,&
      25             :                                               section_vals_type,&
      26             :                                               section_vals_val_get
      27             :    USE kinds,                           ONLY: dp
      28             :    USE mathconstants,                   ONLY: fourpi
      29             :    USE message_passing,                 ONLY: mp_para_env_type
      30             :    USE particle_types,                  ONLY: particle_type
      31             :    USE periodic_table,                  ONLY: ptable
      32             :    USE physcon,                         ONLY: a_bohr,&
      33             :                                               a_fine,&
      34             :                                               e_charge,&
      35             :                                               e_gfactor,&
      36             :                                               e_mass,&
      37             :                                               h_bar,&
      38             :                                               mu_perm
      39             :    USE pw_env_types,                    ONLY: pw_env_get,&
      40             :                                               pw_env_type
      41             :    USE pw_grid_types,                   ONLY: pw_grid_type
      42             :    USE pw_methods,                      ONLY: pw_axpy,&
      43             :                                               pw_dr2_gg,&
      44             :                                               pw_zero
      45             :    USE pw_pool_types,                   ONLY: pw_pool_type
      46             :    USE pw_types,                        ONLY: pw_c1d_gs_type
      47             :    USE qs_environment_types,            ONLY: get_qs_env,&
      48             :                                               qs_environment_type
      49             :    USE qs_grid_atom,                    ONLY: grid_atom_type
      50             :    USE qs_harmonics_atom,               ONLY: harmonics_atom_type
      51             :    USE qs_kind_types,                   ONLY: get_qs_kind,&
      52             :                                               qs_kind_type
      53             :    USE qs_rho_atom_types,               ONLY: get_rho_atom,&
      54             :                                               rho_atom_coeff,&
      55             :                                               rho_atom_type
      56             :    USE qs_rho_types,                    ONLY: qs_rho_get,&
      57             :                                               qs_rho_type
      58             :    USE util,                            ONLY: get_limit
      59             : #include "./base/base_uses.f90"
      60             : 
      61             :    IMPLICIT NONE
      62             : 
      63             :    PRIVATE
      64             :    PUBLIC :: qs_epr_hyp_calc
      65             : 
      66             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'qs_epr_hyp'
      67             : 
      68             : CONTAINS
      69             : 
      70             : ! **************************************************************************************************
      71             : !> \brief ...
      72             : !> \param qs_env ...
      73             : ! **************************************************************************************************
      74          30 :    SUBROUTINE qs_epr_hyp_calc(qs_env)
      75             : 
      76             :       TYPE(qs_environment_type), POINTER                 :: qs_env
      77             : 
      78             :       CHARACTER(LEN=2)                                   :: element_symbol
      79             :       INTEGER                                            :: bo(2), ia, iat, iatom, idir1, idir2, ig, &
      80             :                                                             ikind, ir, iso, jatom, mepos, natom, &
      81             :                                                             natomkind, nkind, num_pe, output_unit, &
      82             :                                                             z
      83          30 :       INTEGER, DIMENSION(:), POINTER                     :: atom_list
      84             :       LOGICAL                                            :: lsd, paw_atom
      85             :       REAL(dp)                                           :: arg, esum, hard_radius, hypanisotemp, &
      86             :                                                             hypfactor, int_radius, rab2, rtemp
