LCOV - code coverage report
Current view: top level - src - qs_tddfpt2_fhxc_forces.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:4dc10b3) Lines: 898 928 96.8 %
Date: 2024-11-21 06:45:46 Functions: 2 2 100.0 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2024 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : MODULE qs_tddfpt2_fhxc_forces
       9             :    USE admm_methods,                    ONLY: admm_projection_derivative
      10             :    USE admm_types,                      ONLY: admm_type,&
      11             :                                               get_admm_env
      12             :    USE atomic_kind_types,               ONLY: atomic_kind_type,&
      13             :                                               get_atomic_kind_set
      14             :    USE cell_types,                      ONLY: cell_type,&
      15             :                                               pbc
      16             :    USE cp_control_types,                ONLY: dft_control_type,&
      17             :                                               stda_control_type,&
      18             :                                               tddfpt2_control_type
      19             :    USE cp_dbcsr_api,                    ONLY: &
      20             :         dbcsr_add, dbcsr_complete_redistribute, dbcsr_copy, dbcsr_create, dbcsr_filter, &
      21             :         dbcsr_get_block_p, dbcsr_iterator_blocks_left, dbcsr_iterator_next_block, &
      22             :         dbcsr_iterator_start, dbcsr_iterator_stop, dbcsr_iterator_type, dbcsr_p_type, &
      23             :         dbcsr_release, dbcsr_scale, dbcsr_set, dbcsr_transposed, dbcsr_type, &
      24             :         dbcsr_type_antisymmetric, dbcsr_type_no_symmetry
      25             :    USE cp_dbcsr_cp2k_link,              ONLY: cp_dbcsr_alloc_block_from_nbl
      26             :    USE cp_dbcsr_operations,             ONLY: copy_dbcsr_to_fm,&
      27             :                                               copy_fm_to_dbcsr,&
      28             :                                               cp_dbcsr_plus_fm_fm_t,&
      29             :                                               cp_dbcsr_sm_fm_multiply,&
      30             :                                               dbcsr_allocate_matrix_set,&
      31             :                                               dbcsr_deallocate_matrix_set
      32             :    USE cp_fm_basic_linalg,              ONLY: cp_fm_row_scale,&
      33             :                                               cp_fm_schur_product
      34             :    USE cp_fm_pool_types,                ONLY: fm_pool_create_fm,&
      35             :                                               fm_pool_give_back_fm
      36             :    USE cp_fm_struct,                    ONLY: cp_fm_struct_create,&
      37             :                                               cp_fm_struct_release,&
      38             :                                               cp_fm_struct_type
      39             :    USE cp_fm_types,                     ONLY: cp_fm_create,&
      40             :                                               cp_fm_get_info,&
      41             :                                               cp_fm_release,&
      42             :                                               cp_fm_to_fm,&
      43             :                                               cp_fm_type,&
      44             :                                               cp_fm_vectorssum
      45             :    USE cp_log_handling,                 ONLY: cp_get_default_logger,&
      46             :                                               cp_logger_get_default_unit_nr,&
      47             :                                               cp_logger_type
      48             :    USE ewald_environment_types,         ONLY: ewald_env_get,&
      49             :                                               ewald_environment_type
      50             :    USE ewald_methods_tb,                ONLY: tb_ewald_overlap,&
      51             :                                               tb_spme_evaluate
      52             :    USE ewald_pw_types,                  ONLY: ewald_pw_type
      53             :    USE exstates_types,                  ONLY: excited_energy_type
      54             :    USE hartree_local_methods,           ONLY: Vh_1c_gg_integrals,&
      55             :                                               init_coulomb_local
      56             :    USE hartree_local_types,             ONLY: hartree_local_create,&
      57             :                                               hartree_local_release,&
      58             :                                               hartree_local_type
      59             :    USE hfx_derivatives,                 ONLY: derivatives_four_center
      60             :    USE hfx_energy_potential,            ONLY: integrate_four_center
      61             :    USE hfx_ri,                          ONLY: hfx_ri_update_forces,&
      62             :                                               hfx_ri_update_ks
      63             :    USE hfx_types,                       ONLY: hfx_type
      64             :    USE input_constants,                 ONLY: do_admm_aux_exch_func_none,&
      65             :                                               tddfpt_kernel_full,&
      66             :                                               xc_kernel_method_analytic,&
      67             :                                               xc_kernel_method_best,&
      68             :                                               xc_kernel_method_numeric,&
      69             :                                               xc_none
      70             :    USE input_section_types,             ONLY: section_vals_get,&
      71             :                                               section_vals_get_subs_vals,&
      72             :                                               section_vals_type,&
      73             :                                               section_vals_val_get
      74             :    USE kinds,                           ONLY: default_string_length,&
      75             :                                               dp
      76             :    USE mathconstants,                   ONLY: oorootpi
      77             :    USE message_passing,                 ONLY: mp_para_env_type
      78             :    USE parallel_gemm_api,               ONLY: parallel_gemm
      79             :    USE particle_methods,                ONLY: get_particle_set
      80             :    USE particle_types,                  ONLY: particle_type
      81             :    USE pw_env_types,                    ONLY: pw_env_get,&
      82             :                                               pw_env_type
      83             :    USE pw_methods,                      ONLY: pw_axpy,&
      84             :                                               pw_scale,&
      85             :                                               pw_transfer,&
      86             :                                               pw_zero
      87             :    USE pw_poisson_methods,              ONLY: pw_poisson_solve
      88             :    USE pw_poisson_types,                ONLY: pw_poisson_type
      89             :    USE pw_pool_types,                   ONLY: pw_pool_type
      90             :    USE pw_types,                        ONLY: pw_c1d_gs_type,&
      91             :                                               pw_r3d_rs_type
      92             :    USE qs_collocate_density,            ONLY: calculate_rho_elec
      93             :    USE qs_environment_types,            ONLY: get_qs_env,&
      94             :                                               qs_environment_type,&
      95             :                                               set_qs_env
      96             :    USE qs_force_types,                  ONLY: qs_force_type
      97             :    USE qs_fxc,                          ONLY: qs_fgxc_create,&
      98             :                                               qs_fgxc_gdiff,&
      99             :                                               qs_fgxc_release
     100             :    USE qs_gapw_densities,               ONLY: prepare_gapw_den
     101             :    USE qs_integrate_potential,          ONLY: integrate_v_rspace
     102             :    USE qs_kernel_types,                 ONLY: full_kernel_env_type
     103             :    USE qs_kind_types,                   ONLY: qs_kind_type
     104             :    USE qs_ks_atom,                      ONLY: update_ks_atom
     105             :    USE qs_ks_types,                     ONLY: qs_ks_env_type
     106             :    USE qs_local_rho_types,              ONLY: local_rho_set_create,&
     107             :                                               local_rho_set_release,&
     108             :                                               local_rho_type
     109             :    USE qs_neighbor_list_types,          ONLY: neighbor_list_set_p_type
     110             :    USE qs_oce_methods,                  ONLY: build_oce_matrices
     111             :    USE qs_oce_types,                    ONLY: allocate_oce_set,&
     112             :                                               create_oce_set,&
     113             :                                               oce_matrix_type
     114             :    USE qs_overlap,                      ONLY: build_overlap_matrix
     115             :    USE qs_rho0_ggrid,                   ONLY: integrate_vhg0_rspace,&
     116             :                                               rho0_s_grid_create
     117             :    USE qs_rho0_methods,                 ONLY: init_rho0
     118             :    USE qs_rho_atom_methods,             ONLY: allocate_rho_atom_internals,&
     119             :                                               calculate_rho_atom_coeff
     120             :    USE qs_rho_atom_types,               ONLY: rho_atom_type
     121             :    USE qs_rho_types,                    ONLY: qs_rho_create,&
     122             :                                               qs_rho_get,&
     123             :                                               qs_rho_set,&
     124             :                                               qs_rho_type
     125             :    USE qs_tddfpt2_stda_types,           ONLY: stda_env_type
     126             :    USE qs_tddfpt2_stda_utils,           ONLY: get_lowdin_x,&
     127             :                                               setup_gamma
     128             :    USE qs_tddfpt2_subgroups,            ONLY: tddfpt_subgroup_env_type
     129             :    USE qs_tddfpt2_types,                ONLY: tddfpt_ground_state_mos,&
     130             :                                               tddfpt_work_matrices
     131             :    USE qs_vxc_atom,                     ONLY: calculate_gfxc_atom,&
     132             :                                               gfxc_atom_diff
     133             :    USE task_list_types,                 ONLY: task_list_type
     134             :    USE util,                            ONLY: get_limit
     135             :    USE virial_types,                    ONLY: virial_type
     136             : #include "./base/base_uses.f90"
     137             : 
     138             :    IMPLICIT NONE
     139             : 
     140             :    PRIVATE
     141             : 
     142             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'qs_tddfpt2_fhxc_forces'
     143             : 
     144             :    PUBLIC :: fhxc_force, stda_force
     145             : 
     146             : ! **************************************************************************************************
     147             : 
     148             : CONTAINS
     149             : 
     150             : ! **************************************************************************************************
     151             : !> \brief Calculate direct tddft forces
     152             : !> \param qs_env ...
