LCOV - code coverage report
Current view: top level - src - qs_neighbor_lists.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:2fce0f8) Lines: 802 836 95.9 %
Date: 2024-12-21 06:28:57 Functions: 9 10 90.0 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2024 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief Generate the atomic neighbor lists.
      10             : !> \par History
      11             : !>      - List rebuild for sab_orb neighbor list (10.09.2002,MK)
      12             : !>      - List rebuild for all lists (25.09.2002,MK)
      13             : !>      - Row-wise parallelized version (16.06.2003,MK)
      14             : !>      - Row- and column-wise parallelized version (19.07.2003,MK)
      15             : !>      - bug fix for non-periodic case (23.02.06,MK)
      16             : !>      - major refactoring (25.07.10,jhu)
      17             : !> \author Matthias Krack (08.10.1999,26.03.2002,16.06.2003)
      18             : ! **************************************************************************************************
      19             : MODULE qs_neighbor_lists
      20             :    USE almo_scf_types,                  ONLY: almo_max_cutoff_multiplier
      21             :    USE atomic_kind_types,               ONLY: atomic_kind_type,&
      22             :                                               get_atomic_kind,&
      23             :                                               get_atomic_kind_set
      24             :    USE basis_set_types,                 ONLY: get_gto_basis_set,&
      25             :                                               gto_basis_set_p_type,&
      26             :                                               gto_basis_set_type
      27             :    USE cell_types,                      ONLY: cell_type,&
      28             :                                               get_cell,&
      29             :                                               pbc,&
      30             :                                               plane_distance,&
      31             :                                               real_to_scaled,&
      32             :                                               scaled_to_real
      33             :    USE cp_control_types,                ONLY: dft_control_type
      34             :    USE cp_log_handling,                 ONLY: cp_get_default_logger,&
      35             :                                               cp_logger_type
      36             :    USE cp_output_handling,              ONLY: cp_p_file,&
      37             :                                               cp_print_key_finished_output,&
      38             :                                               cp_print_key_should_output,&
      39             :                                               cp_print_key_unit_nr
      40             :    USE cp_units,                        ONLY: cp_unit_from_cp2k
      41             :    USE distribution_1d_types,           ONLY: distribution_1d_type
      42             :    USE distribution_2d_types,           ONLY: distribution_2d_type
      43             :    USE ewald_environment_types,         ONLY: ewald_env_get,&
      44             :                                               ewald_environment_type
      45             :    USE external_potential_types,        ONLY: all_potential_type,&
      46             :                                               get_potential,&
      47             :                                               gth_potential_type,&
      48             :                                               sgp_potential_type
      49             :    USE input_constants,                 ONLY: &
      50             :         dispersion_uff, do_method_lrigpw, do_method_rigpw, do_potential_id, do_potential_short, &
      51             :         do_potential_truncated, do_se_IS_slater, vdw_pairpot_dftd4, xc_vdw_fun_pairpot
      52             :    USE input_section_types,             ONLY: section_vals_get,&
      53             :                                               section_vals_get_subs_vals,&
      54             :                                               section_vals_type,&
      55             :                                               section_vals_val_get
      56             :    USE kinds,                           ONLY: default_string_length,&
      57             :                                               dp,&
      58             :                                               int_8
      59             :    USE kpoint_types,                    ONLY: kpoint_type
      60             :    USE libint_2c_3c,                    ONLY: cutoff_screen_factor
      61             :    USE mathlib,                         ONLY: erfc_cutoff
      62             :    USE message_passing,                 ONLY: mp_para_env_type
      63             :    USE molecule_types,                  ONLY: molecule_type
      64             :    USE particle_types,                  ONLY: particle_type
      65             :    USE paw_proj_set_types,              ONLY: get_paw_proj_set,&
      66             :                                               paw_proj_set_type
      67             :    USE periodic_table,                  ONLY: ptable
      68             :    USE physcon,                         ONLY: bohr
      69             :    USE qs_dftb_types,                   ONLY: qs_dftb_atom_type
      70             :    USE qs_dftb_utils,                   ONLY: get_dftb_atom_param
      71             :    USE qs_dispersion_types,             ONLY: qs_dispersion_type
      72             :    USE qs_environment_types,            ONLY: get_qs_env,&
      73             :                                               qs_environment_type
      74             :    USE qs_gcp_types,                    ONLY: qs_gcp_type
      75             :    USE qs_kind_types,                   ONLY: get_qs_kind,&
      76             :                                               get_qs_kind_set,&
      77             :                                               qs_kind_type
      78             :    USE qs_ks_types,                     ONLY: get_ks_env,&
      79             :                                               qs_ks_env_type,&
      80             :                                               set_ks_env
      81             :    USE qs_neighbor_list_types,          ONLY: &
      82             :         add_neighbor_list, add_neighbor_node, allocate_neighbor_list_set, get_iterator_info, &
      83             :         get_iterator_task, neighbor_list_iterate, neighbor_list_iterator_create, &
      84             :         neighbor_list_iterator_p_type, neighbor_list_iterator_release, neighbor_list_p_type, &
      85             :         neighbor_list_set_p_type, neighbor_list_set_type, release_neighbor_list_sets
      86             :    USE string_utilities,                ONLY: compress,&
      87             :                                               uppercase
      88             :    USE subcell_types,                   ONLY: allocate_subcell,&
      89             :                                               deallocate_subcell,&
      90             :                                               give_ijk_subcell,&
      91             :                                               subcell_type
      92             :    USE util,                            ONLY: locate,&
      93             :                                               sort
      94             :    USE xtb_types,                       ONLY: get_xtb_atom_param,&
      95             :                                               xtb_atom_type
      96             : #include "./base/base_uses.f90"
      97             : 
      98             :    IMPLICIT NONE
      99             : 
     100             :    PRIVATE
     101             : 
     102             : ! **************************************************************************************************
     103             :    TYPE local_atoms_type
     104             :       INTEGER, DIMENSION(:), POINTER                   :: list => NULL(), &
     105             :                                                           list_local_a_index => NULL(), &
     106             :                                                           list_local_b_index => NULL(), &
     107             :                                                           list_1d => NULL(), &
     108             :                                                           list_a_mol => NULL(), &
     109             :                                                           list_b_mol => NULL()
     110             :    END TYPE local_atoms_type
     111             : ! **************************************************************************************************
     112             : 
     113             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'qs_neighbor_lists'
     114             : 
     115             :    ! private counter, used to version qs neighbor lists
     116             :    INTEGER, SAVE, PRIVATE :: last_qs_neighbor_list_id_nr = 0
     117             : 
     118             :    ! Public subroutines
     119             :    PUBLIC :: build_qs_neighbor_lists, local_atoms_type, atom2d_cleanup, &
     120             :              atom2d_build, build_neighbor_lists, pair_radius_setup, &
     121             :              setup_neighbor_list, write_neighbor_lists
     122             : CONTAINS
     123             : 
     124             : ! **************************************************************************************************
     125             : !> \brief   free the internals of atom2d
     126             : !> \param atom2d ...
     127             : !> \param
     128             : ! **************************************************************************************************
     129       37719 :    SUBROUTINE atom2d_cleanup(atom2d)
     130             :       TYPE(local_atoms_type), DIMENSION(:)               :: atom2d
     131             : 
     132             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'atom2d_cleanup'
     133             : 
     134             :       INTEGER                                            :: handle, ikind
     135             : 
     136       37719 :       CALL timeset(routineN, handle)
     137      109047 :       DO ikind = 1, SIZE(atom2d)
     138       71328 :          NULLIFY (atom2d(ikind)%list)
     139       71328 :          IF (ASSOCIATED(atom2d(ikind)%list_local_a_index)) THEN
     140       50966 :             DEALLOCATE (atom2d(ikind)%list_local_a_index)
     141             :          END IF
     142       71328 :          IF (ASSOCIATED(atom2d(ikind)%list_local_b_index)) THEN
     143       71270 :             DEALLOCATE (atom2d(ikind)%list_local_b_index)
     144             :          END IF
     145       71328 :          IF (ASSOCIATED(atom2d(ikind)%list_a_mol)) THEN
     146       50966 :             DEALLOCATE (atom2d(ikind)%list_a_mol)
     147             :          END IF
     148       71328 :          IF (ASSOCIATED(atom2d(ikind)%list_b_mol)) THEN
     149       71270 :             DEALLOCATE (atom2d(ikind)%list_b_mol)
     150             :          END IF
     151      109047 :          IF (ASSOCIATED(atom2d(ikind)%list_1d)) THEN
     152       71328 :             DEALLOCATE (atom2d(ikind)%list_1d)
     153             :          END IF
     154             :       END DO
     155       37719 :       CALL timestop(handle)
     156             : 
     157       37719 :    END SUBROUTINE atom2d_cleanup
     158             : 
     159             : ! **************************************************************************************************
     160             : !> \brief   Build some distribution structure of atoms, refactored from build_qs_neighbor_lists
     161             : !> \param atom2d output
     162             : !> \param distribution_1d ...
     163             : !> \param distribution_2d ...
     164             : !> \param atomic_kind_set ...
     165             : !> \param molecule_set ...
     166             : !> \param molecule_only ...
     167             : !> \param particle_set ...
     168             : !> \author  JH
     169             : ! **************************************************************************************************
     170       37719 :    SUBROUTINE atom2d_build(atom2d, distribution_1d, distribution_2d, &
     171             :                            atomic_kind_set, molecule_set, molecule_only, particle_set)
     172             :       TYPE(local_atoms_type), DIMENSION(:)               :: atom2d
     173             :       TYPE(distribution_1d_type), POINTER                :: distribution_1d
     174             :       TYPE(distribution_2d_type), POINTER                :: distribution_2d
     175             :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
     176             :       TYPE(molecule_type), DIMENSION(:), POINTER         :: molecule_set
     177             :       LOGICAL                                            :: molecule_only
     178             :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     179             : 
     180             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'atom2d_build'
     181             : 
     182             :       INTEGER                                            :: atom_a, handle, ia, iat, iatom, &
     183             :                                                             iatom_local, ikind, imol, natom, &
     184             :                                                             natom_a, natom_local_a, natom_local_b, &
     185             :                                                             nel, nkind
     186       37719 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: atom2mol, atom_of_kind, listindex, &
     187       37719 :                                                             listsort
     188       37719 :       INTEGER, DIMENSION(:), POINTER                     :: local_cols_array, local_rows_array
     189             : 
     190       37719 :       CALL timeset(routineN, handle)
     191             : 
     192       37719 :       nkind = SIZE(atomic_kind_set)
     193       37719 :       natom = SIZE(particle_set)
     194       37719 :       CALL get_atomic_kind_set(atomic_kind_set=atomic_kind_set, atom_of_kind=atom_of_kind)
     195             : 
     196       37719 :       IF (molecule_only) THEN
     197         876 :          ALLOCATE (atom2mol(natom))
     198         974 :          DO imol = 1, SIZE(molecule_set)
     199        2512 :             DO iat = molecule_set(imol)%first_atom, molecule_set(imol)%last_atom
     200        2220 :                atom2mol(iat) = imol
     201             :             END DO
     202             :          END DO
     203             :       END IF
     204             : 
     205      109047 :       DO ikind = 1, nkind
     206       71328 :          NULLIFY (atom2d(ikind)%list)
     207       71328 :          NULLIFY (atom2d(ikind)%list_local_a_index)
     208       71328 :          NULLIFY (atom2d(ikind)%list_local_b_index)
     209       71328 :          NULLIFY (atom2d(ikind)%list_1d)
     210       71328 :          NULLIFY (atom2d(ikind)%list_a_mol)
     211       71328 :          NULLIFY (atom2d(ikind)%list_b_mol)
     212             : 
     213       71328 :          CALL get_atomic_kind(atomic_kind_set(ikind), atom_list=atom2d(ikind)%list)
     214             : 
     215       71328 :          natom_a = SIZE(atom2d(ikind)%list)
     216             : 
     217       71328 :          natom_local_a = distribution_2d%n_local_rows(ikind)
     218       71328 :          natom_local_b = distribution_2d%n_local_cols(ikind)
     219       71328 :          local_rows_array => distribution_2d%local_rows(ikind)%array
     220       71328 :          local_cols_array => distribution_2d%local_cols(ikind)%array
     221             : 
     222       71328 :          nel = distribution_1d%n_el(ikind)
     223      192817 :          ALLOCATE (atom2d(ikind)%list_1d(nel))
     224      164147 :          DO iat = 1, nel
     225       92819 :             ia = distribution_1d%list(ikind)%array(iat)
     226      164147 :             atom2d(ikind)%list_1d(iat) = atom_of_kind(ia)
     227             :          END DO
     228             : 
     229      285312 :          ALLOCATE (listsort(natom_a), listindex(natom_a))
     230      252966 :          listsort(1:natom_a) = atom2d(ikind)%list(1:natom_a)
     231       71328 :          CALL sort(listsort, natom_a, listindex)
     232             :          ! Block rows
     233       71328 :          IF (natom_local_a > 0) THEN
     234      152898 :             ALLOCATE (atom2d(ikind)%list_local_a_index(natom_local_a))
     235      101932 :             ALLOCATE (atom2d(ikind)%list_a_mol(natom_local_a))
     236      151209 :             atom2d(ikind)%list_a_mol(:) = 0
     237             : 
     238             :             ! Build index vector for mapping
     239      151209 :             DO iatom_local = 1, natom_local_a
     240      100243 :                atom_a = local_rows_array(iatom_local)
     241      100243 :                iatom = locate(listsort, atom_a)
     242      100243 :                atom2d(ikind)%list_local_a_index(iatom_local) = listindex(iatom)
     243      151209 :                IF (molecule_only) atom2d(ikind)%list_a_mol(iatom_local) = atom2mol(atom_a)
     244             :             END DO
     245             : 
     246             :          END IF
     247             : 
     248             :          ! Block columns
     249       71328 :          IF (natom_local_b > 0) THEN
     250             : 
     251      213810 :             ALLOCATE (atom2d(ikind)%list_local_b_index(natom_local_b))
     252      142540 :             ALLOCATE (atom2d(ikind)%list_b_mol(natom_local_b))
     253      252772 :             atom2d(ikind)%list_b_mol(:) = 0
     254             : 
     255             :             ! Build index vector for mapping
     256      252772 :             DO iatom_local = 1, natom_local_b
     257      181502 :                atom_a = local_cols_array(iatom_local)
     258      181502 :                iatom = locate(listsort, atom_a)
     259      181502 :                atom2d(ikind)%list_local_b_index(iatom_local) = listindex(iatom)
     260      252772 :                IF (molecule_only) atom2d(ikind)%list_b_mol(iatom_local) = atom2mol(atom_a)
     261             :             END DO
     262             : 
     263             :          END IF
     264             : 
     265      109047 :          DEALLOCATE (listsort, listindex)
     266             : 
     267             :       END DO
     268             : 
     269       37719 :       CALL timestop(handle)
     270             : 
     271       75438 :    END SUBROUTINE atom2d_build
     272             : 
     273             : ! **************************************************************************************************
     274             : !> \brief   Build all the required neighbor lists for Quickstep.
