Line data Source code
1 : !--------------------------------------------------------------------------------------------------!
2 : ! CP2K: A general program to perform molecular dynamics simulations !
3 : ! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
4 : ! !
5 : ! SPDX-License-Identifier: GPL-2.0-or-later !
6 : !--------------------------------------------------------------------------------------------------!
7 :
8 : ! **************************************************************************************************
9 : !> \brief Generate the atomic neighbor lists.
10 : !> \par History
11 : !> - List rebuild for sab_orb neighbor list (10.09.2002,MK)
12 : !> - List rebuild for all lists (25.09.2002,MK)
13 : !> - Row-wise parallelized version (16.06.2003,MK)
14 : !> - Row- and column-wise parallelized version (19.07.2003,MK)
15 : !> - bug fix for non-periodic case (23.02.06,MK)
16 : !> - major refactoring (25.07.10,jhu)
17 : !> \author Matthias Krack (08.10.1999,26.03.2002,16.06.2003)
18 : ! **************************************************************************************************
19 : MODULE qs_neighbor_lists
20 : USE almo_scf_types, ONLY: almo_max_cutoff_multiplier
21 : USE atomic_kind_types, ONLY: atomic_kind_type,&
22 : get_atomic_kind,&
23 : get_atomic_kind_set
24 : USE basis_set_types, ONLY: get_gto_basis_set,&
25 : gto_basis_set_p_type,&
26 : gto_basis_set_type
27 : USE cell_types, ONLY: cell_type,&
28 : get_cell,&
29 : pbc,&
30 : plane_distance,&
31 : real_to_scaled,&
32 : scaled_to_real
33 : USE cp_control_types, ONLY: dft_control_type
34 : USE cp_log_handling, ONLY: cp_get_default_logger,&
35 : cp_logger_type
36 : USE cp_output_handling, ONLY: cp_p_file,&
37 : cp_print_key_finished_output,&
38 : cp_print_key_should_output,&
39 : cp_print_key_unit_nr
40 : USE cp_units, ONLY: cp_unit_from_cp2k
41 : USE distribution_1d_types, ONLY: distribution_1d_type
42 : USE distribution_2d_types, ONLY: distribution_2d_type
43 : USE ewald_environment_types, ONLY: ewald_env_get,&
44 : ewald_environment_type
45 : USE external_potential_types, ONLY: all_potential_type,&
46 : get_potential,&
47 : gth_potential_type,&
48 : sgp_potential_type
49 : USE input_constants, ONLY: &
50 : dispersion_uff, do_method_lrigpw, do_method_rigpw, do_potential_id, do_potential_short, &
51 : do_potential_truncated, do_se_IS_slater, vdw_pairpot_dftd4, xc_vdw_fun_pairpot
52 : USE input_section_types, ONLY: section_vals_get,&
53 : section_vals_get_subs_vals,&
54 : section_vals_type,&
55 : section_vals_val_get
56 : USE kinds, ONLY: default_string_length,&
57 : dp,&
58 : int_8
59 : USE kpoint_types, ONLY: kpoint_type
60 : USE libint_2c_3c, ONLY: cutoff_screen_factor
61 : USE mathlib, ONLY: erfc_cutoff
62 : USE message_passing, ONLY: mp_para_env_type
63 : USE molecule_types, ONLY: molecule_type
64 : USE particle_types, ONLY: particle_type
65 : USE paw_proj_set_types, ONLY: get_paw_proj_set,&
66 : paw_proj_set_type
67 : USE periodic_table, ONLY: ptable
68 : USE physcon, ONLY: bohr
69 : USE qs_dftb_types, ONLY: qs_dftb_atom_type
70 : USE qs_dftb_utils, ONLY: get_dftb_atom_param
71 : USE qs_dispersion_types, ONLY: qs_dispersion_type
72 : USE qs_environment_types, ONLY: get_qs_env,&
73 : qs_environment_type
74 : USE qs_gcp_types, ONLY: qs_gcp_type
75 : USE qs_kind_types, ONLY: get_qs_kind,&
76 : get_qs_kind_set,&
77 : qs_kind_type
78 : USE qs_ks_types, ONLY: get_ks_env,&
79 : qs_ks_env_type,&
80 : set_ks_env
81 : USE qs_neighbor_list_types, ONLY: &
82 : add_neighbor_list, add_neighbor_node, allocate_neighbor_list_set, get_iterator_info, &
83 : get_iterator_task, neighbor_list_iterate, neighbor_list_iterator_create, &
84 : neighbor_list_iterator_p_type, neighbor_list_iterator_release, neighbor_list_p_type, &
85 : neighbor_list_set_p_type, neighbor_list_set_type, release_neighbor_list_sets
86 : USE string_utilities, ONLY: compress,&
87 : uppercase
88 : USE subcell_types, ONLY: allocate_subcell,&
89 : deallocate_subcell,&
90 : give_ijk_subcell,&
91 : subcell_type
92 : USE util, ONLY: locate,&
93 : sort
94 : USE xtb_types, ONLY: get_xtb_atom_param,&
95 : xtb_atom_type
96 : #include "./base/base_uses.f90"
97 :
98 : IMPLICIT NONE
99 :
100 : PRIVATE
101 :
102 : ! **************************************************************************************************
103 : TYPE local_atoms_type
104 : INTEGER, DIMENSION(:), POINTER :: list => NULL(), &
105 : list_local_a_index => NULL(), &
106 : list_local_b_index => NULL(), &
107 : list_1d => NULL(), &
108 : list_a_mol => NULL(), &
109 : list_b_mol => NULL()
110 : END TYPE local_atoms_type
111 : ! **************************************************************************************************
112 :
113 : CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'qs_neighbor_lists'
114 :
115 : ! private counter, used to version qs neighbor lists
116 : INTEGER, SAVE, PRIVATE :: last_qs_neighbor_list_id_nr = 0
117 :
118 : ! Public subroutines
119 : PUBLIC :: build_qs_neighbor_lists, local_atoms_type, atom2d_cleanup, &
120 : atom2d_build, build_neighbor_lists, pair_radius_setup, &
121 : setup_neighbor_list, write_neighbor_lists
122 : CONTAINS
123 :
124 : ! **************************************************************************************************
125 : !> \brief free the internals of atom2d
126 : !> \param atom2d ...
127 : !> \param
128 : ! **************************************************************************************************
129 37719 : SUBROUTINE atom2d_cleanup(atom2d)
130 : TYPE(local_atoms_type), DIMENSION(:) :: atom2d
131 :
132 : CHARACTER(len=*), PARAMETER :: routineN = 'atom2d_cleanup'
133 :
134 : INTEGER :: handle, ikind
135 :
136 37719 : CALL timeset(routineN, handle)
137 109047 : DO ikind = 1, SIZE(atom2d)
138 71328 : NULLIFY (atom2d(ikind)%list)
139 71328 : IF (ASSOCIATED(atom2d(ikind)%list_local_a_index)) THEN
140 50966 : DEALLOCATE (atom2d(ikind)%list_local_a_index)
141 : END IF
142 71328 : IF (ASSOCIATED(atom2d(ikind)%list_local_b_index)) THEN
143 71270 : DEALLOCATE (atom2d(ikind)%list_local_b_index)
144 : END IF
145 71328 : IF (ASSOCIATED(atom2d(ikind)%list_a_mol)) THEN
146 50966 : DEALLOCATE (atom2d(ikind)%list_a_mol)
147 : END IF
148 71328 : IF (ASSOCIATED(atom2d(ikind)%list_b_mol)) THEN
149 71270 : DEALLOCATE (atom2d(ikind)%list_b_mol)
150 : END IF
151 109047 : IF (ASSOCIATED(atom2d(ikind)%list_1d)) THEN
152 71328 : DEALLOCATE (atom2d(ikind)%list_1d)
153 : END IF
154 : END DO
155 37719 : CALL timestop(handle)
156 :
157 37719 : END SUBROUTINE atom2d_cleanup
158 :
159 : ! **************************************************************************************************
160 : !> \brief Build some distribution structure of atoms, refactored from build_qs_neighbor_lists
161 : !> \param atom2d output
162 : !> \param distribution_1d ...
163 : !> \param distribution_2d ...
164 : !> \param atomic_kind_set ...
165 : !> \param molecule_set ...
166 : !> \param molecule_only ...
167 : !> \param particle_set ...
168 : !> \author JH
169 : ! **************************************************************************************************
170 37719 : SUBROUTINE atom2d_build(atom2d, distribution_1d, distribution_2d, &
171 : atomic_kind_set, molecule_set, molecule_only, particle_set)
172 : TYPE(local_atoms_type), DIMENSION(:) :: atom2d
173 : TYPE(distribution_1d_type), POINTER :: distribution_1d
174 : TYPE(distribution_2d_type), POINTER :: distribution_2d
175 : TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
176 : TYPE(molecule_type), DIMENSION(:), POINTER :: molecule_set
177 : LOGICAL :: molecule_only
178 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
179 :
180 : CHARACTER(len=*), PARAMETER :: routineN = 'atom2d_build'
181 :
182 : INTEGER :: atom_a, handle, ia, iat, iatom, &
183 : iatom_local, ikind, imol, natom, &
184 : natom_a, natom_local_a, natom_local_b, &
185 : nel, nkind
186 37719 : INTEGER, ALLOCATABLE, DIMENSION(:) :: atom2mol, atom_of_kind, listindex, &
187 37719 : listsort
188 37719 : INTEGER, DIMENSION(:), POINTER :: local_cols_array, local_rows_array
189 :
190 37719 : CALL timeset(routineN, handle)
191 :
192 37719 : nkind = SIZE(atomic_kind_set)
193 37719 : natom = SIZE(particle_set)
194 37719 : CALL get_atomic_kind_set(atomic_kind_set=atomic_kind_set, atom_of_kind=atom_of_kind)
195 :
196 37719 : IF (molecule_only) THEN
197 876 : ALLOCATE (atom2mol(natom))
198 974 : DO imol = 1, SIZE(molecule_set)
199 2512 : DO iat = molecule_set(imol)%first_atom, molecule_set(imol)%last_atom
200 2220 : atom2mol(iat) = imol
201 : END DO
202 : END DO
203 : END IF
204 :
205 109047 : DO ikind = 1, nkind
206 71328 : NULLIFY (atom2d(ikind)%list)
207 71328 : NULLIFY (atom2d(ikind)%list_local_a_index)
208 71328 : NULLIFY (atom2d(ikind)%list_local_b_index)
209 71328 : NULLIFY (atom2d(ikind)%list_1d)
210 71328 : NULLIFY (atom2d(ikind)%list_a_mol)
211 71328 : NULLIFY (atom2d(ikind)%list_b_mol)
212 :
213 71328 : CALL get_atomic_kind(atomic_kind_set(ikind), atom_list=atom2d(ikind)%list)
214 :
215 71328 : natom_a = SIZE(atom2d(ikind)%list)
216 :
217 71328 : natom_local_a = distribution_2d%n_local_rows(ikind)
218 71328 : natom_local_b = distribution_2d%n_local_cols(ikind)
219 71328 : local_rows_array => distribution_2d%local_rows(ikind)%array
220 71328 : local_cols_array => distribution_2d%local_cols(ikind)%array
221 :
222 71328 : nel = distribution_1d%n_el(ikind)
223 192817 : ALLOCATE (atom2d(ikind)%list_1d(nel))
224 164147 : DO iat = 1, nel
225 92819 : ia = distribution_1d%list(ikind)%array(iat)
226 164147 : atom2d(ikind)%list_1d(iat) = atom_of_kind(ia)
227 : END DO
228 :
229 285312 : ALLOCATE (listsort(natom_a), listindex(natom_a))
230 252966 : listsort(1:natom_a) = atom2d(ikind)%list(1:natom_a)
231 71328 : CALL sort(listsort, natom_a, listindex)
232 : ! Block rows
233 71328 : IF (natom_local_a > 0) THEN
234 152898 : ALLOCATE (atom2d(ikind)%list_local_a_index(natom_local_a))
235 101932 : ALLOCATE (atom2d(ikind)%list_a_mol(natom_local_a))
236 151209 : atom2d(ikind)%list_a_mol(:) = 0
237 :
238 : ! Build index vector for mapping
239 151209 : DO iatom_local = 1, natom_local_a
240 100243 : atom_a = local_rows_array(iatom_local)
241 100243 : iatom = locate(listsort, atom_a)
242 100243 : atom2d(ikind)%list_local_a_index(iatom_local) = listindex(iatom)
243 151209 : IF (molecule_only) atom2d(ikind)%list_a_mol(iatom_local) = atom2mol(atom_a)
244 : END DO
245 :
246 : END IF
247 :
248 : ! Block columns
249 71328 : IF (natom_local_b > 0) THEN
250 :
251 213810 : ALLOCATE (atom2d(ikind)%list_local_b_index(natom_local_b))
252 142540 : ALLOCATE (atom2d(ikind)%list_b_mol(natom_local_b))
253 252772 : atom2d(ikind)%list_b_mol(:) = 0
254 :
255 : ! Build index vector for mapping
256 252772 : DO iatom_local = 1, natom_local_b
257 181502 : atom_a = local_cols_array(iatom_local)
258 181502 : iatom = locate(listsort, atom_a)
259 181502 : atom2d(ikind)%list_local_b_index(iatom_local) = listindex(iatom)
260 252772 : IF (molecule_only) atom2d(ikind)%list_b_mol(iatom_local) = atom2mol(atom_a)
261 : END DO
262 :
263 : END IF
264 :
265 109047 : DEALLOCATE (listsort, listindex)
266 :
267 : END DO
268 :
269 37719 : CALL timestop(handle)
270 :
271 75438 : END SUBROUTINE atom2d_build
272 :
273 : ! **************************************************************************************************
274 : !> \brief Build all the required neighbor lists for Quickstep.