     153             : !> \param ex_env ...
     154             : !> \param gs_mos ...
     155             : !> \param full_kernel ...
     156             : !> \param debug_forces ...
     157             : !> \par History
     158             : !>    * 01.2020 screated [JGH]
     159             : ! **************************************************************************************************
     160         340 :    SUBROUTINE fhxc_force(qs_env, ex_env, gs_mos, full_kernel, debug_forces)
     161             : 
     162             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     163             :       TYPE(excited_energy_type), POINTER                 :: ex_env
     164             :       TYPE(tddfpt_ground_state_mos), DIMENSION(:), &
     165             :          POINTER                                         :: gs_mos
     166             :       TYPE(full_kernel_env_type), INTENT(IN)             :: full_kernel
     167             :       LOGICAL, INTENT(IN)                                :: debug_forces
     168             : 
     169             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'fhxc_force'
     170             : 
     171             :       CHARACTER(LEN=default_string_length)               :: basis_type
     172             :       INTEGER                                            :: handle, iounit, ispin, mspin, myfun, &
     173             :                                                             n_rep_hf, nao, nao_aux, natom, nkind, &
     174             :                                                             norb, nspins, order
     175             :       LOGICAL :: distribute_fock_matrix, do_admm, do_analytic, do_hfx, do_hfxlr, do_hfxsr, &
     176             :          do_numeric, gapw, gapw_xc, hfx_treat_lsd_in_core, is_rks_triplets, s_mstruct_changed, &
     177             :          use_virial
     178             :       REAL(KIND=dp)                                      :: eh1, eh1c, eps_delta, eps_fit, focc, &
     179             :                                                             fscal, fval, kval, xehartree
     180             :       REAL(KIND=dp), DIMENSION(3)                        :: fodeb
     181             :       TYPE(admm_type), POINTER                           :: admm_env
     182         340 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
     183             :       TYPE(cp_fm_struct_type), POINTER                   :: fm_struct, fm_struct_mat
     184             :       TYPE(cp_fm_type)                                   :: cvcmat, vcvec
     185         340 :       TYPE(cp_fm_type), DIMENSION(:), POINTER            :: cpmos, evect
     186             :       TYPE(cp_fm_type), POINTER                          :: mos
     187             :       TYPE(cp_logger_type), POINTER                      :: logger
     188         340 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_fx, matrix_gx, matrix_hfx, &
     189         340 :          matrix_hfx_admm, matrix_hfx_admm_asymm, matrix_hfx_asymm, matrix_hx, matrix_p, &
     190         340 :          matrix_p_admm, matrix_px1, matrix_px1_admm, matrix_px1_admm_asymm, matrix_px1_asymm, &
     191         340 :          matrix_s, matrix_s_aux_fit, matrix_wx1, mdum, mfx, mgx
     192         340 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: mhe, mpe, mpga
     193             :       TYPE(dbcsr_type), POINTER                          :: dbwork, dbwork_asymm
     194             :       TYPE(dft_control_type), POINTER                    :: dft_control
     195             :       TYPE(hartree_local_type), POINTER                  :: hartree_local
     196         340 :       TYPE(hfx_type), DIMENSION(:, :), POINTER           :: x_data
     197             :       TYPE(local_rho_type), POINTER :: local_rho_set, local_rho_set_admm, local_rho_set_f, &
     198             :          local_rho_set_f_admm, local_rho_set_g, local_rho_set_g_admm
     199             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     200             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
     201         340 :          POINTER                                         :: sab, sab_aux_fit, sab_orb, sap_oce
     202             :       TYPE(oce_matrix_type), POINTER                     :: oce
     203         340 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     204             :       TYPE(pw_c1d_gs_type)                               :: rhox_tot_gspace, xv_hartree_gspace
     205         340 :       TYPE(pw_c1d_gs_type), DIMENSION(:), POINTER        :: rho_g_aux, rhox_g, rhox_g_aux, rhoxx_g
     206             :       TYPE(pw_env_type), POINTER                         :: pw_env
     207             :       TYPE(pw_poisson_type), POINTER                     :: poisson_env
     208             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
     209             :       TYPE(pw_r3d_rs_type)                               :: xv_hartree_rspace
     210         340 :       TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER        :: fxc_rho, fxc_tau, gxc_rho, gxc_tau, &
     211         340 :                                                             rho_r_aux, rhox_r, rhox_r_aux, rhoxx_r
     212         340 :       TYPE(qs_force_type), DIMENSION(:), POINTER         :: force
     213         340 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     214             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
     215             :       TYPE(qs_rho_type), POINTER                         :: rho, rho_aux_fit, rhox, rhox_aux
     216         340 :       TYPE(rho_atom_type), DIMENSION(:), POINTER         :: rho_atom_set, rho_atom_set_f, &
     217         340 :                                                             rho_atom_set_g
     218             :       TYPE(section_vals_type), POINTER                   :: hfx_section, xc_section
     219             :       TYPE(task_list_type), POINTER                      :: task_list
     220             :       TYPE(tddfpt2_control_type), POINTER                :: tddfpt_control
     221             : 
     222         340 :       CALL timeset(routineN, handle)
     223             : 
     224         340 :       logger => cp_get_default_logger()
     225         340 :       IF (logger%para_env%is_source()) THEN
     226         170 :          iounit = cp_logger_get_default_unit_nr(logger, local=.TRUE.)
     227             :       ELSE
     228             :          iounit = -1
     229             :       END IF
     230             : 
     231         340 :       CALL get_qs_env(qs_env, dft_control=dft_control)
     232         340 :       tddfpt_control => dft_control%tddfpt2_control
     233         340 :       nspins = dft_control%nspins
     234         340 :       is_rks_triplets = tddfpt_control%rks_triplets .AND. (nspins == 1)
     235         340 :       CPASSERT(tddfpt_control%kernel == tddfpt_kernel_full)
     236         340 :       do_hfx = tddfpt_control%do_hfx
     237         340 :       do_hfxsr = tddfpt_control%do_hfxsr
     238         340 :       do_hfxlr = tddfpt_control%do_hfxlr
     239         340 :       do_admm = tddfpt_control%do_admm
     240         340 :       gapw = dft_control%qs_control%gapw
     241         340 :       gapw_xc = dft_control%qs_control%gapw_xc
     242             : 
     243         340 :       evect => ex_env%evect
     244         340 :       matrix_px1 => ex_env%matrix_px1
     245         340 :       matrix_px1_admm => ex_env%matrix_px1_admm
     246         340 :       matrix_px1_asymm => ex_env%matrix_px1_asymm
     247         340 :       matrix_px1_admm_asymm => ex_env%matrix_px1_admm_asymm
     248             : 
     249         340 :       focc = 1.0_dp
     250         340 :       IF (nspins == 2) focc = 0.5_dp
     251         750 :       DO ispin = 1, nspins
     252         410 :          CALL dbcsr_set(matrix_px1(ispin)%matrix, 0.0_dp)
     253         410 :          CALL cp_fm_get_info(evect(ispin), ncol_global=norb)
     254             :          CALL cp_dbcsr_plus_fm_fm_t(matrix_px1(ispin)%matrix, &
     255             :                                     matrix_v=evect(ispin), &
     256             :                                     matrix_g=gs_mos(ispin)%mos_occ, &
     257         410 :                                     ncol=norb, alpha=2.0_dp*focc, symmetry_mode=1)
     258             : 
     259         410 :          CALL dbcsr_set(matrix_px1_asymm(ispin)%matrix, 0.0_dp)
     260         410 :          CALL cp_fm_get_info(evect(ispin), ncol_global=norb)
     261             :          CALL cp_dbcsr_plus_fm_fm_t(matrix_px1_asymm(ispin)%matrix, &
     262             :                                     matrix_v=gs_mos(ispin)%mos_occ, &
     263             :                                     matrix_g=evect(ispin), &
     264             :                                     ncol=norb, alpha=2.0_dp*focc, &
     265        1160 :                                     symmetry_mode=-1)
     266             :       END DO
     267             :       !
