LCOV - code coverage report
Current view: top level - src - qs_scf_post_tb.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:2fce0f8) Lines: 690 762 90.6 %
Date: 2024-12-21 06:28:57 Functions: 9 9 100.0 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2024 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief Does all kind of post scf calculations for DFTB
      10             : !> \par History
      11             : !>      Started as a copy from the GPW file
      12             : !>      - Revise MO information printout (10.05.2021, MK)
      13             : !> \author JHU (03.2013)
      14             : ! **************************************************************************************************
      15             : MODULE qs_scf_post_tb
      16             :    USE atomic_kind_types,               ONLY: atomic_kind_type,&
      17             :                                               get_atomic_kind
      18             :    USE cell_types,                      ONLY: cell_type,&
      19             :                                               pbc
      20             :    USE cp_array_utils,                  ONLY: cp_1d_r_p_type
      21             :    USE cp_blacs_env,                    ONLY: cp_blacs_env_type
      22             :    USE cp_control_types,                ONLY: dft_control_type
      23             :    USE cp_dbcsr_api,                    ONLY: dbcsr_p_type,&
      24             :                                               dbcsr_type
      25             :    USE cp_dbcsr_operations,             ONLY: copy_dbcsr_to_fm
      26             :    USE cp_dbcsr_output,                 ONLY: cp_dbcsr_write_sparse_matrix
      27             :    USE cp_fm_cholesky,                  ONLY: cp_fm_cholesky_decompose,&
      28             :                                               cp_fm_cholesky_reduce,&
      29             :                                               cp_fm_cholesky_restore
      30             :    USE cp_fm_diag,                      ONLY: choose_eigv_solver
      31             :    USE cp_fm_struct,                    ONLY: cp_fm_struct_create,&
      32             :                                               cp_fm_struct_release,&
      33             :                                               cp_fm_struct_type
      34             :    USE cp_fm_types,                     ONLY: cp_fm_create,&
      35             :                                               cp_fm_get_info,&
      36             :                                               cp_fm_init_random,&
      37             :                                               cp_fm_release,&
      38             :                                               cp_fm_to_fm_submat,&
      39             :                                               cp_fm_type
      40             :    USE cp_log_handling,                 ONLY: cp_get_default_logger,&
      41             :                                               cp_logger_get_default_io_unit,&
      42             :                                               cp_logger_type
      43             :    USE cp_output_handling,              ONLY: cp_p_file,&
      44             :                                               cp_print_key_finished_output,&
      45             :                                               cp_print_key_should_output,&
      46             :                                               cp_print_key_unit_nr
      47             :    USE cp_realspace_grid_cube,          ONLY: cp_pw_to_cube
      48             :    USE cp_result_methods,               ONLY: cp_results_erase,&
      49             :                                               put_results
      50             :    USE cp_result_types,                 ONLY: cp_result_type
      51             :    USE eeq_input,                       ONLY: eeq_solver_type
      52             :    USE eeq_method,                      ONLY: eeq_charges,&
      53             :                                               eeq_print
      54             :    USE input_constants,                 ONLY: ot_precond_full_all
      55             :    USE input_section_types,             ONLY: section_get_ival,&
      56             :                                               section_get_ivals,&
      57             :                                               section_get_lval,&
      58             :                                               section_get_rval,&
      59             :                                               section_vals_get,&
      60             :                                               section_vals_get_subs_vals,&
      61             :                                               section_vals_type,&
      62             :                                               section_vals_val_get
      63             :    USE kinds,                           ONLY: default_path_length,&
      64             :                                               default_string_length,&
      65             :                                               dp
      66             :    USE kpoint_types,                    ONLY: kpoint_type
      67             :    USE machine,                         ONLY: m_flush
      68             :    USE mathconstants,                   ONLY: twopi
      69             :    USE memory_utilities,                ONLY: reallocate
      70             :    USE message_passing,                 ONLY: mp_para_env_type
      71             :    USE molden_utils,                    ONLY: write_mos_molden
      72             :    USE moments_utils,                   ONLY: get_reference_point
      73             :    USE mulliken,                        ONLY: mulliken_charges
      74             :    USE particle_list_types,             ONLY: particle_list_type
      75             :    USE particle_types,                  ONLY: particle_type
      76             :    USE physcon,                         ONLY: debye
      77             :    USE population_analyses,             ONLY: lowdin_population_analysis
      78             :    USE preconditioner_types,            ONLY: preconditioner_type
      79             :    USE pw_env_methods,                  ONLY: pw_env_create,&
      80             :                                               pw_env_rebuild
      81             :    USE pw_env_types,                    ONLY: pw_env_get,&
      82             :                                               pw_env_release,&
      83             :                                               pw_env_type
      84             :    USE pw_grid_types,                   ONLY: pw_grid_type
      85             :    USE pw_methods,                      ONLY: pw_axpy,&
      86             :                                               pw_copy,&
      87             :                                               pw_derive,&
      88             :                                               pw_scale,&
      89             :                                               pw_transfer,&
      90             :                                               pw_zero
      91             :    USE pw_poisson_types,                ONLY: do_ewald_none,&
      92             :                                               greens_fn_type,&
      93             :                                               pw_green_create,&
      94             :                                               pw_green_release,&
      95             :                                               pw_poisson_analytic,&
      96             :                                               pw_poisson_parameter_type
      97             :    USE pw_pool_types,                   ONLY: pw_pool_p_type,&
      98             :                                               pw_pool_type
      99             :    USE pw_types,                        ONLY: pw_c1d_gs_type,&
     100             :                                               pw_r3d_rs_type
     101             :    USE qs_collocate_density,            ONLY: calculate_rho_core,&
     102             :                                               calculate_rho_elec,&
     103             :                                               calculate_wavefunction
     104             :    USE qs_dftb_types,                   ONLY: qs_dftb_atom_type
     105             :    USE qs_dftb_utils,                   ONLY: get_dftb_atom_param
     106             :    USE qs_dos,                          ONLY: calculate_dos,&
     107             :                                               calculate_dos_kp
     108             :    USE qs_elf_methods,                  ONLY: qs_elf_calc
     109             :    USE qs_energy_window,                ONLY: energy_windows
     110             :    USE qs_environment_types,            ONLY: get_qs_env,&
     111             :                                               qs_environment_type
     112             :    USE qs_kind_types,                   ONLY: get_qs_kind,&
     113             :                                               qs_kind_type
     114             :    USE qs_ks_types,                     ONLY: get_ks_env,&
     115             :                                               qs_ks_env_type,&
     116             :                                               set_ks_env
     117             :    USE qs_mo_methods,                   ONLY: calculate_subspace_eigenvalues,&
     118             :                                               make_mo_eig
     119             :    USE qs_mo_occupation,                ONLY: set_mo_occupation
     120             :    USE qs_mo_types,                     ONLY: get_mo_set,&
     121             :                                               mo_set_type
     122             :    USE qs_ot_eigensolver,               ONLY: ot_eigensolver
     123             :    USE qs_pdos,                         ONLY: calculate_projected_dos
     124             :    USE qs_rho_methods,                  ONLY: qs_rho_rebuild
     125             :    USE qs_rho_types,                    ONLY: qs_rho_get,&
     126             :                                               qs_rho_set,&
     127             :                                               qs_rho_type
     128             :    USE qs_scf_csr_write,                ONLY: write_ks_matrix_csr,&
     129             :                                               write_s_matrix_csr
     130             :    USE qs_scf_output,                   ONLY: qs_scf_write_mos
     131             :    USE qs_scf_types,                    ONLY: ot_method_nr,&
     132             :                                               qs_scf_env_type
     133             :    USE qs_scf_wfn_mix,                  ONLY: wfn_mix
     134             :    USE qs_subsys_types,                 ONLY: qs_subsys_get,&
     135             :                                               qs_subsys_type
     136             :    USE scf_control_types,               ONLY: scf_control_type
     137             :    USE stm_images,                      ONLY: th_stm_image
     138             :    USE task_list_methods,               ONLY: generate_qs_task_list
     139             :    USE task_list_types,                 ONLY: allocate_task_list,&
     140             :                                               task_list_type
     141             :    USE xtb_types,                       ONLY: get_xtb_atom_param,&
     142             :                                               xtb_atom_type
     143             : #include "./base/base_uses.f90"
     144             : 
     145             :    IMPLICIT NONE
     146             :    PRIVATE
     147             : 
     148             :    ! Global parameters
     149             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'qs_scf_post_tb'
     150             :    PUBLIC :: scf_post_calculation_tb, make_lumo_tb
     151             : 
     152             : ! **************************************************************************************************
     153             : 
     154             : CONTAINS
     155             : 
     156             : ! **************************************************************************************************
     157             : !> \brief collects possible post - scf calculations and prints info / computes properties.
     158             : !> \param qs_env ...
     159             : !> \param tb_type ...
     160             : !> \param no_mos ...
     161             : !> \par History
     162             : !>      03.2013 copy of scf_post_gpw
     163             : !> \author JHU
     164             : !> \note
     165             : ! **************************************************************************************************
     166        6260 :    SUBROUTINE scf_post_calculation_tb(qs_env, tb_type, no_mos)
     167             : 
     168             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     169             :       CHARACTER(LEN=*)                                   :: tb_type
     170             :       LOGICAL, INTENT(IN)                                :: no_mos
     171             : 
     172             :       CHARACTER(len=*), PARAMETER :: routineN = 'scf_post_calculation_tb'
     173             : 
     174             :       CHARACTER(LEN=6)                                   :: ana
     175             :       CHARACTER(LEN=default_string_length)               :: aname
     176             :       INTEGER :: after, enshift_type, handle, homo, iat, iatom, ikind, img, ispin, iw, nat, natom, &
     177             :          nkind, nlumo_stm, nlumos, nspins, print_level, unit_nr
     178             :       LOGICAL                                            :: do_cube, do_kpoints, explicit, has_homo, &
     179             :                                                             omit_headers, print_it, rebuild
     180             :       REAL(KIND=dp)                                      :: zeff
     181        6260 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: echarge, mcharge
     182             :       REAL(KIND=dp), DIMENSION(2, 2)                     :: homo_lumo
     183        6260 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: mo_eigenvalues
     184        6260 :       REAL(KIND=dp), DIMENSION(:, :), POINTER            :: charges
     185        6260 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
     186             :       TYPE(cell_type), POINTER                           :: cell
     187        6260 :       TYPE(cp_1d_r_p_type), DIMENSION(:), POINTER        :: unoccupied_evals_stm
     188        6260 :       TYPE(cp_fm_type), DIMENSION(:), POINTER            :: unoccupied_orbs_stm
     189             :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
     190             :       TYPE(cp_logger_type), POINTER                      :: logger
     191        6260 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: ks_rmpv, mo_derivs
     192        6260 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: matrix_ks, matrix_p, matrix_s
     193             :       TYPE(dbcsr_type), POINTER                          :: mo_coeff_deriv
     194             :       TYPE(dft_control_type), POINTER                    :: dft_control
     195             :       TYPE(eeq_solver_type)                              :: eeq_sparam
     196             :       TYPE(kpoint_type), POINTER                         :: kpoints
     197        6260 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
     198             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     199             :       TYPE(particle_list_type), POINTER                  :: particles
     200        6260 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     201             :       TYPE(qs_dftb_atom_type), POINTER                   :: dftb_kind
     202        6260 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     203             :       TYPE(qs_rho_type), POINTER                         :: rho
     204             :       TYPE(qs_scf_env_type), POINTER                     :: scf_env
     205             :       TYPE(qs_subsys_type), POINTER                      :: subsys
     206             :       TYPE(scf_control_type), POINTER                    :: scf_control
     207             :       TYPE(section_vals_type), POINTER                   :: dft_section, moments_section, print_key, &
     208             :                                                             print_section, sprint_section, &
     209             :                                                             wfn_mix_section
     210             :       TYPE(xtb_atom_type), POINTER                       :: xtb_kind
     211             : 
     212        6260 :       CALL timeset(routineN, handle)
     213             : 
     214        6260 :       logger => cp_get_default_logger()
     215             : 
     216        6260 :       CPASSERT(ASSOCIATED(qs_env))
     217        6260 :       NULLIFY (dft_control, rho, para_env, matrix_s, matrix_p)
     218             :       CALL get_qs_env(qs_env, scf_env=scf_env, atomic_kind_set=atomic_kind_set, qs_kind_set=qs_kind_set, &
     219             :                       dft_control=dft_control, rho=rho, natom=natom, para_env=para_env, &
     220        6260 :                       particle_set=particle_set, do_kpoints=do_kpoints, matrix_s_kp=matrix_s)
     221        6260 :       nspins = dft_control%nspins
     222        6260 :       CALL qs_rho_get(rho, rho_ao_kp=matrix_p)
     223             :       ! Mulliken charges
     224       37560 :       ALLOCATE (charges(natom, nspins), mcharge(natom))
     225             :       !