275 : !> \param qs_env ...
276 : !> \param para_env ...
277 : !> \param molecular ...
278 : !> \param force_env_section ...
279 : !> \date 28.08.2000
280 : !> \par History
281 : !> - Major refactoring (25.07.2010,jhu)
282 : !> \author MK
283 : !> \version 1.0
284 : ! **************************************************************************************************
285 24039 : SUBROUTINE build_qs_neighbor_lists(qs_env, para_env, molecular, force_env_section)
286 : TYPE(qs_environment_type), POINTER :: qs_env
287 : TYPE(mp_para_env_type), POINTER :: para_env
288 : LOGICAL, OPTIONAL :: molecular
289 : TYPE(section_vals_type), POINTER :: force_env_section
290 :
291 : CHARACTER(len=*), PARAMETER :: routineN = 'build_qs_neighbor_lists'
292 :
293 : CHARACTER(LEN=2) :: element_symbol, element_symbol2
294 : CHARACTER(LEN=default_string_length) :: print_key_path
295 : INTEGER :: handle, hfx_pot, ikind, ingp, iw, jkind, &
296 : maxatom, ngp, nkind, zat
297 : LOGICAL :: all_potential_present, almo, dftb, do_hfx, dokp, gth_potential_present, &
298 : lri_optbas, lrigpw, mic, molecule_only, nddo, paw_atom, paw_atom_present, rigpw, &
299 : sgp_potential_present, xtb
300 24039 : LOGICAL, ALLOCATABLE, DIMENSION(:) :: all_present, aux_fit_present, aux_present, &
301 24039 : core_present, default_present, nonbond1_atom, nonbond2_atom, oce_present, orb_present, &
302 24039 : ppl_present, ppnl_present, ri_present, xb1_atom, xb2_atom
303 : REAL(dp) :: almo_rcov, almo_rvdw, eps_schwarz, &
304 : omega, pdist, rcut, roperator, subcells
305 24039 : REAL(dp), ALLOCATABLE, DIMENSION(:) :: all_pot_rad, aux_fit_radius, c_radius, calpha, &
306 24039 : core_radius, oce_radius, orb_radius, ppl_radius, ppnl_radius, ri_radius, zeff
307 24039 : REAL(dp), ALLOCATABLE, DIMENSION(:, :) :: pair_radius, pair_radius_lb
308 : TYPE(all_potential_type), POINTER :: all_potential
309 24039 : TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
310 : TYPE(cell_type), POINTER :: cell
311 : TYPE(cp_logger_type), POINTER :: logger
312 : TYPE(dft_control_type), POINTER :: dft_control
313 : TYPE(distribution_1d_type), POINTER :: distribution_1d
314 : TYPE(distribution_2d_type), POINTER :: distribution_2d
315 : TYPE(ewald_environment_type), POINTER :: ewald_env
316 : TYPE(gth_potential_type), POINTER :: gth_potential
317 : TYPE(gto_basis_set_type), POINTER :: aux_basis_set, aux_fit_basis_set, &
318 : orb_basis_set, ri_basis_set
319 : TYPE(kpoint_type), POINTER :: kpoints
320 24039 : TYPE(local_atoms_type), ALLOCATABLE, DIMENSION(:) :: atom2d
321 24039 : TYPE(molecule_type), DIMENSION(:), POINTER :: molecule_set
322 24039 : TYPE(neighbor_list_set_p_type), DIMENSION(:), POINTER :: saa_list, sab_all, sab_almo, &
323 24039 : sab_cn, sab_core, sab_gcp, sab_kp, sab_kp_nosym, sab_lrc, sab_orb, sab_scp, sab_se, &
324 24039 : sab_tbe, sab_vdw, sab_xb, sab_xtb_nonbond, sab_xtb_pp, sab_xtbe, sac_ae, sac_lri, &
325 24039 : sac_ppl, sap_oce, sap_ppnl, soa_list, soo_list
326 24039 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
327 : TYPE(paw_proj_set_type), POINTER :: paw_proj
328 : TYPE(qs_dftb_atom_type), POINTER :: dftb_atom
329 : TYPE(qs_dispersion_type), POINTER :: dispersion_env
330 : TYPE(qs_gcp_type), POINTER :: gcp_env
331 24039 : TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
332 : TYPE(qs_ks_env_type), POINTER :: ks_env
333 : TYPE(section_vals_type), POINTER :: hfx_sections, neighbor_list_section
334 : TYPE(sgp_potential_type), POINTER :: sgp_potential
335 : TYPE(xtb_atom_type), POINTER :: xtb_atom
336 :
337 24039 : CALL timeset(routineN, handle)
338 24039 : NULLIFY (logger)
339 24039 : logger => cp_get_default_logger()
340 :
341 24039 : NULLIFY (atomic_kind_set, qs_kind_set, cell, neighbor_list_section, &
342 24039 : distribution_1d, distribution_2d, gth_potential, sgp_potential, orb_basis_set, &
343 24039 : particle_set, molecule_set, dft_control, ks_env)
344 :
345 24039 : NULLIFY (sab_orb)
346 24039 : NULLIFY (sac_ae)
347 24039 : NULLIFY (sac_ppl)
348 24039 : NULLIFY (sac_lri)
349 24039 : NULLIFY (sap_ppnl)
350 24039 : NULLIFY (sap_oce)
351 24039 : NULLIFY (sab_se)
352 24039 : NULLIFY (sab_lrc)
353 24039 : NULLIFY (sab_tbe)
354 24039 : NULLIFY (sab_xtbe)
355 24039 : NULLIFY (sab_core)
356 24039 : NULLIFY (sab_xb)
357 24039 : NULLIFY (sab_xtb_pp)
358 24039 : NULLIFY (sab_xtb_nonbond)
359 24039 : NULLIFY (sab_all)
360 24039 : NULLIFY (sab_vdw)
361 24039 : NULLIFY (sab_cn)
362 24039 : NULLIFY (soo_list)
363 24039 : NULLIFY (sab_scp)
364 24039 : NULLIFY (sab_almo)
365 24039 : NULLIFY (sab_kp)
366 24039 : NULLIFY (sab_kp_nosym)
367 :
368 : CALL get_qs_env(qs_env, &
369 : ks_env=ks_env, &
370 : atomic_kind_set=atomic_kind_set, &
371 : qs_kind_set=qs_kind_set, &
372 : cell=cell, &
373 : kpoints=kpoints, &
374 : distribution_2d=distribution_2d, &
375 : local_particles=distribution_1d, &
376 : particle_set=particle_set, &
377 : molecule_set=molecule_set, &
378 24039 : dft_control=dft_control)
379 :
380 24039 : neighbor_list_section => section_vals_get_subs_vals(force_env_section, "DFT%PRINT%NEIGHBOR_LISTS")
381 :
382 : ! This sets the id number of the qs neighbor lists, new lists, means new version
383 : ! new version implies new sparsity of the matrices
384 24039 : last_qs_neighbor_list_id_nr = last_qs_neighbor_list_id_nr + 1
385 24039 : CALL set_ks_env(ks_env=ks_env, neighbor_list_id=last_qs_neighbor_list_id_nr)
386 :
387 : CALL get_ks_env(ks_env=ks_env, &
388 : sab_orb=sab_orb, &
389 : sac_ae=sac_ae, &
390 : sac_ppl=sac_ppl, &
391 : sac_lri=sac_lri, &
392 : sab_vdw=sab_vdw, &
393 : sap_ppnl=sap_ppnl, &
394 : sap_oce=sap_oce, &
395 : sab_se=sab_se, &
396 : sab_lrc=sab_lrc, &
397 : sab_tbe=sab_tbe, &
398 : sab_xtbe=sab_xtbe, &
399 : sab_core=sab_core, &
400 : sab_xb=sab_xb, &
401 : sab_xtb_pp=sab_xtb_pp, &
402 : sab_xtb_nonbond=sab_xtb_nonbond, &
403 : sab_scp=sab_scp, &
404 : sab_all=sab_all, &
405 : sab_almo=sab_almo, &
406 : sab_kp=sab_kp, &
407 24039 : sab_kp_nosym=sab_kp_nosym)
408 :
409 24039 : dokp = (kpoints%nkp > 0)
410 24039 : nddo = dft_control%qs_control%semi_empirical
411 24039 : dftb = dft_control%qs_control%dftb
412 24039 : xtb = dft_control%qs_control%xtb
413 24039 : almo = dft_control%qs_control%do_almo_scf
414 24039 : lrigpw = (dft_control%qs_control%method_id == do_method_lrigpw)
415 24039 : rigpw = (dft_control%qs_control%method_id == do_method_rigpw)
416 24039 : lri_optbas = dft_control%qs_control%lri_optbas
417 :
418 : ! molecular lists
419 24039 : molecule_only = .FALSE.
420 24039 : IF (PRESENT(molecular)) molecule_only = molecular
421 : ! minimum image convention (MIC)
422 24039 : mic = molecule_only
423 24039 : IF (dokp) THEN
424 : ! no MIC for kpoints
425 912 : mic = .FALSE.
426 23127 : ELSEIF (nddo) THEN
427 : ! enforce MIC for interaction lists in SE
428 5782 : mic = .TRUE.
429 : END IF
430 24039 : pdist = dft_control%qs_control%pairlist_radius
431 :
432 24039 : hfx_sections => section_vals_get_subs_vals(qs_env%input, "DFT%XC%HF")
433 24039 : CALL section_vals_get(hfx_sections, explicit=do_hfx)
434 :
435 24039 : CALL get_atomic_kind_set(atomic_kind_set, maxatom=maxatom)
436 : CALL get_qs_kind_set(qs_kind_set, paw_atom_present=paw_atom_present, &
437 : gth_potential_present=gth_potential_present, &
438 : sgp_potential_present=sgp_potential_present, &
439 24039 : all_potential_present=all_potential_present)
440 :
441 24039 : CALL section_vals_val_get(qs_env%input, "DFT%SUBCELLS", r_val=subcells)
442 :
443 : ! Allocate work storage
444 24039 : nkind = SIZE(atomic_kind_set)
445 : ALLOCATE (orb_present(nkind), aux_fit_present(nkind), aux_present(nkind), &
446 168273 : default_present(nkind), core_present(nkind))
447 : ALLOCATE (orb_radius(nkind), aux_fit_radius(nkind), c_radius(nkind), &
448 192312 : core_radius(nkind), calpha(nkind), zeff(nkind))
449 73093 : orb_radius(:) = 0.0_dp
450 73093 : aux_fit_radius(:) = 0.0_dp
451 73093 : c_radius(:) = 0.0_dp
452 73093 : core_radius(:) = 0.0_dp
453 73093 : calpha(:) = 0.0_dp
454 73093 : zeff(:) = 0.0_dp
455 :
456 96156 : ALLOCATE (pair_radius(nkind, nkind))
457 24039 : IF (gth_potential_present .OR. sgp_potential_present) THEN
458 29241 : ALLOCATE (ppl_present(nkind), ppl_radius(nkind))
459 27179 : ppl_radius = 0.0_dp
460 29241 : ALLOCATE (ppnl_present(nkind), ppnl_radius(nkind))
461 41471 : ppnl_radius = 0.0_dp
462 : END IF
463 24039 : IF (paw_atom_present) THEN
464 4704 : ALLOCATE (oce_present(nkind), oce_radius(nkind))
465 4650 : oce_radius = 0.0_dp
466 : END IF
467 24039 : IF (all_potential_present .OR. sgp_potential_present) THEN
468 43014 : ALLOCATE (all_present(nkind), all_pot_rad(nkind))
469 55753 : all_pot_rad = 0.0_dp
470 : END IF
471 :
472 : ! Initialize the local data structures
473 121171 : ALLOCATE (atom2d(nkind))
474 : CALL atom2d_build(atom2d, distribution_1d, distribution_2d, atomic_kind_set, &
475 24039 : molecule_set, molecule_only, particle_set=particle_set)
476 :
477 73093 : DO ikind = 1, nkind
478 :
479 49054 : CALL get_atomic_kind(atomic_kind_set(ikind), atom_list=atom2d(ikind)%list)
480 :
481 49054 : CALL get_qs_kind(qs_kind_set(ikind), basis_set=orb_basis_set, basis_type="ORB")
482 49054 : CALL get_qs_kind(qs_kind_set(ikind), basis_set=aux_basis_set, basis_type="AUX")
483 49054 : CALL get_qs_kind(qs_kind_set(ikind), basis_set=aux_fit_basis_set, basis_type="AUX_FIT")
484 :
485 : CALL get_qs_kind(qs_kind_set(ikind), &
486 : paw_proj_set=paw_proj, &
487 : paw_atom=paw_atom, &
488 : all_potential=all_potential, &
489 : gth_potential=gth_potential, &
490 49054 : sgp_potential=sgp_potential)
491 :
492 49054 : IF (dftb) THEN
493 : ! Set the interaction radius for the neighbor lists (DFTB case)
494 : ! This includes all interactions (orbitals and short range pair potential) except vdW
495 5838 : CALL get_qs_kind(qs_kind_set(ikind), dftb_parameter=dftb_atom)
496 : CALL get_dftb_atom_param(dftb_parameter=dftb_atom, &
497 : cutoff=orb_radius(ikind), &
498 5838 : defined=orb_present(ikind))
499 : ELSE
500 43216 : IF (ASSOCIATED(orb_basis_set)) THEN
501 43214 : orb_present(ikind) = .TRUE.