      87          30 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: hypiso, hypiso_one
      88          30 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :)     :: hypaniso
      89             :       REAL(KIND=dp), DIMENSION(3)                        :: ra, rab
      90          30 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
      91             :       TYPE(cell_type), POINTER                           :: cell
      92             :       TYPE(cp_logger_type), POINTER                      :: logger
      93             :       TYPE(dft_control_type), POINTER                    :: dft_control
      94             :       TYPE(grid_atom_type), POINTER                      :: grid_atom
      95             :       TYPE(harmonics_atom_type), POINTER                 :: harmonics
      96             :       TYPE(mp_para_env_type), POINTER                    :: para_env
      97          30 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
      98             :       TYPE(pw_c1d_gs_type)                               :: hypaniso_gspace, rhototspin_elec_gspace
      99          30 :       TYPE(pw_c1d_gs_type), DIMENSION(:), POINTER        :: rho_g
     100             :       TYPE(pw_env_type), POINTER                         :: pw_env
     101             :       TYPE(pw_grid_type), POINTER                        :: pw_grid
     102             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
     103          30 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     104             :       TYPE(qs_rho_type), POINTER                         :: rho
     105          30 :       TYPE(rho_atom_coeff), DIMENSION(:), POINTER        :: rho_rad_h, rho_rad_s
     106          30 :       TYPE(rho_atom_type), DIMENSION(:), POINTER         :: rho_atom_set
     107             :       TYPE(rho_atom_type), POINTER                       :: rho_atom
     108             :       TYPE(section_vals_type), POINTER                   :: dft_section
     109             : 
     110          30 :       NULLIFY (pw_env, cell, atomic_kind_set, qs_kind_set, auxbas_pw_pool, dft_control, &
     111          30 :                logger, dft_section, para_env, particle_set, rho, rho_atom, &
     112          30 :                rho_atom_set, rho_g)
     113             : 
     114          60 :       logger => cp_get_default_logger()
     115          30 :       dft_section => section_vals_get_subs_vals(qs_env%input, "DFT")
     116             :       output_unit = cp_print_key_unit_nr(logger, dft_section, &
     117             :                                          "PRINT%HYPERFINE_COUPLING_TENSOR", &
     118          30 :                                          extension=".eprhyp", log_filename=.FALSE.)
     119             :       CALL section_vals_val_get(dft_section, &
     120             :                                 "PRINT%HYPERFINE_COUPLING_TENSOR%INTERACTION_RADIUS", &
     121          30 :                                 r_val=int_radius)
     122          30 :       CALL section_vals_val_get(dft_section, "LSD", l_val=lsd)
     123             : 
     124          30 :       IF (.NOT. lsd) THEN
     125             :          ! EPR calculation only for LSD
     126          28 :          IF (output_unit > 0) THEN
     127             :             WRITE (UNIT=output_unit, FMT="(/,T2,A)") &
     128          14 :                "Calculation of EPR hyperfine coupling tensors only for LSD"
     129             :          END IF
     130          28 :          NULLIFY (logger, dft_section)
     131          28 :          RETURN
     132             :       END IF
     133             : 
     134           2 :       hypfactor = -1.0_dp*mu_perm*e_charge*h_bar*e_gfactor/(2.0_dp*e_mass*a_bohr**3)
     135             : 
     136             :       CALL get_qs_env(qs_env=qs_env, dft_control=dft_control, cell=cell, &
     137             :                       rho=rho, atomic_kind_set=atomic_kind_set, qs_kind_set=qs_kind_set, &
     138             :                       rho_atom_set=rho_atom_set, pw_env=pw_env, &
     139           2 :                       particle_set=particle_set, para_env=para_env)
     140             : 
     141           2 :       IF (output_unit > 0) THEN
     142             :          WRITE (UNIT=output_unit, FMT="(/,T2,A,/,T2,A)") &
     143           1 :             "Calculation of EPR hyperfine coupling tensors", &
     144           2 :             REPEAT("-", 79)
     145             :       END IF
     146             : 
     147             :       ! allocate hyperfine matrices
     148           2 :       natom = SIZE(particle_set, 1)
     149           6 :       ALLOCATE (hypaniso(3, 3, natom))
     150           6 :       ALLOCATE (hypiso(natom))