     275             : !> \param qs_env ...
     276             : !> \param para_env ...
     277             : !> \param molecular ...
     278             : !> \param force_env_section ...
     279             : !> \date    28.08.2000
     280             : !> \par History
     281             : !>          - Major refactoring (25.07.2010,jhu)
     282             : !> \author  MK
     283             : !> \version 1.0
     284             : ! **************************************************************************************************
     285       24039 :    SUBROUTINE build_qs_neighbor_lists(qs_env, para_env, molecular, force_env_section)
     286             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     287             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     288             :       LOGICAL, OPTIONAL                                  :: molecular
     289             :       TYPE(section_vals_type), POINTER                   :: force_env_section
     290             : 
     291             :       CHARACTER(len=*), PARAMETER :: routineN = 'build_qs_neighbor_lists'
     292             : 
     293             :       CHARACTER(LEN=2)                                   :: element_symbol, element_symbol2
     294             :       CHARACTER(LEN=default_string_length)               :: print_key_path
     295             :       INTEGER                                            :: handle, hfx_pot, ikind, ingp, iw, jkind, &
     296             :                                                             maxatom, ngp, nkind, zat
     297             :       LOGICAL :: all_potential_present, almo, dftb, do_hfx, dokp, gth_potential_present, &
     298             :          lri_optbas, lrigpw, mic, molecule_only, nddo, paw_atom, paw_atom_present, rigpw, &
     299             :          sgp_potential_present, xtb
     300       24039 :       LOGICAL, ALLOCATABLE, DIMENSION(:) :: all_present, aux_fit_present, aux_present, &
     301       24039 :          core_present, default_present, nonbond1_atom, nonbond2_atom, oce_present, orb_present, &
     302       24039 :          ppl_present, ppnl_present, ri_present, xb1_atom, xb2_atom
     303             :       REAL(dp)                                           :: almo_rcov, almo_rvdw, eps_schwarz, &
     304             :                                                             omega, pdist, rcut, roperator, subcells
     305       24039 :       REAL(dp), ALLOCATABLE, DIMENSION(:) :: all_pot_rad, aux_fit_radius, c_radius, calpha, &
     306       24039 :          core_radius, oce_radius, orb_radius, ppl_radius, ppnl_radius, ri_radius, zeff
     307       24039 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :)             :: pair_radius, pair_radius_lb
     308             :       TYPE(all_potential_type), POINTER                  :: all_potential
     309       24039 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
     310             :       TYPE(cell_type), POINTER                           :: cell
     311             :       TYPE(cp_logger_type), POINTER                      :: logger
     312             :       TYPE(dft_control_type), POINTER                    :: dft_control
     313             :       TYPE(distribution_1d_type), POINTER                :: distribution_1d
     314             :       TYPE(distribution_2d_type), POINTER                :: distribution_2d
     315             :       TYPE(ewald_environment_type), POINTER              :: ewald_env
     316             :       TYPE(gth_potential_type), POINTER                  :: gth_potential
     317             :       TYPE(gto_basis_set_type), POINTER                  :: aux_basis_set, aux_fit_basis_set, &
     318             :                                                             orb_basis_set, ri_basis_set
     319             :       TYPE(kpoint_type), POINTER                         :: kpoints
     320       24039 :       TYPE(local_atoms_type), ALLOCATABLE, DIMENSION(:)  :: atom2d
     321       24039 :       TYPE(molecule_type), DIMENSION(:), POINTER         :: molecule_set
     322       24039 :       TYPE(neighbor_list_set_p_type), DIMENSION(:), POINTER :: saa_list, sab_all, sab_almo, &
     323       24039 :          sab_cn, sab_core, sab_gcp, sab_kp, sab_kp_nosym, sab_lrc, sab_orb, sab_scp, sab_se, &
     324       24039 :          sab_tbe, sab_vdw, sab_xb, sab_xtb_nonbond, sab_xtb_pp, sab_xtbe, sac_ae, sac_lri, &
     325       24039 :          sac_ppl, sap_oce, sap_ppnl, soa_list, soo_list
     326       24039 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     327             :       TYPE(paw_proj_set_type), POINTER                   :: paw_proj
     328             :       TYPE(qs_dftb_atom_type), POINTER                   :: dftb_atom
     329             :       TYPE(qs_dispersion_type), POINTER                  :: dispersion_env
     330             :       TYPE(qs_gcp_type), POINTER                         :: gcp_env
     331       24039 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     332             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
     333             :       TYPE(section_vals_type), POINTER                   :: hfx_sections, neighbor_list_section
     334             :       TYPE(sgp_potential_type), POINTER                  :: sgp_potential
     335             :       TYPE(xtb_atom_type), POINTER                       :: xtb_atom
     336             : 
     337       24039 :       CALL timeset(routineN, handle)
     338       24039 :       NULLIFY (logger)
     339       24039 :       logger => cp_get_default_logger()
     340             : 
     341       24039 :       NULLIFY (atomic_kind_set, qs_kind_set, cell, neighbor_list_section, &
     342       24039 :                distribution_1d, distribution_2d, gth_potential, sgp_potential, orb_basis_set, &
     343       24039 :                particle_set, molecule_set, dft_control, ks_env)
     344             : 
     345       24039 :       NULLIFY (sab_orb)
     346       24039 :       NULLIFY (sac_ae)
     347       24039 :       NULLIFY (sac_ppl)
     348       24039 :       NULLIFY (sac_lri)
     349       24039 :       NULLIFY (sap_ppnl)
     350       24039 :       NULLIFY (sap_oce)
     351       24039 :       NULLIFY (sab_se)
     352       24039 :       NULLIFY (sab_lrc)
     353       24039 :       NULLIFY (sab_tbe)
     354       24039 :       NULLIFY (sab_xtbe)
     355       24039 :       NULLIFY (sab_core)
     356       24039 :       NULLIFY (sab_xb)
     357       24039 :       NULLIFY (sab_xtb_pp)
     358       24039 :       NULLIFY (sab_xtb_nonbond)
     359       24039 :       NULLIFY (sab_all)
     360       24039 :       NULLIFY (sab_vdw)
     361       24039 :       NULLIFY (sab_cn)
     362       24039 :       NULLIFY (soo_list)
     363       24039 :       NULLIFY (sab_scp)
     364       24039 :       NULLIFY (sab_almo)
     365       24039 :       NULLIFY (sab_kp)
     366       24039 :       NULLIFY (sab_kp_nosym)
     367             : 
     368             :       CALL get_qs_env(qs_env, &
     369             :                       ks_env=ks_env, &
     370             :                       atomic_kind_set=atomic_kind_set, &
     371             :                       qs_kind_set=qs_kind_set, &
     372             :                       cell=cell, &
     373             :                       kpoints=kpoints, &
     374             :                       distribution_2d=distribution_2d, &
     375             :                       local_particles=distribution_1d, &
     376             :                       particle_set=particle_set, &
     377             :                       molecule_set=molecule_set, &
     378       24039 :                       dft_control=dft_control)
     379             : 
     380       24039 :       neighbor_list_section => section_vals_get_subs_vals(force_env_section, "DFT%PRINT%NEIGHBOR_LISTS")
     381             : 
     382             :       ! This sets the id number of the qs neighbor lists, new lists, means new version
     383             :       ! new version implies new sparsity of the matrices
     384       24039 :       last_qs_neighbor_list_id_nr = last_qs_neighbor_list_id_nr + 1
     385       24039 :       CALL set_ks_env(ks_env=ks_env, neighbor_list_id=last_qs_neighbor_list_id_nr)
     386             : 
     387             :       CALL get_ks_env(ks_env=ks_env, &
     388             :                       sab_orb=sab_orb, &
     389             :                       sac_ae=sac_ae, &
     390             :                       sac_ppl=sac_ppl, &
     391             :                       sac_lri=sac_lri, &
     392             :                       sab_vdw=sab_vdw, &
     393             :                       sap_ppnl=sap_ppnl, &
     394             :                       sap_oce=sap_oce, &
     395             :                       sab_se=sab_se, &
     396             :                       sab_lrc=sab_lrc, &
     397             :                       sab_tbe=sab_tbe, &
     398             :                       sab_xtbe=sab_xtbe, &
     399             :                       sab_core=sab_core, &
     400             :                       sab_xb=sab_xb, &
     401             :                       sab_xtb_pp=sab_xtb_pp, &
     402             :                       sab_xtb_nonbond=sab_xtb_nonbond, &
     403             :                       sab_scp=sab_scp, &
     404             :                       sab_all=sab_all, &
     405             :                       sab_almo=sab_almo, &
     406             :                       sab_kp=sab_kp, &
     407       24039 :                       sab_kp_nosym=sab_kp_nosym)
     408             : 
     409       24039 :       dokp = (kpoints%nkp > 0)
     410       24039 :       nddo = dft_control%qs_control%semi_empirical
     411       24039 :       dftb = dft_control%qs_control%dftb
     412       24039 :       xtb = dft_control%qs_control%xtb
     413       24039 :       almo = dft_control%qs_control%do_almo_scf
     414       24039 :       lrigpw = (dft_control%qs_control%method_id == do_method_lrigpw)
     415       24039 :       rigpw = (dft_control%qs_control%method_id == do_method_rigpw)
     416       24039 :       lri_optbas = dft_control%qs_control%lri_optbas
     417             : 
     418             :       ! molecular lists
     419       24039 :       molecule_only = .FALSE.
     420       24039 :       IF (PRESENT(molecular)) molecule_only = molecular
     421             :       ! minimum image convention (MIC)
     422       24039 :       mic = molecule_only
     423       24039 :       IF (dokp) THEN
     424             :          ! no MIC for kpoints
     425         912 :          mic = .FALSE.
     426       23127 :       ELSEIF (nddo) THEN
     427             :          ! enforce MIC for interaction lists in SE
     428        5782 :          mic = .TRUE.
     429             :       END IF
     430       24039 :       pdist = dft_control%qs_control%pairlist_radius
     431             : 
     432       24039 :       hfx_sections => section_vals_get_subs_vals(qs_env%input, "DFT%XC%HF")
     433       24039 :       CALL section_vals_get(hfx_sections, explicit=do_hfx)
     434             : 
     435       24039 :       CALL get_atomic_kind_set(atomic_kind_set, maxatom=maxatom)
     436             :       CALL get_qs_kind_set(qs_kind_set, paw_atom_present=paw_atom_present, &
     437             :                            gth_potential_present=gth_potential_present, &
     438             :                            sgp_potential_present=sgp_potential_present, &
     439       24039 :                            all_potential_present=all_potential_present)
     440             : 
     441       24039 :       CALL section_vals_val_get(qs_env%input, "DFT%SUBCELLS", r_val=subcells)
     442             : 
     443             :       ! Allocate work storage
     444       24039 :       nkind = SIZE(atomic_kind_set)
     445             :       ALLOCATE (orb_present(nkind), aux_fit_present(nkind), aux_present(nkind), &
     446      168273 :                 default_present(nkind), core_present(nkind))
     447             :       ALLOCATE (orb_radius(nkind), aux_fit_radius(nkind), c_radius(nkind), &
     448      192312 :                 core_radius(nkind), calpha(nkind), zeff(nkind))
     449       73093 :       orb_radius(:) = 0.0_dp
     450       73093 :       aux_fit_radius(:) = 0.0_dp
     451       73093 :       c_radius(:) = 0.0_dp
     452       73093 :       core_radius(:) = 0.0_dp
     453       73093 :       calpha(:) = 0.0_dp
     454       73093 :       zeff(:) = 0.0_dp
     455             : 
     456       96156 :       ALLOCATE (pair_radius(nkind, nkind))
     457       24039 :       IF (gth_potential_present .OR. sgp_potential_present) THEN
     458       29241 :          ALLOCATE (ppl_present(nkind), ppl_radius(nkind))
     459       27179 :          ppl_radius = 0.0_dp
     460       29241 :          ALLOCATE (ppnl_present(nkind), ppnl_radius(nkind))
     461       41471 :          ppnl_radius = 0.0_dp
     462             :       END IF
     463       24039 :       IF (paw_atom_present) THEN
     464        4704 :          ALLOCATE (oce_present(nkind), oce_radius(nkind))
     465        4650 :          oce_radius = 0.0_dp
     466             :       END IF
     467       24039 :       IF (all_potential_present .OR. sgp_potential_present) THEN
     468       43014 :          ALLOCATE (all_present(nkind), all_pot_rad(nkind))
     469       55753 :          all_pot_rad = 0.0_dp
     470             :       END IF
     471             : 
     472             :       ! Initialize the local data structures
     473      121171 :       ALLOCATE (atom2d(nkind))
     474             :       CALL atom2d_build(atom2d, distribution_1d, distribution_2d, atomic_kind_set, &
     475       24039 :                         molecule_set, molecule_only, particle_set=particle_set)
     476             : 
     477       73093 :       DO ikind = 1, nkind
     478             : 
     479       49054 :          CALL get_atomic_kind(atomic_kind_set(ikind), atom_list=atom2d(ikind)%list)
     480             : 
     481       49054 :          CALL get_qs_kind(qs_kind_set(ikind), basis_set=orb_basis_set, basis_type="ORB")
     482       49054 :          CALL get_qs_kind(qs_kind_set(ikind), basis_set=aux_basis_set, basis_type="AUX")
     483       49054 :          CALL get_qs_kind(qs_kind_set(ikind), basis_set=aux_fit_basis_set, basis_type="AUX_FIT")
     484             : 
     485             :          CALL get_qs_kind(qs_kind_set(ikind), &
     486             :                           paw_proj_set=paw_proj, &
     487             :                           paw_atom=paw_atom, &
     488             :                           all_potential=all_potential, &
     489             :                           gth_potential=gth_potential, &
     490       49054 :                           sgp_potential=sgp_potential)
     491             : 
     492       49054 :          IF (dftb) THEN
     493             :             ! Set the interaction radius for the neighbor lists (DFTB case)
     494             :             ! This includes all interactions (orbitals and short range pair potential) except vdW
     495        5838 :             CALL get_qs_kind(qs_kind_set(ikind), dftb_parameter=dftb_atom)
     496             :             CALL get_dftb_atom_param(dftb_parameter=dftb_atom, &
     497             :                                      cutoff=orb_radius(ikind), &
     498        5838 :                                      defined=orb_present(ikind))
     499             :          ELSE
     500       43216 :             IF (ASSOCIATED(orb_basis_set)) THEN
     501       43214 :                orb_present(ikind) = .TRUE.