502 43214 : CALL get_gto_basis_set(gto_basis_set=orb_basis_set, kind_radius=orb_radius(ikind))
503 : ELSE
504 2 : orb_present(ikind) = .FALSE.
505 : END IF
506 : END IF
507 :
508 49054 : IF (ASSOCIATED(aux_basis_set)) THEN
509 0 : aux_present(ikind) = .TRUE.
510 : ELSE
511 49054 : aux_present(ikind) = .FALSE.
512 : END IF
513 :
514 49054 : IF (ASSOCIATED(aux_fit_basis_set)) THEN
515 1482 : aux_fit_present(ikind) = .TRUE.
516 1482 : CALL get_gto_basis_set(gto_basis_set=aux_fit_basis_set, kind_radius=aux_fit_radius(ikind))
517 : ELSE
518 47572 : aux_fit_present(ikind) = .FALSE.
519 : END IF
520 :
521 : ! core overlap
522 : CALL get_qs_kind(qs_kind_set(ikind), &
523 : alpha_core_charge=calpha(ikind), &
524 : core_charge_radius=core_radius(ikind), &
525 49054 : zeff=zeff(ikind))
526 49054 : IF (zeff(ikind) /= 0._dp .AND. calpha(ikind) /= 0._dp) THEN
527 48884 : core_present(ikind) = .TRUE.
528 : ELSE
529 170 : core_present(ikind) = .FALSE.
530 : END IF
531 :
532 : ! Pseudopotentials
533 49054 : IF (gth_potential_present .OR. sgp_potential_present) THEN
534 17432 : IF (ASSOCIATED(gth_potential)) THEN
535 : CALL get_potential(potential=gth_potential, &
536 : ppl_present=ppl_present(ikind), &
537 : ppl_radius=ppl_radius(ikind), &
538 : ppnl_present=ppnl_present(ikind), &
539 17204 : ppnl_radius=ppnl_radius(ikind))
540 228 : ELSE IF (ASSOCIATED(sgp_potential)) THEN
541 : CALL get_potential(potential=sgp_potential, &
542 : ppl_present=ppl_present(ikind), &
543 : ppl_radius=ppl_radius(ikind), &
544 : ppnl_present=ppnl_present(ikind), &
545 36 : ppnl_radius=ppnl_radius(ikind))
546 : ELSE
547 192 : ppl_present(ikind) = .FALSE.
548 192 : ppnl_present(ikind) = .FALSE.
549 : END IF
550 : END IF
551 :
552 : ! GAPW
553 49054 : IF (paw_atom_present) THEN
554 3082 : IF (paw_atom) THEN
555 2916 : oce_present(ikind) = .TRUE.
556 2916 : CALL get_paw_proj_set(paw_proj_set=paw_proj, rcprj=oce_radius(ikind))
557 : ELSE
558 166 : oce_present(ikind) = .FALSE.
559 : END IF
560 : END IF
561 :
562 : ! Check the presence of an all electron potential or ERFC potential
563 122147 : IF (all_potential_present .OR. sgp_potential_present) THEN
564 31714 : all_present(ikind) = .FALSE.
565 31714 : all_pot_rad(ikind) = 0.0_dp
566 31714 : IF (ASSOCIATED(all_potential)) THEN
567 31644 : all_present(ikind) = .TRUE.
568 31644 : CALL get_potential(potential=all_potential, core_charge_radius=all_pot_rad(ikind))
569 70 : ELSE IF (ASSOCIATED(sgp_potential)) THEN
570 36 : IF (sgp_potential%ecp_local) THEN
571 24 : all_present(ikind) = .TRUE.
572 24 : CALL get_potential(potential=sgp_potential, core_charge_radius=all_pot_rad(ikind))
573 : END IF
574 : END IF
575 : END IF
576 :
577 : END DO
578 :
579 : ! Build the orbital-orbital overlap neighbor lists
580 24039 : IF (pdist < 0.0_dp) THEN
581 : pdist = MAX(plane_distance(1, 0, 0, cell), &
582 : plane_distance(0, 1, 0, cell), &
583 4 : plane_distance(0, 0, 1, cell))
584 : END IF
585 24039 : CALL pair_radius_setup(orb_present, orb_present, orb_radius, orb_radius, pair_radius, pdist)
586 : CALL build_neighbor_lists(sab_orb, particle_set, atom2d, cell, pair_radius, &
587 24039 : mic=mic, subcells=subcells, molecular=molecule_only, nlname="sab_orb")
588 24039 : CALL set_ks_env(ks_env=ks_env, sab_orb=sab_orb)
589 : CALL write_neighbor_lists(sab_orb, particle_set, cell, para_env, neighbor_list_section, &
590 24039 : "/SAB_ORB", "sab_orb", "ORBITAL ORBITAL")
591 :
592 : ! Build orbital-orbital list containing all the pairs, to be used with
593 : ! non-symmetric operators. Beware: the cutoff of the orbital-orbital overlap
594 : ! might not be optimal. It should be verified for each operator.
595 24039 : IF (.NOT. (nddo .OR. dftb .OR. xtb)) THEN
596 : CALL build_neighbor_lists(sab_all, particle_set, atom2d, cell, pair_radius, &
597 10421 : mic=mic, symmetric=.FALSE., subcells=subcells, molecular=molecule_only, nlname="sab_all")
598 10421 : CALL set_ks_env(ks_env=ks_env, sab_all=sab_all)
599 : END IF
600 :
601 : ! Build the core-core overlap neighbor lists
602 24039 : IF (.NOT. (nddo .OR. dftb .OR. xtb)) THEN
603 10421 : CALL pair_radius_setup(core_present, core_present, core_radius, core_radius, pair_radius)
604 : CALL build_neighbor_lists(sab_core, particle_set, atom2d, cell, pair_radius, subcells=subcells, &
605 10421 : operator_type="PP", nlname="sab_core")
606 10421 : CALL set_ks_env(ks_env=ks_env, sab_core=sab_core)
607 : CALL write_neighbor_lists(sab_core, particle_set, cell, para_env, neighbor_list_section, &
608 10421 : "/SAB_CORE", "sab_core", "CORE CORE")
609 : END IF
610 :
611 24039 : IF (dokp) THEN
612 : ! We try to guess an integration radius for K-points
613 : ! For non-HFX calculations we use the overlap list
614 : ! For HFX we use the interaction radius of kinds (ORB or ADMM basis)
615 : ! plus a range for the operator
616 912 : IF (do_hfx) THEN
617 :
618 : !case study on the HFX potential: TC, SR or Overlap?
619 70 : CALL section_vals_val_get(hfx_sections, "INTERACTION_POTENTIAL%POTENTIAL_TYPE", i_val=hfx_pot)
620 :
621 26 : SELECT CASE (hfx_pot)
622 : CASE (do_potential_id)
623 26 : roperator = 0.0_dp
624 : CASE (do_potential_truncated)
625 44 : CALL section_vals_val_get(hfx_sections, "INTERACTION_POTENTIAL%CUTOFF_RADIUS", r_val=roperator)
626 : CASE (do_potential_short)
627 0 : CALL section_vals_val_get(hfx_sections, "INTERACTION_POTENTIAL%OMEGA", r_val=omega)
628 0 : CALL section_vals_val_get(hfx_sections, "SCREENING%EPS_SCHWARZ", r_val=eps_schwarz)
629 0 : CALL erfc_cutoff(eps_schwarz, omega, roperator)
630 : CASE DEFAULT
631 70 : CPABORT("HFX potential not available for K-points (NYI)")
632 : END SELECT
633 :
634 70 : IF (dft_control%do_admm) THEN
635 : CALL pair_radius_setup(aux_fit_present, aux_fit_present, aux_fit_radius, aux_fit_radius, &
636 38 : pair_radius)
637 :
638 : !We cannot accept a pair radius smaller than the ORB overlap, for sanity reasons
639 114 : ALLOCATE (pair_radius_lb(nkind, nkind))
640 38 : CALL pair_radius_setup(orb_present, orb_present, orb_radius, orb_radius, pair_radius_lb)
641 98 : DO jkind = 1, nkind
642 202 : DO ikind = 1, nkind
643 104 : IF (pair_radius(ikind, jkind) + cutoff_screen_factor*roperator .LE. pair_radius_lb(ikind, jkind)) &
644 128 : pair_radius(ikind, jkind) = pair_radius_lb(ikind, jkind) - roperator
645 : END DO
646 : END DO
647 : ELSE
648 32 : CALL pair_radius_setup(orb_present, orb_present, orb_radius, orb_radius, pair_radius)
649 : END IF
650 362 : pair_radius = pair_radius + cutoff_screen_factor*roperator
651 : ELSE
652 842 : CALL pair_radius_setup(orb_present, orb_present, orb_radius, orb_radius, pair_radius)
653 : END IF
654 : CALL build_neighbor_lists(sab_kp, particle_set, atom2d, cell, pair_radius, &
655 912 : subcells=subcells, nlname="sab_kp")
656 912 : CALL set_ks_env(ks_env=ks_env, sab_kp=sab_kp)
657 :
658 912 : IF (do_hfx) THEN
659 : CALL build_neighbor_lists(sab_kp_nosym, particle_set, atom2d, cell, pair_radius, &
660 70 : subcells=subcells, nlname="sab_kp_nosym", symmetric=.FALSE.)
661 70 : CALL set_ks_env(ks_env=ks_env, sab_kp_nosym=sab_kp_nosym)
662 : END IF
663 : END IF
664 :
665 : ! Build orbital GTH-PPL operator overlap list
666 24039 : IF (gth_potential_present .OR. sgp_potential_present) THEN
667 9837 : IF (ANY(ppl_present)) THEN
668 9745 : CALL pair_radius_setup(orb_present, ppl_present, orb_radius, ppl_radius, pair_radius)
669 : CALL build_neighbor_lists(sac_ppl, particle_set, atom2d, cell, pair_radius, &
670 9745 : subcells=subcells, operator_type="ABC", nlname="sac_ppl")
671 9745 : CALL set_ks_env(ks_env=ks_env, sac_ppl=sac_ppl)
672 : CALL write_neighbor_lists(sac_ppl, particle_set, cell, para_env, neighbor_list_section, &
673 9745 : "/SAC_PPL", "sac_ppl", "ORBITAL GTH-PPL")
674 9745 : IF (lrigpw) THEN
675 58 : IF (qs_env%lri_env%ppl_ri) THEN
676 : CALL build_neighbor_lists(sac_lri, particle_set, atom2d, cell, pair_radius, &
677 2 : subcells=subcells, symmetric=.FALSE., operator_type="PP", nlname="sac_lri")
678 2 : CALL set_ks_env(ks_env=ks_env, sac_lri=sac_lri)
679 : END IF
680 : END IF
681 : END IF
682 :
683 12943 : IF (ANY(ppnl_present)) THEN
684 7817 : CALL pair_radius_setup(orb_present, ppnl_present, orb_radius, ppnl_radius, pair_radius)
685 : CALL build_neighbor_lists(sap_ppnl, particle_set, atom2d, cell, pair_radius, &
686 7817 : subcells=subcells, operator_type="ABBA", nlname="sap_ppnl")
687 7817 : CALL set_ks_env(ks_env=ks_env, sap_ppnl=sap_ppnl)
688 : CALL write_neighbor_lists(sap_ppnl, particle_set, cell, para_env, neighbor_list_section, &
689 7817 : "/SAP_PPNL", "sap_ppnl", "ORBITAL GTH-PPNL")
690 : END IF
691 : END IF
692 :
693 24039 : IF (paw_atom_present) THEN
694 : ! Build orbital-GAPW projector overlap list
695 1636 : IF (ANY(oce_present)) THEN
696 1568 : CALL pair_radius_setup(orb_present, oce_present, orb_radius, oce_radius, pair_radius)
697 : CALL build_neighbor_lists(sap_oce, particle_set, atom2d, cell, pair_radius, &
698 1568 : subcells=subcells, operator_type="ABBA", nlname="sap_oce")
699 1568 : CALL set_ks_env(ks_env=ks_env, sap_oce=sap_oce)
700 : CALL write_neighbor_lists(sap_oce, particle_set, cell, para_env, neighbor_list_section, &
701 1568 : "/SAP_OCE", "sap_oce", "ORBITAL(A) PAW-PRJ")
702 : END IF
703 : END IF
704 :
705 : ! Build orbital-ERFC potential list
706 24039 : IF (.NOT. (nddo .OR. dftb .OR. xtb)) THEN
707 10421 : IF (all_potential_present .OR. sgp_potential_present) THEN
708 720 : CALL pair_radius_setup(orb_present, all_present, orb_radius, all_pot_rad, pair_radius)
709 : CALL build_neighbor_lists(sac_ae, particle_set, atom2d, cell, pair_radius, &
710 720 : subcells=subcells, operator_type="ABC", nlname="sac_ae")
711 720 : CALL set_ks_env(ks_env=ks_env, sac_ae=sac_ae)
712 : CALL write_neighbor_lists(sac_ae, particle_set, cell, para_env, neighbor_list_section, &
713 720 : "/SAC_AE", "sac_ae", "ORBITAL ERFC POTENTIAL")
714 : END IF
715 : END IF
716 :
717 24039 : IF (nddo) THEN
718 : ! Semi-empirical neighbor lists
719 18448 : default_present = .TRUE.