     268         340 :       CALL get_qs_env(qs_env, ks_env=ks_env, pw_env=pw_env, para_env=para_env)
     269             :       !
     270         340 :       NULLIFY (hartree_local, local_rho_set, local_rho_set_admm)
     271         340 :       IF (gapw .OR. gapw_xc) THEN
     272          56 :          IF (nspins == 2) THEN
     273           0 :             DO ispin = 1, nspins
     274           0 :                CALL dbcsr_scale(matrix_px1(ispin)%matrix, 2.0_dp)
     275             :             END DO
     276             :          END IF
     277             :          CALL get_qs_env(qs_env, &
     278             :                          atomic_kind_set=atomic_kind_set, &
     279          56 :                          qs_kind_set=qs_kind_set)
     280          56 :          CALL local_rho_set_create(local_rho_set)
     281             :          CALL allocate_rho_atom_internals(local_rho_set%rho_atom_set, atomic_kind_set, &
     282          56 :                                           qs_kind_set, dft_control, para_env)
     283          56 :          IF (gapw) THEN
     284          46 :             CALL get_qs_env(qs_env, natom=natom)
     285             :             CALL init_rho0(local_rho_set, qs_env, dft_control%qs_control%gapw_control, &
     286          46 :                            zcore=0.0_dp)
     287          46 :             CALL rho0_s_grid_create(pw_env, local_rho_set%rho0_mpole)
     288          46 :             CALL hartree_local_create(hartree_local)
     289          46 :             CALL init_coulomb_local(hartree_local, natom)
     290             :          END IF
     291             : 
     292          56 :          CALL get_qs_env(qs_env=qs_env, oce=oce, sap_oce=sap_oce, sab_orb=sab)
     293          56 :          CALL create_oce_set(oce)
     294          56 :          CALL get_qs_env(qs_env=qs_env, nkind=nkind, particle_set=particle_set)
     295          56 :          CALL allocate_oce_set(oce, nkind)
     296          56 :          eps_fit = dft_control%qs_control%gapw_control%eps_fit
     297             :          CALL build_oce_matrices(oce%intac, .TRUE., 1, qs_kind_set, particle_set, &
     298          56 :                                  sap_oce, eps_fit)
     299          56 :          CALL set_qs_env(qs_env, oce=oce)
     300             : 
     301          56 :          mpga(1:nspins, 1:1) => matrix_px1(1:nspins)
     302             :          CALL calculate_rho_atom_coeff(qs_env, mpga, local_rho_set%rho_atom_set, &
     303          56 :                                        qs_kind_set, oce, sab, para_env)
     304          56 :          CALL prepare_gapw_den(qs_env, local_rho_set, do_rho0=gapw)
     305             :          !
     306          56 :          CALL local_rho_set_create(local_rho_set_f)
     307             :          CALL allocate_rho_atom_internals(local_rho_set_f%rho_atom_set, atomic_kind_set, &
     308          56 :                                           qs_kind_set, dft_control, para_env)
     309             :          CALL calculate_rho_atom_coeff(qs_env, mpga, local_rho_set_f%rho_atom_set, &
     310          56 :                                        qs_kind_set, oce, sab, para_env)
     311          56 :          CALL prepare_gapw_den(qs_env, local_rho_set_f, do_rho0=.FALSE.)
     312             :          !
     313          56 :          CALL local_rho_set_create(local_rho_set_g)
     314             :          CALL allocate_rho_atom_internals(local_rho_set_g%rho_atom_set, atomic_kind_set, &
     315          56 :                                           qs_kind_set, dft_control, para_env)
     316             :          CALL calculate_rho_atom_coeff(qs_env, mpga, local_rho_set_g%rho_atom_set, &
     317          56 :                                        qs_kind_set, oce, sab, para_env)
     318          56 :          CALL prepare_gapw_den(qs_env, local_rho_set_g, do_rho0=.FALSE.)
     319          56 :          IF (nspins == 2) THEN
     320           0 :             DO ispin = 1, nspins
     321           0 :                CALL dbcsr_scale(matrix_px1(ispin)%matrix, 0.5_dp)
     322             :             END DO
     323             :          END IF
     324             :       END IF
     325             :       !
     326         340 :       IF (do_admm) THEN
     327          64 :          CALL get_qs_env(qs_env, admm_env=admm_env)
     328          64 :          nao_aux = admm_env%nao_aux_fit
     329          64 :          nao = admm_env%nao_orb
     330             :          !
     331         132 :          DO ispin = 1, nspins
     332          68 :             CALL copy_dbcsr_to_fm(matrix_px1(ispin)%matrix, admm_env%work_orb_orb)
     333             :             CALL parallel_gemm('N', 'N', nao_aux, nao, nao, &
     334             :                                1.0_dp, admm_env%A, admm_env%work_orb_orb, 0.0_dp, &
     335          68 :                                admm_env%work_aux_orb)
     336             :             CALL parallel_gemm('N', 'T', nao_aux, nao_aux, nao, &
     337             :                                1.0_dp, admm_env%work_aux_orb, admm_env%A, 0.0_dp, &
     338          68 :                                admm_env%work_aux_aux)
     339             :             CALL copy_fm_to_dbcsr(admm_env%work_aux_aux, matrix_px1_admm(ispin)%matrix, &
     340          68 :                                   keep_sparsity=.TRUE.)
     341             : 
     342          68 :             CALL copy_dbcsr_to_fm(matrix_px1_asymm(ispin)%matrix, admm_env%work_orb_orb)
     343             :             CALL parallel_gemm('N', 'N', nao_aux, nao, nao, &
     344             :                                1.0_dp, admm_env%A, admm_env%work_orb_orb, 0.0_dp, &
     345          68 :                                admm_env%work_aux_orb)
     346             :             CALL parallel_gemm('N', 'T', nao_aux, nao_aux, nao, &
     347             :                                1.0_dp, admm_env%work_aux_orb, admm_env%A, 0.0_dp, &
     348          68 :                                admm_env%work_aux_aux)
     349             :             CALL copy_fm_to_dbcsr(admm_env%work_aux_aux, matrix_px1_admm_asymm(ispin)%matrix, &
     350         132 :                                   keep_sparsity=.TRUE.)
     351             :          END DO
     352             :          !