     151           4 :       ALLOCATE (hypiso_one(natom))
     152             : 
     153             :       ! set the matrices to zero
     154           8 :       hypiso = 0.0_dp
     155           8 :       hypiso_one = 0.0_dp
     156          80 :       hypaniso = 0.0_dp
     157             : 
     158           2 :       nkind = SIZE(atomic_kind_set) ! nkind = number of atom types
     159             : 
     160           6 :       DO ikind = 1, nkind ! loop over atom types
     161           4 :          NULLIFY (atom_list, grid_atom, harmonics)
     162             :          CALL get_atomic_kind(atomic_kind_set(ikind), &
     163           4 :                               atom_list=atom_list, natom=natomkind, z=z)
     164             : 
     165             :          CALL get_qs_kind(qs_kind_set(ikind), harmonics=harmonics, &
     166           4 :                           grid_atom=grid_atom, paw_atom=paw_atom, hard_radius=hard_radius)
     167             : 
     168           4 :          IF (.NOT. paw_atom) CYCLE ! skip the rest and go to next atom type
     169             : 
     170           4 :          num_pe = para_env%num_pe
     171           4 :          mepos = para_env%mepos
     172           4 :          bo = get_limit(natomkind, num_pe, mepos)
     173             : 
     174          13 :          DO iat = bo(1), bo(2) ! natomkind = # atoms for ikind
     175           3 :             iatom = atom_list(iat)
     176           3 :             rho_atom => rho_atom_set(iatom)
     177           3 :             NULLIFY (rho_rad_h, rho_rad_s)
     178             :             CALL get_rho_atom(rho_atom=rho_atom, rho_rad_h=rho_rad_h, &
     179           3 :                               rho_rad_s=rho_rad_s)
     180             :             ! Non-relativistic isotropic hyperfine value (hypiso_one)
     181         153 :             DO ia = 1, grid_atom%ng_sphere
     182        2303 :                DO iso = 1, harmonics%max_iso_not0
     183             :                   hypiso_one(iatom) = hypiso_one(iatom) + &
     184             :                                       (rho_rad_h(1)%r_coef(grid_atom%nr, iso) - &
     185             :                                        rho_rad_h(2)%r_coef(grid_atom%nr, iso))* &
     186        2300 :                                       harmonics%slm(ia, iso)*grid_atom%wa(ia)/fourpi
     187             :                END DO
     188             :             END DO
     189             :             ! First calculate hard-soft contributions for the own nucleus
     190             :             ! + scalar relativistic isotropic hyperfine value (hypiso)
     191         153 :             DO ir = 1, grid_atom%nr
     192         153 :                IF (grid_atom%rad(ir) <= hard_radius) THEN
     193        4080 :                   DO ia = 1, grid_atom%ng_sphere
     194        4000 :                      hypanisotemp = 0.0_dp
     195       62400 :                      DO iso = 1, harmonics%max_iso_not0
     196             :                         hypiso(iatom) = hypiso(iatom) + &
     197             :                                         (rho_rad_h(1)%r_coef(ir, iso) - rho_rad_h(2)%r_coef(ir, iso))* &
     198             :                                         harmonics%slm(ia, iso)*grid_atom%wr(ir)*grid_atom%wa(ia)* &
     199             :                                         2._dp/(REAL(z, KIND=dp)*a_fine**2* &
     200             :                                                (1._dp + 2._dp*grid_atom%rad(ir)/(REAL(z, KIND=dp)*a_fine**2))**2* &
     201       58400 :                                                fourpi*grid_atom%rad(ir)**2)
     202             :                         hypanisotemp = hypanisotemp + &
     203             :                                        (rho_rad_h(1)%r_coef(ir, iso) - rho_rad_h(2)%r_coef(ir, iso) &
     204             :                                         - (rho_rad_s(1)%r_coef(ir, iso) - rho_rad_s(2)%r_coef(ir, iso)))* &
     205             :                                        harmonics%slm(ia, iso)*grid_atom%wr(ir)*grid_atom%wa(ia)/ &
     206       62400 :                                        grid_atom%rad(ir)**3
     207             :                      END DO ! iso
     208             :                      hypaniso(1, 1, iatom) = hypaniso(1, 1, iatom) + hypanisotemp* &
     209             :                                              (3._dp*grid_atom%sin_pol(ia)*grid_atom%cos_azi(ia)* &
     210        4000 :                                               grid_atom%sin_pol(ia)*grid_atom%cos_azi(ia) - 1._dp)
     211             :                      hypaniso(1, 2, iatom) = hypaniso(1, 2, iatom) + hypanisotemp* &