     226        6260 :       CALL mulliken_charges(matrix_p, matrix_s, para_env, charges)
     227             :       !
     228        6260 :       nkind = SIZE(atomic_kind_set)
     229       20794 :       DO ikind = 1, nkind
     230       14534 :          CALL get_atomic_kind(atomic_kind_set(ikind), natom=nat)
     231       18800 :          SELECT CASE (TRIM(tb_type))
     232             :          CASE ("DFTB")
     233        4266 :             CALL get_qs_kind(qs_kind_set(ikind), dftb_parameter=dftb_kind)
     234       14534 :             CALL get_dftb_atom_param(dftb_kind, zeff=zeff)
     235             :          CASE ("xTB")
     236       10268 :             CALL get_qs_kind(qs_kind_set(ikind), xtb_parameter=xtb_kind)
     237       10268 :             CALL get_xtb_atom_param(xtb_kind, zeff=zeff)
     238             :          CASE DEFAULT
     239       29068 :             CPABORT("unknown TB type")
     240             :          END SELECT
     241       94524 :          DO iatom = 1, nat
     242       59196 :             iat = atomic_kind_set(ikind)%atom_list(iatom)
     243      134868 :             mcharge(iat) = zeff - SUM(charges(iat, 1:nspins))
     244             :          END DO
     245             :       END DO
     246             : 
     247        6260 :       dft_section => section_vals_get_subs_vals(qs_env%input, "DFT")
     248        6260 :       print_section => section_vals_get_subs_vals(dft_section, "PRINT")
     249             : 
     250             :       ! Mulliken
     251        6260 :       print_key => section_vals_get_subs_vals(print_section, "MULLIKEN")
     252        6260 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     253             :          unit_nr = cp_print_key_unit_nr(logger, print_section, "MULLIKEN", &
     254         402 :                                         extension=".mulliken", log_filename=.FALSE.)
     255         402 :          IF (unit_nr > 0) THEN
     256         212 :             WRITE (UNIT=unit_nr, FMT="(/,/,T2,A)") "MULLIKEN POPULATION ANALYSIS"
     257         212 :             IF (nspins == 1) THEN
     258             :                WRITE (UNIT=unit_nr, FMT="(/,T2,A,T70,A)") &
     259         205 :                   " # Atom   Element   Kind        Atomic population", " Net charge"
     260         616 :                DO ikind = 1, nkind
     261         411 :                   CALL get_atomic_kind(atomic_kind_set(ikind), natom=nat)
     262         411 :                   aname = ""
     263         144 :                   SELECT CASE (tb_type)
     264             :                   CASE ("DFTB")
     265         144 :                      CALL get_qs_kind(qs_kind_set(ikind), dftb_parameter=dftb_kind)
     266         144 :                      CALL get_dftb_atom_param(dftb_kind, name=aname)
     267             :                   CASE ("xTB")
     268         267 :                      CALL get_qs_kind(qs_kind_set(ikind), xtb_parameter=xtb_kind)
     269         267 :                      CALL get_xtb_atom_param(xtb_kind, symbol=aname)
     270             :                   CASE DEFAULT
     271         411 :                      CPABORT("unknown TB type")
     272             :                   END SELECT
     273         411 :                   ana = ADJUSTR(TRIM(ADJUSTL(aname)))
     274        2762 :                   DO iatom = 1, nat
     275        1735 :                      iat = atomic_kind_set(ikind)%atom_list(iatom)
     276             :                      WRITE (UNIT=unit_nr, &
     277             :                             FMT="(T2,I7,5X,A6,I6,T39,F12.6,T69,F12.6)") &
     278        2146 :                         iat, ADJUSTL(ana), ikind, charges(iat, 1), mcharge(iat)
     279             :                   END DO
     280             :                END DO
     281             :                WRITE (UNIT=unit_nr, &
     282             :                       FMT="(T2,A,T39,F12.6,T69,F12.6,/)") &
     283        3675 :                   "# Total charge", SUM(charges(:, 1)), SUM(mcharge(:))
     284             :             ELSE
     285             :                WRITE (UNIT=unit_nr, FMT="(/,T2,A)") &
     286           7 :                   "# Atom  Element  Kind  Atomic population (alpha,beta)   Net charge  Spin moment"
     287          21 :                DO ikind = 1, nkind
     288          14 :                   CALL get_atomic_kind(atomic_kind_set(ikind), natom=nat)
     289          14 :                   aname = ""
     290           3 :                   SELECT CASE (tb_type)
     291             :                   CASE ("DFTB")
     292           3 :                      CALL get_qs_kind(qs_kind_set(ikind), dftb_parameter=dftb_kind)
     293           3 :                      CALL get_dftb_atom_param(dftb_kind, name=aname)
     294             :                   CASE ("xTB")
     295          11 :                      CALL get_qs_kind(qs_kind_set(ikind), xtb_parameter=xtb_kind)
     296          11 :                      CALL get_xtb_atom_param(xtb_kind, symbol=aname)
     297             :                   CASE DEFAULT
     298          14 :                      CPABORT("unknown TB type")
     299             :                   END SELECT
     300          14 :                   ana = ADJUSTR(TRIM(ADJUSTL(aname)))
     301          62 :                   DO iatom = 1, nat
     302          27 :                      iat = atomic_kind_set(ikind)%atom_list(iatom)
     303             :                      WRITE (UNIT=unit_nr, &
     304             :                             FMT="(T2,I6,3X,A6,I6,T29,4(1X,F12.6))") &
     305          27 :                         iat, ADJUSTL(ana), ikind, charges(iat, 1:2), mcharge(iat), &
     306          68 :                         charges(iat, 1) - charges(iat, 2)
     307             :                   END DO
     308             :                END DO
     309             :                WRITE (UNIT=unit_nr, &
     310             :                       FMT="(T2,A,T29,4(1X,F12.6),/)") &
     311          88 :                   "# Total charge and spin", SUM(charges(:, 1)), SUM(charges(:, 2)), SUM(mcharge(:))
     312             :             END IF
     313         212 :             CALL m_flush(unit_nr)
     314             :          END IF
     315         402 :          CALL cp_print_key_finished_output(unit_nr, logger, print_key)
     316             :       END IF
     317             : 
     318             :       ! Compute the Lowdin charges
     319        6260 :       print_key => section_vals_get_subs_vals(print_section, "LOWDIN")
     320        6260 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     321          42 :          SELECT CASE (tb_type)
     322             :          CASE ("DFTB")
     323          42 :             CPWARN("Lowdin population analysis not implemented for DFTB method.")
     324             :          CASE ("xTB")
     325             :             unit_nr = cp_print_key_unit_nr(logger, print_section, "LOWDIN", extension=".lowdin", &
     326           4 :                                            log_filename=.FALSE.)
     327           4 :             print_level = 1
     328           4 :             CALL section_vals_val_get(print_key, "PRINT_GOP", l_val=print_it)
     329           4 :             IF (print_it) print_level = 2
     330           4 :             CALL section_vals_val_get(print_key, "PRINT_ALL", l_val=print_it)
     331           4 :             IF (print_it) print_level = 3
     332           4 :             IF (do_kpoints) THEN
     333           2 :                CPWARN("Lowdin charges not implemented for k-point calculations!")
     334             :             ELSE
     335           2 :                CALL lowdin_population_analysis(qs_env, unit_nr, print_level)
     336             :             END IF
     337           4 :             CALL cp_print_key_finished_output(unit_nr, logger, print_section, "LOWDIN")
     338             :          CASE DEFAULT
     339          54 :             CPABORT("unknown TB type")
     340             :          END SELECT
     341             :       END IF
     342             : 
     343             :       ! EEQ Charges
     344        6260 :       print_key => section_vals_get_subs_vals(print_section, "EEQ_CHARGES")
     345        6260 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     346             :          unit_nr = cp_print_key_unit_nr(logger, print_section, "EEQ_CHARGES", &
     347           2 :                                         extension=".eeq", log_filename=.FALSE.)
     348           2 :          CALL eeq_print(qs_env, unit_nr, print_level)
     349           2 :          CALL cp_print_key_finished_output(unit_nr, logger, print_key)
     350             :       END IF
     351             : 
     352             :       ! Hirshfeld
     353        6260 :       print_key => section_vals_get_subs_vals(print_section, "HIRSHFELD")
     354        6260 :       CALL section_vals_get(print_key, explicit=explicit)
     355        6260 :       IF (explicit) THEN
     356           0 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     357           0 :             CPWARN("Hirshfeld charges not available for TB methods.")
     358             :          END IF
     359             :       END IF
     360             : 
     361             :       ! MAO
     362        6260 :       print_key => section_vals_get_subs_vals(print_section, "MAO_ANALYSIS")
     363        6260 :       CALL section_vals_get(print_key, explicit=explicit)
     364        6260 :       IF (explicit) THEN
     365           0 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     366           0 :             CPWARN("MAO analysis not available for TB methods.")
     367             :          END IF
     368             :       END IF
     369             : 
     370             :       ! ED
     371        6260 :       print_key => section_vals_get_subs_vals(print_section, "ENERGY_DECOMPOSITION_ANALYSIS")
     372        6260 :       CALL section_vals_get(print_key, explicit=explicit)
     373        6260 :       IF (explicit) THEN
     374           0 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     375           0 :             CPWARN("ED analysis not available for TB methods.")
     376             :          END IF
     377             :       END IF
     378             : 
     379             :       ! Dipole Moments
     380        6260 :       print_key => section_vals_get_subs_vals(print_section, "MOMENTS")
     381        6260 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     382             :          unit_nr = cp_print_key_unit_nr(logger, print_section, "MOMENTS", &
     383         656 :                                         extension=".data", middle_name="tb_dipole", log_filename=.FALSE.)
     384         656 :          moments_section => section_vals_get_subs_vals(print_section, "MOMENTS")
     385         656 :          IF (tb_type == "xTB" .AND. dft_control%qs_control%xtb_control%gfn_type == 0) THEN
     386           0 :             enshift_type = dft_control%qs_control%xtb_control%enshift_type
     387           0 :             IF (enshift_type == 0) THEN
     388           0 :                CALL get_qs_env(qs_env, cell=cell)
     389           0 :                enshift_type = 1
     390           0 :                IF (.NOT. ALL(cell%perd == 0)) enshift_type = 2
     391             :             END IF
     392           0 :             ALLOCATE (echarge(natom))
     393           0 :             echarge = 0.0_dp
     394           0 :             CALL eeq_charges(qs_env, echarge, eeq_sparam, 1, enshift_type)
     395           0 :             CALL tb_dipole(qs_env, moments_section, unit_nr, echarge)
     396           0 :             DEALLOCATE (echarge)
     397             :          ELSE
     398         656 :             CALL tb_dipole(qs_env, moments_section, unit_nr, mcharge)
     399             :          END IF
     400         656 :          CALL cp_print_key_finished_output(unit_nr, logger, print_key)
     401             :       END IF
     402             : 
     403        6260 :       DEALLOCATE (charges, mcharge)
     404             : 
     405             :       ! MO
     406        6260 :       IF (.NOT. no_mos) THEN
     407        6130 :          print_key => section_vals_get_subs_vals(print_section, "MO")
     408        6130 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     409         124 :             CALL qs_scf_write_mos(qs_env, scf_env, final_mos=.TRUE.)