720 18448 : c_radius = dft_control%qs_control%se_control%cutoff_cou
721 : ! Build the neighbor lists for the Hartree terms
722 5782 : CALL pair_radius_setup(default_present, default_present, c_radius, c_radius, pair_radius)
723 5782 : IF (dft_control%qs_control%se_control%do_ewald_gks) THEN
724 : ! Use MIC for the periodic code of GKS
725 : CALL build_neighbor_lists(sab_se, particle_set, atom2d, cell, pair_radius, mic=mic, &
726 2 : subcells=subcells, nlname="sab_se")
727 : ELSE
728 : CALL build_neighbor_lists(sab_se, particle_set, atom2d, cell, pair_radius, &
729 5780 : subcells=subcells, nlname="sab_se")
730 : END IF
731 5782 : CALL set_ks_env(ks_env=ks_env, sab_se=sab_se)
732 : CALL write_neighbor_lists(sab_se, particle_set, cell, para_env, neighbor_list_section, &
733 5782 : "/SAB_SE", "sab_se", "HARTREE INTERACTIONS")
734 :
735 : ! If requested build the SE long-range correction neighbor list
736 5782 : IF ((dft_control%qs_control%se_control%do_ewald) .AND. &
737 : (dft_control%qs_control%se_control%integral_screening /= do_se_IS_slater)) THEN
738 328 : c_radius = dft_control%qs_control%se_control%cutoff_lrc
739 140 : CALL pair_radius_setup(default_present, default_present, c_radius, c_radius, pair_radius)
740 : CALL build_neighbor_lists(sab_lrc, particle_set, atom2d, cell, pair_radius, &
741 140 : subcells=subcells, nlname="sab_lrc")
742 140 : CALL set_ks_env(ks_env=ks_env, sab_lrc=sab_lrc)
743 : CALL write_neighbor_lists(sab_lrc, particle_set, cell, para_env, neighbor_list_section, &
744 140 : "/SAB_LRC", "sab_lrc", "SE LONG-RANGE CORRECTION")
745 : END IF
746 : END IF
747 :
748 24039 : IF (dftb) THEN
749 : ! Build the neighbor lists for the DFTB Ewald methods
750 2884 : IF (dft_control%qs_control%dftb_control%do_ewald) THEN
751 1074 : CALL get_qs_env(qs_env=qs_env, ewald_env=ewald_env)
752 1074 : CALL ewald_env_get(ewald_env, rcut=rcut)
753 3150 : c_radius = rcut
754 1074 : CALL pair_radius_setup(orb_present, orb_present, c_radius, c_radius, pair_radius)
755 : CALL build_neighbor_lists(sab_tbe, particle_set, atom2d, cell, pair_radius, mic=mic, &
756 1074 : subcells=subcells, nlname="sab_tbe")
757 1074 : CALL set_ks_env(ks_env=ks_env, sab_tbe=sab_tbe)
758 : END IF
759 :
760 : ! Build the neighbor lists for the DFTB vdW pair potential
761 2884 : IF (dft_control%qs_control%dftb_control%dispersion) THEN
762 1016 : IF (dft_control%qs_control%dftb_control%dispersion_type == dispersion_uff) THEN
763 2754 : DO ikind = 1, nkind
764 1828 : CALL get_qs_kind(qs_kind_set(ikind), dftb_parameter=dftb_atom)
765 2754 : CALL get_dftb_atom_param(dftb_parameter=dftb_atom, rcdisp=c_radius(ikind))
766 : END DO
767 2754 : default_present = .TRUE.
768 926 : CALL pair_radius_setup(default_present, default_present, c_radius, c_radius, pair_radius)
769 : CALL build_neighbor_lists(sab_vdw, particle_set, atom2d, cell, pair_radius, &
770 926 : subcells=subcells, nlname="sab_vdw")
771 926 : CALL set_ks_env(ks_env=ks_env, sab_vdw=sab_vdw)
772 : END IF
773 : END IF
774 : END IF
775 :
776 24039 : IF (xtb) THEN
777 : ! Build the neighbor lists for the xTB Ewald method
778 4952 : IF (dft_control%qs_control%xtb_control%do_ewald) THEN
779 1546 : CALL get_qs_env(qs_env=qs_env, ewald_env=ewald_env)
780 1546 : CALL ewald_env_get(ewald_env, rcut=rcut)
781 5234 : c_radius = rcut
782 1546 : CALL pair_radius_setup(orb_present, orb_present, c_radius, c_radius, pair_radius)
783 : CALL build_neighbor_lists(sab_tbe, particle_set, atom2d, cell, pair_radius, mic=mic, &
784 1546 : subcells=subcells, nlname="sab_tbe")
785 1546 : CALL set_ks_env(ks_env=ks_env, sab_tbe=sab_tbe)
786 : END IF
787 : ! Repulsive Potential
788 47704 : pair_radius(1:nkind, 1:nkind) = dft_control%qs_control%xtb_control%rcpair(1:nkind, 1:nkind)
789 16800 : default_present = .TRUE.
790 : CALL build_neighbor_lists(sab_xtb_pp, particle_set, atom2d, cell, pair_radius, &
791 4952 : subcells=subcells, nlname="sab_xtb_pp")
792 4952 : CALL set_ks_env(ks_env=ks_env, sab_xtb_pp=sab_xtb_pp)
793 : ! SR part of Coulomb interaction
794 16800 : DO ikind = 1, nkind
795 11848 : CALL get_qs_kind(qs_kind_set(ikind), xtb_parameter=xtb_atom)
796 16800 : CALL get_xtb_atom_param(xtb_parameter=xtb_atom, rcut=c_radius(ikind))
797 : END DO
798 16800 : default_present = .TRUE.
799 4952 : CALL pair_radius_setup(default_present, default_present, c_radius, c_radius, pair_radius)
800 : CALL build_neighbor_lists(sab_xtbe, particle_set, atom2d, cell, pair_radius, &
801 4952 : subcells=subcells, nlname="sab_xtbe")
802 4952 : CALL set_ks_env(ks_env=ks_env, sab_xtbe=sab_xtbe)
803 : ! XB list
804 14856 : ALLOCATE (xb1_atom(nkind), xb2_atom(nkind))
805 16800 : c_radius = 0.5_dp*dft_control%qs_control%xtb_control%xb_radius
806 16800 : DO ikind = 1, nkind
807 11848 : CALL get_atomic_kind(atomic_kind_set(ikind), z=zat)
808 11848 : IF (zat == 17 .OR. zat == 35 .OR. zat == 53 .OR. zat == 85) THEN
809 130 : xb1_atom(ikind) = .TRUE.
810 : ELSE
811 11718 : xb1_atom(ikind) = .FALSE.
812 : END IF
813 28648 : IF (zat == 7 .OR. zat == 8 .OR. zat == 15 .OR. zat == 16) THEN
814 4458 : xb2_atom(ikind) = .TRUE.
815 : ELSE
816 7390 : xb2_atom(ikind) = .FALSE.
817 : END IF
818 : END DO
819 4952 : CALL pair_radius_setup(xb1_atom, xb2_atom, c_radius, c_radius, pair_radius)
820 : CALL build_neighbor_lists(sab_xb, particle_set, atom2d, cell, pair_radius, &
821 4952 : symmetric=.FALSE., subcells=subcells, operator_type="PP", nlname="sab_xb")
822 4952 : CALL set_ks_env(ks_env=ks_env, sab_xb=sab_xb)
823 : CALL write_neighbor_lists(sab_xb, particle_set, cell, para_env, neighbor_list_section, &
824 4952 : "/SAB_XB", "sab_xb", "XB bonding")
825 :
826 : ! nonbonded interactions list
827 4952 : IF (dft_control%qs_control%xtb_control%do_nonbonded) THEN
828 24 : ngp = SIZE(dft_control%qs_control%xtb_control%nonbonded%pot)
829 72 : ALLOCATE (nonbond1_atom(nkind), nonbond2_atom(nkind))
830 120 : nonbond1_atom = .FALSE.
831 120 : nonbond2_atom = .FALSE.
832 48 : DO ingp = 1, ngp
833 120 : DO ikind = 1, nkind
834 96 : rcut = SQRT(dft_control%qs_control%xtb_control%nonbonded%pot(ingp)%pot%rcutsq)
835 480 : c_radius = rcut
836 96 : CALL get_atomic_kind(atomic_kind_set(ikind), element_symbol=element_symbol)
837 96 : CALL uppercase(element_symbol)
838 120 : IF (TRIM(dft_control%qs_control%xtb_control%nonbonded%pot(ingp)%pot%at1) == TRIM(element_symbol)) THEN
839 24 : nonbond1_atom(ikind) = .TRUE.
840 120 : DO jkind = 1, nkind
841 96 : CALL get_atomic_kind(atomic_kind_set(jkind), element_symbol=element_symbol2)
842 96 : CALL uppercase(element_symbol2)
843 120 : IF (TRIM(dft_control%qs_control%xtb_control%nonbonded%pot(ingp)%pot%at2) == TRIM(element_symbol2)) THEN
844 24 : nonbond2_atom(jkind) = .TRUE.
845 : END IF
846 : END DO
847 : END IF
848 : END DO
849 24 : CALL pair_radius_setup(nonbond1_atom, nonbond2_atom, c_radius, c_radius, pair_radius)
850 : CALL build_neighbor_lists(sab_xtb_nonbond, particle_set, atom2d, cell, pair_radius, &
851 24 : symmetric=.FALSE., subcells=subcells, operator_type="PP", nlname="sab_xtb_nonbond")
852 24 : CALL set_ks_env(ks_env=ks_env, sab_xtb_nonbond=sab_xtb_nonbond)
853 : CALL write_neighbor_lists(sab_xtb_nonbond, particle_set, cell, para_env, neighbor_list_section, &
854 48 : "/SAB_XTB_NONBOND", "sab_xtb_nonbond", "XTB NONBONDED INTERACTIONS")
855 : END DO
856 : END IF
857 : END IF
858 :
859 : ! Build the neighbor lists for the vdW pair potential
860 24039 : CALL get_qs_env(qs_env=qs_env, dispersion_env=dispersion_env)
861 24039 : sab_vdw => dispersion_env%sab_vdw
862 24039 : sab_cn => dispersion_env%sab_cn
863 24039 : IF (dispersion_env%type == xc_vdw_fun_pairpot .OR. xtb) THEN
864 5282 : IF (dispersion_env%pp_type == vdw_pairpot_dftd4) THEN
865 2218 : c_radius(:) = dispersion_env%rc_d4
866 : ELSE
867 15520 : c_radius(:) = dispersion_env%rc_disp
868 : END IF
869 17738 : default_present = .TRUE. !include all atoms in vdW (even without basis)
870 5282 : CALL pair_radius_setup(default_present, default_present, c_radius, c_radius, pair_radius)
871 : CALL build_neighbor_lists(sab_vdw, particle_set, atom2d, cell, pair_radius, &
872 5282 : subcells=subcells, operator_type="PP", nlname="sab_vdw")
873 5282 : dispersion_env%sab_vdw => sab_vdw
874 :
875 : ! Build the neighbor lists for coordination numbers as needed by the DFT-D3/D4 method
876 : ! This is also needed for the xTB Hamiltonian
877 17738 : DO ikind = 1, nkind
878 12456 : CALL get_atomic_kind(atomic_kind_set(ikind), z=zat)
879 17738 : c_radius(ikind) = 4._dp*ptable(zat)%covalent_radius*bohr
880 : END DO
881 5282 : CALL pair_radius_setup(default_present, default_present, c_radius, c_radius, pair_radius)
882 : CALL build_neighbor_lists(sab_cn, particle_set, atom2d, cell, pair_radius, &
883 5282 : subcells=subcells, operator_type="PP", nlname="sab_cn")
884 5282 : dispersion_env%sab_cn => sab_cn
885 : END IF
886 :
887 : ! Build the neighbor lists for the gCP pair potential
888 24039 : NULLIFY (gcp_env)
889 24039 : CALL get_qs_env(qs_env=qs_env, gcp_env=gcp_env)
890 24039 : IF (ASSOCIATED(gcp_env)) THEN
891 10421 : IF (gcp_env%do_gcp) THEN
892 0 : sab_gcp => gcp_env%sab_gcp
893 0 : DO ikind = 1, nkind
894 0 : c_radius(ikind) = gcp_env%gcp_kind(ikind)%rcsto
895 : END DO
896 0 : CALL pair_radius_setup(orb_present, orb_present, c_radius, c_radius, pair_radius)
897 : CALL build_neighbor_lists(sab_gcp, particle_set, atom2d, cell, pair_radius, &
898 0 : subcells=subcells, operator_type="PP", nlname="sab_gcp")
899 0 : gcp_env%sab_gcp => sab_gcp
900 : ELSE
901 10421 : NULLIFY (gcp_env%sab_gcp)
902 : END IF
903 : END IF
904 :
905 24039 : IF (lrigpw .OR. lri_optbas) THEN
906 : ! set neighborlists in lri_env environment
907 64 : CALL pair_radius_setup(orb_present, orb_present, orb_radius, orb_radius, pair_radius)
908 64 : soo_list => qs_env%lri_env%soo_list
909 : CALL build_neighbor_lists(soo_list, particle_set, atom2d, cell, pair_radius, &
910 64 : mic=mic, molecular=molecule_only, subcells=subcells, nlname="soo_list")
911 64 : qs_env%lri_env%soo_list => soo_list
912 : CALL write_neighbor_lists(soo_list, particle_set, cell, para_env, neighbor_list_section, &
913 64 : "/SOO_LIST", "soo_list", "ORBITAL ORBITAL (RI)")
914 23975 : ELSEIF (rigpw) THEN
915 0 : ALLOCATE (ri_present(nkind), ri_radius(nkind))
916 0 : ri_present = .FALSE.