     502       43214 :                CALL get_gto_basis_set(gto_basis_set=orb_basis_set, kind_radius=orb_radius(ikind))
     503             :             ELSE
     504           2 :                orb_present(ikind) = .FALSE.
     505             :             END IF
     506             :          END IF
     507             : 
     508       49054 :          IF (ASSOCIATED(aux_basis_set)) THEN
     509           0 :             aux_present(ikind) = .TRUE.
     510             :          ELSE
     511       49054 :             aux_present(ikind) = .FALSE.
     512             :          END IF
     513             : 
     514       49054 :          IF (ASSOCIATED(aux_fit_basis_set)) THEN
     515        1482 :             aux_fit_present(ikind) = .TRUE.
     516        1482 :             CALL get_gto_basis_set(gto_basis_set=aux_fit_basis_set, kind_radius=aux_fit_radius(ikind))
     517             :          ELSE
     518       47572 :             aux_fit_present(ikind) = .FALSE.
     519             :          END IF
     520             : 
     521             :          ! core overlap
     522             :          CALL get_qs_kind(qs_kind_set(ikind), &
     523             :                           alpha_core_charge=calpha(ikind), &
     524             :                           core_charge_radius=core_radius(ikind), &
     525       49054 :                           zeff=zeff(ikind))
     526       49054 :          IF (zeff(ikind) /= 0._dp .AND. calpha(ikind) /= 0._dp) THEN
     527       48884 :             core_present(ikind) = .TRUE.
     528             :          ELSE
     529         170 :             core_present(ikind) = .FALSE.
     530             :          END IF
     531             : 
     532             :          ! Pseudopotentials
     533       49054 :          IF (gth_potential_present .OR. sgp_potential_present) THEN
     534       17432 :             IF (ASSOCIATED(gth_potential)) THEN
     535             :                CALL get_potential(potential=gth_potential, &
     536             :                                   ppl_present=ppl_present(ikind), &
     537             :                                   ppl_radius=ppl_radius(ikind), &
     538             :                                   ppnl_present=ppnl_present(ikind), &
     539       17204 :                                   ppnl_radius=ppnl_radius(ikind))
     540         228 :             ELSE IF (ASSOCIATED(sgp_potential)) THEN
     541             :                CALL get_potential(potential=sgp_potential, &
     542             :                                   ppl_present=ppl_present(ikind), &
     543             :                                   ppl_radius=ppl_radius(ikind), &
     544             :                                   ppnl_present=ppnl_present(ikind), &
     545          36 :                                   ppnl_radius=ppnl_radius(ikind))
     546             :             ELSE
     547         192 :                ppl_present(ikind) = .FALSE.
     548         192 :                ppnl_present(ikind) = .FALSE.
     549             :             END IF
     550             :          END IF
     551             : 
     552             :          ! GAPW
     553       49054 :          IF (paw_atom_present) THEN
     554        3082 :             IF (paw_atom) THEN
     555        2916 :                oce_present(ikind) = .TRUE.
     556        2916 :                CALL get_paw_proj_set(paw_proj_set=paw_proj, rcprj=oce_radius(ikind))
     557             :             ELSE
     558         166 :                oce_present(ikind) = .FALSE.
     559             :             END IF
     560             :          END IF
     561             : 
     562             :          ! Check the presence of an all electron potential or ERFC potential
     563      122147 :          IF (all_potential_present .OR. sgp_potential_present) THEN
     564       31714 :             all_present(ikind) = .FALSE.
     565       31714 :             all_pot_rad(ikind) = 0.0_dp
     566       31714 :             IF (ASSOCIATED(all_potential)) THEN
     567       31644 :                all_present(ikind) = .TRUE.
     568       31644 :                CALL get_potential(potential=all_potential, core_charge_radius=all_pot_rad(ikind))
     569          70 :             ELSE IF (ASSOCIATED(sgp_potential)) THEN
     570          36 :                IF (sgp_potential%ecp_local) THEN
     571          24 :                   all_present(ikind) = .TRUE.
     572          24 :                   CALL get_potential(potential=sgp_potential, core_charge_radius=all_pot_rad(ikind))
     573             :                END IF
     574             :             END IF
     575             :          END IF
     576             : 
     577             :       END DO
     578             : 
     579             :       ! Build the orbital-orbital overlap neighbor lists
     580       24039 :       IF (pdist < 0.0_dp) THEN
     581             :          pdist = MAX(plane_distance(1, 0, 0, cell), &
     582             :                      plane_distance(0, 1, 0, cell), &
     583           4 :                      plane_distance(0, 0, 1, cell))
     584             :       END IF
     585       24039 :       CALL pair_radius_setup(orb_present, orb_present, orb_radius, orb_radius, pair_radius, pdist)
     586             :       CALL build_neighbor_lists(sab_orb, particle_set, atom2d, cell, pair_radius, &
     587       24039 :                                 mic=mic, subcells=subcells, molecular=molecule_only, nlname="sab_orb")
     588       24039 :       CALL set_ks_env(ks_env=ks_env, sab_orb=sab_orb)
     589             :       CALL write_neighbor_lists(sab_orb, particle_set, cell, para_env, neighbor_list_section, &
     590       24039 :                                 "/SAB_ORB", "sab_orb", "ORBITAL ORBITAL")
     591             : 
     592             :       ! Build orbital-orbital list containing all the pairs, to be used with
     593             :       ! non-symmetric operators. Beware: the cutoff of the orbital-orbital overlap
     594             :       ! might not be optimal. It should be verified for each operator.
     595       24039 :       IF (.NOT. (nddo .OR. dftb .OR. xtb)) THEN
     596             :          CALL build_neighbor_lists(sab_all, particle_set, atom2d, cell, pair_radius, &
     597       10421 :                                    mic=mic, symmetric=.FALSE., subcells=subcells, molecular=molecule_only, nlname="sab_all")
     598       10421 :          CALL set_ks_env(ks_env=ks_env, sab_all=sab_all)
     599             :       END IF
     600             : 
     601             :       ! Build the core-core overlap neighbor lists
     602       24039 :       IF (.NOT. (nddo .OR. dftb .OR. xtb)) THEN
     603       10421 :          CALL pair_radius_setup(core_present, core_present, core_radius, core_radius, pair_radius)
     604             :          CALL build_neighbor_lists(sab_core, particle_set, atom2d, cell, pair_radius, subcells=subcells, &
     605       10421 :                                    operator_type="PP", nlname="sab_core")
     606       10421 :          CALL set_ks_env(ks_env=ks_env, sab_core=sab_core)
     607             :          CALL write_neighbor_lists(sab_core, particle_set, cell, para_env, neighbor_list_section, &
     608       10421 :                                    "/SAB_CORE", "sab_core", "CORE CORE")
     609             :       END IF
     610             : 
     611       24039 :       IF (dokp) THEN
     612             :          ! We try to guess an integration radius for K-points
     613             :          ! For non-HFX calculations we use the overlap list
     614             :          ! For HFX we use the interaction radius of kinds (ORB or ADMM basis)
     615             :          ! plus a range for the operator
     616         912 :          IF (do_hfx) THEN
     617             : 
     618             :             !case study on the HFX potential: TC, SR or Overlap?
     619          70 :             CALL section_vals_val_get(hfx_sections, "INTERACTION_POTENTIAL%POTENTIAL_TYPE", i_val=hfx_pot)
     620             : 
     621          26 :             SELECT CASE (hfx_pot)
     622             :             CASE (do_potential_id)
     623          26 :                roperator = 0.0_dp
     624             :             CASE (do_potential_truncated)
     625          44 :                CALL section_vals_val_get(hfx_sections, "INTERACTION_POTENTIAL%CUTOFF_RADIUS", r_val=roperator)
     626             :             CASE (do_potential_short)
     627           0 :                CALL section_vals_val_get(hfx_sections, "INTERACTION_POTENTIAL%OMEGA", r_val=omega)
     628           0 :                CALL section_vals_val_get(hfx_sections, "SCREENING%EPS_SCHWARZ", r_val=eps_schwarz)
     629           0 :                CALL erfc_cutoff(eps_schwarz, omega, roperator)
     630             :             CASE DEFAULT
     631          70 :                CPABORT("HFX potential not available for K-points (NYI)")
     632             :             END SELECT
     633             : 
     634          70 :             IF (dft_control%do_admm) THEN
     635             :                CALL pair_radius_setup(aux_fit_present, aux_fit_present, aux_fit_radius, aux_fit_radius, &
     636          38 :                                       pair_radius)
     637             : 
     638             :                !We cannot accept a pair radius smaller than the ORB overlap, for sanity reasons
     639         114 :                ALLOCATE (pair_radius_lb(nkind, nkind))
     640          38 :                CALL pair_radius_setup(orb_present, orb_present, orb_radius, orb_radius, pair_radius_lb)
     641          98 :                DO jkind = 1, nkind
     642         202 :                   DO ikind = 1, nkind
     643         104 :                      IF (pair_radius(ikind, jkind) + cutoff_screen_factor*roperator .LE. pair_radius_lb(ikind, jkind)) &
     644         128 :                         pair_radius(ikind, jkind) = pair_radius_lb(ikind, jkind) - roperator
     645             :                   END DO
     646             :                END DO
     647             :             ELSE
     648          32 :                CALL pair_radius_setup(orb_present, orb_present, orb_radius, orb_radius, pair_radius)
     649             :             END IF
     650         362 :             pair_radius = pair_radius + cutoff_screen_factor*roperator
     651             :          ELSE
     652         842 :             CALL pair_radius_setup(orb_present, orb_present, orb_radius, orb_radius, pair_radius)
     653             :          END IF
     654             :          CALL build_neighbor_lists(sab_kp, particle_set, atom2d, cell, pair_radius, &
     655         912 :                                    subcells=subcells, nlname="sab_kp")
     656         912 :          CALL set_ks_env(ks_env=ks_env, sab_kp=sab_kp)
     657             : 
     658         912 :          IF (do_hfx) THEN
     659             :             CALL build_neighbor_lists(sab_kp_nosym, particle_set, atom2d, cell, pair_radius, &
     660          70 :                                       subcells=subcells, nlname="sab_kp_nosym", symmetric=.FALSE.)
     661          70 :             CALL set_ks_env(ks_env=ks_env, sab_kp_nosym=sab_kp_nosym)
     662             :          END IF
     663             :       END IF
     664             : 
     665             :       ! Build orbital GTH-PPL operator overlap list
     666       24039 :       IF (gth_potential_present .OR. sgp_potential_present) THEN
     667        9837 :          IF (ANY(ppl_present)) THEN
     668        9745 :             CALL pair_radius_setup(orb_present, ppl_present, orb_radius, ppl_radius, pair_radius)
     669             :             CALL build_neighbor_lists(sac_ppl, particle_set, atom2d, cell, pair_radius, &
     670        9745 :                                       subcells=subcells, operator_type="ABC", nlname="sac_ppl")
     671        9745 :             CALL set_ks_env(ks_env=ks_env, sac_ppl=sac_ppl)
     672             :             CALL write_neighbor_lists(sac_ppl, particle_set, cell, para_env, neighbor_list_section, &
     673        9745 :                                       "/SAC_PPL", "sac_ppl", "ORBITAL GTH-PPL")
     674        9745 :             IF (lrigpw) THEN
     675          58 :                IF (qs_env%lri_env%ppl_ri) THEN
     676             :                   CALL build_neighbor_lists(sac_lri, particle_set, atom2d, cell, pair_radius, &
     677           2 :                                             subcells=subcells, symmetric=.FALSE., operator_type="PP", nlname="sac_lri")
     678           2 :                   CALL set_ks_env(ks_env=ks_env, sac_lri=sac_lri)
     679             :                END IF
     680             :             END IF
     681             :          END IF
     682             : 
     683       12943 :          IF (ANY(ppnl_present)) THEN
     684        7817 :             CALL pair_radius_setup(orb_present, ppnl_present, orb_radius, ppnl_radius, pair_radius)
     685             :             CALL build_neighbor_lists(sap_ppnl, particle_set, atom2d, cell, pair_radius, &
     686        7817 :                                       subcells=subcells, operator_type="ABBA", nlname="sap_ppnl")
     687        7817 :             CALL set_ks_env(ks_env=ks_env, sap_ppnl=sap_ppnl)
     688             :             CALL write_neighbor_lists(sap_ppnl, particle_set, cell, para_env, neighbor_list_section, &
     689        7817 :                                       "/SAP_PPNL", "sap_ppnl", "ORBITAL GTH-PPNL")
     690             :          END IF
     691             :       END IF
     692             : 
     693       24039 :       IF (paw_atom_present) THEN
     694             :          ! Build orbital-GAPW projector overlap list
     695        1636 :          IF (ANY(oce_present)) THEN
     696        1568 :             CALL pair_radius_setup(orb_present, oce_present, orb_radius, oce_radius, pair_radius)
     697             :             CALL build_neighbor_lists(sap_oce, particle_set, atom2d, cell, pair_radius, &
     698        1568 :                                       subcells=subcells, operator_type="ABBA", nlname="sap_oce")
     699        1568 :             CALL set_ks_env(ks_env=ks_env, sap_oce=sap_oce)
     700             :             CALL write_neighbor_lists(sap_oce, particle_set, cell, para_env, neighbor_list_section, &
     701        1568 :                                       "/SAP_OCE", "sap_oce", "ORBITAL(A) PAW-PRJ")
     702             :          END IF
     703             :       END IF
     704             : 
     705             :       ! Build orbital-ERFC potential list
     706       24039 :       IF (.NOT. (nddo .OR. dftb .OR. xtb)) THEN
     707       10421 :          IF (all_potential_present .OR. sgp_potential_present) THEN
     708         720 :             CALL pair_radius_setup(orb_present, all_present, orb_radius, all_pot_rad, pair_radius)
     709             :             CALL build_neighbor_lists(sac_ae, particle_set, atom2d, cell, pair_radius, &
     710         720 :                                       subcells=subcells, operator_type="ABC", nlname="sac_ae")
     711         720 :             CALL set_ks_env(ks_env=ks_env, sac_ae=sac_ae)
     712             :             CALL write_neighbor_lists(sac_ae, particle_set, cell, para_env, neighbor_list_section, &
     713         720 :                                       "/SAC_AE", "sac_ae", "ORBITAL ERFC POTENTIAL")
     714             :          END IF
     715             :       END IF
     716             : 
     717       24039 :       IF (nddo) THEN
     718             :          ! Semi-empirical neighbor lists
     719       18448 :          default_present = .TRUE.