     353          64 :          IF (admm_env%do_gapw) THEN
     354          10 :             IF (do_admm .AND. tddfpt_control%admm_xc_correction) THEN
     355           8 :                IF (admm_env%aux_exch_func == do_admm_aux_exch_func_none) THEN
     356             :                   ! nothing to do
     357             :                ELSE
     358           2 :                   CALL get_qs_env(qs_env, atomic_kind_set=atomic_kind_set)
     359           2 :                   CALL local_rho_set_create(local_rho_set_admm)
     360             :                   CALL allocate_rho_atom_internals(local_rho_set_admm%rho_atom_set, atomic_kind_set, &
     361           2 :                                                    admm_env%admm_gapw_env%admm_kind_set, dft_control, para_env)
     362           2 :                   mpga(1:nspins, 1:1) => matrix_px1_admm(1:nspins)
     363           2 :                   CALL get_admm_env(admm_env, sab_aux_fit=sab_aux_fit)
     364             :                   CALL calculate_rho_atom_coeff(qs_env, mpga, local_rho_set_admm%rho_atom_set, &
     365             :                                                 admm_env%admm_gapw_env%admm_kind_set, &
     366           2 :                                                 admm_env%admm_gapw_env%oce, sab_aux_fit, para_env)
     367             :                   CALL prepare_gapw_den(qs_env, local_rho_set_admm, do_rho0=.FALSE., &
     368           2 :                                         kind_set_external=admm_env%admm_gapw_env%admm_kind_set)
     369             :                   !
     370           2 :                   CALL local_rho_set_create(local_rho_set_f_admm)
     371             :                   CALL allocate_rho_atom_internals(local_rho_set_f_admm%rho_atom_set, atomic_kind_set, &
     372           2 :                                                    admm_env%admm_gapw_env%admm_kind_set, dft_control, para_env)
     373             :                   CALL calculate_rho_atom_coeff(qs_env, mpga, local_rho_set_f_admm%rho_atom_set, &
     374             :                                                 admm_env%admm_gapw_env%admm_kind_set, &
     375           2 :                                                 admm_env%admm_gapw_env%oce, sab_aux_fit, para_env)
     376             :                   CALL prepare_gapw_den(qs_env, local_rho_set_f_admm, do_rho0=.FALSE., &
     377           2 :                                         kind_set_external=admm_env%admm_gapw_env%admm_kind_set)
     378             :                   !
     379           2 :                   CALL local_rho_set_create(local_rho_set_g_admm)
     380             :                   CALL allocate_rho_atom_internals(local_rho_set_g_admm%rho_atom_set, atomic_kind_set, &
     381           2 :                                                    admm_env%admm_gapw_env%admm_kind_set, dft_control, para_env)
     382             :                   CALL calculate_rho_atom_coeff(qs_env, mpga, local_rho_set_g_admm%rho_atom_set, &
     383             :                                                 admm_env%admm_gapw_env%admm_kind_set, &
     384           2 :                                                 admm_env%admm_gapw_env%oce, sab_aux_fit, para_env)
     385             :                   CALL prepare_gapw_den(qs_env, local_rho_set_g_admm, do_rho0=.FALSE., &
     386           2 :                                         kind_set_external=admm_env%admm_gapw_env%admm_kind_set)
     387             :                END IF
     388             :             END IF
     389             :          END IF
     390             :       END IF
     391             :       !
     392             :       CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, &
     393         340 :                       poisson_env=poisson_env)
     394             : 
     395        2520 :       ALLOCATE (rhox_r(nspins), rhox_g(nspins))
     396         750 :       DO ispin = 1, nspins
     397         410 :          CALL auxbas_pw_pool%create_pw(rhox_r(ispin))
     398         750 :          CALL auxbas_pw_pool%create_pw(rhox_g(ispin))
     399             :       END DO
     400         340 :       CALL auxbas_pw_pool%create_pw(rhox_tot_gspace)
     401             : 
     402         340 :       CALL pw_zero(rhox_tot_gspace)
     403         750 :       DO ispin = 1, nspins
     404         410 :          IF (nspins == 2) CALL dbcsr_scale(matrix_px1(ispin)%matrix, 2.0_dp)
     405             :          CALL calculate_rho_elec(ks_env=ks_env, matrix_p=matrix_px1(ispin)%matrix, &
     406             :                                  rho=rhox_r(ispin), rho_gspace=rhox_g(ispin), &
     407         410 :                                  soft_valid=gapw)
     408         410 :          CALL pw_axpy(rhox_g(ispin), rhox_tot_gspace)
     409         750 :          IF (nspins == 2) CALL dbcsr_scale(matrix_px1(ispin)%matrix, 0.5_dp)
     410             :       END DO
     411             : 
     412         340 :       IF (gapw_xc) THEN
     413          50 :          ALLOCATE (rhoxx_r(nspins), rhoxx_g(nspins))
     414          20 :          DO ispin = 1, nspins
     415          10 :             CALL auxbas_pw_pool%create_pw(rhoxx_r(ispin))
     416          20 :             CALL auxbas_pw_pool%create_pw(rhoxx_g(ispin))
     417             :          END DO
     418          20 :          DO ispin = 1, nspins
     419          10 :             IF (nspins == 2) CALL dbcsr_scale(matrix_px1(ispin)%matrix, 2.0_dp)
     420             :             CALL calculate_rho_elec(ks_env=ks_env, matrix_p=matrix_px1(ispin)%matrix, &
     421             :                                     rho=rhoxx_r(ispin), rho_gspace=rhoxx_g(ispin), &
     422          10 :                                     soft_valid=gapw_xc)
     423          20 :             IF (nspins == 2) CALL dbcsr_scale(matrix_px1(ispin)%matrix, 0.5_dp)
     424             :          END DO
     425             :       END IF
     426             : 
     427         340 :       CALL get_qs_env(qs_env, matrix_s=matrix_s, force=force)
     428             : 
     429         340 :       IF (.NOT. is_rks_triplets) THEN
     430         302 :          CALL auxbas_pw_pool%create_pw(xv_hartree_rspace)
     431         302 :          CALL auxbas_pw_pool%create_pw(xv_hartree_gspace)
     432             :          ! calculate associated hartree potential
     433         302 :          IF (gapw) THEN
     434          38 :             CALL pw_axpy(local_rho_set%rho0_mpole%rho0_s_gs, rhox_tot_gspace)
     435             :          END IF
     436             :          CALL pw_poisson_solve(poisson_env, rhox_tot_gspace, xehartree, &
     437         302 :                                xv_hartree_gspace)
     438         302 :          CALL pw_transfer(xv_hartree_gspace, xv_hartree_rspace)
     439         302 :          CALL pw_scale(xv_hartree_rspace, xv_hartree_rspace%pw_grid%dvol)
     440             :          !
     441         422 :          IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
     442         302 :          NULLIFY (matrix_hx)
     443         302 :          CALL dbcsr_allocate_matrix_set(matrix_hx, nspins)
     444         674 :          DO ispin = 1, nspins
     445         372 :             ALLOCATE (matrix_hx(ispin)%matrix)
     446         372 :             CALL dbcsr_create(matrix_hx(ispin)%matrix, template=matrix_s(1)%matrix)
     447         372 :             CALL dbcsr_copy(matrix_hx(ispin)%matrix, matrix_s(1)%matrix)
     448         372 :             CALL dbcsr_set(matrix_hx(ispin)%matrix, 0.0_dp)
     449             :             CALL integrate_v_rspace(qs_env=qs_env, v_rspace=xv_hartree_rspace, &
     450             :                                     pmat=matrix_px1(ispin), hmat=matrix_hx(ispin), &
     451         674 :                                     gapw=gapw, calculate_forces=.TRUE.)
     452             :          END DO
     453         302 :          IF (debug_forces) THEN
     454         160 :             fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
     455          40 :             CALL para_env%sum(fodeb)
     456          40 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Px*dKh[X]   ", fodeb
     457             :          END IF
     458         302 :          IF (gapw) THEN
     459         140 :             IF (debug_forces) fodeb(1:3) = force(1)%g0s_Vh_elec(1:3, 1)
     460             :             CALL Vh_1c_gg_integrals(qs_env, eh1c, hartree_local%ecoul_1c, local_rho_set, para_env, tddft=.TRUE., &
     461          38 :                                     core_2nd=.TRUE.)