917 0 : ri_radius = 0.0_dp
918 0 : DO ikind = 1, nkind
919 0 : CALL get_qs_kind(qs_kind_set(ikind), basis_set=ri_basis_set, basis_type="RI_HXC")
920 0 : IF (ASSOCIATED(ri_basis_set)) THEN
921 0 : ri_present(ikind) = .TRUE.
922 0 : CALL get_gto_basis_set(gto_basis_set=ri_basis_set, kind_radius=ri_radius(ikind))
923 : ELSE
924 0 : ri_present(ikind) = .FALSE.
925 : END IF
926 : END DO
927 : ! set neighborlists in lri_env environment
928 0 : CALL pair_radius_setup(orb_present, orb_present, orb_radius, orb_radius, pair_radius)
929 0 : soo_list => qs_env%lri_env%soo_list
930 : CALL build_neighbor_lists(soo_list, particle_set, atom2d, cell, pair_radius, &
931 0 : mic=mic, molecular=molecule_only, subcells=subcells, nlname="soo_list")
932 0 : qs_env%lri_env%soo_list => soo_list
933 : !
934 0 : CALL pair_radius_setup(ri_present, ri_present, ri_radius, ri_radius, pair_radius)
935 0 : saa_list => qs_env%lri_env%saa_list
936 : CALL build_neighbor_lists(saa_list, particle_set, atom2d, cell, pair_radius, &
937 0 : mic=mic, molecular=molecule_only, subcells=subcells, nlname="saa_list")
938 0 : qs_env%lri_env%saa_list => saa_list
939 : !
940 0 : CALL pair_radius_setup(ri_present, orb_present, ri_radius, orb_radius, pair_radius)
941 0 : soa_list => qs_env%lri_env%soa_list
942 : CALL build_neighbor_lists(soa_list, particle_set, atom2d, cell, pair_radius, &
943 : mic=mic, symmetric=.FALSE., molecular=molecule_only, &
944 0 : subcells=subcells, operator_type="ABC", nlname="saa_list")
945 0 : qs_env%lri_env%soa_list => soa_list
946 : END IF
947 :
948 : ! Build the neighbor lists for the ALMO delocalization
949 24039 : IF (almo) THEN
950 360 : DO ikind = 1, nkind
951 244 : CALL get_atomic_kind(atomic_kind_set(ikind), rcov=almo_rcov, rvdw=almo_rvdw)
952 : ! multiply the radius by some hard-coded number
953 : c_radius(ikind) = MAX(almo_rcov, almo_rvdw)*bohr* &
954 360 : almo_max_cutoff_multiplier
955 : END DO
956 360 : default_present = .TRUE. !include all atoms (even without basis)
957 116 : CALL pair_radius_setup(default_present, default_present, c_radius, c_radius, pair_radius)
958 : CALL build_neighbor_lists(sab_almo, particle_set, atom2d, cell, pair_radius, &
959 116 : subcells=subcells, operator_type="PP", nlname="sab_almo")
960 116 : CALL set_ks_env(ks_env=ks_env, sab_almo=sab_almo)
961 : END IF
962 :
963 : ! Print particle distribution
964 24039 : print_key_path = "PRINT%DISTRIBUTION"
965 24039 : IF (BTEST(cp_print_key_should_output(logger%iter_info, force_env_section, &
966 : print_key_path), &
967 : cp_p_file)) THEN
968 : iw = cp_print_key_unit_nr(logger=logger, &
969 : basis_section=force_env_section, &
970 : print_key_path=print_key_path, &
971 138 : extension=".out")
972 138 : CALL write_neighbor_distribution(sab_orb, qs_kind_set, iw, para_env)
973 : CALL cp_print_key_finished_output(unit_nr=iw, &
974 : logger=logger, &
975 : basis_section=force_env_section, &
976 138 : print_key_path=print_key_path)
977 : END IF
978 :
979 : ! Release work storage
980 24039 : CALL atom2d_cleanup(atom2d)
981 :
982 24039 : DEALLOCATE (atom2d)
983 24039 : DEALLOCATE (orb_present, default_present, core_present)
984 24039 : DEALLOCATE (orb_radius, aux_fit_radius, c_radius, core_radius)
985 24039 : DEALLOCATE (calpha, zeff)
986 24039 : DEALLOCATE (pair_radius)
987 24039 : IF (gth_potential_present .OR. sgp_potential_present) THEN
988 9747 : DEALLOCATE (ppl_present, ppl_radius)
989 9747 : DEALLOCATE (ppnl_present, ppnl_radius)
990 : END IF
991 24039 : IF (paw_atom_present) THEN
992 1568 : DEALLOCATE (oce_present, oce_radius)
993 : END IF
994 24039 : IF (all_potential_present .OR. sgp_potential_present) THEN
995 14338 : DEALLOCATE (all_present, all_pot_rad)
996 : END IF
997 :
998 24039 : CALL timestop(handle)
999 :
1000 72117 : END SUBROUTINE build_qs_neighbor_lists
1001 :
1002 : ! **************************************************************************************************
1003 : !> \brief Build simple pair neighbor lists.
1004 : !> \param ab_list ...
1005 : !> \param particle_set ...
1006 : !> \param atom ...
1007 : !> \param cell ...
1008 : !> \param pair_radius ...
1009 : !> \param subcells ...
1010 : !> \param mic ...
1011 : !> \param symmetric ...
1012 : !> \param molecular ...
1013 : !> \param subset_of_mol ...
1014 : !> \param current_subset ...
1015 : !> \param operator_type ...
1016 : !> \param nlname ...
1017 : !> \param atomb_to_keep the list of atom indices to keep for pairs from the atom2d%b_list
1018 : !> \date 20.03.2002
1019 : !> \par History
1020 : !> - Major refactoring (25.07.2010,jhu)
1021 : !> - Added option to filter out atoms from list_b (08.2018, A. Bussy)
1022 : !> \author MK
1023 : !> \version 2.0
1024 : ! **************************************************************************************************
1025 117379 : SUBROUTINE build_neighbor_lists(ab_list, particle_set, atom, cell, pair_radius, subcells, &
1026 : mic, symmetric, molecular, subset_of_mol, current_subset, &
1027 117379 : operator_type, nlname, atomb_to_keep)
1028 :
1029 : TYPE(neighbor_list_set_p_type), DIMENSION(:), &
1030 : POINTER :: ab_list
1031 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
1032 : TYPE(local_atoms_type), DIMENSION(:), INTENT(IN) :: atom
1033 : TYPE(cell_type), POINTER :: cell
1034 : REAL(dp), DIMENSION(:, :), INTENT(IN) :: pair_radius
1035 : REAL(dp), INTENT(IN) :: subcells
1036 : LOGICAL, INTENT(IN), OPTIONAL :: mic, symmetric, molecular
1037 : INTEGER, DIMENSION(:), OPTIONAL, POINTER :: subset_of_mol
1038 : INTEGER, OPTIONAL :: current_subset
1039 : CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: operator_type
1040 : CHARACTER(LEN=*), INTENT(IN) :: nlname
1041 : INTEGER, DIMENSION(:), INTENT(IN), OPTIONAL :: atomb_to_keep
1042 :
1043 : CHARACTER(len=*), PARAMETER :: routineN = 'build_neighbor_lists'
1044 :
1045 : TYPE local_lists
1046 : INTEGER, DIMENSION(:), POINTER :: list
1047 : END TYPE local_lists
1048 :
1049 : INTEGER :: atom_a, atom_b, handle, i, iab, iatom, iatom_local, &
1050 : iatom_subcell, icell, ikind, j, jatom, jatom_local, jcell, jkind, k, &
1051 : kcell, maxat, mol_a, mol_b, nkind, otype, natom, inode, nnode, nentry
1052 : INTEGER, DIMENSION(3) :: cell_b, ncell, nsubcell, periodic
1053 117379 : INTEGER, DIMENSION(:), POINTER :: index_list
1054 : LOGICAL :: include_ab, my_mic, &
1055 : my_molecular, my_symmetric, my_sort_atomb
1056 117379 : LOGICAL, ALLOCATABLE, DIMENSION(:) :: pres_a, pres_b
1057 : REAL(dp) :: rab2, rab2_max, rab_max, rabm, deth, subcell_scale
1058 : REAL(dp), DIMENSION(3) :: r, rab, ra, rb, sab_max, sb, &
1059 : sb_pbc, sb_min, sb_max, rab_pbc, pd, sab_max_guard
1060 117379 : INTEGER, ALLOCATABLE, DIMENSION(:) :: nlista, nlistb
1061 117379 : TYPE(local_lists), DIMENSION(:), POINTER :: lista, listb
1062 : TYPE(neighbor_list_p_type), &
1063 117379 : ALLOCATABLE, DIMENSION(:) :: kind_a
1064 : TYPE(neighbor_list_set_type), POINTER :: neighbor_list_set
1065 : TYPE(subcell_type), DIMENSION(:, :, :), &
1066 117379 : POINTER :: subcell
1067 117379 : REAL(KIND=dp), DIMENSION(:, :), ALLOCATABLE :: r_pbc
1068 : TYPE(neighbor_list_iterator_p_type), &
1069 117379 : DIMENSION(:), POINTER :: nl_iterator
1070 :
1071 117379 : CALL timeset(routineN//"_"//TRIM(nlname), handle)
1072 :
1073 : ! input options
1074 117379 : my_mic = .FALSE.
1075 117379 : IF (PRESENT(mic)) my_mic = mic
1076 117379 : my_symmetric = .TRUE.
1077 117379 : IF (PRESENT(symmetric)) my_symmetric = symmetric
1078 117379 : my_molecular = .FALSE.
1079 : ! if we have a molecular NL, MIC has to be used
1080 117379 : IF (PRESENT(molecular)) my_molecular = molecular
1081 : ! check for operator types
1082 117379 : IF (PRESENT(operator_type)) THEN
1083 : SELECT CASE (operator_type)
1084 : CASE ("AB")
1085 11235 : otype = 1 ! simple overlap
1086 : CASE ("ABC")
1087 11235 : otype = 2 ! for three center operators
1088 11235 : CPASSERT(.NOT. my_molecular)
1089 11235 : my_symmetric = .FALSE.
1090 : CASE ("ABBA")
1091 10149 : otype = 3 ! for separable nonlocal operators
1092 10149 : my_symmetric = .FALSE.
1093 : CASE ("PP")
1094 26139 : otype = 4 ! simple atomic pair potential list
1095 : CASE default
1096 47523 : CPABORT("")
1097 : END SELECT
1098 : ELSE
1099 : ! default is a simple AB neighbor list
1100 : otype = 1
1101 : END IF
1102 117379 : my_sort_atomb = .FALSE.
1103 117379 : IF (PRESENT(atomb_to_keep)) THEN
1104 306 : my_sort_atomb = .TRUE.