     720       18448 :          c_radius = dft_control%qs_control%se_control%cutoff_cou
     721             :          ! Build the neighbor lists for the Hartree terms
     722        5782 :          CALL pair_radius_setup(default_present, default_present, c_radius, c_radius, pair_radius)
     723        5782 :          IF (dft_control%qs_control%se_control%do_ewald_gks) THEN
     724             :             ! Use MIC for the periodic code of GKS
     725             :             CALL build_neighbor_lists(sab_se, particle_set, atom2d, cell, pair_radius, mic=mic, &
     726           2 :                                       subcells=subcells, nlname="sab_se")
     727             :          ELSE
     728             :             CALL build_neighbor_lists(sab_se, particle_set, atom2d, cell, pair_radius, &
     729        5780 :                                       subcells=subcells, nlname="sab_se")
     730             :          END IF
     731        5782 :          CALL set_ks_env(ks_env=ks_env, sab_se=sab_se)
     732             :          CALL write_neighbor_lists(sab_se, particle_set, cell, para_env, neighbor_list_section, &
     733        5782 :                                    "/SAB_SE", "sab_se", "HARTREE INTERACTIONS")
     734             : 
     735             :          ! If requested build the SE long-range correction neighbor list
     736        5782 :          IF ((dft_control%qs_control%se_control%do_ewald) .AND. &
     737             :              (dft_control%qs_control%se_control%integral_screening /= do_se_IS_slater)) THEN
     738         328 :             c_radius = dft_control%qs_control%se_control%cutoff_lrc
     739         140 :             CALL pair_radius_setup(default_present, default_present, c_radius, c_radius, pair_radius)
     740             :             CALL build_neighbor_lists(sab_lrc, particle_set, atom2d, cell, pair_radius, &
     741         140 :                                       subcells=subcells, nlname="sab_lrc")
     742         140 :             CALL set_ks_env(ks_env=ks_env, sab_lrc=sab_lrc)
     743             :             CALL write_neighbor_lists(sab_lrc, particle_set, cell, para_env, neighbor_list_section, &
     744         140 :                                       "/SAB_LRC", "sab_lrc", "SE LONG-RANGE CORRECTION")
     745             :          END IF
     746             :       END IF
     747             : 
     748       24039 :       IF (dftb) THEN
     749             :          ! Build the neighbor lists for the DFTB Ewald methods
     750        2884 :          IF (dft_control%qs_control%dftb_control%do_ewald) THEN
     751        1074 :             CALL get_qs_env(qs_env=qs_env, ewald_env=ewald_env)
     752        1074 :             CALL ewald_env_get(ewald_env, rcut=rcut)
     753        3150 :             c_radius = rcut
     754        1074 :             CALL pair_radius_setup(orb_present, orb_present, c_radius, c_radius, pair_radius)
     755             :             CALL build_neighbor_lists(sab_tbe, particle_set, atom2d, cell, pair_radius, mic=mic, &
     756        1074 :                                       subcells=subcells, nlname="sab_tbe")
     757        1074 :             CALL set_ks_env(ks_env=ks_env, sab_tbe=sab_tbe)
     758             :          END IF
     759             : 
     760             :          ! Build the neighbor lists for the DFTB vdW pair potential
     761        2884 :          IF (dft_control%qs_control%dftb_control%dispersion) THEN
     762        1016 :             IF (dft_control%qs_control%dftb_control%dispersion_type == dispersion_uff) THEN
     763        2754 :                DO ikind = 1, nkind
     764        1828 :                   CALL get_qs_kind(qs_kind_set(ikind), dftb_parameter=dftb_atom)
     765        2754 :                   CALL get_dftb_atom_param(dftb_parameter=dftb_atom, rcdisp=c_radius(ikind))
     766             :                END DO
     767        2754 :                default_present = .TRUE.
     768         926 :                CALL pair_radius_setup(default_present, default_present, c_radius, c_radius, pair_radius)
     769             :                CALL build_neighbor_lists(sab_vdw, particle_set, atom2d, cell, pair_radius, &
     770         926 :                                          subcells=subcells, nlname="sab_vdw")
     771         926 :                CALL set_ks_env(ks_env=ks_env, sab_vdw=sab_vdw)
     772             :             END IF
     773             :          END IF
     774             :       END IF
     775             : 
     776       24039 :       IF (xtb) THEN
     777             :          ! Build the neighbor lists for the xTB Ewald method
     778        4952 :          IF (dft_control%qs_control%xtb_control%do_ewald) THEN
     779        1546 :             CALL get_qs_env(qs_env=qs_env, ewald_env=ewald_env)
     780        1546 :             CALL ewald_env_get(ewald_env, rcut=rcut)
     781        5234 :             c_radius = rcut
     782        1546 :             CALL pair_radius_setup(orb_present, orb_present, c_radius, c_radius, pair_radius)
     783             :             CALL build_neighbor_lists(sab_tbe, particle_set, atom2d, cell, pair_radius, mic=mic, &
     784        1546 :                                       subcells=subcells, nlname="sab_tbe")
     785        1546 :             CALL set_ks_env(ks_env=ks_env, sab_tbe=sab_tbe)
     786             :          END IF
     787             :          ! Repulsive Potential
     788       47704 :          pair_radius(1:nkind, 1:nkind) = dft_control%qs_control%xtb_control%rcpair(1:nkind, 1:nkind)
     789       16800 :          default_present = .TRUE.
     790             :          CALL build_neighbor_lists(sab_xtb_pp, particle_set, atom2d, cell, pair_radius, &
     791        4952 :                                    subcells=subcells, nlname="sab_xtb_pp")
     792        4952 :          CALL set_ks_env(ks_env=ks_env, sab_xtb_pp=sab_xtb_pp)
     793             :          ! SR part of Coulomb interaction
     794       16800 :          DO ikind = 1, nkind
     795       11848 :             CALL get_qs_kind(qs_kind_set(ikind), xtb_parameter=xtb_atom)
     796       16800 :             CALL get_xtb_atom_param(xtb_parameter=xtb_atom, rcut=c_radius(ikind))
     797             :          END DO
     798       16800 :          default_present = .TRUE.
     799        4952 :          CALL pair_radius_setup(default_present, default_present, c_radius, c_radius, pair_radius)
     800             :          CALL build_neighbor_lists(sab_xtbe, particle_set, atom2d, cell, pair_radius, &
     801        4952 :                                    subcells=subcells, nlname="sab_xtbe")
     802        4952 :          CALL set_ks_env(ks_env=ks_env, sab_xtbe=sab_xtbe)
     803             :          ! XB list
     804       14856 :          ALLOCATE (xb1_atom(nkind), xb2_atom(nkind))
     805       16800 :          c_radius = 0.5_dp*dft_control%qs_control%xtb_control%xb_radius
     806       16800 :          DO ikind = 1, nkind
     807       11848 :             CALL get_atomic_kind(atomic_kind_set(ikind), z=zat)
     808       11848 :             IF (zat == 17 .OR. zat == 35 .OR. zat == 53 .OR. zat == 85) THEN
     809         130 :                xb1_atom(ikind) = .TRUE.
     810             :             ELSE
     811       11718 :                xb1_atom(ikind) = .FALSE.
     812             :             END IF
     813       28648 :             IF (zat == 7 .OR. zat == 8 .OR. zat == 15 .OR. zat == 16) THEN
     814        4458 :                xb2_atom(ikind) = .TRUE.
     815             :             ELSE
     816        7390 :                xb2_atom(ikind) = .FALSE.
     817             :             END IF
     818             :          END DO
     819        4952 :          CALL pair_radius_setup(xb1_atom, xb2_atom, c_radius, c_radius, pair_radius)
     820             :          CALL build_neighbor_lists(sab_xb, particle_set, atom2d, cell, pair_radius, &
     821        4952 :                                    symmetric=.FALSE., subcells=subcells, operator_type="PP", nlname="sab_xb")
     822        4952 :          CALL set_ks_env(ks_env=ks_env, sab_xb=sab_xb)
     823             :          CALL write_neighbor_lists(sab_xb, particle_set, cell, para_env, neighbor_list_section, &
     824        4952 :                                    "/SAB_XB", "sab_xb", "XB bonding")
     825             : 
     826             :          ! nonbonded interactions list
     827        4952 :          IF (dft_control%qs_control%xtb_control%do_nonbonded) THEN
     828          24 :             ngp = SIZE(dft_control%qs_control%xtb_control%nonbonded%pot)
     829          72 :             ALLOCATE (nonbond1_atom(nkind), nonbond2_atom(nkind))
     830         120 :             nonbond1_atom = .FALSE.
     831         120 :             nonbond2_atom = .FALSE.
     832          48 :             DO ingp = 1, ngp
     833         120 :                DO ikind = 1, nkind
     834          96 :                   rcut = SQRT(dft_control%qs_control%xtb_control%nonbonded%pot(ingp)%pot%rcutsq)
     835         480 :                   c_radius = rcut
     836          96 :                   CALL get_atomic_kind(atomic_kind_set(ikind), element_symbol=element_symbol)
     837          96 :                   CALL uppercase(element_symbol)
     838         120 :                   IF (TRIM(dft_control%qs_control%xtb_control%nonbonded%pot(ingp)%pot%at1) == TRIM(element_symbol)) THEN
     839          24 :                      nonbond1_atom(ikind) = .TRUE.
     840         120 :                      DO jkind = 1, nkind
     841          96 :                         CALL get_atomic_kind(atomic_kind_set(jkind), element_symbol=element_symbol2)
     842          96 :                         CALL uppercase(element_symbol2)
     843         120 :                         IF (TRIM(dft_control%qs_control%xtb_control%nonbonded%pot(ingp)%pot%at2) == TRIM(element_symbol2)) THEN
     844          24 :                            nonbond2_atom(jkind) = .TRUE.
     845             :                         END IF
     846             :                      END DO
     847             :                   END IF
     848             :                END DO
     849          24 :                CALL pair_radius_setup(nonbond1_atom, nonbond2_atom, c_radius, c_radius, pair_radius)
     850             :                CALL build_neighbor_lists(sab_xtb_nonbond, particle_set, atom2d, cell, pair_radius, &
     851          24 :                                          symmetric=.FALSE., subcells=subcells, operator_type="PP", nlname="sab_xtb_nonbond")
     852          24 :                CALL set_ks_env(ks_env=ks_env, sab_xtb_nonbond=sab_xtb_nonbond)
     853             :                CALL write_neighbor_lists(sab_xtb_nonbond, particle_set, cell, para_env, neighbor_list_section, &
     854          48 :                                          "/SAB_XTB_NONBOND", "sab_xtb_nonbond", "XTB NONBONDED INTERACTIONS")
     855             :             END DO
     856             :          END IF
     857             :       END IF
     858             : 
     859             :       ! Build the neighbor lists for the vdW pair potential
     860       24039 :       CALL get_qs_env(qs_env=qs_env, dispersion_env=dispersion_env)
     861       24039 :       sab_vdw => dispersion_env%sab_vdw
     862       24039 :       sab_cn => dispersion_env%sab_cn
     863       24039 :       IF (dispersion_env%type == xc_vdw_fun_pairpot .OR. xtb) THEN
     864        5282 :          IF (dispersion_env%pp_type == vdw_pairpot_dftd4) THEN
     865        2218 :             c_radius(:) = dispersion_env%rc_d4
     866             :          ELSE
     867       15520 :             c_radius(:) = dispersion_env%rc_disp
     868             :          END IF
     869       17738 :          default_present = .TRUE. !include all atoms in vdW (even without basis)
     870        5282 :          CALL pair_radius_setup(default_present, default_present, c_radius, c_radius, pair_radius)
     871             :          CALL build_neighbor_lists(sab_vdw, particle_set, atom2d, cell, pair_radius, &
     872        5282 :                                    subcells=subcells, operator_type="PP", nlname="sab_vdw")
     873        5282 :          dispersion_env%sab_vdw => sab_vdw
     874             : 
     875             :          ! Build the neighbor lists for coordination numbers as needed by the DFT-D3/D4 method
     876             :          ! This is also needed for the xTB Hamiltonian
     877       17738 :          DO ikind = 1, nkind
     878       12456 :             CALL get_atomic_kind(atomic_kind_set(ikind), z=zat)
     879       17738 :             c_radius(ikind) = 4._dp*ptable(zat)%covalent_radius*bohr
     880             :          END DO
     881        5282 :          CALL pair_radius_setup(default_present, default_present, c_radius, c_radius, pair_radius)
     882             :          CALL build_neighbor_lists(sab_cn, particle_set, atom2d, cell, pair_radius, &
     883        5282 :                                    subcells=subcells, operator_type="PP", nlname="sab_cn")
     884        5282 :          dispersion_env%sab_cn => sab_cn
     885             :       END IF
     886             : 
     887             :       ! Build the neighbor lists for the gCP pair potential
     888       24039 :       NULLIFY (gcp_env)
     889       24039 :       CALL get_qs_env(qs_env=qs_env, gcp_env=gcp_env)
     890       24039 :       IF (ASSOCIATED(gcp_env)) THEN
     891       10421 :          IF (gcp_env%do_gcp) THEN
     892           0 :             sab_gcp => gcp_env%sab_gcp
     893           0 :             DO ikind = 1, nkind
     894           0 :                c_radius(ikind) = gcp_env%gcp_kind(ikind)%rcsto
     895             :             END DO
     896           0 :             CALL pair_radius_setup(orb_present, orb_present, c_radius, c_radius, pair_radius)
     897             :             CALL build_neighbor_lists(sab_gcp, particle_set, atom2d, cell, pair_radius, &
     898           0 :                                       subcells=subcells, operator_type="PP", nlname="sab_gcp")
     899           0 :             gcp_env%sab_gcp => sab_gcp
     900             :          ELSE
     901       10421 :             NULLIFY (gcp_env%sab_gcp)
     902             :          END IF
     903             :       END IF
     904             : 
     905       24039 :       IF (lrigpw .OR. lri_optbas) THEN
     906             :          ! set neighborlists in lri_env environment
     907          64 :          CALL pair_radius_setup(orb_present, orb_present, orb_radius, orb_radius, pair_radius)
     908          64 :          soo_list => qs_env%lri_env%soo_list
     909             :          CALL build_neighbor_lists(soo_list, particle_set, atom2d, cell, pair_radius, &
     910          64 :                                    mic=mic, molecular=molecule_only, subcells=subcells, nlname="soo_list")
     911          64 :          qs_env%lri_env%soo_list => soo_list
     912             :          CALL write_neighbor_lists(soo_list, particle_set, cell, para_env, neighbor_list_section, &
     913          64 :                                    "/SOO_LIST", "soo_list", "ORBITAL ORBITAL (RI)")
     914       23975 :       ELSEIF (rigpw) THEN
     915           0 :          ALLOCATE (ri_present(nkind), ri_radius(nkind))
     916           0 :          ri_present = .FALSE.