     410         124 :             IF (.NOT. do_kpoints) THEN
     411          78 :                SELECT CASE (tb_type)
     412             :                CASE ("DFTB")
     413             :                CASE ("xTB")
     414          78 :                   sprint_section => section_vals_get_subs_vals(dft_section, "PRINT%MO_MOLDEN")
     415          78 :                   CALL get_qs_env(qs_env, mos=mos)
     416          78 :                   CALL write_mos_molden(mos, qs_kind_set, particle_set, sprint_section)
     417             :                CASE DEFAULT
     418         120 :                   CPABORT("Unknown TB type")
     419             :                END SELECT
     420             :             END IF
     421             :          END IF
     422             :       END IF
     423             : 
     424             :       ! Wavefunction mixing
     425        6260 :       IF (.NOT. no_mos) THEN
     426        6130 :          wfn_mix_section => section_vals_get_subs_vals(dft_section, "PRINT%WFN_MIX")
     427        6130 :          CALL section_vals_get(wfn_mix_section, explicit=explicit)
     428        6130 :          IF (explicit .AND. .NOT. qs_env%run_rtp) CALL wfn_mix_tb(qs_env, dft_section, scf_env)
     429             :       END IF
     430             : 
     431        6260 :       IF (.NOT. no_mos) THEN
     432        6130 :          print_key => section_vals_get_subs_vals(print_section, "DOS")
     433        6130 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     434           2 :             IF (do_kpoints) THEN
     435           2 :                CALL get_qs_env(qs_env=qs_env, kpoints=kpoints)
     436           2 :                CALL calculate_dos_kp(kpoints, qs_env, dft_section)
     437             :             ELSE
     438           0 :                CALL get_qs_env(qs_env, mos=mos)
     439           0 :                CALL calculate_dos(mos, dft_section)
     440             :             END IF
     441             :          END IF
     442             :       END IF
     443             : 
     444             :       ! PDOS
     445        6260 :       IF (.NOT. no_mos) THEN
     446        6130 :          print_key => section_vals_get_subs_vals(print_section, "PDOS")
     447        6130 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     448          18 :             IF (do_kpoints) THEN
     449          14 :                CPWARN("Projected density of states not implemented for k-points.")
     450             :             ELSE
     451           4 :                CALL get_qs_env(qs_env, mos=mos, matrix_ks=ks_rmpv)
     452           8 :                DO ispin = 1, dft_control%nspins
     453           4 :                   IF (scf_env%method == ot_method_nr) THEN
     454             :                      CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, &
     455           0 :                                      eigenvalues=mo_eigenvalues)
     456           0 :                      IF (ASSOCIATED(qs_env%mo_derivs)) THEN
     457           0 :                         mo_coeff_deriv => qs_env%mo_derivs(ispin)%matrix
     458             :                      ELSE
     459           0 :                         mo_coeff_deriv => NULL()
     460             :                      END IF
     461             :                      CALL calculate_subspace_eigenvalues(mo_coeff, ks_rmpv(ispin)%matrix, mo_eigenvalues, &
     462             :                                                          do_rotation=.TRUE., &
     463           0 :                                                          co_rotate_dbcsr=mo_coeff_deriv)
     464           0 :                      CALL set_mo_occupation(mo_set=mos(ispin))
     465             :                   END IF
     466           8 :                   IF (dft_control%nspins == 2) THEN
     467             :                      CALL calculate_projected_dos(mos(ispin), atomic_kind_set, &
     468           0 :                                                   qs_kind_set, particle_set, qs_env, dft_section, ispin=ispin)
     469             :                   ELSE
     470             :                      CALL calculate_projected_dos(mos(ispin), atomic_kind_set, &
     471           4 :                                                   qs_kind_set, particle_set, qs_env, dft_section)
     472             :                   END IF
     473             :                END DO
     474             :             END IF
     475             :          END IF
     476             :       END IF
     477             : 
     478             :       ! can we do CUBE files?
     479             :       SELECT CASE (tb_type)
     480             :       CASE ("DFTB")
     481             :          do_cube = .FALSE.
     482        4162 :          rebuild = .FALSE.
     483             :       CASE ("xTB")
     484        4162 :          do_cube = .TRUE.
     485        4162 :          rebuild = .TRUE.
     486             :       CASE DEFAULT
     487        6260 :          CPABORT("unknown TB type")
     488             :       END SELECT
     489             : 
     490             :       ! Energy Windows for LS code
     491        6260 :       print_key => section_vals_get_subs_vals(print_section, "ENERGY_WINDOWS")
     492        6260 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     493          46 :          IF (do_cube) THEN
     494           4 :             IF (do_kpoints) THEN
     495           2 :                CPWARN("Energy Windows not implemented for k-points.")
     496             :             ELSE
     497             :                IF (rebuild) THEN
     498           2 :                   CALL rebuild_pw_env(qs_env)
     499             :                   rebuild = .FALSE.
     500             :                END IF
     501           2 :                CALL energy_windows(qs_env)
     502             :             END IF
     503             :          ELSE
     504          42 :             CPWARN("Energy Windows not implemented for TB methods.")
     505             :          END IF
     506             :       END IF
     507             : 
     508             :       ! DENSITY CUBE FILE
     509        6260 :       print_key => section_vals_get_subs_vals(print_section, "E_DENSITY_CUBE")
     510        6260 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     511          44 :          IF (do_cube) THEN
     512           2 :             IF (rebuild) THEN
     513           2 :                CALL rebuild_pw_env(qs_env)
     514           2 :                rebuild = .FALSE.
     515             :             END IF
     516           2 :             CALL print_e_density(qs_env, print_key)
     517             :          ELSE
     518          42 :             CPWARN("Electronic density cube file not implemented for TB methods.")
     519             :          END IF
     520             :       END IF
     521             : 
     522             :       ! TOTAL DENSITY CUBE FILE
     523        6260 :       print_key => section_vals_get_subs_vals(print_section, "TOT_DENSITY_CUBE")
     524        6260 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     525          46 :          IF (do_cube) THEN
     526           4 :             IF (rebuild) THEN
     527           2 :                CALL rebuild_pw_env(qs_env)
     528           2 :                rebuild = .FALSE.
     529             :             END IF
     530           4 :             CALL print_density_cubes(qs_env, print_key, total_density=.TRUE.)
     531             :          ELSE
     532          42 :             CPWARN("Total density cube file not implemented for TB methods.")
     533             :          END IF
     534             :       END IF
     535             : 
     536             :       ! V_Hartree CUBE FILE
     537        6260 :       print_key => section_vals_get_subs_vals(print_section, "V_HARTREE_CUBE")
     538        6260 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     539          44 :          IF (do_cube) THEN
     540           2 :             IF (rebuild) THEN
     541           0 :                CALL rebuild_pw_env(qs_env)
     542           0 :                rebuild = .FALSE.
     543             :             END IF
     544           2 :             CALL print_density_cubes(qs_env, print_key, v_hartree=.TRUE.)
     545             :          ELSE
     546          42 :             CPWARN("Hartree potential cube file not implemented for TB methods.")
     547             :          END IF
     548             :       END IF
     549             : 
     550             :       ! EFIELD CUBE FILE
     551        6260 :       print_key => section_vals_get_subs_vals(print_section, "EFIELD_CUBE")
     552        6260 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     553          44 :          IF (do_cube) THEN
     554           2 :             IF (rebuild) THEN
     555           0 :                CALL rebuild_pw_env(qs_env)
     556           0 :                rebuild = .FALSE.
     557             :             END IF
     558           2 :             CALL print_density_cubes(qs_env, print_key, efield=.TRUE.)
     559             :          ELSE
     560          42 :             CPWARN("Efield cube file not implemented for TB methods.")
     561             :          END IF
     562             :       END IF
     563             : 
     564             :       ! ELF
     565        6260 :       print_key => section_vals_get_subs_vals(print_section, "ELF_CUBE")
     566        6260 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     567          44 :          IF (do_cube) THEN
     568           2 :             IF (rebuild) THEN
     569           0 :                CALL rebuild_pw_env(qs_env)
     570           0 :                rebuild = .FALSE.
     571             :             END IF
     572           2 :             CALL print_elf(qs_env, print_key)
     573             :          ELSE
     574          42 :             CPWARN("ELF not implemented for TB methods.")
     575             :          END IF
     576             :       END IF
     577             : 
     578             :       ! MO CUBES
     579        6260 :       IF (.NOT. no_mos) THEN
     580        6130 :          print_key => section_vals_get_subs_vals(print_section, "MO_CUBES")
     581        6130 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     582          44 :             IF (do_cube) THEN
     583           2 :                IF (rebuild) THEN
     584           2 :                   CALL rebuild_pw_env(qs_env)
     585           2 :                   rebuild = .FALSE.
     586             :                END IF
     587           2 :                CALL print_mo_cubes(qs_env, print_key)
     588             :             ELSE
     589          42 :                CPWARN("Printing of MO cube files not implemented for TB methods.")
     590             :             END IF
     591             :          END IF
     592             :       END IF
     593             : 
     594             :       ! STM
     595        6260 :       IF (.NOT. no_mos) THEN
     596        6130 :          print_key => section_vals_get_subs_vals(print_section, "STM")
     597        6130 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     598           2 :             IF (do_cube) THEN
     599           2 :                IF (rebuild) THEN
     600           2 :                   CALL rebuild_pw_env(qs_env)
     601           2 :                   rebuild = .FALSE.
     602             :                END IF
     603           2 :                IF (do_kpoints) THEN
     604           0 :                   CPWARN("STM not implemented for k-point calculations!")
     605             :                ELSE
     606           2 :                   nlumo_stm = section_get_ival(print_key, "NLUMO")
     607           2 :                   CPASSERT(.NOT. dft_control%restricted)
     608             :                   CALL get_qs_env(qs_env, mos=mos, mo_derivs=mo_derivs, &
     609           2 :                                   scf_control=scf_control, matrix_ks=ks_rmpv)
     610           2 :                   CALL make_mo_eig(mos, dft_control%nspins, ks_rmpv, scf_control, mo_derivs)
     611           4 :                   DO ispin = 1, dft_control%nspins
     612           2 :                      CALL get_mo_set(mo_set=mos(ispin), eigenvalues=mo_eigenvalues, homo=homo)
     613           4 :                      homo_lumo(ispin, 1) = mo_eigenvalues(homo)
     614             :                   END DO
     615           2 :                   has_homo = .TRUE.
     616           2 :                   NULLIFY (unoccupied_orbs_stm, unoccupied_evals_stm)
     617           2 :                   IF (nlumo_stm > 0) THEN
     618           8 :                      ALLOCATE (unoccupied_orbs_stm(dft_control%nspins))
     619           8 :                      ALLOCATE (unoccupied_evals_stm(dft_control%nspins))
     620             :                      CALL make_lumo_tb(qs_env, scf_env, unoccupied_orbs_stm, unoccupied_evals_stm, &
     621           2 :                                        nlumo_stm, nlumos)
     622             :                   END IF
     623             : 
     624           2 :                   CALL get_qs_env(qs_env, subsys=subsys)
     625           2 :                   CALL qs_subsys_get(subsys, particles=particles)
     626             :                   CALL th_stm_image(qs_env, print_key, particles, unoccupied_orbs_stm, &
     627           2 :                                     unoccupied_evals_stm)
     628             : 
     629           2 :                   IF (nlumo_stm > 0) THEN
     630           4 :                      DO ispin = 1, dft_control%nspins
     631           4 :                         DEALLOCATE (unoccupied_evals_stm(ispin)%array)
     632             :                      END DO
     633           2 :                      DEALLOCATE (unoccupied_evals_stm)
     634           2 :                      CALL cp_fm_release(unoccupied_orbs_stm)
     635             :                   END IF
     636             :                END IF
     637             :             END IF
     638             :          END IF
     639             :       END IF
     640             : 
     641             :       ! Write the density matrix
     642        6260 :       CALL get_qs_env(qs_env, matrix_ks_kp=matrix_ks)
     643        6260 :       CALL section_vals_val_get(print_section, "AO_MATRICES%OMIT_HEADERS", l_val=omit_headers)
     644        6260 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_section, &
     645             :                                            "AO_MATRICES/DENSITY"), cp_p_file)) THEN
     646             :          iw = cp_print_key_unit_nr(logger, print_section, "AO_MATRICES/DENSITY", &
     647          50 :                                    extension=".Log")
     648          50 :          CALL section_vals_val_get(print_section, "AO_MATRICES%NDIGITS", i_val=after)
     649          50 :          after = MIN(MAX(after, 1), 16)
     650         100 :          DO ispin = 1, dft_control%nspins
     651         150 :             DO img = 1, SIZE(matrix_p, 2)
     652             :                CALL cp_dbcsr_write_sparse_matrix(matrix_p(ispin, img)%matrix, 4, after, qs_env, &
     653         100 :                                                  para_env, output_unit=iw, omit_headers=omit_headers)
     654             :             END DO
     655             :          END DO
     656          50 :          CALL cp_print_key_finished_output(iw, logger, print_section, "AO_MATRICES/DENSITY")
     657             :       END IF
     658             : 
     659             :       ! The xTB matrix itself
     660        6260 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_section, &
     661             :                                            "AO_MATRICES/KOHN_SHAM_MATRIX"), cp_p_file)) THEN
     662             :          iw = cp_print_key_unit_nr(logger, print_section, "AO_MATRICES/KOHN_SHAM_MATRIX", &
     663          50 :                                    extension=".Log")
     664          50 :          CALL section_vals_val_get(print_section, "AO_MATRICES%NDIGITS", i_val=after)
     665          50 :          after = MIN(MAX(after, 1), 16)
     666         100 :          DO ispin = 1, dft_control%nspins
     667         150 :             DO img = 1, SIZE(matrix_ks, 2)
     668             :                CALL cp_dbcsr_write_sparse_matrix(matrix_ks(ispin, img)%matrix, 4, after, qs_env, para_env, &
     669         100 :                                                  output_unit=iw, omit_headers=omit_headers)
     670             :             END DO
     671             :          END DO
     672          50 :          CALL cp_print_key_finished_output(iw, logger, print_section, "AO_MATRICES/KOHN_SHAM_MATRIX")
     673             :       END IF
     674             : 
     675             :       ! these print keys are not supported in TB
     676             : 
     677             :       ! V_XC CUBE FILE
     678        6260 :       print_key => section_vals_get_subs_vals(print_section, "V_XC_CUBE")
     679        6260 :       CALL section_vals_get(print_key, explicit=explicit)
     680        6260 :       IF (explicit) THEN
     681           0 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     682           0 :             CPWARN("XC potential cube file not available for TB methods.")