     212             :                                              (3._dp*grid_atom%sin_pol(ia)*grid_atom%cos_azi(ia)* &
     213        4000 :                                               grid_atom%sin_pol(ia)*grid_atom%sin_azi(ia) - 0._dp)
     214             :                      hypaniso(1, 3, iatom) = hypaniso(1, 3, iatom) + hypanisotemp* &
     215             :                                              (3._dp*grid_atom%sin_pol(ia)*grid_atom%cos_azi(ia)* &
     216        4000 :                                               grid_atom%cos_pol(ia) - 0._dp)
     217             :                      hypaniso(2, 2, iatom) = hypaniso(2, 2, iatom) + hypanisotemp* &
     218             :                                              (3._dp*grid_atom%sin_pol(ia)*grid_atom%sin_azi(ia)* &
     219        4000 :                                               grid_atom%sin_pol(ia)*grid_atom%sin_azi(ia) - 1._dp)
     220             :                      hypaniso(2, 3, iatom) = hypaniso(2, 3, iatom) + hypanisotemp* &
     221             :                                              (3._dp*grid_atom%sin_pol(ia)*grid_atom%sin_azi(ia)* &
     222        4000 :                                               grid_atom%cos_pol(ia) - 0._dp)
     223             :                      hypaniso(3, 3, iatom) = hypaniso(3, 3, iatom) + hypanisotemp* &
     224             :                                              (3._dp*grid_atom%cos_pol(ia)* &
     225        4080 :                                               grid_atom%cos_pol(ia) - 1._dp)
     226             :                   END DO ! ia
     227             :                END IF ! hard_radius
     228             :             END DO ! ir
     229             : 
     230             :             ! Now calculate hard-soft anisotropic contributions for the other nuclei
     231          16 :             DO jatom = 1, natom
     232           9 :                IF (jatom .EQ. iatom) CYCLE ! iatom already done
     233           6 :                rab = pbc(particle_set(iatom)%r, particle_set(jatom)%r, cell)
     234          24 :                rab2 = DOT_PRODUCT(rab, rab)
     235             :                ! SQRT(rab2) <= int_radius
     236           9 :                IF (rab2 <= (int_radius*int_radius)) THEN
     237         306 :                   DO ir = 1, grid_atom%nr
     238         306 :                      IF (grid_atom%rad(ir) <= hard_radius) THEN
     239        8160 :                         DO ia = 1, grid_atom%ng_sphere
     240        8000 :                            hypanisotemp = 0.0_dp
     241             :                            rtemp = SQRT(rab2 + grid_atom%rad(ir)**2 + 2.0_dp*grid_atom%rad(ir)* &
     242             :                                         (rab(1)*grid_atom%sin_pol(ia)*grid_atom%cos_azi(ia) + &
     243             :                                          rab(2)*grid_atom%sin_pol(ia)*grid_atom%sin_azi(ia) + &
     244        8000 :                                          rab(3)*grid_atom%cos_pol(ia)))
     245      124800 :                            DO iso = 1, harmonics%max_iso_not0
     246             :                               hypanisotemp = hypanisotemp + &
     247             :                                              (rho_rad_h(1)%r_coef(ir, iso) - rho_rad_h(2)%r_coef(ir, iso) &
     248             :                                               - (rho_rad_s(1)%r_coef(ir, iso) - rho_rad_s(2)%r_coef(ir, iso)))* &
     249             :                                              harmonics%slm(ia, iso)*grid_atom%wr(ir)*grid_atom%wa(ia)/ &
     250      124800 :                                              rtemp**5
     251             :                            END DO ! iso
     252             :                            hypaniso(1, 1, jatom) = hypaniso(1, 1, jatom) + hypanisotemp* &
     253             :                                                   (3._dp*(rab(1) + grid_atom%rad(ir)*grid_atom%sin_pol(ia)*grid_atom%cos_azi(ia))* &
     254        8000 :                                                 (rab(1) + grid_atom%rad(ir)*grid_atom%sin_pol(ia)*grid_atom%cos_azi(ia)) - rtemp**2)
     255             :                            hypaniso(1, 2, jatom) = hypaniso(1, 2, jatom) + hypanisotemp* &
     256             :                                                   (3._dp*(rab(1) + grid_atom%rad(ir)*grid_atom%sin_pol(ia)*grid_atom%cos_azi(ia))* &
     257        8000 :                                                    (rab(2) + grid_atom%rad(ir)*grid_atom%sin_pol(ia)*grid_atom%sin_azi(ia)) - 0._dp)
     258             :                            hypaniso(1, 3, jatom) = hypaniso(1, 3, jatom) + hypanisotemp* &