     917           0 :          ri_radius = 0.0_dp
     918           0 :          DO ikind = 1, nkind
     919           0 :             CALL get_qs_kind(qs_kind_set(ikind), basis_set=ri_basis_set, basis_type="RI_HXC")
     920           0 :             IF (ASSOCIATED(ri_basis_set)) THEN
     921           0 :                ri_present(ikind) = .TRUE.
     922           0 :                CALL get_gto_basis_set(gto_basis_set=ri_basis_set, kind_radius=ri_radius(ikind))
     923             :             ELSE
     924           0 :                ri_present(ikind) = .FALSE.
     925             :             END IF
     926             :          END DO
     927             :          ! set neighborlists in lri_env environment
     928           0 :          CALL pair_radius_setup(orb_present, orb_present, orb_radius, orb_radius, pair_radius)
     929           0 :          soo_list => qs_env%lri_env%soo_list
     930             :          CALL build_neighbor_lists(soo_list, particle_set, atom2d, cell, pair_radius, &
     931           0 :                                    mic=mic, molecular=molecule_only, subcells=subcells, nlname="soo_list")
     932           0 :          qs_env%lri_env%soo_list => soo_list
     933             :          !
     934           0 :          CALL pair_radius_setup(ri_present, ri_present, ri_radius, ri_radius, pair_radius)
     935           0 :          saa_list => qs_env%lri_env%saa_list
     936             :          CALL build_neighbor_lists(saa_list, particle_set, atom2d, cell, pair_radius, &
     937           0 :                                    mic=mic, molecular=molecule_only, subcells=subcells, nlname="saa_list")
     938           0 :          qs_env%lri_env%saa_list => saa_list
     939             :          !
     940           0 :          CALL pair_radius_setup(ri_present, orb_present, ri_radius, orb_radius, pair_radius)
     941           0 :          soa_list => qs_env%lri_env%soa_list
     942             :          CALL build_neighbor_lists(soa_list, particle_set, atom2d, cell, pair_radius, &
     943             :                                    mic=mic, symmetric=.FALSE., molecular=molecule_only, &
     944           0 :                                    subcells=subcells, operator_type="ABC", nlname="saa_list")
     945           0 :          qs_env%lri_env%soa_list => soa_list
     946             :       END IF
     947             : 
     948             :       ! Build the neighbor lists for the ALMO delocalization
     949       24039 :       IF (almo) THEN
     950         360 :          DO ikind = 1, nkind
     951         244 :             CALL get_atomic_kind(atomic_kind_set(ikind), rcov=almo_rcov, rvdw=almo_rvdw)
     952             :             ! multiply the radius by some hard-coded number
     953             :             c_radius(ikind) = MAX(almo_rcov, almo_rvdw)*bohr* &
     954         360 :                               almo_max_cutoff_multiplier
     955             :          END DO
     956         360 :          default_present = .TRUE. !include all atoms (even without basis)
     957         116 :          CALL pair_radius_setup(default_present, default_present, c_radius, c_radius, pair_radius)
     958             :          CALL build_neighbor_lists(sab_almo, particle_set, atom2d, cell, pair_radius, &
     959         116 :                                    subcells=subcells, operator_type="PP", nlname="sab_almo")
     960         116 :          CALL set_ks_env(ks_env=ks_env, sab_almo=sab_almo)
     961             :       END IF
     962             : 
     963             :       ! Print particle distribution
     964       24039 :       print_key_path = "PRINT%DISTRIBUTION"
     965       24039 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, force_env_section, &
     966             :                                            print_key_path), &
     967             :                 cp_p_file)) THEN
     968             :          iw = cp_print_key_unit_nr(logger=logger, &
     969             :                                    basis_section=force_env_section, &
     970             :                                    print_key_path=print_key_path, &
     971         138 :                                    extension=".out")
     972         138 :          CALL write_neighbor_distribution(sab_orb, qs_kind_set, iw, para_env)
     973             :          CALL cp_print_key_finished_output(unit_nr=iw, &
     974             :                                            logger=logger, &
     975             :                                            basis_section=force_env_section, &
     976         138 :                                            print_key_path=print_key_path)
     977             :       END IF
     978             : 
     979             :       ! Release work storage
     980       24039 :       CALL atom2d_cleanup(atom2d)
     981             : 
     982       24039 :       DEALLOCATE (atom2d)
     983       24039 :       DEALLOCATE (orb_present, default_present, core_present)
     984       24039 :       DEALLOCATE (orb_radius, aux_fit_radius, c_radius, core_radius)
     985       24039 :       DEALLOCATE (calpha, zeff)
     986       24039 :       DEALLOCATE (pair_radius)
     987       24039 :       IF (gth_potential_present .OR. sgp_potential_present) THEN
     988        9747 :          DEALLOCATE (ppl_present, ppl_radius)
     989        9747 :          DEALLOCATE (ppnl_present, ppnl_radius)
     990             :       END IF
     991       24039 :       IF (paw_atom_present) THEN
     992        1568 :          DEALLOCATE (oce_present, oce_radius)
     993             :       END IF
     994       24039 :       IF (all_potential_present .OR. sgp_potential_present) THEN
     995       14338 :          DEALLOCATE (all_present, all_pot_rad)
     996             :       END IF
     997             : 
     998       24039 :       CALL timestop(handle)
     999             : 
    1000       72117 :    END SUBROUTINE build_qs_neighbor_lists
    1001             : 
    1002             : ! **************************************************************************************************
    1003             : !> \brief   Build simple pair neighbor lists.
    1004             : !> \param ab_list ...
    1005             : !> \param particle_set ...
    1006             : !> \param atom ...
    1007             : !> \param cell ...
    1008             : !> \param pair_radius ...
    1009             : !> \param subcells ...
    1010             : !> \param mic ...
    1011             : !> \param symmetric ...
    1012             : !> \param molecular ...
    1013             : !> \param subset_of_mol ...
    1014             : !> \param current_subset ...
    1015             : !> \param operator_type ...
    1016             : !> \param nlname ...
    1017             : !> \param atomb_to_keep the list of atom indices to keep for pairs from the atom2d%b_list
    1018             : !> \date    20.03.2002
    1019             : !> \par History
    1020             : !>          - Major refactoring (25.07.2010,jhu)
    1021             : !>          - Added option to filter out atoms from list_b (08.2018, A.  Bussy)
    1022             : !> \author  MK
    1023             : !> \version 2.0
    1024             : ! **************************************************************************************************
    1025      117379 :    SUBROUTINE build_neighbor_lists(ab_list, particle_set, atom, cell, pair_radius, subcells, &
    1026             :                                    mic, symmetric, molecular, subset_of_mol, current_subset, &
    1027      117379 :                                    operator_type, nlname, atomb_to_keep)
    1028             : 
    1029             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    1030             :          POINTER                                         :: ab_list
    1031             :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    1032             :       TYPE(local_atoms_type), DIMENSION(:), INTENT(IN)   :: atom
    1033             :       TYPE(cell_type), POINTER                           :: cell
    1034             :       REAL(dp), DIMENSION(:, :), INTENT(IN)              :: pair_radius
    1035             :       REAL(dp), INTENT(IN)                               :: subcells
    1036             :       LOGICAL, INTENT(IN), OPTIONAL                      :: mic, symmetric, molecular
    1037             :       INTEGER, DIMENSION(:), OPTIONAL, POINTER           :: subset_of_mol
    1038             :       INTEGER, OPTIONAL                                  :: current_subset
    1039             :       CHARACTER(LEN=*), INTENT(IN), OPTIONAL             :: operator_type
    1040             :       CHARACTER(LEN=*), INTENT(IN)                       :: nlname
    1041             :       INTEGER, DIMENSION(:), INTENT(IN), OPTIONAL        :: atomb_to_keep
    1042             : 
    1043             :       CHARACTER(len=*), PARAMETER :: routineN = 'build_neighbor_lists'
    1044             : 
    1045             :       TYPE local_lists
    1046             :          INTEGER, DIMENSION(:), POINTER           :: list
    1047             :       END TYPE local_lists
    1048             : 
    1049             :       INTEGER :: atom_a, atom_b, handle, i, iab, iatom, iatom_local, &
    1050             :                  iatom_subcell, icell, ikind, j, jatom, jatom_local, jcell, jkind, k, &
    1051             :                  kcell, maxat, mol_a, mol_b, nkind, otype, natom, inode, nnode, nentry
    1052             :       INTEGER, DIMENSION(3)                              :: cell_b, ncell, nsubcell, periodic
    1053      117379 :       INTEGER, DIMENSION(:), POINTER                     :: index_list
    1054             :       LOGICAL                                            :: include_ab, my_mic, &
    1055             :                                                             my_molecular, my_symmetric, my_sort_atomb
    1056      117379 :       LOGICAL, ALLOCATABLE, DIMENSION(:)                 :: pres_a, pres_b
    1057             :       REAL(dp)                                           :: rab2, rab2_max, rab_max, rabm, deth, subcell_scale
    1058             :       REAL(dp), DIMENSION(3)                             :: r, rab, ra, rb, sab_max, sb, &
    1059             :                                                             sb_pbc, sb_min, sb_max, rab_pbc, pd, sab_max_guard
    1060      117379 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: nlista, nlistb
    1061      117379 :       TYPE(local_lists), DIMENSION(:), POINTER           :: lista, listb
    1062             :       TYPE(neighbor_list_p_type), &
    1063      117379 :          ALLOCATABLE, DIMENSION(:)                       :: kind_a
    1064             :       TYPE(neighbor_list_set_type), POINTER              :: neighbor_list_set
    1065             :       TYPE(subcell_type), DIMENSION(:, :, :), &
    1066      117379 :          POINTER                                         :: subcell
    1067      117379 :       REAL(KIND=dp), DIMENSION(:, :), ALLOCATABLE        :: r_pbc
    1068             :       TYPE(neighbor_list_iterator_p_type), &
    1069      117379 :          DIMENSION(:), POINTER                           :: nl_iterator
    1070             : 
    1071      117379 :       CALL timeset(routineN//"_"//TRIM(nlname), handle)
    1072             : 
    1073             :       ! input options
    1074      117379 :       my_mic = .FALSE.
    1075      117379 :       IF (PRESENT(mic)) my_mic = mic
    1076      117379 :       my_symmetric = .TRUE.
    1077      117379 :       IF (PRESENT(symmetric)) my_symmetric = symmetric
    1078      117379 :       my_molecular = .FALSE.
    1079             :       ! if we have a molecular NL, MIC has to be used
    1080      117379 :       IF (PRESENT(molecular)) my_molecular = molecular
    1081             :       ! check for operator types
    1082      117379 :       IF (PRESENT(operator_type)) THEN
    1083             :          SELECT CASE (operator_type)
    1084             :          CASE ("AB")
    1085       11235 :             otype = 1 ! simple overlap
    1086             :          CASE ("ABC")
    1087       11235 :             otype = 2 ! for three center operators
    1088       11235 :             CPASSERT(.NOT. my_molecular)
    1089       11235 :             my_symmetric = .FALSE.
    1090             :          CASE ("ABBA")
    1091       10149 :             otype = 3 ! for separable nonlocal operators
    1092       10149 :             my_symmetric = .FALSE.
    1093             :          CASE ("PP")
    1094       26139 :             otype = 4 ! simple atomic pair potential list
    1095             :          CASE default
    1096       47523 :             CPABORT("")
    1097             :          END SELECT
    1098             :       ELSE
    1099             :          ! default is a simple AB neighbor list
    1100             :          otype = 1
    1101             :       END IF
    1102      117379 :       my_sort_atomb = .FALSE.
    1103      117379 :       IF (PRESENT(atomb_to_keep)) THEN
    1104         306 :          my_sort_atomb = .TRUE.