     683             :          END IF
     684             :       END IF
     685             : 
     686             :       ! Electric field gradients
     687        6260 :       print_key => section_vals_get_subs_vals(print_section, "ELECTRIC_FIELD_GRADIENT")
     688        6260 :       CALL section_vals_get(print_key, explicit=explicit)
     689        6260 :       IF (explicit) THEN
     690           0 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     691           0 :             CPWARN("Electric field gradient not implemented for TB methods.")
     692             :          END IF
     693             :       END IF
     694             : 
     695             :       ! KINETIC ENERGY
     696        6260 :       print_key => section_vals_get_subs_vals(print_section, "KINETIC_ENERGY")
     697        6260 :       CALL section_vals_get(print_key, explicit=explicit)
     698        6260 :       IF (explicit) THEN
     699           0 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     700           0 :             CPWARN("Kinetic energy not available for TB methods.")
     701             :          END IF
     702             :       END IF
     703             : 
     704             :       ! Xray diffraction spectrum
     705        6260 :       print_key => section_vals_get_subs_vals(print_section, "XRAY_DIFFRACTION_SPECTRUM")
     706        6260 :       CALL section_vals_get(print_key, explicit=explicit)
     707        6260 :       IF (explicit) THEN
     708           0 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     709           0 :             CPWARN("Xray diffraction spectrum not implemented for TB methods.")
     710             :          END IF
     711             :       END IF
     712             : 
     713             :       ! EPR Hyperfine Coupling
     714        6260 :       print_key => section_vals_get_subs_vals(print_section, "HYPERFINE_COUPLING_TENSOR")
     715        6260 :       CALL section_vals_get(print_key, explicit=explicit)
     716        6260 :       IF (explicit) THEN
     717           0 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     718           0 :             CPWARN("Hyperfine Coupling not implemented for TB methods.")
     719             :          END IF
     720             :       END IF
     721             : 
     722             :       ! PLUS_U
     723        6260 :       print_key => section_vals_get_subs_vals(print_section, "PLUS_U")
     724        6260 :       CALL section_vals_get(print_key, explicit=explicit)
     725        6260 :       IF (explicit) THEN
     726           0 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     727           0 :             CPWARN("DFT+U method not implemented for TB methods.")
     728             :          END IF
     729             :       END IF
     730             : 
     731        6260 :       CALL write_ks_matrix_csr(qs_env, qs_env%input)
     732        6260 :       CALL write_s_matrix_csr(qs_env, qs_env%input)
     733             : 
     734        6260 :       CALL timestop(handle)
     735             : 
     736       75120 :    END SUBROUTINE scf_post_calculation_tb
     737             : 
     738             : ! **************************************************************************************************
     739             : !> \brief ...
     740             : !> \param qs_env ...
     741             : !> \param input ...
     742             : !> \param unit_nr ...
     743             : !> \param charges ...
     744             : ! **************************************************************************************************
     745         656 :    SUBROUTINE tb_dipole(qs_env, input, unit_nr, charges)
     746             : 
     747             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     748             :       TYPE(section_vals_type), POINTER                   :: input
     749             :       INTEGER, INTENT(in)                                :: unit_nr
     750             :       REAL(KIND=dp), DIMENSION(:), INTENT(in)            :: charges
     751             : 
     752             :       CHARACTER(LEN=default_string_length)               :: description, dipole_type
     753             :       COMPLEX(KIND=dp)                                   :: dzeta, dzphase(3), zeta, zphase(3)
     754             :       COMPLEX(KIND=dp), DIMENSION(3)                     :: dggamma, ggamma
     755             :       INTEGER                                            :: i, iat, ikind, j, nat, reference
     756             :       LOGICAL                                            :: do_berry
     757             :       REAL(KIND=dp) :: charge_tot, ci(3), dci(3), dipole(3), dipole_deriv(3), drcc(3), dria(3), &
     758             :          dtheta, gvec(3), q, rcc(3), ria(3), theta, tmp(3), via(3)
     759         656 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: ref_point
     760         656 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
     761             :       TYPE(cell_type), POINTER                           :: cell
     762             :       TYPE(cp_result_type), POINTER                      :: results
     763         656 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     764             : 
     765         656 :       NULLIFY (atomic_kind_set, cell, results)
     766             :       CALL get_qs_env(qs_env, atomic_kind_set=atomic_kind_set, &
     767         656 :                       particle_set=particle_set, cell=cell, results=results)
     768             : 
     769             :       ! Reference point
     770         656 :       reference = section_get_ival(input, keyword_name="REFERENCE")
     771         656 :       NULLIFY (ref_point)
     772         656 :       description = '[DIPOLE]'
     773         656 :       CALL section_vals_val_get(input, "REF_POINT", r_vals=ref_point)
     774         656 :       CALL section_vals_val_get(input, "PERIODIC", l_val=do_berry)
     775             : 
     776         656 :       CALL get_reference_point(rcc, drcc, qs_env=qs_env, reference=reference, ref_point=ref_point)
     777             : 
     778             :       ! Dipole deriv will be the derivative of the Dipole(dM/dt=\sum e_j v_j)
     779         656 :       dipole_deriv = 0.0_dp
     780         656 :       dipole = 0.0_dp
     781         656 :       IF (do_berry) THEN
     782         454 :          dipole_type = "periodic (Berry phase)"
     783        1816 :          rcc = pbc(rcc, cell)
     784         454 :          charge_tot = 0._dp
     785        3108 :          charge_tot = SUM(charges)
     786        7264 :          ria = twopi*MATMUL(cell%h_inv, rcc)
     787        1816 :          zphase = CMPLX(COS(ria), SIN(ria), dp)**charge_tot
     788             : 
     789        7264 :          dria = twopi*MATMUL(cell%h_inv, drcc)
     790        1816 :          dzphase = charge_tot*CMPLX(-SIN(ria), COS(ria), dp)**(charge_tot - 1.0_dp)*dria
     791             : 
     792        1816 :          ggamma = CMPLX(1.0_dp, 0.0_dp, KIND=dp)
     793         454 :          dggamma = CMPLX(0.0_dp, 0.0_dp, KIND=dp)
     794        1426 :          DO ikind = 1, SIZE(atomic_kind_set)
     795         972 :             CALL get_atomic_kind(atomic_kind_set(ikind), natom=nat)
     796        4080 :             DO i = 1, nat
     797        2654 :                iat = atomic_kind_set(ikind)%atom_list(i)
     798       10616 :                ria = particle_set(iat)%r(:)
     799       10616 :                ria = pbc(ria, cell)
     800       10616 :                via = particle_set(iat)%v(:)
     801        2654 :                q = charges(iat)
     802       11588 :                DO j = 1, 3
     803       31848 :                   gvec = twopi*cell%h_inv(j, :)
     804       31848 :                   theta = SUM(ria(:)*gvec(:))
     805       31848 :                   dtheta = SUM(via(:)*gvec(:))
     806        7962 :                   zeta = CMPLX(COS(theta), SIN(theta), KIND=dp)**(-q)
     807        7962 :                   dzeta = -q*CMPLX(-SIN(theta), COS(theta), KIND=dp)**(-q - 1.0_dp)*dtheta
     808        7962 :                   dggamma(j) = dggamma(j)*zeta + ggamma(j)*dzeta
     809       10616 :                   ggamma(j) = ggamma(j)*zeta
     810             :                END DO
     811             :             END DO
     812             :          END DO
     813        1816 :          dggamma = dggamma*zphase + ggamma*dzphase
     814        1816 :          ggamma = ggamma*zphase
     815        1816 :          IF (ALL(REAL(ggamma, KIND=dp) /= 0.0_dp)) THEN
     816        1816 :             tmp = AIMAG(ggamma)/REAL(ggamma, KIND=dp)
     817        1816 :             ci = -ATAN(tmp)
     818             :             dci = -(1.0_dp/(1.0_dp + tmp**2))* &
     819        1816 :                   (AIMAG(dggamma)*REAL(ggamma, KIND=dp) - AIMAG(ggamma)*REAL(dggamma, KIND=dp))/(REAL(ggamma, KIND=dp))**2
     820        7264 :             dipole = MATMUL(cell%hmat, ci)/twopi
     821        7264 :             dipole_deriv = MATMUL(cell%hmat, dci)/twopi
     822             :          END IF
     823             :       ELSE
     824         202 :          dipole_type = "non-periodic"
     825         886 :          DO i = 1, SIZE(particle_set)
     826             :             ! no pbc(particle_set(i)%r(:),cell) so that the total dipole is the sum of the molecular dipoles
     827        2736 :             ria = particle_set(i)%r(:)
     828         684 :             q = charges(i)
     829        2736 :             dipole = dipole + q*(ria - rcc)
     830        2938 :             dipole_deriv(:) = dipole_deriv(:) + q*(particle_set(i)%v(:) - drcc)
     831             :          END DO
     832             :       END IF
     833         656 :       CALL cp_results_erase(results=results, description=description)
     834             :       CALL put_results(results=results, description=description, &
     835         656 :                        values=dipole(1:3))
     836         656 :       IF (unit_nr > 0) THEN
     837             :          WRITE (unit_nr, '(/,T2,A,T31,A50)') &
     838         368 :             'TB_DIPOLE| Dipole type', ADJUSTR(TRIM(dipole_type))
     839         368 :          WRITE (unit_nr, "(T2,A,T33,3F16.8)") "TB_DIPOLE| Reference Point [Bohr]", rcc
     840             :          WRITE (unit_nr, '(T2,A,T30,3(1X,F16.8))') &
     841         368 :             'TB_DIPOLE| Moment [a.u.]', dipole(1:3)
     842             :          WRITE (unit_nr, '(T2,A,T30,3(1X,F16.8))') &
     843        1472 :             'TB_DIPOLE| Moment [Debye]', dipole(1:3)*debye
     844             :          WRITE (unit_nr, '(T2,A,T30,3(1X,F16.8))') &
     845         368 :             'TB_DIPOLE| Derivative [a.u.]', dipole_deriv(1:3)
     846             :       END IF
     847             : 
     848         656 :    END SUBROUTINE tb_dipole
     849             : 
     850             : ! **************************************************************************************************
     851             : !> \brief computes the MOs and calls the wavefunction mixing routine.
     852             : !> \param qs_env ...
     853             : !> \param dft_section ...
     854             : !> \param scf_env ...