     462          38 :             IF (nspins == 1) THEN
     463          38 :                kval = 1.0_dp
     464             :             ELSE
     465           0 :                kval = 0.5_dp
     466             :             END IF
     467             :             CALL integrate_vhg0_rspace(qs_env, xv_hartree_rspace, para_env, calculate_forces=.TRUE., &
     468          38 :                                        local_rho_set=local_rho_set, kforce=kval)
     469          38 :             IF (debug_forces) THEN
     470         136 :                fodeb(1:3) = force(1)%g0s_Vh_elec(1:3, 1) - fodeb(1:3)
     471          34 :                CALL para_env%sum(fodeb)
     472          34 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Px*dKh[X]PAWg0", fodeb
     473             :             END IF
     474         140 :             IF (debug_forces) fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1)
     475             :             CALL update_ks_atom(qs_env, matrix_hx, matrix_px1, forces=.TRUE., &
     476          38 :                                 rho_atom_external=local_rho_set%rho_atom_set)
     477          38 :             IF (debug_forces) THEN
     478         136 :                fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1) - fodeb(1:3)
     479          34 :                CALL para_env%sum(fodeb)
     480          34 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Px*dKh[X]PAW ", fodeb
     481             :             END IF
     482             :          END IF
     483             :       END IF
     484             : 
     485             :       ! XC
     486         340 :       IF (full_kernel%do_exck) THEN
     487           0 :          CPABORT("NYA")
     488             :       END IF
     489         340 :       NULLIFY (fxc_rho, fxc_tau, gxc_rho, gxc_tau)
     490         340 :       xc_section => full_kernel%xc_section
     491             :       CALL section_vals_val_get(xc_section, "XC_FUNCTIONAL%_SECTION_PARAMETERS_", &
     492         340 :                                 i_val=myfun)
     493         340 :       IF (myfun /= xc_none) THEN
     494         230 :          SELECT CASE (ex_env%xc_kernel_method)
     495             :          CASE (xc_kernel_method_best)
     496             :             do_analytic = .TRUE.
     497           0 :             do_numeric = .TRUE.
     498             :          CASE (xc_kernel_method_analytic)
     499           0 :             do_analytic = .TRUE.
     500           0 :             do_numeric = .FALSE.
     501             :          CASE (xc_kernel_method_numeric)
     502           0 :             do_analytic = .FALSE.
     503           0 :             do_numeric = .TRUE.
     504             :          CASE DEFAULT
     505         230 :             CPABORT("invalid xc_kernel_method")
     506             :          END SELECT
     507         230 :          order = ex_env%diff_order
     508         230 :          eps_delta = ex_env%eps_delta_rho
     509             : 
     510         230 :          IF (gapw_xc) THEN
     511          10 :             CALL get_qs_env(qs_env=qs_env, ks_env=ks_env, rho_xc=rho)
     512             :          ELSE
     513         220 :             CALL get_qs_env(qs_env=qs_env, ks_env=ks_env, rho=rho)
     514             :          END IF
     515         230 :          CALL qs_rho_get(rho, rho_ao=matrix_p)
     516             :          NULLIFY (rhox)
     517         230 :          ALLOCATE (rhox)
     518         230 :          CALL qs_rho_create(rhox)
     519         230 :          IF (gapw_xc) THEN
     520             :             CALL qs_rho_set(rho_struct=rhox, rho_ao=matrix_px1, rho_r=rhoxx_r, rho_g=rhoxx_g, &
     521          10 :                             rho_r_valid=.TRUE., rho_g_valid=.TRUE.)
     522             :          ELSE
     523             :             CALL qs_rho_set(rho_struct=rhox, rho_ao=matrix_px1, rho_r=rhox_r, rho_g=rhox_g, &
     524         220 :                             rho_r_valid=.TRUE., rho_g_valid=.TRUE.)
     525             :          END IF
     526         230 :          IF (do_analytic .AND. .NOT. do_numeric) THEN
     527           0 :             CPABORT("Analytic 3rd EXC derivatives not available")
     528         230 :          ELSEIF (do_numeric) THEN
     529         230 :             IF (do_analytic) THEN
     530             :                CALL qs_fgxc_gdiff(ks_env, rho, rhox, xc_section, order, eps_delta, is_rks_triplets, &
     531         230 :                                   fxc_rho, fxc_tau, gxc_rho, gxc_tau)
     532             :             ELSE
     533             :                CALL qs_fgxc_create(ks_env, rho, rhox, xc_section, order, is_rks_triplets, &
     534           0 :                                    fxc_rho, fxc_tau, gxc_rho, gxc_tau)
     535             :             END IF
     536             :          ELSE
     537           0 :             CPABORT("FHXC forces analytic/numeric")
     538             :          END IF
     539             : 
     540             :          ! Well, this is a hack :-(
     541             :          ! When qs_rho_set() was called on rhox it assumed ownership of the passed arrays.
     542             :          ! However, these arrays actually belong to ex_env. Hence, we can not call qs_rho_release()
     543             :          ! because this would release the arrays. Instead we're simply going to deallocate rhox.
     544         230 :          DEALLOCATE (rhox)
     545             : 
     546         230 :          IF (nspins == 2) THEN
     547         108 :             DO ispin = 1, nspins
     548          72 :                CALL pw_scale(gxc_rho(ispin), 0.5_dp)
     549         108 :                IF (ASSOCIATED(gxc_tau)) CALL pw_scale(gxc_tau(ispin), 0.5_dp)
     550             :             END DO
     551             :          END IF
     552         230 :          IF (gapw .OR. gapw_xc) THEN
     553          48 :             IF (do_analytic .AND. .NOT. do_numeric) THEN
     554           0 :                CPABORT("Analytic 3rd EXC derivatives not available")
     555          48 :             ELSEIF (do_numeric) THEN
     556          48 :                IF (do_analytic) THEN
     557             :                   CALL gfxc_atom_diff(qs_env, ex_env%local_rho_set%rho_atom_set, &
     558             :                                       local_rho_set_f%rho_atom_set, local_rho_set_g%rho_atom_set, &
     559          48 :                                       qs_kind_set, xc_section, is_rks_triplets, order, eps_delta)
     560             :                ELSE
     561             :                   CALL calculate_gfxc_atom(qs_env, ex_env%local_rho_set%rho_atom_set, &
     562             :                                            local_rho_set_f%rho_atom_set, local_rho_set_g%rho_atom_set, &
     563           0 :                                            qs_kind_set, xc_section, is_rks_triplets, order)
     564             :                END IF
     565             :             ELSE
     566           0 :                CPABORT("FHXC forces analytic/numeric")
     567             :             END IF
     568             :          END IF
     569             : 
     570         350 :          IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
     571         230 :          NULLIFY (matrix_fx)
     572         230 :          CALL dbcsr_allocate_matrix_set(matrix_fx, nspins)
     573         496 :          DO ispin = 1, nspins
     574         266 :             ALLOCATE (matrix_fx(ispin)%matrix)
     575         266 :             CALL dbcsr_create(matrix_fx(ispin)%matrix, template=matrix_s(1)%matrix)
     576         266 :             CALL dbcsr_copy(matrix_fx(ispin)%matrix, matrix_s(1)%matrix)
     577         266 :             CALL dbcsr_set(matrix_fx(ispin)%matrix, 0.0_dp)
     578         266 :             CALL pw_scale(fxc_rho(ispin), fxc_rho(ispin)%pw_grid%dvol)
     579             :             CALL integrate_v_rspace(qs_env=qs_env, v_rspace=fxc_rho(ispin), &
     580             :                                     pmat=matrix_px1(ispin), hmat=matrix_fx(ispin), &
     581         714 :                                     gapw=(gapw .OR. gapw_xc), calculate_forces=.TRUE.)