    1105             :       END IF
    1106             : 
    1107      117379 :       nkind = SIZE(atom)
    1108             :       ! Deallocate the old neighbor list structure
    1109      117379 :       CALL release_neighbor_list_sets(ab_list)
    1110             :       ! Allocate and initialize the new neighbor list structure
    1111      879478 :       ALLOCATE (ab_list(nkind*nkind))
    1112      644720 :       DO iab = 1, SIZE(ab_list)
    1113      527341 :          NULLIFY (ab_list(iab)%neighbor_list_set)
    1114      527341 :          ab_list(iab)%nl_size = -1
    1115      527341 :          ab_list(iab)%nl_start = -1
    1116      527341 :          ab_list(iab)%nl_end = -1
    1117      644720 :          NULLIFY (ab_list(iab)%nlist_task)
    1118             :       END DO
    1119             : 
    1120             :       ! Allocate and initialize the kind availability
    1121      469516 :       ALLOCATE (pres_a(nkind), pres_b(nkind))
    1122      351012 :       DO ikind = 1, nkind
    1123      268163 :          pres_a(ikind) = ANY(pair_radius(ikind, :) > 0._dp)
    1124      399248 :          pres_b(ikind) = ANY(pair_radius(:, ikind) > 0._dp)
    1125             :       END DO
    1126             : 
    1127             :       ! create a copy of the pbc'ed coordinates
    1128      117379 :       natom = SIZE(particle_set)
    1129      352137 :       ALLOCATE (r_pbc(3, natom))
    1130      740844 :       DO i = 1, natom
    1131      740844 :          r_pbc(1:3, i) = pbc(particle_set(i)%r(1:3), cell)
    1132             :       END DO
    1133             : 
    1134             :       ! setup the local lists of atoms
    1135      117379 :       maxat = 0
    1136      351012 :       DO ikind = 1, nkind
    1137      351012 :          maxat = MAX(maxat, SIZE(atom(ikind)%list))
    1138             :       END DO
    1139      352137 :       ALLOCATE (index_list(maxat))
    1140      521082 :       DO i = 1, maxat
    1141      521082 :          index_list(i) = i
    1142             :       END DO
    1143      704274 :       ALLOCATE (lista(nkind), listb(nkind), nlista(nkind), nlistb(nkind))
    1144      351012 :       nlista = 0
    1145      351012 :       nlistb = 0
    1146      351012 :       DO ikind = 1, nkind
    1147      233633 :          NULLIFY (lista(ikind)%list, listb(ikind)%list)
    1148      117379 :          SELECT CASE (otype)
    1149             :          CASE (1)
    1150      138473 :             IF (ASSOCIATED(atom(ikind)%list_local_a_index)) THEN
    1151       96309 :                lista(ikind)%list => atom(ikind)%list_local_a_index
    1152       96309 :                nlista(ikind) = SIZE(lista(ikind)%list)
    1153             :             END IF
    1154      138473 :             IF (ASSOCIATED(atom(ikind)%list_local_b_index)) THEN
    1155      138415 :                listb(ikind)%list => atom(ikind)%list_local_b_index
    1156      138415 :                nlistb(ikind) = SIZE(listb(ikind)%list)
    1157             :             END IF
    1158             :          CASE (2)
    1159       19842 :             IF (ASSOCIATED(atom(ikind)%list_local_a_index)) THEN
    1160       13120 :                lista(ikind)%list => atom(ikind)%list_local_a_index
    1161       13120 :                nlista(ikind) = SIZE(lista(ikind)%list)
    1162             :             END IF
    1163       19842 :             nlistb(ikind) = SIZE(atom(ikind)%list)
    1164       19842 :             listb(ikind)%list => index_list
    1165             :          CASE (3)
    1166       19390 :             CALL combine_lists(lista(ikind)%list, nlista(ikind), ikind, atom)
    1167       19390 :             nlistb(ikind) = SIZE(atom(ikind)%list)
    1168       19390 :             listb(ikind)%list => index_list
    1169             :          CASE (4)
    1170       55928 :             nlista(ikind) = SIZE(atom(ikind)%list_1d)
    1171       55928 :             lista(ikind)%list => atom(ikind)%list_1d
    1172       55928 :             nlistb(ikind) = SIZE(atom(ikind)%list)
    1173       55928 :             listb(ikind)%list => index_list
    1174             :          CASE default
    1175      233633 :             CPABORT("")
    1176             :          END SELECT
    1177             :       END DO
    1178             : 
    1179             :       ! Determine max. number of local atoms
    1180      117379 :       maxat = 0
    1181      351012 :       DO ikind = 1, nkind
    1182      351012 :          maxat = MAX(maxat, nlista(ikind), nlistb(ikind))
    1183             :       END DO
    1184     1159543 :       ALLOCATE (kind_a(2*maxat))
    1185             : 
    1186             :       ! Load informations about the simulation cell
    1187      117379 :       CALL get_cell(cell=cell, periodic=periodic, deth=deth)
    1188             : 
    1189             :       ! Loop over all atomic kind pairs
    1190      351012 :       DO ikind = 1, nkind
    1191      233633 :          IF (.NOT. pres_a(ikind)) CYCLE
    1192             : 
    1193      834535 :          DO jkind = 1, nkind
    1194      495613 :             IF (.NOT. pres_b(jkind)) CYCLE
    1195             : 
    1196      478847 :             iab = ikind + nkind*(jkind - 1)
    1197             : 
    1198             :             ! Calculate the square of the maximum interaction distance
    1199      478847 :             IF (pair_radius(ikind, jkind) <= 0._dp) CYCLE
    1200      478803 :             rab_max = pair_radius(ikind, jkind)
    1201      478803 :             IF (otype == 3) THEN
    1202             :                ! Calculate the square of the maximum interaction distance
    1203             :                ! for sac_max / ncell this must be the maximum over all kinds
    1204             :                ! to be correct for three center terms involving different kinds
    1205      106224 :                rabm = MAXVAL(pair_radius(:, jkind))
    1206             :             ELSE
    1207             :                rabm = rab_max
    1208             :             END IF
    1209      478803 :             rab2_max = rabm*rabm
    1210             : 
    1211      478803 :             pd(1) = plane_distance(1, 0, 0, cell)
    1212      478803 :             pd(2) = plane_distance(0, 1, 0, cell)
    1213      478803 :             pd(3) = plane_distance(0, 0, 1, cell)
    1214             : 
    1215     1915212 :             sab_max = rabm/pd
    1216     1915212 :             sab_max_guard = 15.0_dp/pd
    1217             : 
    1218             :             ! It makes sense to have fewer subcells for larger systems
    1219      478803 :             subcell_scale = ((125.0_dp**3)/deth)**(1.0_dp/6.0_dp)
    1220             : 
    1221             :             ! guess the number of subcells for optimal performance,
    1222             :             ! guard against crazy stuff triggered by very small rabm
    1223             :             nsubcell(:) = INT(MAX(1.0_dp, MIN(0.5_dp*subcells*subcell_scale/sab_max(:), &
    1224     1915212 :                                               0.5_dp*subcells*subcell_scale/sab_max_guard(:))))
    1225             : 
    1226             :             ! number of image cells to be considered
    1227     1915212 :             ncell(:) = (INT(sab_max(:)) + 1)*periodic(:)
    1228             : 
    1229             :             CALL allocate_neighbor_list_set(neighbor_list_set=ab_list(iab)%neighbor_list_set, &
    1230      478803 :                                             symmetric=my_symmetric)
    1231      478803 :             neighbor_list_set => ab_list(iab)%neighbor_list_set
    1232             : 
    1233     1193245 :             DO iatom_local = 1, nlista(ikind)
    1234      714442 :                iatom = lista(ikind)%list(iatom_local)
    1235      714442 :                atom_a = atom(ikind)%list(iatom)
    1236             :                CALL add_neighbor_list(neighbor_list_set=neighbor_list_set, &
    1237             :                                       atom=atom_a, &
    1238     1193245 :                                       neighbor_list=kind_a(iatom_local)%neighbor_list)
    1239             :             END DO
    1240             : 
    1241      478803 :             CALL allocate_subcell(subcell, nsubcell)
    1242     1193245 :             DO iatom_local = 1, nlista(ikind)
    1243      714442 :                iatom = lista(ikind)%list(iatom_local)
    1244      714442 :                atom_a = atom(ikind)%list(iatom)
    1245     2857768 :                r = r_pbc(:, atom_a)
    1246      714442 :                CALL give_ijk_subcell(r, i, j, k, cell, nsubcell)
    1247     1193245 :                subcell(i, j, k)%natom = subcell(i, j, k)%natom + 1
    1248             :             END DO
    1249     1419250 :             DO k = 1, nsubcell(3)
    1250     3508491 :                DO j = 1, nsubcell(2)
    1251     8753755 :                   DO i = 1, nsubcell(1)
    1252     5724067 :                      maxat = subcell(i, j, k)%natom + subcell(i, j, k)%natom/10
    1253    11929900 :                      ALLOCATE (subcell(i, j, k)%atom_list(maxat))
    1254     7813308 :                      subcell(i, j, k)%natom = 0
    1255             :                   END DO
    1256             :                END DO
    1257             :             END DO
    1258     1193245 :             DO iatom_local = 1, nlista(ikind)
    1259      714442 :                iatom = lista(ikind)%list(iatom_local)
    1260      714442 :                atom_a = atom(ikind)%list(iatom)
    1261     2857768 :                r = r_pbc(:, atom_a)
    1262      714442 :                CALL give_ijk_subcell(r, i, j, k, cell, nsubcell)
    1263      714442 :                subcell(i, j, k)%natom = subcell(i, j, k)%natom + 1
    1264     1193245 :                subcell(i, j, k)%atom_list(subcell(i, j, k)%natom) = iatom_local
    1265             :             END DO
    1266             : 
    1267     1812191 :             DO jatom_local = 1, nlistb(jkind)
    1268     1333388 :                jatom = listb(jkind)%list(jatom_local)
    1269     1333388 :                atom_b = atom(jkind)%list(jatom)
    1270     1333388 :                IF (my_sort_atomb .AND. .NOT. my_symmetric) THEN
    1271        6270 :                   IF (.NOT. ANY(atomb_to_keep == atom_b)) CYCLE
    1272             :                END IF
    1273     1330914 :                IF (my_molecular) THEN
    1274        3268 :                   mol_b = atom(jkind)%list_b_mol(jatom_local)
    1275        3268 :                   IF (PRESENT(subset_of_mol)) THEN
    1276        1340 :                      IF (subset_of_mol(mol_b) .NE. current_subset) CYCLE
    1277             :                   END IF
    1278             :                END IF
    1279     5320872 :                r = r_pbc(:, atom_b)
    1280     1330218 :                CALL real_to_scaled(sb_pbc(:), r(:), cell)
    1281             : 
    1282     4956684 :                loop2_kcell: DO kcell = -ncell(3), ncell(3)
    1283     3416770 :                   sb(3) = sb_pbc(3) + REAL(kcell, dp)
    1284     3416770 :                   sb_min(3) = sb(3) - sab_max(3)
    1285     3416770 :                   sb_max(3) = sb(3) + sab_max(3)
    1286     3416770 :                   IF (periodic(3) /= 0) THEN
    1287     2683998 :                      IF (sb_min(3) >= 0.5_dp) EXIT loop2_kcell
    1288     2414891 :                      IF (sb_max(3) < -0.5_dp) CYCLE loop2_kcell
    1289             :                   END IF
    1290     2884405 :                   cell_b(3) = kcell
    1291             : 
    1292    16197265 :                   loop2_jcell: DO jcell = -ncell(2), ncell(2)
    1293    12839009 :                      sb(2) = sb_pbc(2) + REAL(jcell, dp)
    1294    12839009 :                      sb_min(2) = sb(2) - sab_max(2)
    1295    12839009 :                      sb_max(2) = sb(2) + sab_max(2)
    1296    12839009 :                      IF (periodic(2) /= 0) THEN
    1297    12105011 :                         IF (sb_min(2) >= 0.5_dp) EXIT loop2_jcell
    1298    11245474 :                         IF (sb_max(2) < -0.5_dp) CYCLE loop2_jcell
    1299             :                      END IF
    1300    11088205 :                      cell_b(2) = jcell
    1301             : 
    1302    85113085 :                      loop2_icell: DO icell = -ncell(1), ncell(1)
    1303    75309387 :                         sb(1) = sb_pbc(1) + REAL(icell, dp)
    1304    75309387 :                         sb_min(1) = sb(1) - sab_max(1)
    1305    75309387 :                         sb_max(1) = sb(1) + sab_max(1)
    1306    75309387 :                         IF (periodic(1) /= 0) THEN
    1307    74512227 :                            IF (sb_min(1) >= 0.5_dp) EXIT loop2_icell
    1308    70080057 :                            IF (sb_max(1) < -0.5_dp) CYCLE loop2_icell
    1309             :                         END IF
    1310    67065125 :                         cell_b(1) = icell
    1311             : 
    1312    67065125 :                         CALL scaled_to_real(rb, sb, cell)
    1313             : 
    1314   161094078 :                         loop_k: DO k = 1, nsubcell(3)
    1315   267114610 :                            loop_j: DO j = 1, nsubcell(2)
    1316   440297145 :                               loop_i: DO i = 1, nsubcell(1)
    1317             : 
    1318             :                                  ! FIXME for non-periodic systems, the whole subcell trick is skipped
    1319             :                                  ! yielding a Natom**2 pair list build.
    1320   260483324 :                                  IF (periodic(3) /= 0) THEN
    1321   250262926 :                                     IF (sb_max(3) < subcell(i, j, k)%s_min(3)) EXIT loop_k
    1322   247998409 :                                     IF (sb_min(3) >= subcell(i, j, k)%s_max(3)) CYCLE loop_k
    1323             :                                  END IF
    1324             : 
    1325   255160925 :                                  IF (periodic(2) /= 0) THEN
    1326   244987309 :                                     IF (sb_max(2) < subcell(i, j, k)%s_min(2)) EXIT loop_j
    1327   241460216 :                                     IF (sb_min(2) >= subcell(i, j, k)%s_max(2)) CYCLE loop_j
    1328             :                                  END IF
    1329             : 
    1330   245889857 :                                  IF (periodic(1) /= 0) THEN
    1331   235564243 :                                     IF (sb_max(1) < subcell(i, j, k)%s_min(1)) EXIT loop_i
    1332   227149163 :                                     IF (sb_min(1) >= subcell(i, j, k)%s_max(1)) CYCLE loop_i
    1333             :                                  END IF
    1334             : 
    1335   212949816 :                                  IF (subcell(i, j, k)%natom == 0) CYCLE
    1336             : 
    1337   426831011 :                                  DO iatom_subcell = 1, subcell(i, j, k)%natom
    1338   246780320 :                                     iatom_local = subcell(i, j, k)%atom_list(iatom_subcell)
    1339   246780320 :                                     iatom = lista(ikind)%list(iatom_local)
    1340   246780320 :                                     atom_a = atom(ikind)%list(iatom)
    1341   246780320 :                                     IF (my_molecular) THEN
    1342      476039 :                                        mol_a = atom(ikind)%list_a_mol(iatom_local)
    1343      476039 :                                        IF (mol_a /= mol_b) CYCLE
    1344             :                                     END IF
    1345   246543833 :                                     IF (my_symmetric) THEN
    1346   235396734 :                                        IF (atom_a > atom_b) THEN
    1347   109826738 :                                           include_ab = (MODULO(atom_a + atom_b, 2) /= 0)
    1348             :                                        ELSE
    1349   125569996 :                                           include_ab = (MODULO(atom_a + atom_b, 2) == 0)
    1350             :                                        END IF
    1351   235396734 :                                        IF (my_sort_atomb) THEN
    1352      665572 :                                           IF ((.NOT. ANY(atomb_to_keep == atom_b)) .AND. &
    1353             :                                               (.NOT. ANY(atomb_to_keep == atom_a))) THEN
    1354             :                                              include_ab = .FALSE.