     855             : !> \author Florian Schiffmann
     856             : !> \note
     857             : ! **************************************************************************************************
     858             : 
     859           2 :    SUBROUTINE wfn_mix_tb(qs_env, dft_section, scf_env)
     860             : 
     861             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     862             :       TYPE(section_vals_type), POINTER                   :: dft_section
     863             :       TYPE(qs_scf_env_type), POINTER                     :: scf_env
     864             : 
     865             :       INTEGER                                            :: ispin, nao, nmo, output_unit
     866           2 :       REAL(dp), DIMENSION(:), POINTER                    :: mo_eigenvalues
     867           2 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
     868             :       TYPE(cp_fm_struct_type), POINTER                   :: ao_ao_fmstruct, ao_lumo_struct
     869             :       TYPE(cp_fm_type)                                   :: KS_tmp, MO_tmp, S_tmp, work
     870           2 :       TYPE(cp_fm_type), DIMENSION(:), POINTER            :: lumos
     871             :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
     872             :       TYPE(cp_logger_type), POINTER                      :: logger
     873           2 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_ks, matrix_s
     874           2 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
     875             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     876           2 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     877           2 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     878             :       TYPE(section_vals_type), POINTER                   :: wfn_mix_section
     879             : 
     880           4 :       logger => cp_get_default_logger()
     881             :       CALL get_qs_env(qs_env=qs_env, matrix_s=matrix_s, matrix_ks=matrix_ks, &
     882             :                       particle_set=particle_set, atomic_kind_set=atomic_kind_set, &
     883           2 :                       qs_kind_set=qs_kind_set, mos=mos, para_env=para_env)
     884             : 
     885           2 :       wfn_mix_section => section_vals_get_subs_vals(dft_section, "PRINT%WFN_MIX")
     886             : 
     887           2 :       CALL get_mo_set(mos(1), mo_coeff=mo_coeff, nao=nao)
     888             : 
     889             :       CALL cp_fm_struct_create(fmstruct=ao_ao_fmstruct, nrow_global=nao, ncol_global=nao, &
     890           2 :                                template_fmstruct=mo_coeff%matrix_struct)
     891           2 :       CALL cp_fm_create(S_tmp, matrix_struct=ao_ao_fmstruct)
     892           2 :       CALL cp_fm_create(KS_tmp, matrix_struct=ao_ao_fmstruct)
     893           2 :       CALL cp_fm_create(MO_tmp, matrix_struct=ao_ao_fmstruct)
     894           2 :       CALL cp_fm_create(work, matrix_struct=ao_ao_fmstruct)
     895          10 :       ALLOCATE (lumos(SIZE(mos)))
     896             : 
     897           2 :       CALL copy_dbcsr_to_fm(matrix_s(1)%matrix, S_tmp)
     898           2 :       CALL cp_fm_cholesky_decompose(S_tmp)
     899             : 
     900           6 :       DO ispin = 1, SIZE(mos)
     901           4 :          CALL get_mo_set(mos(ispin), mo_coeff=mo_coeff, eigenvalues=mo_eigenvalues, nmo=nmo)
     902             :          CALL cp_fm_struct_create(fmstruct=ao_lumo_struct, nrow_global=nao, ncol_global=nao - nmo, &
     903           4 :                                   template_fmstruct=mo_coeff%matrix_struct)
     904             : 
     905           4 :          CALL cp_fm_create(lumos(ispin), matrix_struct=ao_lumo_struct)
     906           4 :          CALL copy_dbcsr_to_fm(matrix_ks(ispin)%matrix, KS_tmp)
     907           4 :          CALL cp_fm_cholesky_reduce(KS_tmp, S_tmp)
     908           4 :          CALL choose_eigv_solver(KS_tmp, work, mo_eigenvalues)
     909           4 :          CALL cp_fm_cholesky_restore(work, nao, S_tmp, MO_tmp, "SOLVE")
     910           4 :          CALL cp_fm_to_fm_submat(MO_tmp, mo_coeff, nao, nmo, 1, 1, 1, 1)
     911           4 :          CALL cp_fm_to_fm_submat(MO_tmp, lumos(ispin), nao, nao - nmo, 1, nmo + 1, 1, 1)
     912             : 
     913          10 :          CALL cp_fm_struct_release(ao_lumo_struct)
     914             :       END DO
     915             : 
     916           2 :       output_unit = cp_logger_get_default_io_unit(logger)
     917             :       CALL wfn_mix(mos, particle_set, dft_section, qs_kind_set, para_env, output_unit, &
     918           2 :                    unoccupied_orbs=lumos, scf_env=scf_env, matrix_s=matrix_s)
     919             : 
     920           2 :       CALL cp_fm_release(lumos)
     921           2 :       CALL cp_fm_release(S_tmp)
     922           2 :       CALL cp_fm_release(MO_tmp)
     923           2 :       CALL cp_fm_release(KS_tmp)
     924           2 :       CALL cp_fm_release(work)
     925           2 :       CALL cp_fm_struct_release(ao_ao_fmstruct)
     926             : 
     927           6 :    END SUBROUTINE wfn_mix_tb
     928             : 
     929             : ! **************************************************************************************************
     930             : !> \brief Gets the lumos, and eigenvalues for the lumos
     931             : !> \param qs_env ...
     932             : !> \param scf_env ...
     933             : !> \param unoccupied_orbs ...
     934             : !> \param unoccupied_evals ...
     935             : !> \param nlumo ...
     936             : !> \param nlumos ...
     937             : ! **************************************************************************************************
     938           2 :    SUBROUTINE make_lumo_tb(qs_env, scf_env, unoccupied_orbs, unoccupied_evals, nlumo, nlumos)
     939             : 
     940             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     941             :       TYPE(qs_scf_env_type), POINTER                     :: scf_env
     942             :       TYPE(cp_fm_type), DIMENSION(:), POINTER            :: unoccupied_orbs
     943             :       TYPE(cp_1d_r_p_type), DIMENSION(:), INTENT(INOUT)  :: unoccupied_evals
     944             :       INTEGER                                            :: nlumo
     945             :       INTEGER, INTENT(OUT)                               :: nlumos
     946             : 
     947             :       INTEGER                                            :: homo, iounit, ispin, n, nao, nmo
     948             :       TYPE(cp_blacs_env_type), POINTER                   :: blacs_env
     949             :       TYPE(cp_fm_struct_type), POINTER                   :: fm_struct_tmp
     950             :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
     951             :       TYPE(cp_logger_type), POINTER                      :: logger
     952           2 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: ks_rmpv, matrix_s
     953             :       TYPE(dft_control_type), POINTER                    :: dft_control
     954           2 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
     955             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     956             :       TYPE(preconditioner_type), POINTER                 :: local_preconditioner
     957             :       TYPE(scf_control_type), POINTER                    :: scf_control
     958             : 
     959           2 :       NULLIFY (mos, ks_rmpv, scf_control, dft_control, para_env, blacs_env)
     960             :       CALL get_qs_env(qs_env, &
     961             :                       mos=mos, &
     962             :                       matrix_ks=ks_rmpv, &
     963             :                       scf_control=scf_control, &
     964             :                       dft_control=dft_control, &
     965             :                       matrix_s=matrix_s, &
     966             :                       para_env=para_env, &
     967           2 :                       blacs_env=blacs_env)
     968             : 
     969           2 :       logger => cp_get_default_logger()
     970           2 :       iounit = cp_logger_get_default_io_unit(logger)
     971             : 
     972           4 :       DO ispin = 1, dft_control%nspins
     973           2 :          NULLIFY (unoccupied_evals(ispin)%array)
     974             :          ! Always write eigenvalues
     975           2 :          IF (iounit > 0) WRITE (iounit, *) " "
     976           2 :          IF (iounit > 0) WRITE (iounit, *) " Lowest Eigenvalues of the unoccupied subspace spin ", ispin
     977           2 :          IF (iounit > 0) WRITE (iounit, FMT='(1X,A)') "-----------------------------------------------------"
     978           2 :          CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, homo=homo, nao=nao, nmo=nmo)
     979           2 :          CALL cp_fm_get_info(mo_coeff, nrow_global=n)
     980           2 :          nlumos = MAX(1, MIN(nlumo, nao - nmo))
     981           2 :          IF (nlumo == -1) nlumos = nao - nmo
     982           6 :          ALLOCATE (unoccupied_evals(ispin)%array(nlumos))
     983             :          CALL cp_fm_struct_create(fm_struct_tmp, para_env=para_env, context=blacs_env, &
     984           2 :                                   nrow_global=n, ncol_global=nlumos)
     985           2 :          CALL cp_fm_create(unoccupied_orbs(ispin), fm_struct_tmp, name="lumos")
     986           2 :          CALL cp_fm_struct_release(fm_struct_tmp)
     987           2 :          CALL cp_fm_init_random(unoccupied_orbs(ispin), nlumos)
     988             : 
     989             :          ! the full_all preconditioner makes not much sense for lumos search
     990           2 :          NULLIFY (local_preconditioner)
     991           2 :          IF (ASSOCIATED(scf_env%ot_preconditioner)) THEN
     992           2 :             local_preconditioner => scf_env%ot_preconditioner(1)%preconditioner
     993             :             ! this one can for sure not be right (as it has to match a given C0)
     994           2 :             IF (local_preconditioner%in_use == ot_precond_full_all) THEN
     995           2 :                NULLIFY (local_preconditioner)
     996             :             END IF
     997             :          END IF
     998             : 
     999             :          CALL ot_eigensolver(matrix_h=ks_rmpv(ispin)%matrix, matrix_s=matrix_s(1)%matrix, &
    1000             :                              matrix_c_fm=unoccupied_orbs(ispin), &
    1001             :                              matrix_orthogonal_space_fm=mo_coeff, &
    1002             :                              eps_gradient=scf_control%eps_lumos, &
    1003             :                              preconditioner=local_preconditioner, &
    1004             :                              iter_max=scf_control%max_iter_lumos, &
    1005           2 :                              size_ortho_space=nmo)
    1006             : 
    1007             :          CALL calculate_subspace_eigenvalues(unoccupied_orbs(ispin), ks_rmpv(ispin)%matrix, &
    1008             :                                              unoccupied_evals(ispin)%array, scr=iounit, &
    1009           6 :                                              ionode=iounit > 0)
    1010             : 
    1011             :       END DO
    1012             : 
    1013           2 :    END SUBROUTINE make_lumo_tb
    1014             : 
    1015             : ! **************************************************************************************************
    1016             : !> \brief ...
    1017             : !> \param qs_env ...
    1018             : ! **************************************************************************************************
    1019          10 :    SUBROUTINE rebuild_pw_env(qs_env)
    1020             : 
    1021             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1022             : 
    1023             :       LOGICAL                                            :: skip_load_balance_distributed
    1024             :       TYPE(cell_type), POINTER                           :: cell
    1025             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1026             :       TYPE(pw_env_type), POINTER                         :: new_pw_env
    1027             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
    1028             :       TYPE(qs_rho_type), POINTER                         :: rho
    1029             :       TYPE(task_list_type), POINTER                      :: task_list
    1030             : 
    1031          10 :       CALL get_qs_env(qs_env, ks_env=ks_env, dft_control=dft_control, pw_env=new_pw_env)
    1032          10 :       IF (.NOT. ASSOCIATED(new_pw_env)) THEN
    1033           0 :          CALL pw_env_create(new_pw_env)
    1034           0 :          CALL set_ks_env(ks_env, pw_env=new_pw_env)
    1035           0 :          CALL pw_env_release(new_pw_env)
    1036             :       END IF
    1037          10 :       CALL get_qs_env(qs_env, pw_env=new_pw_env, dft_control=dft_control, cell=cell)
    1038             : 
    1039         260 :       new_pw_env%cell_hmat = cell%hmat
    1040          10 :       CALL pw_env_rebuild(new_pw_env, qs_env=qs_env)
    1041             : 
    1042          10 :       NULLIFY (task_list)
    1043          10 :       CALL get_ks_env(ks_env, task_list=task_list)
    1044          10 :       IF (.NOT. ASSOCIATED(task_list)) THEN
    1045          10 :          CALL allocate_task_list(task_list)
    1046          10 :          CALL set_ks_env(ks_env, task_list=task_list)
    1047             :       END IF
    1048          10 :       skip_load_balance_distributed = dft_control%qs_control%skip_load_balance_distributed
    1049             :       CALL generate_qs_task_list(ks_env, task_list, &
    1050             :                                  reorder_rs_grid_ranks=.TRUE., soft_valid=.FALSE., &
    1051          10 :                                  skip_load_balance_distributed=skip_load_balance_distributed)
    1052          10 :       CALL get_qs_env(qs_env, rho=rho)
    1053          10 :       CALL qs_rho_rebuild(rho, qs_env=qs_env, rebuild_ao=.FALSE., rebuild_grids=.TRUE.)
    1054             : 
    1055          10 :    END SUBROUTINE rebuild_pw_env
    1056             : 
    1057             : ! **************************************************************************************************
    1058             : !> \brief ...
    1059             : !> \param qs_env ...
    1060             : !> \param cube_section ...