     582             :          END DO
     583         230 :          IF (debug_forces) THEN
     584         160 :             fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
     585          40 :             CALL para_env%sum(fodeb)
     586          40 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Px*dKf[X]   ", fodeb
     587             :          END IF
     588             : 
     589         350 :          IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
     590         230 :          NULLIFY (matrix_gx)
     591         230 :          CALL dbcsr_allocate_matrix_set(matrix_gx, nspins)
     592         496 :          DO ispin = 1, nspins
     593         266 :             ALLOCATE (matrix_gx(ispin)%matrix)
     594         266 :             CALL dbcsr_create(matrix_gx(ispin)%matrix, template=matrix_s(1)%matrix)
     595         266 :             CALL dbcsr_copy(matrix_gx(ispin)%matrix, matrix_s(1)%matrix)
     596         266 :             CALL dbcsr_set(matrix_gx(ispin)%matrix, 0.0_dp)
     597         266 :             CALL pw_scale(gxc_rho(ispin), gxc_rho(ispin)%pw_grid%dvol)
     598         266 :             CALL pw_scale(gxc_rho(ispin), 0.5_dp)
     599             :             CALL integrate_v_rspace(qs_env=qs_env, v_rspace=gxc_rho(ispin), &
     600             :                                     pmat=matrix_p(ispin), hmat=matrix_gx(ispin), &
     601         484 :                                     gapw=(gapw .OR. gapw_xc), calculate_forces=.TRUE.)
     602         496 :             CALL dbcsr_scale(matrix_gx(ispin)%matrix, 2.0_dp)
     603             :          END DO
     604         230 :          IF (debug_forces) THEN
     605         160 :             fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
     606          40 :             CALL para_env%sum(fodeb)
     607          40 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: P*dKg[X]   ", fodeb
     608             :          END IF
     609         230 :          CALL qs_fgxc_release(ks_env, fxc_rho, fxc_tau, gxc_rho, gxc_tau)
     610             : 
     611         230 :          IF (gapw .OR. gapw_xc) THEN
     612         168 :             IF (debug_forces) fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1)
     613             :             CALL update_ks_atom(qs_env, matrix_fx, matrix_px1, forces=.TRUE., tddft=.TRUE., &
     614             :                                 rho_atom_external=local_rho_set_f%rho_atom_set, &
     615          48 :                                 kintegral=1.0_dp, kforce=1.0_dp)
     616          48 :             IF (debug_forces) THEN
     617         160 :                fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1) - fodeb(1:3)
     618          40 :                CALL para_env%sum(fodeb)
     619          40 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Px*dKf[X]PAW ", fodeb
     620             :             END IF
     621         168 :             IF (debug_forces) fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1)
     622          48 :             IF (nspins == 1) THEN
     623             :                CALL update_ks_atom(qs_env, matrix_gx, matrix_p, forces=.TRUE., tddft=.TRUE., &
     624             :                                    rho_atom_external=local_rho_set_g%rho_atom_set, &
     625          48 :                                    kscale=0.5_dp)
     626             :             ELSE
     627             :                CALL update_ks_atom(qs_env, matrix_gx, matrix_p, forces=.TRUE., &
     628             :                                    rho_atom_external=local_rho_set_g%rho_atom_set, &
     629           0 :                                    kintegral=0.5_dp, kforce=0.25_dp)
     630             :             END IF
     631          48 :             IF (debug_forces) THEN
     632         160 :                fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1) - fodeb(1:3)
     633          40 :                CALL para_env%sum(fodeb)
     634          40 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Px*dKg[X]PAW ", fodeb
     635             :             END IF
     636             :          END IF
     637             :       END IF
     638             : 
     639             :       ! ADMM XC correction Exc[rho_admm]
     640         340 :       IF (do_admm .AND. tddfpt_control%admm_xc_correction) THEN
     641          52 :          IF (admm_env%aux_exch_func == do_admm_aux_exch_func_none) THEN
     642             :             ! nothing to do
     643             :          ELSE
     644          32 :             IF (.NOT. tddfpt_control%admm_symm) THEN
     645           0 :                CALL cp_warn(__LOCATION__, "Forces need symmetric ADMM kernel corrections")
     646           0 :                CPABORT("ADMM KERNEL CORRECTION")
     647             :             END IF
     648          32 :             xc_section => admm_env%xc_section_aux
     649             :             CALL get_admm_env(admm_env, rho_aux_fit=rho_aux_fit, matrix_s_aux_fit=matrix_s_aux_fit, &
     650          32 :                               task_list_aux_fit=task_list)
     651          32 :             basis_type = "AUX_FIT"
     652          32 :             IF (admm_env%do_gapw) THEN
     653           2 :                basis_type = "AUX_FIT_SOFT"
     654           2 :                task_list => admm_env%admm_gapw_env%task_list
     655             :             END IF
     656             :             !
     657          32 :             NULLIFY (mfx, mgx)
     658          32 :             CALL dbcsr_allocate_matrix_set(mfx, nspins)
     659          32 :             CALL dbcsr_allocate_matrix_set(mgx, nspins)
     660          64 :             DO ispin = 1, nspins
     661          32 :                ALLOCATE (mfx(ispin)%matrix, mgx(ispin)%matrix)
     662          32 :                CALL dbcsr_create(mfx(ispin)%matrix, template=matrix_s_aux_fit(1)%matrix)
     663          32 :                CALL dbcsr_copy(mfx(ispin)%matrix, matrix_s_aux_fit(1)%matrix)
     664          32 :                CALL dbcsr_set(mfx(ispin)%matrix, 0.0_dp)
     665          32 :                CALL dbcsr_create(mgx(ispin)%matrix, template=matrix_s_aux_fit(1)%matrix)
     666          32 :                CALL dbcsr_copy(mgx(ispin)%matrix, matrix_s_aux_fit(1)%matrix)
     667          64 :                CALL dbcsr_set(mgx(ispin)%matrix, 0.0_dp)
     668             :             END DO
     669             : 
     670             :             ! ADMM density and response density
     671          32 :             NULLIFY (rho_g_aux, rho_r_aux, rhox_g_aux, rhox_r_aux)
     672          32 :             CALL qs_rho_get(rho_aux_fit, rho_r=rho_r_aux, rho_g=rho_g_aux)
     673          32 :             CALL qs_rho_get(rho_aux_fit, rho_ao=matrix_p_admm)
     674             :             ! rhox_aux
     675         224 :             ALLOCATE (rhox_r_aux(nspins), rhox_g_aux(nspins))
     676          64 :             DO ispin = 1, nspins
     677          32 :                CALL auxbas_pw_pool%create_pw(rhox_r_aux(ispin))
     678          64 :                CALL auxbas_pw_pool%create_pw(rhox_g_aux(ispin))
     679             :             END DO
     680          64 :             DO ispin = 1, nspins
     681             :                CALL calculate_rho_elec(ks_env=ks_env, matrix_p=matrix_px1_admm(ispin)%matrix, &
     682             :                                        rho=rhox_r_aux(ispin), rho_gspace=rhox_g_aux(ispin), &
     683             :                                        basis_type=basis_type, &
     684          64 :                                        task_list_external=task_list)
     685             :             END DO
     686             :             !
     687             :             NULLIFY (rhox_aux)
     688          32 :             ALLOCATE (rhox_aux)
     689          32 :             CALL qs_rho_create(rhox_aux)
     690             :             CALL qs_rho_set(rho_struct=rhox_aux, rho_ao=matrix_px1_admm, &
     691             :                             rho_r=rhox_r_aux, rho_g=rhox_g_aux, &
     692          32 :                             rho_r_valid=.TRUE., rho_g_valid=.TRUE.)
     693          32 :             IF (do_analytic .AND. .NOT. do_numeric) THEN
     694           0 :                CPABORT("Analytic 3rd derivatives of EXC not available")
     695          32 :             ELSEIF (do_numeric) THEN
     696          32 :                IF (do_analytic) THEN
     697             :                   CALL qs_fgxc_gdiff(ks_env, rho_aux_fit, rhox_aux, xc_section, order, eps_delta, &
     698          32 :                                      is_rks_triplets, fxc_rho, fxc_tau, gxc_rho, gxc_tau)
     699             :                ELSE
     700             :                   CALL qs_fgxc_create(ks_env, rho_aux_fit, rhox_aux, xc_section, &
     701           0 :                                       order, is_rks_triplets, fxc_rho, fxc_tau, gxc_rho, gxc_tau)
     702             :                END IF
     703             :             ELSE
     704           0 :                CPABORT("FHXC forces analytic/numeric")
     705             :             END IF
     706             : 
     707             :             ! Well, this is a hack :-(
     708             :             ! When qs_rho_set() was called on rhox_aux it assumed ownership of the passed arrays.