1105 : END IF
1106 :
1107 117379 : nkind = SIZE(atom)
1108 : ! Deallocate the old neighbor list structure
1109 117379 : CALL release_neighbor_list_sets(ab_list)
1110 : ! Allocate and initialize the new neighbor list structure
1111 879478 : ALLOCATE (ab_list(nkind*nkind))
1112 644720 : DO iab = 1, SIZE(ab_list)
1113 527341 : NULLIFY (ab_list(iab)%neighbor_list_set)
1114 527341 : ab_list(iab)%nl_size = -1
1115 527341 : ab_list(iab)%nl_start = -1
1116 527341 : ab_list(iab)%nl_end = -1
1117 644720 : NULLIFY (ab_list(iab)%nlist_task)
1118 : END DO
1119 :
1120 : ! Allocate and initialize the kind availability
1121 469516 : ALLOCATE (pres_a(nkind), pres_b(nkind))
1122 351012 : DO ikind = 1, nkind
1123 268163 : pres_a(ikind) = ANY(pair_radius(ikind, :) > 0._dp)
1124 399248 : pres_b(ikind) = ANY(pair_radius(:, ikind) > 0._dp)
1125 : END DO
1126 :
1127 : ! create a copy of the pbc'ed coordinates
1128 117379 : natom = SIZE(particle_set)
1129 352137 : ALLOCATE (r_pbc(3, natom))
1130 740844 : DO i = 1, natom
1131 740844 : r_pbc(1:3, i) = pbc(particle_set(i)%r(1:3), cell)
1132 : END DO
1133 :
1134 : ! setup the local lists of atoms
1135 117379 : maxat = 0
1136 351012 : DO ikind = 1, nkind
1137 351012 : maxat = MAX(maxat, SIZE(atom(ikind)%list))
1138 : END DO
1139 352137 : ALLOCATE (index_list(maxat))
1140 521082 : DO i = 1, maxat
1141 521082 : index_list(i) = i
1142 : END DO
1143 704274 : ALLOCATE (lista(nkind), listb(nkind), nlista(nkind), nlistb(nkind))
1144 351012 : nlista = 0
1145 351012 : nlistb = 0
1146 351012 : DO ikind = 1, nkind
1147 233633 : NULLIFY (lista(ikind)%list, listb(ikind)%list)
1148 117379 : SELECT CASE (otype)
1149 : CASE (1)
1150 138473 : IF (ASSOCIATED(atom(ikind)%list_local_a_index)) THEN
1151 96309 : lista(ikind)%list => atom(ikind)%list_local_a_index
1152 96309 : nlista(ikind) = SIZE(lista(ikind)%list)
1153 : END IF
1154 138473 : IF (ASSOCIATED(atom(ikind)%list_local_b_index)) THEN
1155 138415 : listb(ikind)%list => atom(ikind)%list_local_b_index
1156 138415 : nlistb(ikind) = SIZE(listb(ikind)%list)
1157 : END IF
1158 : CASE (2)
1159 19842 : IF (ASSOCIATED(atom(ikind)%list_local_a_index)) THEN
1160 13120 : lista(ikind)%list => atom(ikind)%list_local_a_index
1161 13120 : nlista(ikind) = SIZE(lista(ikind)%list)
1162 : END IF
1163 19842 : nlistb(ikind) = SIZE(atom(ikind)%list)
1164 19842 : listb(ikind)%list => index_list
1165 : CASE (3)
1166 19390 : CALL combine_lists(lista(ikind)%list, nlista(ikind), ikind, atom)
1167 19390 : nlistb(ikind) = SIZE(atom(ikind)%list)
1168 19390 : listb(ikind)%list => index_list
1169 : CASE (4)
1170 55928 : nlista(ikind) = SIZE(atom(ikind)%list_1d)
1171 55928 : lista(ikind)%list => atom(ikind)%list_1d
1172 55928 : nlistb(ikind) = SIZE(atom(ikind)%list)
1173 55928 : listb(ikind)%list => index_list
1174 : CASE default
1175 233633 : CPABORT("")
1176 : END SELECT
1177 : END DO
1178 :
1179 : ! Determine max. number of local atoms
1180 117379 : maxat = 0
1181 351012 : DO ikind = 1, nkind
1182 351012 : maxat = MAX(maxat, nlista(ikind), nlistb(ikind))
1183 : END DO
1184 1159543 : ALLOCATE (kind_a(2*maxat))
1185 :
1186 : ! Load informations about the simulation cell
1187 117379 : CALL get_cell(cell=cell, periodic=periodic, deth=deth)
1188 :
1189 : ! Loop over all atomic kind pairs
1190 351012 : DO ikind = 1, nkind
1191 233633 : IF (.NOT. pres_a(ikind)) CYCLE
1192 :
1193 834535 : DO jkind = 1, nkind
1194 495613 : IF (.NOT. pres_b(jkind)) CYCLE
1195 :
1196 478847 : iab = ikind + nkind*(jkind - 1)
1197 :
1198 : ! Calculate the square of the maximum interaction distance
1199 478847 : IF (pair_radius(ikind, jkind) <= 0._dp) CYCLE
1200 478803 : rab_max = pair_radius(ikind, jkind)
1201 478803 : IF (otype == 3) THEN
1202 : ! Calculate the square of the maximum interaction distance
1203 : ! for sac_max / ncell this must be the maximum over all kinds
1204 : ! to be correct for three center terms involving different kinds
1205 106224 : rabm = MAXVAL(pair_radius(:, jkind))
1206 : ELSE
1207 : rabm = rab_max
1208 : END IF
1209 478803 : rab2_max = rabm*rabm
1210 :
1211 478803 : pd(1) = plane_distance(1, 0, 0, cell)
1212 478803 : pd(2) = plane_distance(0, 1, 0, cell)
1213 478803 : pd(3) = plane_distance(0, 0, 1, cell)
1214 :
1215 1915212 : sab_max = rabm/pd
1216 1915212 : sab_max_guard = 15.0_dp/pd
1217 :
1218 : ! It makes sense to have fewer subcells for larger systems
1219 478803 : subcell_scale = ((125.0_dp**3)/deth)**(1.0_dp/6.0_dp)
1220 :
1221 : ! guess the number of subcells for optimal performance,
1222 : ! guard against crazy stuff triggered by very small rabm
1223 : nsubcell(:) = INT(MAX(1.0_dp, MIN(0.5_dp*subcells*subcell_scale/sab_max(:), &
1224 1915212 : 0.5_dp*subcells*subcell_scale/sab_max_guard(:))))
1225 :
1226 : ! number of image cells to be considered
1227 1915212 : ncell(:) = (INT(sab_max(:)) + 1)*periodic(:)
1228 :
1229 : CALL allocate_neighbor_list_set(neighbor_list_set=ab_list(iab)%neighbor_list_set, &
1230 478803 : symmetric=my_symmetric)
1231 478803 : neighbor_list_set => ab_list(iab)%neighbor_list_set
1232 :
1233 1193245 : DO iatom_local = 1, nlista(ikind)
1234 714442 : iatom = lista(ikind)%list(iatom_local)
1235 714442 : atom_a = atom(ikind)%list(iatom)
1236 : CALL add_neighbor_list(neighbor_list_set=neighbor_list_set, &
1237 : atom=atom_a, &
1238 1193245 : neighbor_list=kind_a(iatom_local)%neighbor_list)
1239 : END DO
1240 :
1241 478803 : CALL allocate_subcell(subcell, nsubcell)
1242 1193245 : DO iatom_local = 1, nlista(ikind)
1243 714442 : iatom = lista(ikind)%list(iatom_local)
1244 714442 : atom_a = atom(ikind)%list(iatom)
1245 2857768 : r = r_pbc(:, atom_a)
1246 714442 : CALL give_ijk_subcell(r, i, j, k, cell, nsubcell)
1247 1193245 : subcell(i, j, k)%natom = subcell(i, j, k)%natom + 1
1248 : END DO
1249 1419250 : DO k = 1, nsubcell(3)
1250 3508491 : DO j = 1, nsubcell(2)
1251 8753755 : DO i = 1, nsubcell(1)
1252 5724067 : maxat = subcell(i, j, k)%natom + subcell(i, j, k)%natom/10
1253 11929900 : ALLOCATE (subcell(i, j, k)%atom_list(maxat))
1254 7813308 : subcell(i, j, k)%natom = 0
1255 : END DO
1256 : END DO
1257 : END DO
1258 1193245 : DO iatom_local = 1, nlista(ikind)
1259 714442 : iatom = lista(ikind)%list(iatom_local)
1260 714442 : atom_a = atom(ikind)%list(iatom)
1261 2857768 : r = r_pbc(:, atom_a)
1262 714442 : CALL give_ijk_subcell(r, i, j, k, cell, nsubcell)
1263 714442 : subcell(i, j, k)%natom = subcell(i, j, k)%natom + 1
1264 1193245 : subcell(i, j, k)%atom_list(subcell(i, j, k)%natom) = iatom_local
1265 : END DO
1266 :
1267 1812191 : DO jatom_local = 1, nlistb(jkind)
1268 1333388 : jatom = listb(jkind)%list(jatom_local)
1269 1333388 : atom_b = atom(jkind)%list(jatom)
1270 1333388 : IF (my_sort_atomb .AND. .NOT. my_symmetric) THEN
1271 6270 : IF (.NOT. ANY(atomb_to_keep == atom_b)) CYCLE
1272 : END IF
1273 1330914 : IF (my_molecular) THEN
1274 3268 : mol_b = atom(jkind)%list_b_mol(jatom_local)
1275 3268 : IF (PRESENT(subset_of_mol)) THEN
1276 1340 : IF (subset_of_mol(mol_b) .NE. current_subset) CYCLE
1277 : END IF
1278 : END IF
1279 5320872 : r = r_pbc(:, atom_b)
1280 1330218 : CALL real_to_scaled(sb_pbc(:), r(:), cell)
1281 :
1282 4956684 : loop2_kcell: DO kcell = -ncell(3), ncell(3)
1283 3416770 : sb(3) = sb_pbc(3) + REAL(kcell, dp)
1284 3416770 : sb_min(3) = sb(3) - sab_max(3)
1285 3416770 : sb_max(3) = sb(3) + sab_max(3)
1286 3416770 : IF (periodic(3) /= 0) THEN
1287 2683998 : IF (sb_min(3) >= 0.5_dp) EXIT loop2_kcell
1288 2414891 : IF (sb_max(3) < -0.5_dp) CYCLE loop2_kcell
1289 : END IF
1290 2884405 : cell_b(3) = kcell
1291 :
1292 16197265 : loop2_jcell: DO jcell = -ncell(2), ncell(2)
1293 12839009 : sb(2) = sb_pbc(2) + REAL(jcell, dp)
1294 12839009 : sb_min(2) = sb(2) - sab_max(2)
1295 12839009 : sb_max(2) = sb(2) + sab_max(2)
1296 12839009 : IF (periodic(2) /= 0) THEN
1297 12105011 : IF (sb_min(2) >= 0.5_dp) EXIT loop2_jcell
1298 11245474 : IF (sb_max(2) < -0.5_dp) CYCLE loop2_jcell
1299 : END IF
1300 11088205 : cell_b(2) = jcell
1301 :
1302 85113085 : loop2_icell: DO icell = -ncell(1), ncell(1)
1303 75309387 : sb(1) = sb_pbc(1) + REAL(icell, dp)
1304 75309387 : sb_min(1) = sb(1) - sab_max(1)
1305 75309387 : sb_max(1) = sb(1) + sab_max(1)
1306 75309387 : IF (periodic(1) /= 0) THEN
1307 74512227 : IF (sb_min(1) >= 0.5_dp) EXIT loop2_icell
1308 70080057 : IF (sb_max(1) < -0.5_dp) CYCLE loop2_icell
1309 : END IF
1310 67065125 : cell_b(1) = icell
1311 :
1312 67065125 : CALL scaled_to_real(rb, sb, cell)
1313 :
1314 161094078 : loop_k: DO k = 1, nsubcell(3)
1315 267114610 : loop_j: DO j = 1, nsubcell(2)
1316 440297145 : loop_i: DO i = 1, nsubcell(1)
1317 :
1318 : ! FIXME for non-periodic systems, the whole subcell trick is skipped
1319 : ! yielding a Natom**2 pair list build.
1320 260483324 : IF (periodic(3) /= 0) THEN
1321 250262926 : IF (sb_max(3) < subcell(i, j, k)%s_min(3)) EXIT loop_k
1322 247998409 : IF (sb_min(3) >= subcell(i, j, k)%s_max(3)) CYCLE loop_k
1323 : END IF
1324 :
1325 255160925 : IF (periodic(2) /= 0) THEN
1326 244987309 : IF (sb_max(2) < subcell(i, j, k)%s_min(2)) EXIT loop_j
1327 241460216 : IF (sb_min(2) >= subcell(i, j, k)%s_max(2)) CYCLE loop_j
1328 : END IF
1329 :
1330 245889857 : IF (periodic(1) /= 0) THEN
1331 235564243 : IF (sb_max(1) < subcell(i, j, k)%s_min(1)) EXIT loop_i
1332 227149163 : IF (sb_min(1) >= subcell(i, j, k)%s_max(1)) CYCLE loop_i
1333 : END IF
1334 :
1335 212949816 : IF (subcell(i, j, k)%natom == 0) CYCLE
1336 :
1337 426831011 : DO iatom_subcell = 1, subcell(i, j, k)%natom
1338 246780320 : iatom_local = subcell(i, j, k)%atom_list(iatom_subcell)
1339 246780320 : iatom = lista(ikind)%list(iatom_local)
1340 246780320 : atom_a = atom(ikind)%list(iatom)
1341 246780320 : IF (my_molecular) THEN
1342 476039 : mol_a = atom(ikind)%list_a_mol(iatom_local)
1343 476039 : IF (mol_a /= mol_b) CYCLE
1344 : END IF
1345 246543833 : IF (my_symmetric) THEN
1346 235396734 : IF (atom_a > atom_b) THEN
1347 109826738 : include_ab = (MODULO(atom_a + atom_b, 2) /= 0)
1348 : ELSE
1349 125569996 : include_ab = (MODULO(atom_a + atom_b, 2) == 0)
1350 : END IF
1351 235396734 : IF (my_sort_atomb) THEN
1352 665572 : IF ((.NOT. ANY(atomb_to_keep == atom_b)) .AND. &
1353 : (.NOT. ANY(atomb_to_keep == atom_a))) THEN
1354 : include_ab = .FALSE.