    1061             : ! **************************************************************************************************
    1062           2 :    SUBROUTINE print_e_density(qs_env, cube_section)
    1063             : 
    1064             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1065             :       TYPE(section_vals_type), POINTER                   :: cube_section
    1066             : 
    1067             :       CHARACTER(LEN=default_path_length)                 :: filename, mpi_filename, my_pos_cube
    1068             :       INTEGER                                            :: iounit, ispin, unit_nr
    1069             :       LOGICAL                                            :: append_cube, mpi_io
    1070           2 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: tot_rho_r
    1071             :       TYPE(cp_logger_type), POINTER                      :: logger
    1072           2 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: rho_ao
    1073           2 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: rho_ao_kp
    1074             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1075             :       TYPE(particle_list_type), POINTER                  :: particles
    1076           2 :       TYPE(pw_c1d_gs_type), DIMENSION(:), POINTER        :: rho_g
    1077             :       TYPE(pw_env_type), POINTER                         :: pw_env
    1078           2 :       TYPE(pw_pool_p_type), DIMENSION(:), POINTER        :: pw_pools
    1079             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
    1080           2 :       TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER        :: rho_r
    1081             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
    1082             :       TYPE(qs_rho_type), POINTER                         :: rho
    1083             :       TYPE(qs_subsys_type), POINTER                      :: subsys
    1084             : 
    1085           2 :       CALL get_qs_env(qs_env, dft_control=dft_control)
    1086             : 
    1087           2 :       append_cube = section_get_lval(cube_section, "APPEND")
    1088           2 :       my_pos_cube = "REWIND"
    1089           2 :       IF (append_cube) my_pos_cube = "APPEND"
    1090             : 
    1091           2 :       logger => cp_get_default_logger()
    1092           2 :       iounit = cp_logger_get_default_io_unit(logger)
    1093             : 
    1094             :       ! we need to construct the density on a realspace grid
    1095           2 :       CALL get_qs_env(qs_env, ks_env=ks_env, rho=rho)
    1096           2 :       NULLIFY (rho_r, rho_g, tot_rho_r)
    1097             :       CALL qs_rho_get(rho, rho_ao_kp=rho_ao_kp, &
    1098           2 :                       rho_r=rho_r, rho_g=rho_g, tot_rho_r=tot_rho_r)
    1099           6 :       DO ispin = 1, dft_control%nspins
    1100           4 :          rho_ao => rho_ao_kp(ispin, :)
    1101             :          CALL calculate_rho_elec(matrix_p_kp=rho_ao, &
    1102             :                                  rho=rho_r(ispin), &
    1103             :                                  rho_gspace=rho_g(ispin), &
    1104             :                                  total_rho=tot_rho_r(ispin), &
    1105           6 :                                  ks_env=ks_env)
    1106             :       END DO
    1107           2 :       CALL qs_rho_set(rho, rho_r_valid=.TRUE., rho_g_valid=.TRUE.)
    1108             : 
    1109           2 :       CALL get_qs_env(qs_env, subsys=subsys)
    1110           2 :       CALL qs_subsys_get(subsys, particles=particles)
    1111             : 
    1112           2 :       IF (dft_control%nspins > 1) THEN
    1113           2 :          IF (iounit > 0) THEN
    1114             :             WRITE (UNIT=iounit, FMT="(/,T2,A,T51,2F15.6)") &
    1115           1 :                "Integrated alpha and beta electronic density:", tot_rho_r(1:2)
    1116             :          END IF
    1117           2 :          CALL get_qs_env(qs_env=qs_env, pw_env=pw_env)
    1118           2 :          CALL pw_env_get(pw_env=pw_env, auxbas_pw_pool=auxbas_pw_pool, pw_pools=pw_pools)
    1119             :          BLOCK
    1120             :             TYPE(pw_r3d_rs_type) :: rho_elec_rspace
    1121           2 :             CALL auxbas_pw_pool%create_pw(pw=rho_elec_rspace)
    1122           2 :             CALL pw_copy(rho_r(1), rho_elec_rspace)
    1123           2 :             CALL pw_axpy(rho_r(2), rho_elec_rspace)
    1124           2 :             filename = "ELECTRON_DENSITY"
    1125           2 :             mpi_io = .TRUE.
    1126             :             unit_nr = cp_print_key_unit_nr(logger, cube_section, '', &
    1127             :                                            extension=".cube", middle_name=TRIM(filename), &
    1128             :                                            file_position=my_pos_cube, log_filename=.FALSE., mpi_io=mpi_io, &
    1129           2 :                                            fout=mpi_filename)
    1130           2 :             IF (iounit > 0) THEN
    1131           1 :                IF (.NOT. mpi_io) THEN
    1132           0 :                   INQUIRE (UNIT=unit_nr, NAME=filename)
    1133             :                ELSE
    1134           1 :                   filename = mpi_filename
    1135             :                END IF
    1136             :                WRITE (UNIT=iounit, FMT="(T2,A,/,T2,A79)") &
    1137           1 :                   "The sum of alpha and beta density is written in cube file format to the file:", ADJUSTR(TRIM(filename))
    1138             :             END IF
    1139             :             CALL cp_pw_to_cube(rho_elec_rspace, unit_nr, "SUM OF ALPHA AND BETA DENSITY", &
    1140             :                                particles=particles, stride=section_get_ivals(cube_section, "STRIDE"), &
    1141           2 :                                mpi_io=mpi_io)
    1142           2 :             CALL cp_print_key_finished_output(unit_nr, logger, cube_section, '', mpi_io=mpi_io)
    1143           2 :             CALL pw_copy(rho_r(1), rho_elec_rspace)
    1144           2 :             CALL pw_axpy(rho_r(2), rho_elec_rspace, alpha=-1.0_dp)
    1145           2 :             filename = "SPIN_DENSITY"
    1146           2 :             mpi_io = .TRUE.
    1147             :             unit_nr = cp_print_key_unit_nr(logger, cube_section, '', &
    1148             :                                            extension=".cube", middle_name=TRIM(filename), &
    1149             :                                            file_position=my_pos_cube, log_filename=.FALSE., mpi_io=mpi_io, &
    1150           2 :                                            fout=mpi_filename)
    1151           2 :             IF (iounit > 0) THEN
    1152           1 :                IF (.NOT. mpi_io) THEN
    1153           0 :                   INQUIRE (UNIT=unit_nr, NAME=filename)
    1154             :                ELSE
    1155           1 :                   filename = mpi_filename
    1156             :                END IF
    1157             :                WRITE (UNIT=iounit, FMT="(T2,A,/,T2,A79)") &
    1158           1 :                   "The spin density is written in cube file format to the file:", ADJUSTR(TRIM(filename))
    1159             :             END IF
    1160             :             CALL cp_pw_to_cube(rho_elec_rspace, unit_nr, "SPIN DENSITY", &
    1161             :                                particles=particles, &
    1162           2 :                                stride=section_get_ivals(cube_section, "STRIDE"), mpi_io=mpi_io)
    1163           2 :             CALL cp_print_key_finished_output(unit_nr, logger, cube_section, '', mpi_io=mpi_io)
    1164           2 :             CALL auxbas_pw_pool%give_back_pw(rho_elec_rspace)
    1165             :          END BLOCK
    1166             :       ELSE
    1167           0 :          IF (iounit > 0) THEN
    1168             :             WRITE (UNIT=iounit, FMT="(/,T2,A,T66,F15.6)") &
    1169           0 :                "Integrated electronic density:", tot_rho_r(1)
    1170             :          END IF
    1171           0 :          filename = "ELECTRON_DENSITY"
    1172           0 :          mpi_io = .TRUE.
    1173             :          unit_nr = cp_print_key_unit_nr(logger, cube_section, '', &
    1174             :                                         extension=".cube", middle_name=TRIM(filename), &
    1175             :                                         file_position=my_pos_cube, log_filename=.FALSE., mpi_io=mpi_io, &
    1176           0 :                                         fout=mpi_filename)
    1177           0 :          IF (iounit > 0) THEN
    1178           0 :             IF (.NOT. mpi_io) THEN
    1179           0 :                INQUIRE (UNIT=unit_nr, NAME=filename)
    1180             :             ELSE
    1181           0 :                filename = mpi_filename
    1182             :             END IF
    1183             :             WRITE (UNIT=iounit, FMT="(T2,A,/,T2,A79)") &
    1184           0 :                "The electron density is written in cube file format to the file:", ADJUSTR(TRIM(filename))
    1185             :          END IF
    1186             :          CALL cp_pw_to_cube(rho_r(1), unit_nr, "ELECTRON DENSITY", &
    1187             :                             particles=particles, &
    1188           0 :                             stride=section_get_ivals(cube_section, "STRIDE"), mpi_io=mpi_io)
    1189           0 :          CALL cp_print_key_finished_output(unit_nr, logger, cube_section, '', mpi_io=mpi_io)
    1190             :       END IF ! nspins
    1191             : 
    1192           2 :    END SUBROUTINE print_e_density
    1193             : ! **************************************************************************************************
    1194             : !> \brief ...
    1195             : !> \param qs_env ...
    1196             : !> \param cube_section ...
    1197             : !> \param total_density ...
    1198             : !> \param v_hartree ...
    1199             : !> \param efield ...
    1200             : ! **************************************************************************************************
    1201           8 :    SUBROUTINE print_density_cubes(qs_env, cube_section, total_density, v_hartree, efield)
    1202             : 
    1203             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1204             :       TYPE(section_vals_type), POINTER                   :: cube_section
    1205             :       LOGICAL, INTENT(IN), OPTIONAL                      :: total_density, v_hartree, efield
    1206             : 
    1207             :       CHARACTER(len=1), DIMENSION(3), PARAMETER          :: cdir = (/"x", "y", "z"/)
    1208             : 
    1209             :       CHARACTER(LEN=default_path_length)                 :: filename, mpi_filename, my_pos_cube
    1210             :       INTEGER                                            :: id, iounit, ispin, nd(3), unit_nr
    1211             :       LOGICAL                                            :: append_cube, mpi_io, my_efield, &
    1212             :                                                             my_total_density, my_v_hartree
    1213             :       REAL(KIND=dp)                                      :: total_rho_core_rspace, udvol
    1214           8 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: tot_rho_r
    1215             :       TYPE(cell_type), POINTER                           :: cell
    1216             :       TYPE(cp_logger_type), POINTER                      :: logger
    1217           8 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: rho_ao
    1218           8 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: rho_ao_kp
    1219             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1220             :       TYPE(particle_list_type), POINTER                  :: particles
    1221             :       TYPE(pw_c1d_gs_type)                               :: rho_core
    1222           8 :       TYPE(pw_c1d_gs_type), DIMENSION(:), POINTER        :: rho_g
    1223             :       TYPE(pw_env_type), POINTER                         :: pw_env
    1224             :       TYPE(pw_poisson_parameter_type)                    :: poisson_params
    1225           8 :       TYPE(pw_pool_p_type), DIMENSION(:), POINTER        :: pw_pools
    1226             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
    1227             :       TYPE(pw_r3d_rs_type)                               :: rho_tot_rspace
    1228           8 :       TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER        :: rho_r
    1229             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
    1230             :       TYPE(qs_rho_type), POINTER                         :: rho
    1231             :       TYPE(qs_subsys_type), POINTER                      :: subsys
    1232             : 
    1233           8 :       CALL get_qs_env(qs_env, cell=cell, dft_control=dft_control)
    1234             : 
    1235           8 :       append_cube = section_get_lval(cube_section, "APPEND")
    1236           8 :       my_pos_cube = "REWIND"
    1237           8 :       IF (append_cube) my_pos_cube = "APPEND"
    1238             : 
    1239           8 :       IF (PRESENT(total_density)) THEN
    1240           4 :          my_total_density = total_density
    1241             :       ELSE
    1242             :          my_total_density = .FALSE.
    1243             :       END IF
    1244           8 :       IF (PRESENT(v_hartree)) THEN
    1245           2 :          my_v_hartree = v_hartree
    1246             :       ELSE
    1247             :          my_v_hartree = .FALSE.
    1248             :       END IF
    1249           8 :       IF (PRESENT(efield)) THEN
    1250           2 :          my_efield = efield
    1251             :       ELSE
    1252             :          my_efield = .FALSE.
    1253             :       END IF
    1254             : 
    1255           8 :       logger => cp_get_default_logger()
    1256           8 :       iounit = cp_logger_get_default_io_unit(logger)
    1257             : 
    1258             :       ! we need to construct the density on a realspace grid
    1259           8 :       CALL get_qs_env(qs_env, ks_env=ks_env, rho=rho)
    1260           8 :       NULLIFY (rho_r, rho_g, tot_rho_r)
    1261             :       CALL qs_rho_get(rho, rho_ao_kp=rho_ao_kp, &
    1262           8 :                       rho_r=rho_r, rho_g=rho_g, tot_rho_r=tot_rho_r)
    1263          18 :       DO ispin = 1, dft_control%nspins
    1264          10 :          rho_ao => rho_ao_kp(ispin, :)
    1265             :          CALL calculate_rho_elec(matrix_p_kp=rho_ao, &
    1266             :                                  rho=rho_r(ispin), &
    1267             :                                  rho_gspace=rho_g(ispin), &
    1268             :                                  total_rho=tot_rho_r(ispin), &
    1269          18 :                                  ks_env=ks_env)
    1270             :       END DO
    1271           8 :       CALL qs_rho_set(rho, rho_r_valid=.TRUE., rho_g_valid=.TRUE.)