     709             :             ! However, these arrays actually belong to ex_env. Hence, we can not call qs_rho_release()
     710             :             ! because this would release the arrays. Instead we're simply going to deallocate rhox_aux.
     711          32 :             DEALLOCATE (rhox_aux)
     712             : 
     713          64 :             DO ispin = 1, nspins
     714          32 :                CALL auxbas_pw_pool%give_back_pw(rhox_r_aux(ispin))
     715          64 :                CALL auxbas_pw_pool%give_back_pw(rhox_g_aux(ispin))
     716             :             END DO
     717          32 :             DEALLOCATE (rhox_r_aux, rhox_g_aux)
     718          32 :             fscal = 1.0_dp
     719          32 :             IF (nspins == 2) fscal = 2.0_dp
     720             :             !
     721          38 :             IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
     722          64 :             DO ispin = 1, nspins
     723          32 :                CALL pw_scale(fxc_rho(ispin), fxc_rho(ispin)%pw_grid%dvol)
     724             :                CALL integrate_v_rspace(qs_env=qs_env, v_rspace=fxc_rho(ispin), &
     725             :                                        hmat=mfx(ispin), &
     726             :                                        pmat=matrix_px1_admm(ispin), &
     727             :                                        basis_type=basis_type, &
     728             :                                        calculate_forces=.TRUE., &
     729             :                                        force_adm=fscal, &
     730          64 :                                        task_list_external=task_list)
     731             :             END DO
     732          32 :             IF (debug_forces) THEN
     733           8 :                fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
     734           2 :                CALL para_env%sum(fodeb)
     735           2 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Px*dKf[X]ADMM", fodeb
     736             :             END IF
     737             : 
     738          38 :             IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
     739          64 :             DO ispin = 1, nspins
     740          32 :                CALL pw_scale(gxc_rho(ispin), gxc_rho(ispin)%pw_grid%dvol)
     741          32 :                CALL pw_scale(gxc_rho(ispin), 0.5_dp)
     742             :                CALL integrate_v_rspace(qs_env=qs_env, v_rspace=gxc_rho(ispin), &
     743             :                                        hmat=mgx(ispin), &
     744             :                                        pmat=matrix_p_admm(ispin), &
     745             :                                        basis_type=basis_type, &
     746             :                                        calculate_forces=.TRUE., &
     747             :                                        force_adm=fscal, &
     748          32 :                                        task_list_external=task_list)
     749          64 :                CALL dbcsr_scale(mgx(ispin)%matrix, 2.0_dp)
     750             :             END DO
     751          32 :             IF (debug_forces) THEN
     752           8 :                fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
     753           2 :                CALL para_env%sum(fodeb)
     754           2 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: P*dKg[X]ADMM", fodeb
     755             :             END IF
     756          32 :             CALL qs_fgxc_release(ks_env, fxc_rho, fxc_tau, gxc_rho, gxc_tau)
     757             :             !
     758          32 :             IF (admm_env%do_gapw) THEN
     759           2 :                CALL get_admm_env(admm_env, sab_aux_fit=sab_aux_fit)
     760           2 :                rho_atom_set => admm_env%admm_gapw_env%local_rho_set%rho_atom_set
     761           2 :                rho_atom_set_f => local_rho_set_f_admm%rho_atom_set
     762           2 :                rho_atom_set_g => local_rho_set_g_admm%rho_atom_set
     763             : 
     764           2 :                IF (do_analytic .AND. .NOT. do_numeric) THEN
     765           0 :                   CPABORT("Analytic 3rd EXC derivatives not available")
     766           2 :                ELSEIF (do_numeric) THEN
     767           2 :                   IF (do_analytic) THEN
     768             :                      CALL gfxc_atom_diff(qs_env, rho_atom_set, &
     769             :                                          rho_atom_set_f, rho_atom_set_g, &
     770             :                                          admm_env%admm_gapw_env%admm_kind_set, xc_section, &
     771           2 :                                          is_rks_triplets, order, eps_delta)
     772             :                   ELSE
     773             :                      CALL calculate_gfxc_atom(qs_env, rho_atom_set, &
     774             :                                               rho_atom_set_f, rho_atom_set_g, &
     775             :                                               admm_env%admm_gapw_env%admm_kind_set, xc_section, &
     776           0 :                                               is_rks_triplets, order)
     777             :                   END IF
     778             :                ELSE
     779           0 :                   CPABORT("FHXC forces analytic/numeric")
     780             :                END IF
     781             : 
     782           8 :                IF (debug_forces) fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1)
     783           2 :                IF (nspins == 1) THEN
     784             :                   CALL update_ks_atom(qs_env, mfx, matrix_px1_admm, forces=.TRUE., &
     785             :                                       rho_atom_external=rho_atom_set_f, &
     786             :                                       kind_set_external=admm_env%admm_gapw_env%admm_kind_set, &
     787             :                                       oce_external=admm_env%admm_gapw_env%oce, sab_external=sab_aux_fit, &
     788           2 :                                       kintegral=2.0_dp, kforce=0.5_dp)
     789             :                ELSE
     790             :                   CALL update_ks_atom(qs_env, mfx, matrix_px1_admm, forces=.TRUE., &
     791             :                                       rho_atom_external=rho_atom_set_f, &
     792             :                                       kind_set_external=admm_env%admm_gapw_env%admm_kind_set, &
     793             :                                       oce_external=admm_env%admm_gapw_env%oce, sab_external=sab_aux_fit, &
     794           0 :                                       kintegral=2.0_dp, kforce=1.0_dp)
     795             :                END IF
     796           2 :                IF (debug_forces) THEN
     797           8 :                   fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1) - fodeb(1:3)
     798           2 :                   CALL para_env%sum(fodeb)
     799           2 :                   IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Px*dKf[X]ADMM-PAW ", fodeb
     800             :                END IF
     801           8 :                IF (debug_forces) fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1)
     802           2 :                IF (nspins == 1) THEN
     803             :                   CALL update_ks_atom(qs_env, mgx, matrix_p, forces=.TRUE., &
     804             :                                       rho_atom_external=rho_atom_set_g, &
     805             :                                       kind_set_external=admm_env%admm_gapw_env%admm_kind_set, &
     806             :                                       oce_external=admm_env%admm_gapw_env%oce, sab_external=sab_aux_fit, &
     807           2 :                                       kintegral=1.0_dp, kforce=0.5_dp)
     808             :                ELSE
     809             :                   CALL update_ks_atom(qs_env, mgx, matrix_p, forces=.TRUE., &
     810             :                                       rho_atom_external=rho_atom_set_g, &
     811             :                                       kind_set_external=admm_env%admm_gapw_env%admm_kind_set, &
     812             :                                       oce_external=admm_env%admm_gapw_env%oce, sab_external=sab_aux_fit, &
     813           0 :                                       kintegral=1.0_dp, kforce=1.0_dp)
     814             :                END IF
     815           2 :                IF (debug_forces) THEN
     816           8 :                   fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1) - fodeb(1:3)
     817           2 :                   CALL para_env%sum(fodeb)
     818           2 :                   IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: P*dKg[X]ADMM-PAW ", fodeb
     819             :                END IF
     820             :             END IF
     821             :             !
     822             :             ! A' fx A - Forces
     823             :             !
     824          38 :             IF (debug_forces) fodeb(1:3) = force(1)%overlap_admm(1:3, 1)
     825          32 :             fval = 2.0_dp*REAL(nspins, KIND=dp)
     826          32 :             CALL admm_projection_derivative(qs_env, mfx, matrix_px1, fval)
     827          32 :             IF (debug_forces) THEN
     828           8 :                fodeb(1:3) = force(1)%overlap_admm(1:3, 1) - fodeb(1:3)
     829           2 :                CALL para_env%sum(fodeb)
     830           2 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: P*dfXC(P)*S' ", fodeb
     831             :             END IF
     832          38 :             IF (debug_forces) fodeb(1:3) = force(1)%overlap_admm(1:3, 1)
     833             :             fval = 2.0_dp*REAL(nspins, KIND=dp)
     834          32 :             CALL admm_projection_derivative(qs_env, mgx, matrix_p, fval)
     835          32 :             IF (debug_forces) THEN
     836           8 :                fodeb(1:3) = force(1)%overlap_admm(1:3, 1) - fodeb(1:3)
     837           2 :                CALL para_env%sum(fodeb)
     838           2 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: P*dgXC(P)*S' ", fodeb
     839             :             END IF
     840             :             !