     259             :                                                   (3._dp*(rab(1) + grid_atom%rad(ir)*grid_atom%sin_pol(ia)*grid_atom%cos_azi(ia))* &
     260        8000 :                                                     (rab(3) + grid_atom%rad(ir)*grid_atom%cos_pol(ia)) - 0._dp)
     261             :                            hypaniso(2, 2, jatom) = hypaniso(2, 2, jatom) + hypanisotemp* &
     262             :                                                   (3._dp*(rab(2) + grid_atom%rad(ir)*grid_atom%sin_pol(ia)*grid_atom%sin_azi(ia))* &
     263        8000 :                                                 (rab(2) + grid_atom%rad(ir)*grid_atom%sin_pol(ia)*grid_atom%sin_azi(ia)) - rtemp**2)
     264             :                            hypaniso(2, 3, jatom) = hypaniso(2, 3, jatom) + hypanisotemp* &
     265             :                                                   (3._dp*(rab(2) + grid_atom%rad(ir)*grid_atom%sin_pol(ia)*grid_atom%sin_azi(ia))* &
     266        8000 :                                                     (rab(3) + grid_atom%rad(ir)*grid_atom%cos_pol(ia)) - 0._dp)
     267             :                            hypaniso(3, 3, jatom) = hypaniso(3, 3, jatom) + hypanisotemp* &
     268             :                                                    (3._dp*(rab(3) + grid_atom%rad(ir)*grid_atom%cos_pol(ia))* &
     269        8160 :                                                     (rab(3) + grid_atom%rad(ir)*grid_atom%cos_pol(ia)) - rtemp**2)
     270             :                         END DO ! ia
     271             :                      END IF ! hard_radius
     272             :                   END DO ! ir
     273             :                END IF ! rab2
     274             :             END DO ! jatom
     275             :          END DO ! iat
     276             :       END DO ! ikind
     277             : 
     278             :       ! Now calculate the soft electronic spin density in reciprocal space (g-space)
     279             :       ! Plane waves grid to assemble the soft electronic spin density
     280             :       CALL pw_env_get(pw_env=pw_env, &
     281           2 :                       auxbas_pw_pool=auxbas_pw_pool)
     282             : 
     283           2 :       CALL auxbas_pw_pool%create_pw(rhototspin_elec_gspace)
     284           2 :       CALL pw_zero(rhototspin_elec_gspace)
     285             : 
     286           2 :       pw_grid => rhototspin_elec_gspace%pw_grid
     287             : 
     288             :       ! Load the contribution of the soft electronic density
     289           2 :       CALL qs_rho_get(rho, rho_g=rho_g)
     290           2 :       CPASSERT(SIZE(rho_g) > 1)
     291           2 :       CALL pw_axpy(rho_g(1), rhototspin_elec_gspace)
     292           2 :       CALL pw_axpy(rho_g(2), rhototspin_elec_gspace, alpha=-1._dp)
     293             :       ! grid to assemble anisotropic hyperfine terms
     294           2 :       CALL auxbas_pw_pool%create_pw(hypaniso_gspace)
     295             : 
     296           8 :       DO idir1 = 1, 3
     297          20 :          DO idir2 = idir1, 3 ! tensor symmetry
     298          12 :             CALL pw_zero(hypaniso_gspace)
     299             :             CALL pw_dr2_gg(rhototspin_elec_gspace, hypaniso_gspace, &
     300          12 :                            idir1, idir2)
     301          54 :             DO iatom = 1, natom
     302          36 :                esum = 0.0_dp
     303          36 :                ra(:) = pbc(particle_set(iatom)%r, cell)
     304     4718628 :                DO ig = 1, SIZE(hypaniso_gspace%array)
     305    18874368 :                   arg = DOT_PRODUCT(pw_grid%g(:, ig), ra)
     306             :                   esum = esum + COS(arg)*REAL(hypaniso_gspace%array(ig), dp) &
     307     4718628 :                          - SIN(arg)*AIMAG(hypaniso_gspace%array(ig))
     308             :                END DO
     309             :                ! Actually, we need -1.0 * fourpi * hypaniso_gspace
     310          36 :                esum = esum*fourpi*(-1.0_dp)
     311          48 :                hypaniso(idir1, idir2, iatom) = hypaniso(idir1, idir2, iatom) + esum
     312             :             END DO
     313             :          END DO ! idir2
     314             :       END DO ! idir1
     315             : 
     316           2 :       CALL auxbas_pw_pool%give_back_pw(rhototspin_elec_gspace)
     317           2 :       CALL auxbas_pw_pool%give_back_pw(hypaniso_gspace)
     318             : 
     319             :       ! Multiply hyperfine matrices with constant*gyromagnetic ratio's
     320             :       ! to have it in units of Mhz.