    1272             : 
    1273           8 :       CALL get_qs_env(qs_env, subsys=subsys)
    1274           8 :       CALL qs_subsys_get(subsys, particles=particles)
    1275             : 
    1276           8 :       CALL get_qs_env(qs_env=qs_env, pw_env=pw_env)
    1277           8 :       CALL pw_env_get(pw_env=pw_env, auxbas_pw_pool=auxbas_pw_pool, pw_pools=pw_pools)
    1278           8 :       CALL auxbas_pw_pool%create_pw(pw=rho_core)
    1279           8 :       CALL calculate_rho_core(rho_core, total_rho_core_rspace, qs_env)
    1280             : 
    1281           8 :       IF (iounit > 0) THEN
    1282             :          WRITE (UNIT=iounit, FMT="(/,T2,A,T66,F15.6)") &
    1283           9 :             "Integrated electronic density:", SUM(tot_rho_r(:))
    1284             :          WRITE (UNIT=iounit, FMT="(T2,A,T66,F15.6)") &
    1285           4 :             "Integrated core density:", total_rho_core_rspace
    1286             :       END IF
    1287             : 
    1288           8 :       CALL auxbas_pw_pool%create_pw(pw=rho_tot_rspace)
    1289           8 :       CALL pw_transfer(rho_core, rho_tot_rspace)
    1290          18 :       DO ispin = 1, dft_control%nspins
    1291          18 :          CALL pw_axpy(rho_r(ispin), rho_tot_rspace)
    1292             :       END DO
    1293             : 
    1294           8 :       IF (my_total_density) THEN
    1295           4 :          filename = "TOTAL_DENSITY"
    1296           4 :          mpi_io = .TRUE.
    1297             :          unit_nr = cp_print_key_unit_nr(logger, cube_section, '', &
    1298             :                                         extension=".cube", middle_name=TRIM(filename), file_position=my_pos_cube, &
    1299           4 :                                         log_filename=.FALSE., mpi_io=mpi_io, fout=mpi_filename)
    1300           4 :          IF (iounit > 0) THEN
    1301           2 :             IF (.NOT. mpi_io) THEN
    1302           0 :                INQUIRE (UNIT=unit_nr, NAME=filename)
    1303             :             ELSE
    1304           2 :                filename = mpi_filename
    1305             :             END IF
    1306             :             WRITE (UNIT=iounit, FMT="(T2,A,/,T2,A79)") &
    1307           2 :                "The total density is written in cube file format to the file:", ADJUSTR(TRIM(filename))
    1308             :          END IF
    1309             :          CALL cp_pw_to_cube(rho_tot_rspace, unit_nr, "TOTAL DENSITY", &
    1310             :                             particles=particles, &
    1311           4 :                             stride=section_get_ivals(cube_section, "STRIDE"), mpi_io=mpi_io)
    1312           4 :          CALL cp_print_key_finished_output(unit_nr, logger, cube_section, '', mpi_io=mpi_io)
    1313             :       END IF
    1314           8 :       IF (my_v_hartree .OR. my_efield) THEN
    1315             :          BLOCK
    1316             :             TYPE(pw_c1d_gs_type) :: rho_tot_gspace
    1317           4 :             CALL auxbas_pw_pool%create_pw(pw=rho_tot_gspace)
    1318           4 :             CALL pw_transfer(rho_tot_rspace, rho_tot_gspace)
    1319           4 :             poisson_params%solver = pw_poisson_analytic
    1320          16 :             poisson_params%periodic = cell%perd
    1321           4 :             poisson_params%ewald_type = do_ewald_none
    1322           8 :             BLOCK
    1323           4 :                TYPE(greens_fn_type)                     :: green_fft
    1324             :                TYPE(pw_grid_type), POINTER                        :: pwdummy
    1325           4 :                NULLIFY (pwdummy)
    1326           4 :                CALL pw_green_create(green_fft, poisson_params, cell%hmat, auxbas_pw_pool, pwdummy, pwdummy)
    1327      746500 :                rho_tot_gspace%array(:) = rho_tot_gspace%array(:)*green_fft%influence_fn%array(:)
    1328           8 :                CALL pw_green_release(green_fft, auxbas_pw_pool)
    1329             :             END BLOCK
    1330           4 :             IF (my_v_hartree) THEN
    1331             :                BLOCK
    1332             :                   TYPE(pw_r3d_rs_type) :: vhartree
    1333           2 :                   CALL auxbas_pw_pool%create_pw(pw=vhartree)
    1334           2 :                   CALL pw_transfer(rho_tot_gspace, vhartree)
    1335           2 :                   filename = "V_HARTREE"
    1336           2 :                   mpi_io = .TRUE.
    1337             :                   unit_nr = cp_print_key_unit_nr(logger, cube_section, '', &
    1338             :                                                  extension=".cube", middle_name=TRIM(filename), file_position=my_pos_cube, &
    1339           2 :                                                  log_filename=.FALSE., mpi_io=mpi_io, fout=mpi_filename)
    1340           2 :                   IF (iounit > 0) THEN
    1341           1 :                      IF (.NOT. mpi_io) THEN
    1342           0 :                         INQUIRE (UNIT=unit_nr, NAME=filename)
    1343             :                      ELSE
    1344           1 :                         filename = mpi_filename
    1345             :                      END IF
    1346             :                      WRITE (UNIT=iounit, FMT="(T2,A,/,T2,A79)") &
    1347           1 :                         "The Hartree potential is written in cube file format to the file:", ADJUSTR(TRIM(filename))
    1348             :                   END IF
    1349             :                   CALL cp_pw_to_cube(vhartree, unit_nr, "Hartree Potential", &
    1350             :                                      particles=particles, &
    1351           2 :                                      stride=section_get_ivals(cube_section, "STRIDE"), mpi_io=mpi_io)
    1352           2 :                   CALL cp_print_key_finished_output(unit_nr, logger, cube_section, '', mpi_io=mpi_io)
    1353           2 :                   CALL auxbas_pw_pool%give_back_pw(vhartree)
    1354             :                END BLOCK
    1355             :             END IF
    1356           4 :             IF (my_efield) THEN
    1357             :                BLOCK
    1358             :                   TYPE(pw_c1d_gs_type) :: vhartree
    1359           2 :                   CALL auxbas_pw_pool%create_pw(pw=vhartree)
    1360           2 :                   udvol = 1.0_dp/rho_tot_rspace%pw_grid%dvol
    1361           8 :                   DO id = 1, 3
    1362           6 :                      CALL pw_transfer(rho_tot_gspace, vhartree)
    1363           6 :                      nd = 0
    1364           6 :                      nd(id) = 1
    1365           6 :                      CALL pw_derive(vhartree, nd)
    1366           6 :                      CALL pw_transfer(vhartree, rho_tot_rspace)
    1367           6 :                      CALL pw_scale(rho_tot_rspace, udvol)
    1368             : 
    1369           6 :                      filename = "EFIELD_"//cdir(id)
    1370           6 :                      mpi_io = .TRUE.
    1371             :                      unit_nr = cp_print_key_unit_nr(logger, cube_section, '', &
    1372             :                                                     extension=".cube", middle_name=TRIM(filename), file_position=my_pos_cube, &
    1373           6 :                                                     log_filename=.FALSE., mpi_io=mpi_io, fout=mpi_filename)
    1374           6 :                      IF (iounit > 0) THEN
    1375           3 :                         IF (.NOT. mpi_io) THEN
    1376           0 :                            INQUIRE (UNIT=unit_nr, NAME=filename)
    1377             :                         ELSE
    1378           3 :                            filename = mpi_filename
    1379             :                         END IF
    1380             :                         WRITE (UNIT=iounit, FMT="(T2,A,/,T2,A79)") &
    1381           3 :                            "The Efield is written in cube file format to the file:", ADJUSTR(TRIM(filename))
    1382             :                      END IF
    1383             :                      CALL cp_pw_to_cube(rho_tot_rspace, unit_nr, "EFIELD "//cdir(id), &
    1384             :                                         particles=particles, &
    1385           6 :                                         stride=section_get_ivals(cube_section, "STRIDE"), mpi_io=mpi_io)
    1386           8 :                      CALL cp_print_key_finished_output(unit_nr, logger, cube_section, '', mpi_io=mpi_io)
    1387             :                   END DO
    1388           2 :                   CALL auxbas_pw_pool%give_back_pw(vhartree)
    1389             :                END BLOCK
    1390             :             END IF
    1391           4 :             CALL auxbas_pw_pool%give_back_pw(rho_tot_gspace)
    1392             :          END BLOCK
    1393             :       END IF
    1394             : 
    1395           8 :       CALL auxbas_pw_pool%give_back_pw(rho_tot_rspace)
    1396           8 :       CALL auxbas_pw_pool%give_back_pw(rho_core)
    1397             : 
    1398          32 :    END SUBROUTINE print_density_cubes
    1399             : 
    1400             : ! **************************************************************************************************
    1401             : !> \brief ...
    1402             : !> \param qs_env ...
    1403             : !> \param elf_section ...
    1404             : ! **************************************************************************************************
    1405           2 :    SUBROUTINE print_elf(qs_env, elf_section)
    1406             : 
    1407             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1408             :       TYPE(section_vals_type), POINTER                   :: elf_section
    1409             : 
    1410             :       CHARACTER(LEN=default_path_length)                 :: filename, mpi_filename, my_pos_cube, &
    1411             :                                                             title
    1412             :       INTEGER                                            :: iounit, ispin, unit_nr
    1413             :       LOGICAL                                            :: append_cube, mpi_io
    1414             :       REAL(KIND=dp)                                      :: rho_cutoff
    1415           2 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: tot_rho_r
    1416             :       TYPE(cp_logger_type), POINTER                      :: logger
    1417           2 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: rho_ao
    1418           2 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: rho_ao_kp
    1419             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1420             :       TYPE(particle_list_type), POINTER                  :: particles
    1421           2 :       TYPE(pw_c1d_gs_type), DIMENSION(:), POINTER        :: rho_g
    1422             :       TYPE(pw_env_type), POINTER                         :: pw_env
    1423           2 :       TYPE(pw_pool_p_type), DIMENSION(:), POINTER        :: pw_pools
    1424             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
    1425           2 :       TYPE(pw_r3d_rs_type), ALLOCATABLE, DIMENSION(:)    :: elf_r
    1426           2 :       TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER        :: rho_r
    1427             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
    1428             :       TYPE(qs_rho_type), POINTER                         :: rho
    1429             :       TYPE(qs_subsys_type), POINTER                      :: subsys
    1430             : 
    1431           4 :       logger => cp_get_default_logger()
    1432           2 :       iounit = cp_logger_get_default_io_unit(logger)
    1433             : 
    1434             :       ! we need to construct the density on a realspace grid
    1435           2 :       CALL get_qs_env(qs_env, dft_control=dft_control, ks_env=ks_env, rho=rho)
    1436           2 :       NULLIFY (rho_r, rho_g, tot_rho_r)
    1437             :       CALL qs_rho_get(rho, rho_ao_kp=rho_ao_kp, &
    1438           2 :                       rho_r=rho_r, rho_g=rho_g, tot_rho_r=tot_rho_r)
    1439           6 :       DO ispin = 1, dft_control%nspins
    1440           4 :          rho_ao => rho_ao_kp(ispin, :)
    1441             :          CALL calculate_rho_elec(matrix_p_kp=rho_ao, &
    1442             :                                  rho=rho_r(ispin), &
    1443             :                                  rho_gspace=rho_g(ispin), &
    1444             :                                  total_rho=tot_rho_r(ispin), &
    1445           6 :                                  ks_env=ks_env)
    1446             :       END DO
    1447           2 :       CALL qs_rho_set(rho, rho_r_valid=.TRUE., rho_g_valid=.TRUE.)