1355 : END IF
1356 : END IF
1357 : ELSE
1358 : include_ab = .TRUE.
1359 : END IF
1360 472762407 : IF (include_ab) THEN
1361 545232900 : ra(:) = r_pbc(:, atom_a)
1362 545232900 : rab(:) = rb(:) - ra(:)
1363 136308225 : rab2 = rab(1)*rab(1) + rab(2)*rab(2) + rab(3)*rab(3)
1364 136308225 : IF (rab2 < rab2_max) THEN
1365 40749767 : include_ab = .TRUE.
1366 40749767 : IF (my_mic) THEN
1367 : ! only if rab is minimum image the pair will be included
1368 : ! ideally the range of the pair list is < L/2 so
1369 : ! that this never triggers
1370 1332767 : rab_pbc(:) = pbc(rab(:), cell)
1371 5331068 : IF (SUM((rab_pbc - rab)**2) > EPSILON(1.0_dp)) THEN
1372 : include_ab = .FALSE.
1373 : END IF
1374 : END IF
1375 : IF (include_ab) THEN
1376 : CALL add_neighbor_node( &
1377 : neighbor_list=kind_a(iatom_local)%neighbor_list, &
1378 : neighbor=atom_b, &
1379 : cell=cell_b, &
1380 : r=rab, &
1381 39728251 : nkind=nkind)
1382 : END IF
1383 : END IF
1384 : END IF
1385 : END DO
1386 :
1387 : END DO loop_i
1388 : END DO loop_j
1389 : END DO loop_k
1390 :
1391 : END DO loop2_icell
1392 : END DO loop2_jcell
1393 : END DO loop2_kcell
1394 :
1395 : END DO
1396 :
1397 729246 : CALL deallocate_subcell(subcell)
1398 :
1399 : END DO
1400 : END DO
1401 :
1402 10149 : SELECT CASE (otype)
1403 : CASE (1:2, 4)
1404 : CASE (3)
1405 29539 : DO ikind = 1, nkind
1406 29539 : DEALLOCATE (lista(ikind)%list)
1407 : END DO
1408 : CASE default
1409 117379 : CPABORT("")
1410 : END SELECT
1411 117379 : DEALLOCATE (kind_a, pres_a, pres_b, lista, listb, nlista, nlistb)
1412 117379 : DEALLOCATE (index_list)
1413 117379 : DEALLOCATE (r_pbc)
1414 :
1415 117379 : nentry = 0
1416 117379 : CALL neighbor_list_iterator_create(nl_iterator, ab_list)
1417 39845630 : DO WHILE (neighbor_list_iterate(nl_iterator) == 0)
1418 39728251 : CALL get_iterator_info(nl_iterator, inode=inode, nnode=nnode)
1419 39845630 : IF (inode == 1) nentry = nentry + nnode
1420 : END DO
1421 117379 : CALL neighbor_list_iterator_release(nl_iterator)
1422 : !
1423 40778291 : ALLOCATE (ab_list(1)%nlist_task(nentry))
1424 117379 : ab_list(1)%nl_size = nentry
1425 527341 : DO iab = 2, SIZE(ab_list)
1426 409962 : ab_list(iab)%nl_size = nentry
1427 527341 : ab_list(iab)%nlist_task => ab_list(1)%nlist_task
1428 : END DO
1429 : !
1430 117379 : nentry = 0
1431 117379 : CALL neighbor_list_iterator_create(nl_iterator, ab_list)
1432 39845630 : DO WHILE (neighbor_list_iterate(nl_iterator) == 0)
1433 39728251 : nentry = nentry + 1
1434 39728251 : CALL get_iterator_task(nl_iterator, ab_list(1)%nlist_task(nentry))
1435 39728251 : CALL get_iterator_info(nl_iterator, ikind=ikind, jkind=jkind, nkind=nkind)
1436 39728251 : iab = (ikind - 1)*nkind + jkind
1437 39728251 : IF (ab_list(iab)%nl_start < 0) ab_list(iab)%nl_start = nentry
1438 39845630 : IF (ab_list(iab)%nl_end < 0) THEN
1439 317494 : ab_list(iab)%nl_end = nentry
1440 : ELSE
1441 39410757 : CPASSERT(ab_list(iab)%nl_end + 1 == nentry)
1442 39410757 : ab_list(iab)%nl_end = nentry
1443 : END IF
1444 : END DO
1445 117379 : CALL neighbor_list_iterator_release(nl_iterator)
1446 :
1447 117379 : CALL timestop(handle)
1448 :
1449 234758 : END SUBROUTINE build_neighbor_lists
1450 :
1451 : ! **************************************************************************************************
1452 : !> \brief Build a neighborlist
1453 : !> \param ab_list ...
1454 : !> \param basis_set_a ...
1455 : !> \param basis_set_b ...
1456 : !> \param qs_env ...
1457 : !> \param mic ...
1458 : !> \param symmetric ...
1459 : !> \param molecular ...
1460 : !> \param operator_type ...
1461 : !> \date 14.03.2016
1462 : !> \author JGH
1463 : ! **************************************************************************************************
1464 108 : SUBROUTINE setup_neighbor_list(ab_list, basis_set_a, basis_set_b, qs_env, &
1465 : mic, symmetric, molecular, operator_type)
1466 :
1467 : TYPE(neighbor_list_set_p_type), DIMENSION(:), &
1468 : POINTER :: ab_list
1469 : TYPE(gto_basis_set_p_type), DIMENSION(:), POINTER :: basis_set_a
1470 : TYPE(gto_basis_set_p_type), DIMENSION(:), &
1471 : OPTIONAL, POINTER :: basis_set_b
1472 : TYPE(qs_environment_type), POINTER :: qs_env
1473 : LOGICAL, INTENT(IN), OPTIONAL :: mic, symmetric, molecular
1474 : CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: operator_type
1475 :
1476 : CHARACTER(LEN=4) :: otype
1477 : INTEGER :: ikind, nkind
1478 : LOGICAL :: my_mic, my_molecular, my_symmetric
1479 108 : LOGICAL, ALLOCATABLE, DIMENSION(:) :: a_present, b_present
1480 108 : REAL(dp), ALLOCATABLE, DIMENSION(:) :: a_radius, b_radius
1481 108 : REAL(dp), ALLOCATABLE, DIMENSION(:, :) :: pair_radius
1482 108 : TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
1483 : TYPE(cell_type), POINTER :: cell
1484 : TYPE(distribution_1d_type), POINTER :: distribution_1d
1485 : TYPE(distribution_2d_type), POINTER :: distribution_2d
1486 108 : TYPE(gto_basis_set_p_type), DIMENSION(:), POINTER :: basis_a, basis_b
1487 : TYPE(gto_basis_set_type), POINTER :: abas, bbas
1488 108 : TYPE(local_atoms_type), ALLOCATABLE, DIMENSION(:) :: atom2d
1489 108 : TYPE(molecule_type), DIMENSION(:), POINTER :: molecule_set
1490 108 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
1491 :
1492 108 : basis_a => basis_set_a
1493 108 : IF (PRESENT(basis_set_b)) THEN
1494 54 : basis_b => basis_set_b
1495 54 : my_symmetric = .FALSE.
1496 : ELSE
1497 54 : basis_b => basis_set_a
1498 54 : my_symmetric = .TRUE.
1499 : END IF
1500 108 : IF (PRESENT(symmetric)) my_symmetric = symmetric
1501 :
1502 108 : IF (PRESENT(mic)) THEN
1503 4 : my_mic = mic
1504 : ELSE
1505 104 : my_mic = .FALSE.
1506 : END IF
1507 :
1508 108 : IF (PRESENT(molecular)) THEN
1509 8 : my_molecular = molecular
1510 : ELSE
1511 100 : my_molecular = .FALSE.
1512 : END IF
1513 :
1514 108 : IF (PRESENT(operator_type)) THEN
1515 0 : otype = operator_type
1516 : ELSE
1517 : ! default is a simple AB neighbor list
1518 108 : otype = "AB"
1519 : END IF
1520 :
1521 108 : nkind = SIZE(basis_a)
1522 432 : ALLOCATE (a_present(nkind), b_present(nkind))
1523 332 : a_present = .FALSE.
1524 332 : b_present = .FALSE.
1525 432 : ALLOCATE (a_radius(nkind), b_radius(nkind))
1526 332 : a_radius = 0.0_dp
1527 332 : b_radius = 0.0_dp
1528 332 : DO ikind = 1, nkind
1529 224 : IF (ASSOCIATED(basis_a(ikind)%gto_basis_set)) THEN
1530 224 : a_present(ikind) = .TRUE.
1531 224 : abas => basis_a(ikind)%gto_basis_set
1532 224 : CALL get_gto_basis_set(gto_basis_set=abas, kind_radius=a_radius(ikind))
1533 : END IF
1534 332 : IF (ASSOCIATED(basis_b(ikind)%gto_basis_set)) THEN
1535 224 : b_present(ikind) = .TRUE.
1536 224 : bbas => basis_b(ikind)%gto_basis_set
1537 224 : CALL get_gto_basis_set(gto_basis_set=bbas, kind_radius=b_radius(ikind))
1538 : END IF
1539 : END DO
1540 :
1541 432 : ALLOCATE (pair_radius(nkind, nkind))
1542 812 : pair_radius = 0.0_dp
1543 108 : CALL pair_radius_setup(a_present, b_present, a_radius, b_radius, pair_radius)
1544 :
1545 : CALL get_qs_env(qs_env, &
1546 : atomic_kind_set=atomic_kind_set, &
1547 : cell=cell, &
1548 : distribution_2d=distribution_2d, &
1549 : local_particles=distribution_1d, &
1550 : particle_set=particle_set, &
1551 108 : molecule_set=molecule_set)
1552 :
1553 548 : ALLOCATE (atom2d(nkind))
1554 : CALL atom2d_build(atom2d, distribution_1d, distribution_2d, atomic_kind_set, &
1555 108 : molecule_set, my_molecular, particle_set=particle_set)
1556 : CALL build_neighbor_lists(ab_list, particle_set, atom2d, cell, pair_radius, &
1557 : mic=my_mic, symmetric=my_symmetric, molecular=my_molecular, &
1558 108 : subcells=2.0_dp, nlname="AUX_NL")
1559 :
1560 108 : CALL atom2d_cleanup(atom2d)
1561 :
1562 108 : DEALLOCATE (a_present, b_present, a_radius, b_radius, pair_radius, atom2d)
1563 :
1564 108 : END SUBROUTINE setup_neighbor_list
1565 :
1566 : ! **************************************************************************************************
1567 : !> \brief ...
1568 : !> \param list ...
1569 : !> \param n ...
1570 : !> \param ikind ...
1571 : !> \param atom ...
1572 : ! **************************************************************************************************
1573 19390 : SUBROUTINE combine_lists(list, n, ikind, atom)
1574 : INTEGER, DIMENSION(:), POINTER :: list
1575 : INTEGER, INTENT(OUT) :: n
1576 : INTEGER, INTENT(IN) :: ikind
1577 : TYPE(local_atoms_type), DIMENSION(:), INTENT(IN) :: atom
1578 :
1579 : INTEGER :: i, ib, na, nb
1580 19390 : INTEGER, DIMENSION(:), POINTER :: lista, listb
1581 :
1582 0 : CPASSERT(.NOT. ASSOCIATED(list))
1583 :
1584 19390 : lista => atom(ikind)%list_local_a_index
1585 19390 : listb => atom(ikind)%list_local_b_index
1586 :
1587 19390 : IF (ASSOCIATED(lista)) THEN
1588 12221 : na = SIZE(lista)
1589 : ELSE
1590 : na = 0
1591 : END IF
1592 :
1593 19390 : IF (ASSOCIATED(listb)) THEN
1594 19390 : nb = SIZE(listb)
1595 : ELSE
1596 : nb = 0
1597 : END IF
1598 :
1599 58170 : ALLOCATE (list(na + nb))
1600 :
1601 19390 : n = na
1602 70465 : IF (na .GT. 0) list(1:na) = lista(1:na)
1603 19390 : IF (nb .GT. 0) THEN
1604 57635 : loopb: DO ib = 1, nb
1605 79683 : DO i = 1, na
1606 79683 : IF (listb(ib) == list(i)) CYCLE loopb
1607 : END DO
1608 18818 : n = n + 1
1609 57635 : list(n) = listb(ib)
1610 : END DO loopb
1611 : END IF
1612 19390 : END SUBROUTINE combine_lists
1613 :
1614 : ! **************************************************************************************************
1615 :
1616 : ! **************************************************************************************************
1617 : !> \brief ...
1618 : !> \param present_a ...
1619 : !> \param present_b ...
1620 : !> \param radius_a ...