     321             : 
     322           8 :       DO iatom = 1, natom
     323             :          CALL get_atomic_kind(atomic_kind=particle_set(iatom)%atomic_kind, &
     324           6 :                               z=z)
     325             :          hypiso(iatom) = hypiso(iatom)* &
     326           6 :                          2.0_dp/3.0_dp*hypfactor*ptable(z)%gyrom_ratio
     327             :          hypiso_one(iatom) = hypiso_one(iatom)* &
     328           6 :                              2.0_dp/3.0_dp*hypfactor*ptable(z)%gyrom_ratio
     329          26 :          DO idir1 = 1, 3
     330          60 :             DO idir2 = idir1, 3
     331             :                hypaniso(idir1, idir2, iatom) = hypaniso(idir1, idir2, iatom)* &
     332          36 :                                                hypfactor/fourpi*ptable(z)%gyrom_ratio
     333          54 :                IF (idir1 /= idir2) THEN
     334          18 :                   hypaniso(idir2, idir1, iatom) = hypaniso(idir1, idir2, iatom)
     335             :                END IF
     336             :             END DO
     337             :          END DO
     338             :       END DO
     339             : 
     340             :       ! Global sum
     341           2 :       CALL para_env%sync()
     342           2 :       CALL para_env%sum(hypaniso)
     343           2 :       CALL para_env%sum(hypiso)
     344           2 :       CALL para_env%sum(hypiso_one)
     345             : 
     346             :       ! Print hyperfine matrices
     347           2 :       IF (output_unit > 0) THEN
     348           4 :          DO iatom = 1, natom
     349             :             CALL get_atomic_kind(atomic_kind=particle_set(iatom)%atomic_kind, &
     350           3 :                                  element_symbol=element_symbol, z=z)
     351             :             WRITE (UNIT=output_unit, FMT="(T1,I5,T7,A,T10,I3,T14,F16.10,T31,A,T60,F20.10)") &
     352           3 :                iatom, element_symbol, ptable(z)%gyrom_ratio_isotope, ptable(z)%gyrom_ratio, &
     353           6 :                "[Mhz/T]  Sca-Rel A_iso [Mhz]", hypiso(iatom)
     354             :             WRITE (UNIT=output_unit, FMT="(T31,A,T60,F20.10)") &
     355           3 :                "         Non-Rel A_iso [Mhz]", hypiso_one(iatom)
     356             :             WRITE (UNIT=output_unit, FMT="(T4,A,T18,F20.10,1X,F20.10,1X,F20.10)") &
     357           3 :                "             ", hypaniso(1, 1, iatom), hypaniso(1, 2, iatom), hypaniso(1, 3, iatom), &
     358           3 :                "  A_ani [Mhz]", hypaniso(2, 1, iatom), hypaniso(2, 2, iatom), hypaniso(2, 3, iatom), &
     359          10 :                "             ", hypaniso(3, 1, iatom), hypaniso(3, 2, iatom), hypaniso(3, 3, iatom)
     360             :          END DO
     361             :       END IF
     362             : 
     363             :       ! Deallocate the remainings ...
     364           2 :       DEALLOCATE (hypiso)
     365           2 :       DEALLOCATE (hypiso_one)
     366           2 :       DEALLOCATE (hypaniso)
     367             : 
     368          90 :    END SUBROUTINE qs_epr_hyp_calc
     369             : 
     370             : END MODULE qs_epr_hyp
     371             : 

Generated by: LCOV version 1.15