    1448             : 
    1449           2 :       CALL get_qs_env(qs_env, subsys=subsys)
    1450           2 :       CALL qs_subsys_get(subsys, particles=particles)
    1451             : 
    1452          10 :       ALLOCATE (elf_r(dft_control%nspins))
    1453           2 :       CALL get_qs_env(qs_env=qs_env, pw_env=pw_env)
    1454           2 :       CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, pw_pools=pw_pools)
    1455           6 :       DO ispin = 1, dft_control%nspins
    1456           4 :          CALL auxbas_pw_pool%create_pw(elf_r(ispin))
    1457           6 :          CALL pw_zero(elf_r(ispin))
    1458             :       END DO
    1459             : 
    1460           2 :       IF (iounit > 0) THEN
    1461             :          WRITE (UNIT=iounit, FMT="(/,T2,A)") &
    1462           1 :             "ELF is computed on the real space grid -----"
    1463             :       END IF
    1464           2 :       rho_cutoff = section_get_rval(elf_section, "density_cutoff")
    1465           2 :       CALL qs_elf_calc(qs_env, elf_r, rho_cutoff)
    1466             : 
    1467             :       ! write ELF into cube file
    1468           2 :       append_cube = section_get_lval(elf_section, "APPEND")
    1469           2 :       my_pos_cube = "REWIND"
    1470           2 :       IF (append_cube) my_pos_cube = "APPEND"
    1471           6 :       DO ispin = 1, dft_control%nspins
    1472           4 :          WRITE (filename, '(a5,I1.1)') "ELF_S", ispin
    1473           4 :          WRITE (title, *) "ELF spin ", ispin
    1474           4 :          mpi_io = .TRUE.
    1475             :          unit_nr = cp_print_key_unit_nr(logger, elf_section, '', extension=".cube", &
    1476             :                                         middle_name=TRIM(filename), file_position=my_pos_cube, &
    1477           4 :                                         log_filename=.FALSE., mpi_io=mpi_io, fout=mpi_filename)
    1478           4 :          IF (iounit > 0) THEN
    1479           2 :             IF (.NOT. mpi_io) THEN
    1480           0 :                INQUIRE (UNIT=unit_nr, NAME=filename)
    1481             :             ELSE
    1482           2 :                filename = mpi_filename
    1483             :             END IF
    1484             :             WRITE (UNIT=iounit, FMT="(T2,A,/,T2,A79)") &
    1485           2 :                "ELF is written in cube file format to the file:", ADJUSTR(TRIM(filename))
    1486             :          END IF
    1487             : 
    1488             :          CALL cp_pw_to_cube(elf_r(ispin), unit_nr, title, particles=particles, &
    1489           4 :                             stride=section_get_ivals(elf_section, "STRIDE"), mpi_io=mpi_io)
    1490           4 :          CALL cp_print_key_finished_output(unit_nr, logger, elf_section, '', mpi_io=mpi_io)
    1491             : 
    1492           6 :          CALL auxbas_pw_pool%give_back_pw(elf_r(ispin))
    1493             :       END DO
    1494             : 
    1495           2 :       DEALLOCATE (elf_r)
    1496             : 
    1497           2 :    END SUBROUTINE print_elf
    1498             : ! **************************************************************************************************
    1499             : !> \brief ...
    1500             : !> \param qs_env ...
    1501             : !> \param cube_section ...
    1502             : ! **************************************************************************************************
    1503           4 :    SUBROUTINE print_mo_cubes(qs_env, cube_section)
    1504             : 
    1505             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1506             :       TYPE(section_vals_type), POINTER                   :: cube_section
    1507             : 
    1508             :       CHARACTER(LEN=default_path_length)                 :: filename, my_pos_cube, title
    1509             :       INTEGER                                            :: homo, i, ifirst, ilast, iounit, ir, &
    1510             :                                                             ispin, ivector, n_rep, nhomo, nlist, &
    1511             :                                                             nlumo, nmo, shomo, unit_nr
    1512           2 :       INTEGER, DIMENSION(:), POINTER                     :: list, list_index
    1513             :       LOGICAL                                            :: append_cube, mpi_io, write_cube
    1514             :       REAL(KIND=dp)                                      :: homo_lumo(2, 2)
    1515           2 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: mo_eigenvalues
    1516           2 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
    1517             :       TYPE(cell_type), POINTER                           :: cell
    1518             :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
    1519             :       TYPE(cp_logger_type), POINTER                      :: logger
    1520           2 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: ks_rmpv, mo_derivs
    1521             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1522           2 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
    1523             :       TYPE(particle_list_type), POINTER                  :: particles
    1524           2 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    1525             :       TYPE(pw_c1d_gs_type)                               :: wf_g
    1526             :       TYPE(pw_env_type), POINTER                         :: pw_env
    1527           2 :       TYPE(pw_pool_p_type), DIMENSION(:), POINTER        :: pw_pools
    1528             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
    1529             :       TYPE(pw_r3d_rs_type)                               :: wf_r
    1530           2 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    1531             :       TYPE(qs_subsys_type), POINTER                      :: subsys
    1532             :       TYPE(scf_control_type), POINTER                    :: scf_control
    1533             : 
    1534           4 :       logger => cp_get_default_logger()
    1535           2 :       iounit = cp_logger_get_default_io_unit(logger)
    1536             : 
    1537           2 :       CALL get_qs_env(qs_env, mos=mos, matrix_ks=ks_rmpv, scf_control=scf_control)
    1538           2 :       CALL get_qs_env(qs_env, dft_control=dft_control, mo_derivs=mo_derivs)
    1539           2 :       CALL make_mo_eig(mos, dft_control%nspins, ks_rmpv, scf_control, mo_derivs)
    1540           2 :       NULLIFY (mo_eigenvalues)
    1541           2 :       homo = 0
    1542           6 :       DO ispin = 1, dft_control%nspins
    1543           4 :          CALL get_mo_set(mo_set=mos(ispin), eigenvalues=mo_eigenvalues, homo=shomo)
    1544           4 :          homo_lumo(ispin, 1) = mo_eigenvalues(shomo)
    1545           6 :          homo = MAX(homo, shomo)
    1546             :       END DO
    1547           2 :       write_cube = section_get_lval(cube_section, "WRITE_CUBE")
    1548           2 :       nlumo = section_get_ival(cube_section, "NLUMO")
    1549           2 :       nhomo = section_get_ival(cube_section, "NHOMO")
    1550           2 :       NULLIFY (list_index)
    1551           2 :       CALL section_vals_val_get(cube_section, "HOMO_LIST", n_rep_val=n_rep)
    1552           2 :       IF (n_rep > 0) THEN
    1553           2 :          nlist = 0
    1554           4 :          DO ir = 1, n_rep
    1555           2 :             NULLIFY (list)
    1556           2 :             CALL section_vals_val_get(cube_section, "HOMO_LIST", i_rep_val=ir, i_vals=list)
    1557           4 :             IF (ASSOCIATED(list)) THEN
    1558           2 :                CALL reallocate(list_index, 1, nlist + SIZE(list))
    1559          14 :                DO i = 1, SIZE(list)
    1560          14 :                   list_index(i + nlist) = list(i)
    1561             :                END DO
    1562           2 :                nlist = nlist + SIZE(list)
    1563             :             END IF
    1564             :          END DO
    1565          14 :          nhomo = MAXVAL(list_index)
    1566             :       ELSE
    1567           0 :          IF (nhomo == -1) nhomo = homo
    1568           0 :          nlist = homo - MAX(1, homo - nhomo + 1) + 1
    1569           0 :          ALLOCATE (list_index(nlist))
    1570           0 :          DO i = 1, nlist
    1571           0 :             list_index(i) = MAX(1, homo - nhomo + 1) + i - 1
    1572             :          END DO
    1573             :       END IF
    1574             : 
    1575           2 :       CALL get_qs_env(qs_env=qs_env, pw_env=pw_env)
    1576           2 :       CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, pw_pools=pw_pools)
    1577           2 :       CALL auxbas_pw_pool%create_pw(wf_r)
    1578           2 :       CALL auxbas_pw_pool%create_pw(wf_g)
    1579             : 
    1580           2 :       CALL get_qs_env(qs_env, subsys=subsys)
    1581           2 :       CALL qs_subsys_get(subsys, particles=particles)
    1582             : 
    1583           2 :       append_cube = section_get_lval(cube_section, "APPEND")
    1584           2 :       my_pos_cube = "REWIND"
    1585           2 :       IF (append_cube) THEN
    1586           0 :          my_pos_cube = "APPEND"
    1587             :       END IF
    1588             : 
    1589             :       CALL get_qs_env(qs_env=qs_env, &
    1590             :                       atomic_kind_set=atomic_kind_set, &
    1591             :                       qs_kind_set=qs_kind_set, &
    1592             :                       cell=cell, &
    1593           2 :                       particle_set=particle_set)
    1594             : 
    1595           2 :       IF (nhomo >= 0) THEN
    1596           6 :          DO ispin = 1, dft_control%nspins
    1597             :             ! Prints the cube files of OCCUPIED ORBITALS
    1598             :             CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, &
    1599           4 :                             eigenvalues=mo_eigenvalues, homo=homo, nmo=nmo)
    1600           6 :             IF (write_cube) THEN
    1601          28 :                DO i = 1, nlist
    1602          24 :                   ivector = list_index(i)
    1603          24 :                   IF (ivector > homo) CYCLE
    1604             :                   CALL calculate_wavefunction(mo_coeff, ivector, wf_r, wf_g, atomic_kind_set, qs_kind_set, &
    1605          24 :                                               cell, dft_control, particle_set, pw_env)
    1606          24 :                   WRITE (filename, '(a4,I5.5,a1,I1.1)') "WFN_", ivector, "_", ispin
    1607          24 :                   mpi_io = .TRUE.
    1608             :                   unit_nr = cp_print_key_unit_nr(logger, cube_section, '', extension=".cube", &
    1609             :                                                  middle_name=TRIM(filename), file_position=my_pos_cube, &
    1610          24 :                                                  log_filename=.FALSE., mpi_io=mpi_io)
    1611          24 :                   WRITE (title, *) "WAVEFUNCTION ", ivector, " spin ", ispin, " i.e. HOMO - ", ivector - homo
    1612             :                   CALL cp_pw_to_cube(wf_r, unit_nr, title, particles=particles, &
    1613          24 :                                      stride=section_get_ivals(cube_section, "STRIDE"), mpi_io=mpi_io)
    1614          28 :                   CALL cp_print_key_finished_output(unit_nr, logger, cube_section, '', mpi_io=mpi_io)
    1615             :                END DO
    1616             :             END IF
    1617             :          END DO
    1618             :       END IF
    1619             : 
    1620           2 :       IF (nlumo /= 0) THEN
    1621           6 :          DO ispin = 1, dft_control%nspins
    1622             :             ! Prints the cube files of UNOCCUPIED ORBITALS
    1623             :             CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, &
    1624           4 :                             eigenvalues=mo_eigenvalues, homo=homo, nmo=nmo)
    1625           6 :             IF (write_cube) THEN
    1626           4 :                ifirst = homo + 1
    1627           4 :                IF (nlumo == -1) THEN
    1628           0 :                   ilast = nmo
    1629             :                ELSE
    1630           4 :                   ilast = ifirst + nlumo - 1
    1631           4 :                   ilast = MIN(nmo, ilast)
    1632             :                END IF
    1633          12 :                DO ivector = ifirst, ilast
    1634             :                   CALL calculate_wavefunction(mo_coeff, ivector, wf_r, wf_g, atomic_kind_set, &
    1635           8 :                                               qs_kind_set, cell, dft_control, particle_set, pw_env)
    1636           8 :                   WRITE (filename, '(a4,I5.5,a1,I1.1)') "WFN_", ivector, "_", ispin
    1637           8 :                   mpi_io = .TRUE.
    1638             :                   unit_nr = cp_print_key_unit_nr(logger, cube_section, '', extension=".cube", &
    1639             :                                                  middle_name=TRIM(filename), file_position=my_pos_cube, &
    1640           8 :                                                  log_filename=.FALSE., mpi_io=mpi_io)
    1641           8 :                   WRITE (title, *) "WAVEFUNCTION ", ivector, " spin ", ispin, " i.e. LUMO + ", ivector - ifirst
    1642             :                   CALL cp_pw_to_cube(wf_r, unit_nr, title, particles=particles, &
    1643           8 :                                      stride=section_get_ivals(cube_section, "STRIDE"), mpi_io=mpi_io)
    1644          12 :                   CALL cp_print_key_finished_output(unit_nr, logger, cube_section, '', mpi_io=mpi_io)
    1645             :                END DO
    1646             :             END IF
    1647             :          END DO
    1648             :       END IF
    1649             : 
    1650           2 :       CALL auxbas_pw_pool%give_back_pw(wf_g)
    1651           2 :       CALL auxbas_pw_pool%give_back_pw(wf_r)
    1652           2 :       IF (ASSOCIATED(list_index)) DEALLOCATE (list_index)
    1653             : 
    1654           2 :    END SUBROUTINE print_mo_cubes
    1655             : 
    1656             : ! **************************************************************************************************
    1657             : 
    1658             : END MODULE qs_scf_post_tb

Generated by: LCOV version 1.15