1621 : !> \param radius_b ...
1622 : !> \param pair_radius ...
1623 : !> \param prmin ...
1624 : ! **************************************************************************************************
1625 101170 : SUBROUTINE pair_radius_setup(present_a, present_b, radius_a, radius_b, pair_radius, prmin)
1626 : LOGICAL, DIMENSION(:), INTENT(IN) :: present_a, present_b
1627 : REAL(dp), DIMENSION(:), INTENT(IN) :: radius_a, radius_b
1628 : REAL(dp), DIMENSION(:, :), INTENT(OUT) :: pair_radius
1629 : REAL(dp), INTENT(IN), OPTIONAL :: prmin
1630 :
1631 : INTEGER :: i, j, nkind
1632 : REAL(dp) :: rrmin
1633 :
1634 101170 : nkind = SIZE(present_a)
1635 :
1636 757742 : pair_radius = 0._dp
1637 :
1638 101170 : rrmin = 0.0_dp
1639 101170 : IF (PRESENT(prmin)) rrmin = prmin
1640 :
1641 302717 : DO i = 1, nkind
1642 201547 : IF (.NOT. present_a(i)) CYCLE
1643 714356 : DO j = 1, nkind
1644 423601 : IF (.NOT. present_b(j)) CYCLE
1645 406537 : pair_radius(i, j) = radius_a(i) + radius_b(j)
1646 625148 : pair_radius(i, j) = MAX(pair_radius(i, j), rrmin)
1647 : END DO
1648 : END DO
1649 :
1650 101170 : END SUBROUTINE pair_radius_setup
1651 :
1652 : ! **************************************************************************************************
1653 : !> \brief Print the distribution of the simple pair neighbor list.
1654 : !> \param ab ...
1655 : !> \param qs_kind_set ...
1656 : !> \param output_unit ...
1657 : !> \param para_env ...
1658 : !> \date 19.06.2003
1659 : !> \author MK
1660 : !> \version 1.0
1661 : ! **************************************************************************************************
1662 138 : SUBROUTINE write_neighbor_distribution(ab, qs_kind_set, output_unit, para_env)
1663 : TYPE(neighbor_list_set_p_type), DIMENSION(:), &
1664 : POINTER :: ab
1665 : TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
1666 : INTEGER, INTENT(in) :: output_unit
1667 : TYPE(mp_para_env_type), POINTER :: para_env
1668 :
1669 : CHARACTER(len=*), PARAMETER :: routineN = 'write_neighbor_distribution'
1670 : LOGICAL, PARAMETER :: full_output = .FALSE.
1671 :
1672 : INTEGER :: handle, ikind, inode, ipe, jkind, n, &
1673 : nkind, nnode
1674 : INTEGER(int_8) :: nblock_max, nblock_sum, nelement_max, &
1675 : nelement_sum, tmp(2)
1676 138 : INTEGER, ALLOCATABLE, DIMENSION(:) :: nblock, nelement, nnsgf
1677 : TYPE(gto_basis_set_type), POINTER :: orb_basis_set
1678 : TYPE(neighbor_list_iterator_p_type), &
1679 138 : DIMENSION(:), POINTER :: nl_iterator
1680 :
1681 138 : CALL timeset(routineN, handle)
1682 : ASSOCIATE (mype => para_env%mepos + 1, npe => para_env%num_pe)
1683 :
1684 : ! Allocate work storage
1685 552 : ALLOCATE (nblock(npe), nelement(npe))
1686 414 : nblock(:) = 0
1687 414 : nelement(:) = 0
1688 138 : nkind = SIZE(qs_kind_set)
1689 414 : ALLOCATE (nnsgf(nkind))
1690 372 : nnsgf = 1
1691 372 : DO ikind = 1, nkind
1692 234 : CALL get_qs_kind(qs_kind_set(ikind), basis_set=orb_basis_set)
1693 372 : IF (ASSOCIATED(orb_basis_set)) THEN
1694 182 : CALL get_gto_basis_set(gto_basis_set=orb_basis_set, nsgf=nnsgf(ikind))
1695 : END IF
1696 : END DO
1697 :
1698 138 : CALL neighbor_list_iterator_create(nl_iterator, ab)
1699 42740 : DO WHILE (neighbor_list_iterate(nl_iterator) == 0)
1700 42602 : CALL get_iterator_info(nl_iterator, ikind=ikind, jkind=jkind, inode=inode, nnode=nnode)
1701 42740 : IF (inode == 1) THEN
1702 1065 : n = nnsgf(ikind)*nnsgf(jkind)
1703 1065 : nblock(mype) = nblock(mype) + nnode
1704 1065 : nelement(mype) = nelement(mype) + n*nnode
1705 : END IF
1706 : END DO
1707 138 : CALL neighbor_list_iterator_release(nl_iterator)
1708 :
1709 : IF (full_output) THEN
1710 : ! XXXXXXXX should gather/scatter this on ionode
1711 : CALL para_env%sum(nblock)
1712 : CALL para_env%sum(nelement)
1713 :
1714 : nblock_sum = SUM(INT(nblock, KIND=int_8))
1715 : nelement_sum = SUM(INT(nelement, KIND=int_8))
1716 : ELSE
1717 138 : nblock_sum = nblock(mype)
1718 : nblock_max = nblock(mype)
1719 138 : nelement_sum = nelement(mype)
1720 : nelement_max = nelement(mype)
1721 414 : tmp = (/nblock_sum, nelement_sum/)
1722 138 : CALL para_env%sum(tmp)
1723 138 : nblock_sum = tmp(1); nelement_sum = tmp(2)
1724 414 : tmp = (/nblock_max, nelement_max/)
1725 138 : CALL para_env%max(tmp)
1726 138 : nblock_max = tmp(1); nelement_max = tmp(2)
1727 : END IF
1728 :
1729 276 : IF (output_unit > 0) THEN
1730 : IF (full_output) THEN
1731 : WRITE (UNIT=output_unit, &
1732 : FMT="(/,/,T2,A,/,/,T3,A,/,/,(T4,I6,T27,I10,T55,I10))") &
1733 : "DISTRIBUTION OF THE NEIGHBOR LISTS", &
1734 : "Process Number of particle pairs Number of matrix elements", &
1735 : (ipe - 1, nblock(ipe), nelement(ipe), ipe=1, npe)
1736 : WRITE (UNIT=output_unit, FMT="(/,T7,A3,T27,I10,T55,I10)") &
1737 : "Sum", SUM(nblock), SUM(nelement)
1738 : ELSE
1739 69 : WRITE (UNIT=output_unit, FMT="(/,T2,A)") "DISTRIBUTION OF THE NEIGHBOR LISTS"
1740 69 : WRITE (UNIT=output_unit, FMT="(T15,A,T68,I13)") "Total number of particle pairs:", nblock_sum
1741 69 : WRITE (UNIT=output_unit, FMT="(T15,A,T68,I13)") "Total number of matrix elements:", nelement_sum
1742 69 : WRITE (UNIT=output_unit, FMT="(T15,A,T68,I13)") "Average number of particle pairs:", (nblock_sum + npe - 1)/npe
1743 69 : WRITE (UNIT=output_unit, FMT="(T15,A,T68,I13)") "Maximum number of particle pairs:", nblock_max
1744 69 : WRITE (UNIT=output_unit, FMT="(T15,A,T68,I13)") "Average number of matrix element:", (nelement_sum + npe - 1)/npe
1745 69 : WRITE (UNIT=output_unit, FMT="(T15,A,T68,I13)") "Maximum number of matrix elements:", nelement_max
1746 : END IF
1747 : END IF
1748 : END ASSOCIATE
1749 :
1750 : ! Release work storage
1751 :
1752 138 : DEALLOCATE (nblock, nelement, nnsgf)
1753 :
1754 138 : CALL timestop(handle)
1755 :
1756 138 : END SUBROUTINE write_neighbor_distribution
1757 :
1758 : ! **************************************************************************************************
1759 : !> \brief Write a set of neighbor lists to the output unit.
1760 : !> \param ab ...
1761 : !> \param particle_set ...
1762 : !> \param cell ...
1763 : !> \param para_env ...
1764 : !> \param neighbor_list_section ...
1765 : !> \param nl_type ...
1766 : !> \param middle_name ...
1767 : !> \param nlname ...
1768 : !> \date 04.03.2002
1769 : !> \par History
1770 : !> - Adapted to the new parallelized neighbor list version
1771 : !> (26.06.2003,MK)
1772 : !> \author MK
1773 : !> \version 1.0
1774 : ! **************************************************************************************************
1775 67192 : SUBROUTINE write_neighbor_lists(ab, particle_set, cell, para_env, neighbor_list_section, &
1776 : nl_type, middle_name, nlname)
1777 :
1778 : TYPE(neighbor_list_set_p_type), DIMENSION(:), &
1779 : POINTER :: ab
1780 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
1781 : TYPE(cell_type), POINTER :: cell
1782 : TYPE(mp_para_env_type), POINTER :: para_env
1783 : TYPE(section_vals_type), POINTER :: neighbor_list_section
1784 : CHARACTER(LEN=*), INTENT(IN) :: nl_type, middle_name, nlname
1785 :
1786 : CHARACTER(LEN=default_string_length) :: string, unit_str
1787 : INTEGER :: iatom, inode, iw, jatom, nneighbor, nnode
1788 : INTEGER, DIMENSION(3) :: cell_b
1789 : REAL(dp) :: dab, unit_conv
1790 : REAL(dp), DIMENSION(3) :: ra, rab, rb
1791 : TYPE(cp_logger_type), POINTER :: logger
1792 : TYPE(neighbor_list_iterator_p_type), &
1793 67192 : DIMENSION(:), POINTER :: nl_iterator
1794 :
1795 67192 : NULLIFY (logger)
1796 67192 : logger => cp_get_default_logger()
1797 67192 : IF (BTEST(cp_print_key_should_output(logger%iter_info, neighbor_list_section, &
1798 : TRIM(nl_type)), &
1799 : cp_p_file)) THEN
1800 : iw = cp_print_key_unit_nr(logger=logger, &
1801 : basis_section=neighbor_list_section, &
1802 : print_key_path=TRIM(nl_type), &
1803 : extension=".out", &
1804 : middle_name=TRIM(middle_name), &
1805 : local=.TRUE., &
1806 : log_filename=.FALSE., &
1807 4 : file_position="REWIND")
1808 : ASSOCIATE (mype => para_env%mepos)
1809 4 : CALL section_vals_val_get(neighbor_list_section, "UNIT", c_val=unit_str)
1810 4 : unit_conv = cp_unit_from_cp2k(1.0_dp, TRIM(unit_str))
1811 :
1812 : ! Print headline
1813 4 : string = ""
1814 : WRITE (UNIT=string, FMT="(A,I5,A)") &
1815 4 : TRIM(nlname)//" IN "//TRIM(unit_str)//" (PROCESS", mype, ")"
1816 4 : CALL compress(string)
1817 4 : IF (iw > 0) WRITE (UNIT=iw, FMT="(/,/,T2,A)") TRIM(string)
1818 :
1819 4 : nneighbor = 0
1820 :
1821 4 : CALL neighbor_list_iterator_create(nl_iterator, ab)
1822 16 : DO WHILE (neighbor_list_iterate(nl_iterator) == 0)
1823 : CALL get_iterator_info(nl_iterator, inode=inode, nnode=nnode, &
1824 12 : iatom=iatom, jatom=jatom, cell=cell_b, r=rab)
1825 12 : nneighbor = nneighbor + 1
1826 12 : ra(:) = pbc(particle_set(iatom)%r, cell)
1827 48 : rb(:) = ra(:) + rab(:)
1828 12 : dab = SQRT(rab(1)*rab(1) + rab(2)*rab(2) + rab(3)*rab(3))
1829 16 : IF (iw > 0) THEN
1830 12 : IF (inode == 1) THEN
1831 : WRITE (UNIT=iw, FMT="(/,T2,I5,3X,I6,3X,3F12.6)") &
1832 40 : iatom, nnode, ra(1:3)*unit_conv
1833 : END IF
1834 : WRITE (UNIT=iw, FMT="(T10,I6,3X,3I4,3F12.6,2X,F12.6)") &
1835 60 : jatom, cell_b(1:3), rb(1:3)*unit_conv, dab*unit_conv
1836 : END IF
1837 : END DO
1838 4 : CALL neighbor_list_iterator_release(nl_iterator)
1839 :
1840 4 : string = ""
1841 : WRITE (UNIT=string, FMT="(A,I12,A,I12)") &
1842 4 : "Total number of neighbor interactions for process", mype, ":", &
1843 8 : nneighbor
1844 4 : CALL compress(string)
1845 4 : IF (iw > 0) WRITE (UNIT=iw, FMT="(/,T2,A)") TRIM(string)
1846 : CALL cp_print_key_finished_output(unit_nr=iw, &
1847 : logger=logger, &
1848 : basis_section=neighbor_list_section, &
1849 : print_key_path=TRIM(nl_type), &
1850 8 : local=.TRUE.)
1851 : END ASSOCIATE
1852 : END IF
1853 :
1854 67192 : END SUBROUTINE write_neighbor_lists
1855 :
1856 0 : END MODULE qs_neighbor_lists
|