    1355             :                                           END IF
    1356             :                                        END IF
    1357             :                                     ELSE
    1358             :                                        include_ab = .TRUE.
    1359             :                                     END IF
    1360   472762407 :                                     IF (include_ab) THEN
    1361   545232900 :                                        ra(:) = r_pbc(:, atom_a)
    1362   545232900 :                                        rab(:) = rb(:) - ra(:)
    1363   136308225 :                                        rab2 = rab(1)*rab(1) + rab(2)*rab(2) + rab(3)*rab(3)
    1364   136308225 :                                        IF (rab2 < rab2_max) THEN
    1365    40749767 :                                           include_ab = .TRUE.
    1366    40749767 :                                           IF (my_mic) THEN
    1367             :                                              ! only if rab is minimum image the pair will be included
    1368             :                                              ! ideally the range of the pair list is < L/2 so
    1369             :                                              ! that this never triggers
    1370     1332767 :                                              rab_pbc(:) = pbc(rab(:), cell)
    1371     5331068 :                                              IF (SUM((rab_pbc - rab)**2) > EPSILON(1.0_dp)) THEN
    1372             :                                                 include_ab = .FALSE.
    1373             :                                              END IF
    1374             :                                           END IF
    1375             :                                           IF (include_ab) THEN
    1376             :                                              CALL add_neighbor_node( &
    1377             :                                                 neighbor_list=kind_a(iatom_local)%neighbor_list, &
    1378             :                                                 neighbor=atom_b, &
    1379             :                                                 cell=cell_b, &
    1380             :                                                 r=rab, &
    1381    39728251 :                                                 nkind=nkind)
    1382             :                                           END IF
    1383             :                                        END IF
    1384             :                                     END IF
    1385             :                                  END DO
    1386             : 
    1387             :                               END DO loop_i
    1388             :                            END DO loop_j
    1389             :                         END DO loop_k
    1390             : 
    1391             :                      END DO loop2_icell
    1392             :                   END DO loop2_jcell
    1393             :                END DO loop2_kcell
    1394             : 
    1395             :             END DO
    1396             : 
    1397      729246 :             CALL deallocate_subcell(subcell)
    1398             : 
    1399             :          END DO
    1400             :       END DO
    1401             : 
    1402       10149 :       SELECT CASE (otype)
    1403             :       CASE (1:2, 4)
    1404             :       CASE (3)
    1405       29539 :          DO ikind = 1, nkind
    1406       29539 :             DEALLOCATE (lista(ikind)%list)
    1407             :          END DO
    1408             :       CASE default
    1409      117379 :          CPABORT("")
    1410             :       END SELECT
    1411      117379 :       DEALLOCATE (kind_a, pres_a, pres_b, lista, listb, nlista, nlistb)
    1412      117379 :       DEALLOCATE (index_list)
    1413      117379 :       DEALLOCATE (r_pbc)
    1414             : 
    1415      117379 :       nentry = 0
    1416      117379 :       CALL neighbor_list_iterator_create(nl_iterator, ab_list)
    1417    39845630 :       DO WHILE (neighbor_list_iterate(nl_iterator) == 0)
    1418    39728251 :          CALL get_iterator_info(nl_iterator, inode=inode, nnode=nnode)
    1419    39845630 :          IF (inode == 1) nentry = nentry + nnode
    1420             :       END DO
    1421      117379 :       CALL neighbor_list_iterator_release(nl_iterator)
    1422             :       !
    1423    40778291 :       ALLOCATE (ab_list(1)%nlist_task(nentry))
    1424      117379 :       ab_list(1)%nl_size = nentry
    1425      527341 :       DO iab = 2, SIZE(ab_list)
    1426      409962 :          ab_list(iab)%nl_size = nentry
    1427      527341 :          ab_list(iab)%nlist_task => ab_list(1)%nlist_task
    1428             :       END DO
    1429             :       !
    1430      117379 :       nentry = 0
    1431      117379 :       CALL neighbor_list_iterator_create(nl_iterator, ab_list)
    1432    39845630 :       DO WHILE (neighbor_list_iterate(nl_iterator) == 0)
    1433    39728251 :          nentry = nentry + 1
    1434    39728251 :          CALL get_iterator_task(nl_iterator, ab_list(1)%nlist_task(nentry))
    1435    39728251 :          CALL get_iterator_info(nl_iterator, ikind=ikind, jkind=jkind, nkind=nkind)
    1436    39728251 :          iab = (ikind - 1)*nkind + jkind
    1437    39728251 :          IF (ab_list(iab)%nl_start < 0) ab_list(iab)%nl_start = nentry
    1438    39845630 :          IF (ab_list(iab)%nl_end < 0) THEN
    1439      317494 :             ab_list(iab)%nl_end = nentry
    1440             :          ELSE
    1441    39410757 :             CPASSERT(ab_list(iab)%nl_end + 1 == nentry)
    1442    39410757 :             ab_list(iab)%nl_end = nentry
    1443             :          END IF
    1444             :       END DO
    1445      117379 :       CALL neighbor_list_iterator_release(nl_iterator)
    1446             : 
    1447      117379 :       CALL timestop(handle)
    1448             : 
    1449      234758 :    END SUBROUTINE build_neighbor_lists
    1450             : 
    1451             : ! **************************************************************************************************
    1452             : !> \brief Build a neighborlist
    1453             : !> \param ab_list ...
    1454             : !> \param basis_set_a ...
    1455             : !> \param basis_set_b ...
    1456             : !> \param qs_env ...
    1457             : !> \param mic ...
    1458             : !> \param symmetric ...
    1459             : !> \param molecular ...
    1460             : !> \param operator_type ...
    1461             : !> \date    14.03.2016
    1462             : !> \author  JGH
    1463             : ! **************************************************************************************************
    1464         108 :    SUBROUTINE setup_neighbor_list(ab_list, basis_set_a, basis_set_b, qs_env, &
    1465             :                                   mic, symmetric, molecular, operator_type)
    1466             : 
    1467             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    1468             :          POINTER                                         :: ab_list
    1469             :       TYPE(gto_basis_set_p_type), DIMENSION(:), POINTER  :: basis_set_a
    1470             :       TYPE(gto_basis_set_p_type), DIMENSION(:), &
    1471             :          OPTIONAL, POINTER                               :: basis_set_b
    1472             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1473             :       LOGICAL, INTENT(IN), OPTIONAL                      :: mic, symmetric, molecular
    1474             :       CHARACTER(LEN=*), INTENT(IN), OPTIONAL             :: operator_type
    1475             : 
    1476             :       CHARACTER(LEN=4)                                   :: otype
    1477             :       INTEGER                                            :: ikind, nkind
    1478             :       LOGICAL                                            :: my_mic, my_molecular, my_symmetric
    1479         108 :       LOGICAL, ALLOCATABLE, DIMENSION(:)                 :: a_present, b_present
    1480         108 :       REAL(dp), ALLOCATABLE, DIMENSION(:)                :: a_radius, b_radius
    1481         108 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :)             :: pair_radius
    1482         108 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
    1483             :       TYPE(cell_type), POINTER                           :: cell
    1484             :       TYPE(distribution_1d_type), POINTER                :: distribution_1d
    1485             :       TYPE(distribution_2d_type), POINTER                :: distribution_2d
    1486         108 :       TYPE(gto_basis_set_p_type), DIMENSION(:), POINTER  :: basis_a, basis_b
    1487             :       TYPE(gto_basis_set_type), POINTER                  :: abas, bbas
    1488         108 :       TYPE(local_atoms_type), ALLOCATABLE, DIMENSION(:)  :: atom2d
    1489         108 :       TYPE(molecule_type), DIMENSION(:), POINTER         :: molecule_set
    1490         108 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    1491             : 
    1492         108 :       basis_a => basis_set_a
    1493         108 :       IF (PRESENT(basis_set_b)) THEN
    1494          54 :          basis_b => basis_set_b
    1495          54 :          my_symmetric = .FALSE.
    1496             :       ELSE
    1497          54 :          basis_b => basis_set_a
    1498          54 :          my_symmetric = .TRUE.
    1499             :       END IF
    1500         108 :       IF (PRESENT(symmetric)) my_symmetric = symmetric
    1501             : 
    1502         108 :       IF (PRESENT(mic)) THEN
    1503           4 :          my_mic = mic
    1504             :       ELSE
    1505         104 :          my_mic = .FALSE.
    1506             :       END IF
    1507             : 
    1508         108 :       IF (PRESENT(molecular)) THEN
    1509           8 :          my_molecular = molecular
    1510             :       ELSE
    1511         100 :          my_molecular = .FALSE.
    1512             :       END IF
    1513             : 
    1514         108 :       IF (PRESENT(operator_type)) THEN
    1515           0 :          otype = operator_type
    1516             :       ELSE
    1517             :          ! default is a simple AB neighbor list
    1518         108 :          otype = "AB"
    1519             :       END IF
    1520             : 
    1521         108 :       nkind = SIZE(basis_a)
    1522         432 :       ALLOCATE (a_present(nkind), b_present(nkind))
    1523         332 :       a_present = .FALSE.
    1524         332 :       b_present = .FALSE.
    1525         432 :       ALLOCATE (a_radius(nkind), b_radius(nkind))
    1526         332 :       a_radius = 0.0_dp
    1527         332 :       b_radius = 0.0_dp
    1528         332 :       DO ikind = 1, nkind
    1529         224 :          IF (ASSOCIATED(basis_a(ikind)%gto_basis_set)) THEN
    1530         224 :             a_present(ikind) = .TRUE.
    1531         224 :             abas => basis_a(ikind)%gto_basis_set
    1532         224 :             CALL get_gto_basis_set(gto_basis_set=abas, kind_radius=a_radius(ikind))
    1533             :          END IF
    1534         332 :          IF (ASSOCIATED(basis_b(ikind)%gto_basis_set)) THEN
    1535         224 :             b_present(ikind) = .TRUE.
    1536         224 :             bbas => basis_b(ikind)%gto_basis_set
    1537         224 :             CALL get_gto_basis_set(gto_basis_set=bbas, kind_radius=b_radius(ikind))
    1538             :          END IF
    1539             :       END DO
    1540             : 
    1541         432 :       ALLOCATE (pair_radius(nkind, nkind))
    1542         812 :       pair_radius = 0.0_dp
    1543         108 :       CALL pair_radius_setup(a_present, b_present, a_radius, b_radius, pair_radius)
    1544             : 
    1545             :       CALL get_qs_env(qs_env, &
    1546             :                       atomic_kind_set=atomic_kind_set, &
    1547             :                       cell=cell, &
    1548             :                       distribution_2d=distribution_2d, &
    1549             :                       local_particles=distribution_1d, &
    1550             :                       particle_set=particle_set, &
    1551         108 :                       molecule_set=molecule_set)
    1552             : 
    1553         548 :       ALLOCATE (atom2d(nkind))
    1554             :       CALL atom2d_build(atom2d, distribution_1d, distribution_2d, atomic_kind_set, &
    1555         108 :                         molecule_set, my_molecular, particle_set=particle_set)
    1556             :       CALL build_neighbor_lists(ab_list, particle_set, atom2d, cell, pair_radius, &
    1557             :                                 mic=my_mic, symmetric=my_symmetric, molecular=my_molecular, &
    1558         108 :                                 subcells=2.0_dp, nlname="AUX_NL")
    1559             : 
    1560         108 :       CALL atom2d_cleanup(atom2d)
    1561             : 
    1562         108 :       DEALLOCATE (a_present, b_present, a_radius, b_radius, pair_radius, atom2d)
    1563             : 
    1564         108 :    END SUBROUTINE setup_neighbor_list
    1565             : 
    1566             : ! **************************************************************************************************
    1567             : !> \brief ...
    1568             : !> \param list ...
    1569             : !> \param n ...
    1570             : !> \param ikind ...
    1571             : !> \param atom ...
    1572             : ! **************************************************************************************************
    1573       19390 :    SUBROUTINE combine_lists(list, n, ikind, atom)
    1574             :       INTEGER, DIMENSION(:), POINTER                     :: list
    1575             :       INTEGER, INTENT(OUT)                               :: n
    1576             :       INTEGER, INTENT(IN)                                :: ikind
    1577             :       TYPE(local_atoms_type), DIMENSION(:), INTENT(IN)   :: atom
    1578             : 
    1579             :       INTEGER                                            :: i, ib, na, nb
    1580       19390 :       INTEGER, DIMENSION(:), POINTER                     :: lista, listb
    1581             : 
    1582           0 :       CPASSERT(.NOT. ASSOCIATED(list))
    1583             : 
    1584       19390 :       lista => atom(ikind)%list_local_a_index
    1585       19390 :       listb => atom(ikind)%list_local_b_index
    1586             : 
    1587       19390 :       IF (ASSOCIATED(lista)) THEN
    1588       12221 :          na = SIZE(lista)
    1589             :       ELSE
    1590             :          na = 0
    1591             :       END IF
    1592             : 
    1593       19390 :       IF (ASSOCIATED(listb)) THEN
    1594       19390 :          nb = SIZE(listb)
    1595             :       ELSE
    1596             :          nb = 0
    1597             :       END IF
    1598             : 
    1599       58170 :       ALLOCATE (list(na + nb))
    1600             : 
    1601       19390 :       n = na
    1602       70465 :       IF (na .GT. 0) list(1:na) = lista(1:na)
    1603       19390 :       IF (nb .GT. 0) THEN
    1604       57635 :          loopb: DO ib = 1, nb
    1605       79683 :             DO i = 1, na
    1606       79683 :                IF (listb(ib) == list(i)) CYCLE loopb
    1607             :             END DO
    1608       18818 :             n = n + 1
    1609       57635 :             list(n) = listb(ib)
    1610             :          END DO loopb
    1611             :       END IF
    1612       19390 :    END SUBROUTINE combine_lists
    1613             : 
    1614             : ! **************************************************************************************************
    1615             : 
    1616             : ! **************************************************************************************************
    1617             : !> \brief ...
    1618             : !> \param present_a ...
    1619             : !> \param present_b ...
    1620             : !> \param radius_a ...
    1621             : !> \param radius_b ...
    1622             : !> \param pair_radius ...
    1623             : !> \param prmin ...
    1624             : ! **************************************************************************************************
    1625      101170 :    SUBROUTINE pair_radius_setup(present_a, present_b, radius_a, radius_b, pair_radius, prmin)
    1626             :       LOGICAL, DIMENSION(:), INTENT(IN)                  :: present_a, present_b
    1627             :       REAL(dp), DIMENSION(:), INTENT(IN)                 :: radius_a, radius_b
    1628             :       REAL(dp), DIMENSION(:, :), INTENT(OUT)             :: pair_radius
    1629             :       REAL(dp), INTENT(IN), OPTIONAL                     :: prmin
    1630             : 
    1631             :       INTEGER                                            :: i, j, nkind
    1632             :       REAL(dp)                                           :: rrmin
    1633             : 
    1634      101170 :       nkind = SIZE(present_a)
    1635             : 
    1636      757742 :       pair_radius = 0._dp
    1637             : 
    1638      101170 :       rrmin = 0.0_dp
    1639      101170 :       IF (PRESENT(prmin)) rrmin = prmin
    1640             : 
    1641      302717 :       DO i = 1, nkind
    1642      201547 :          IF (.NOT. present_a(i)) CYCLE
    1643      714356 :          DO j = 1, nkind
    1644      423601 :             IF (.NOT. present_b(j)) CYCLE
    1645      406537 :             pair_radius(i, j) = radius_a(i) + radius_b(j)
    1646      625148 :             pair_radius(i, j) = MAX(pair_radius(i, j), rrmin)
    1647             :          END DO
    1648             :       END DO
    1649             : 
    1650      101170 :    END SUBROUTINE pair_radius_setup
    1651             : 
    1652             : ! **************************************************************************************************
    1653             : !> \brief   Print the distribution of the simple pair neighbor list.
    1654             : !> \param ab ...
    1655             : !> \param qs_kind_set ...
    1656             : !> \param output_unit ...
    1657             : !> \param para_env ...
    1658             : !> \date    19.06.2003
    1659             : !> \author  MK
    1660             : !> \version 1.0
    1661             : ! **************************************************************************************************
    1662         138 :    SUBROUTINE write_neighbor_distribution(ab, qs_kind_set, output_unit, para_env)
    1663             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    1664             :          POINTER                                         :: ab
    1665             :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    1666             :       INTEGER, INTENT(in)                                :: output_unit
    1667             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    1668             : 
    1669             :       CHARACTER(len=*), PARAMETER :: routineN = 'write_neighbor_distribution'
    1670             :       LOGICAL, PARAMETER                                 :: full_output = .FALSE.
    1671             : 
    1672             :       INTEGER                                            :: handle, ikind, inode, ipe, jkind, n, &
    1673             :                                                             nkind, nnode
    1674             :       INTEGER(int_8)                                     :: nblock_max, nblock_sum, nelement_max, &
    1675             :                                                             nelement_sum, tmp(2)
    1676         138 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: nblock, nelement, nnsgf
    1677             :       TYPE(gto_basis_set_type), POINTER                  :: orb_basis_set
    1678             :       TYPE(neighbor_list_iterator_p_type), &
    1679         138 :          DIMENSION(:), POINTER                           :: nl_iterator
    1680             : 
    1681         138 :       CALL timeset(routineN, handle)
    1682             :       ASSOCIATE (mype => para_env%mepos + 1, npe => para_env%num_pe)
    1683             : 
    1684             :          ! Allocate work storage
    1685         552 :          ALLOCATE (nblock(npe), nelement(npe))
    1686         414 :          nblock(:) = 0
    1687         414 :          nelement(:) = 0
    1688         138 :          nkind = SIZE(qs_kind_set)
    1689         414 :          ALLOCATE (nnsgf(nkind))
    1690         372 :          nnsgf = 1
    1691         372 :          DO ikind = 1, nkind
    1692         234 :             CALL get_qs_kind(qs_kind_set(ikind), basis_set=orb_basis_set)
    1693         372 :             IF (ASSOCIATED(orb_basis_set)) THEN
    1694         182 :                CALL get_gto_basis_set(gto_basis_set=orb_basis_set, nsgf=nnsgf(ikind))
    1695             :             END IF
    1696             :          END DO
    1697             : 
    1698         138 :          CALL neighbor_list_iterator_create(nl_iterator, ab)
    1699       42740 :          DO WHILE (neighbor_list_iterate(nl_iterator) == 0)
    1700       42602 :             CALL get_iterator_info(nl_iterator, ikind=ikind, jkind=jkind, inode=inode, nnode=nnode)
    1701       42740 :             IF (inode == 1) THEN
    1702        1065 :                n = nnsgf(ikind)*nnsgf(jkind)
    1703        1065 :                nblock(mype) = nblock(mype) + nnode
    1704        1065 :                nelement(mype) = nelement(mype) + n*nnode
    1705             :             END IF
    1706             :          END DO
    1707         138 :          CALL neighbor_list_iterator_release(nl_iterator)
    1708             : 
    1709             :          IF (full_output) THEN
    1710             :             ! XXXXXXXX should gather/scatter this on ionode
    1711             :             CALL para_env%sum(nblock)
    1712             :             CALL para_env%sum(nelement)
    1713             : 
    1714             :             nblock_sum = SUM(INT(nblock, KIND=int_8))
    1715             :             nelement_sum = SUM(INT(nelement, KIND=int_8))
    1716             :          ELSE
    1717         138 :             nblock_sum = nblock(mype)
    1718             :             nblock_max = nblock(mype)
    1719         138 :             nelement_sum = nelement(mype)
    1720             :             nelement_max = nelement(mype)
    1721         414 :             tmp = (/nblock_sum, nelement_sum/)
    1722         138 :             CALL para_env%sum(tmp)
    1723         138 :             nblock_sum = tmp(1); nelement_sum = tmp(2)
    1724         414 :             tmp = (/nblock_max, nelement_max/)
    1725         138 :             CALL para_env%max(tmp)
    1726         138 :             nblock_max = tmp(1); nelement_max = tmp(2)
    1727             :          END IF
    1728             : 
    1729         276 :          IF (output_unit > 0) THEN
    1730             :             IF (full_output) THEN
    1731             :                WRITE (UNIT=output_unit, &
    1732             :                       FMT="(/,/,T2,A,/,/,T3,A,/,/,(T4,I6,T27,I10,T55,I10))") &
    1733             :                   "DISTRIBUTION OF THE NEIGHBOR LISTS", &
    1734             :                   "Process   Number of particle pairs   Number of matrix elements", &
    1735             :                   (ipe - 1, nblock(ipe), nelement(ipe), ipe=1, npe)
    1736             :                WRITE (UNIT=output_unit, FMT="(/,T7,A3,T27,I10,T55,I10)") &
    1737             :                   "Sum", SUM(nblock), SUM(nelement)
    1738             :             ELSE
    1739          69 :                WRITE (UNIT=output_unit, FMT="(/,T2,A)") "DISTRIBUTION OF THE NEIGHBOR LISTS"
    1740          69 :                WRITE (UNIT=output_unit, FMT="(T15,A,T68,I13)") "Total number of particle pairs:", nblock_sum
    1741          69 :                WRITE (UNIT=output_unit, FMT="(T15,A,T68,I13)") "Total number of matrix elements:", nelement_sum
    1742          69 :                WRITE (UNIT=output_unit, FMT="(T15,A,T68,I13)") "Average number of particle pairs:", (nblock_sum + npe - 1)/npe
    1743          69 :                WRITE (UNIT=output_unit, FMT="(T15,A,T68,I13)") "Maximum number of particle pairs:", nblock_max
    1744          69 :                WRITE (UNIT=output_unit, FMT="(T15,A,T68,I13)") "Average number of matrix element:", (nelement_sum + npe - 1)/npe
    1745          69 :                WRITE (UNIT=output_unit, FMT="(T15,A,T68,I13)") "Maximum number of matrix elements:", nelement_max
    1746             :             END IF
    1747             :          END IF
    1748             :       END ASSOCIATE
    1749             : 
    1750             :       ! Release work storage
    1751             : 
    1752         138 :       DEALLOCATE (nblock, nelement, nnsgf)
    1753             : 
    1754         138 :       CALL timestop(handle)
    1755             : 
    1756         138 :    END SUBROUTINE write_neighbor_distribution
    1757             : 
    1758             : ! **************************************************************************************************
    1759             : !> \brief   Write a set of neighbor lists to the output unit.
    1760             : !> \param ab ...
    1761             : !> \param particle_set ...
    1762             : !> \param cell ...
    1763             : !> \param para_env ...
    1764             : !> \param neighbor_list_section ...
    1765             : !> \param nl_type ...
    1766             : !> \param middle_name ...
    1767             : !> \param nlname ...
    1768             : !> \date    04.03.2002
    1769             : !> \par History
    1770             : !>       - Adapted to the new parallelized neighbor list version
    1771             : !>         (26.06.2003,MK)
    1772             : !> \author  MK
    1773             : !> \version 1.0
    1774             : ! **************************************************************************************************
    1775       67192 :    SUBROUTINE write_neighbor_lists(ab, particle_set, cell, para_env, neighbor_list_section, &
    1776             :                                    nl_type, middle_name, nlname)
    1777             : 
    1778             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    1779             :          POINTER                                         :: ab
    1780             :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    1781             :       TYPE(cell_type), POINTER                           :: cell
    1782             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    1783             :       TYPE(section_vals_type), POINTER                   :: neighbor_list_section
    1784             :       CHARACTER(LEN=*), INTENT(IN)                       :: nl_type, middle_name, nlname
    1785             : 
    1786             :       CHARACTER(LEN=default_string_length)               :: string, unit_str
    1787             :       INTEGER                                            :: iatom, inode, iw, jatom, nneighbor, nnode
    1788             :       INTEGER, DIMENSION(3)                              :: cell_b
    1789             :       REAL(dp)                                           :: dab, unit_conv
    1790             :       REAL(dp), DIMENSION(3)                             :: ra, rab, rb
    1791             :       TYPE(cp_logger_type), POINTER                      :: logger
    1792             :       TYPE(neighbor_list_iterator_p_type), &
    1793       67192 :          DIMENSION(:), POINTER                           :: nl_iterator
    1794             : 
    1795       67192 :       NULLIFY (logger)
    1796       67192 :       logger => cp_get_default_logger()
    1797       67192 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, neighbor_list_section, &
    1798             :                                            TRIM(nl_type)), &
    1799             :                 cp_p_file)) THEN
    1800             :          iw = cp_print_key_unit_nr(logger=logger, &
    1801             :                                    basis_section=neighbor_list_section, &
    1802             :                                    print_key_path=TRIM(nl_type), &
    1803             :                                    extension=".out", &
    1804             :                                    middle_name=TRIM(middle_name), &
    1805             :                                    local=.TRUE., &
    1806             :                                    log_filename=.FALSE., &
    1807           4 :                                    file_position="REWIND")
    1808             :          ASSOCIATE (mype => para_env%mepos)
    1809           4 :             CALL section_vals_val_get(neighbor_list_section, "UNIT", c_val=unit_str)
    1810           4 :             unit_conv = cp_unit_from_cp2k(1.0_dp, TRIM(unit_str))
    1811             : 
    1812             :             ! Print headline
    1813           4 :             string = ""
    1814             :             WRITE (UNIT=string, FMT="(A,I5,A)") &
    1815           4 :                TRIM(nlname)//" IN "//TRIM(unit_str)//" (PROCESS", mype, ")"
    1816           4 :             CALL compress(string)
    1817           4 :             IF (iw > 0) WRITE (UNIT=iw, FMT="(/,/,T2,A)") TRIM(string)
    1818             : 
    1819           4 :             nneighbor = 0
    1820             : 
    1821           4 :             CALL neighbor_list_iterator_create(nl_iterator, ab)
    1822          16 :             DO WHILE (neighbor_list_iterate(nl_iterator) == 0)
    1823             :                CALL get_iterator_info(nl_iterator, inode=inode, nnode=nnode, &
    1824          12 :                                       iatom=iatom, jatom=jatom, cell=cell_b, r=rab)
    1825          12 :                nneighbor = nneighbor + 1
    1826          12 :                ra(:) = pbc(particle_set(iatom)%r, cell)
    1827          48 :                rb(:) = ra(:) + rab(:)
    1828          12 :                dab = SQRT(rab(1)*rab(1) + rab(2)*rab(2) + rab(3)*rab(3))
    1829          16 :                IF (iw > 0) THEN
    1830          12 :                   IF (inode == 1) THEN
    1831             :                      WRITE (UNIT=iw, FMT="(/,T2,I5,3X,I6,3X,3F12.6)") &
    1832          40 :                         iatom, nnode, ra(1:3)*unit_conv
    1833             :                   END IF
    1834             :                   WRITE (UNIT=iw, FMT="(T10,I6,3X,3I4,3F12.6,2X,F12.6)") &
    1835          60 :                      jatom, cell_b(1:3), rb(1:3)*unit_conv, dab*unit_conv
    1836             :                END IF
    1837             :             END DO
    1838           4 :             CALL neighbor_list_iterator_release(nl_iterator)
    1839             : 
    1840           4 :             string = ""
    1841             :             WRITE (UNIT=string, FMT="(A,I12,A,I12)") &
    1842           4 :                "Total number of neighbor interactions for process", mype, ":", &
    1843           8 :                nneighbor
    1844           4 :             CALL compress(string)
    1845           4 :             IF (iw > 0) WRITE (UNIT=iw, FMT="(/,T2,A)") TRIM(string)
    1846             :             CALL cp_print_key_finished_output(unit_nr=iw, &
    1847             :                                               logger=logger, &
    1848             :                                               basis_section=neighbor_list_section, &
    1849             :                                               print_key_path=TRIM(nl_type), &
    1850           8 :                                               local=.TRUE.)
    1851             :          END ASSOCIATE
    1852             :       END IF
    1853             : 
    1854       67192 :    END SUBROUTINE write_neighbor_lists
    1855             : 
    1856           0 : END MODULE qs_neighbor_lists

Generated by: LCOV version 1.15