     841             :             ! Add ADMM fx/gx to the full basis fx/gx
     842          32 :             fscal = 1.0_dp
     843          32 :             IF (nspins == 2) fscal = 2.0_dp
     844          32 :             nao = admm_env%nao_orb
     845          32 :             nao_aux = admm_env%nao_aux_fit
     846          32 :             ALLOCATE (dbwork)
     847          32 :             CALL dbcsr_create(dbwork, template=matrix_fx(1)%matrix)
     848          64 :             DO ispin = 1, nspins
     849             :                ! fx
     850             :                CALL cp_dbcsr_sm_fm_multiply(mfx(ispin)%matrix, admm_env%A, &
     851          32 :                                             admm_env%work_aux_orb, nao)
     852             :                CALL parallel_gemm('T', 'N', nao, nao, nao_aux, &
     853             :                                   1.0_dp, admm_env%A, admm_env%work_aux_orb, 0.0_dp, &
     854          32 :                                   admm_env%work_orb_orb)
     855          32 :                CALL dbcsr_copy(dbwork, matrix_fx(1)%matrix)
     856          32 :                CALL dbcsr_set(dbwork, 0.0_dp)
     857          32 :                CALL copy_fm_to_dbcsr(admm_env%work_orb_orb, dbwork, keep_sparsity=.TRUE.)
     858          32 :                CALL dbcsr_add(matrix_fx(ispin)%matrix, dbwork, 1.0_dp, fscal)
     859             :                ! gx
     860             :                CALL cp_dbcsr_sm_fm_multiply(mgx(ispin)%matrix, admm_env%A, &
     861          32 :                                             admm_env%work_aux_orb, nao)
     862             :                CALL parallel_gemm('T', 'N', nao, nao, nao_aux, &
     863             :                                   1.0_dp, admm_env%A, admm_env%work_aux_orb, 0.0_dp, &
     864          32 :                                   admm_env%work_orb_orb)
     865          32 :                CALL dbcsr_set(dbwork, 0.0_dp)
     866          32 :                CALL copy_fm_to_dbcsr(admm_env%work_orb_orb, dbwork, keep_sparsity=.TRUE.)
     867          64 :                CALL dbcsr_add(matrix_gx(ispin)%matrix, dbwork, 1.0_dp, fscal)
     868             :             END DO
     869          32 :             CALL dbcsr_release(dbwork)
     870          32 :             DEALLOCATE (dbwork)
     871          32 :             CALL dbcsr_deallocate_matrix_set(mfx)
     872          64 :             CALL dbcsr_deallocate_matrix_set(mgx)
     873             : 
     874             :          END IF
     875             :       END IF
     876             : 
     877         750 :       DO ispin = 1, nspins
     878         410 :          CALL auxbas_pw_pool%give_back_pw(rhox_r(ispin))
     879         750 :          CALL auxbas_pw_pool%give_back_pw(rhox_g(ispin))
     880             :       END DO
     881         340 :       DEALLOCATE (rhox_r, rhox_g)
     882         340 :       CALL auxbas_pw_pool%give_back_pw(rhox_tot_gspace)
     883         340 :       IF (gapw_xc) THEN
     884          20 :          DO ispin = 1, nspins
     885          10 :             CALL auxbas_pw_pool%give_back_pw(rhoxx_r(ispin))
     886          20 :             CALL auxbas_pw_pool%give_back_pw(rhoxx_g(ispin))
     887             :          END DO
     888          10 :          DEALLOCATE (rhoxx_r, rhoxx_g)
     889             :       END IF
     890         340 :       IF (.NOT. is_rks_triplets) THEN
     891         302 :          CALL auxbas_pw_pool%give_back_pw(xv_hartree_rspace)
     892         302 :          CALL auxbas_pw_pool%give_back_pw(xv_hartree_gspace)
     893             :       END IF
     894             : 
     895             :       ! HFX
     896         340 :       IF (do_hfx) THEN
     897         124 :          NULLIFY (matrix_hfx, matrix_hfx_asymm)
     898         124 :          CALL dbcsr_allocate_matrix_set(matrix_hfx, nspins)
     899         124 :          CALL dbcsr_allocate_matrix_set(matrix_hfx_asymm, nspins)
     900         260 :          DO ispin = 1, nspins
     901         136 :             ALLOCATE (matrix_hfx(ispin)%matrix)
     902         136 :             CALL dbcsr_create(matrix_hfx(ispin)%matrix, template=matrix_s(1)%matrix)
     903         136 :             CALL dbcsr_copy(matrix_hfx(ispin)%matrix, matrix_s(1)%matrix)
     904         136 :             CALL dbcsr_set(matrix_hfx(ispin)%matrix, 0.0_dp)
     905             : 
     906         136 :             ALLOCATE (matrix_hfx_asymm(ispin)%matrix)
     907             :             CALL dbcsr_create(matrix_hfx_asymm(ispin)%matrix, template=matrix_s(1)%matrix, &
     908         136 :                               matrix_type=dbcsr_type_antisymmetric)
     909         260 :             CALL dbcsr_complete_redistribute(matrix_hfx(ispin)%matrix, matrix_hfx_asymm(ispin)%matrix)
     910             :          END DO
     911             :          !
     912         124 :          xc_section => full_kernel%xc_section
     913         124 :          hfx_section => section_vals_get_subs_vals(xc_section, "HF")
     914         124 :          CALL section_vals_get(hfx_section, n_repetition=n_rep_hf)
     915         124 :          CPASSERT(n_rep_hf == 1)
     916             :          CALL section_vals_val_get(hfx_section, "TREAT_LSD_IN_CORE", l_val=hfx_treat_lsd_in_core, &
     917         124 :                                    i_rep_section=1)
     918         124 :          mspin = 1
     919         124 :          IF (hfx_treat_lsd_in_core) mspin = nspins
     920             :          !
     921         124 :          CALL get_qs_env(qs_env=qs_env, x_data=x_data, s_mstruct_changed=s_mstruct_changed)
     922         124 :          distribute_fock_matrix = .TRUE.
     923             :          !
     924         124 :          IF (do_admm) THEN
     925          64 :             CALL get_admm_env(qs_env%admm_env, matrix_s_aux_fit=matrix_s_aux_fit)
     926          64 :             NULLIFY (matrix_hfx_admm, matrix_hfx_admm_asymm)
     927          64 :             CALL dbcsr_allocate_matrix_set(matrix_hfx_admm, nspins)
     928          64 :             CALL dbcsr_allocate_matrix_set(matrix_hfx_admm_asymm, nspins)
     929         132 :             DO ispin = 1, nspins
     930          68 :                ALLOCATE (matrix_hfx_admm(ispin)%matrix)
     931          68 :                CALL dbcsr_create(matrix_hfx_admm(ispin)%matrix, template=matrix_s_aux_fit(1)%matrix)
     932          68 :                CALL dbcsr_copy(matrix_hfx_admm(ispin)%matrix, matrix_s_aux_fit(1)%matrix)
     933          68 :                CALL dbcsr_set(matrix_hfx_admm(ispin)%matrix, 0.0_dp)
     934             : 
     935          68 :                ALLOCATE (matrix_hfx_admm_asymm(ispin)%matrix)
     936             :                CALL dbcsr_create(matrix_hfx_admm_asymm(ispin)%matrix, template=matrix_s_aux_fit(1)%matrix, &
     937          68 :                                  matrix_type=dbcsr_type_antisymmetric)
     938         132 :                CALL dbcsr_complete_redistribute(matrix_hfx_admm(ispin)%matrix, matrix_hfx_admm_asymm(ispin)%matrix)
     939             :             END DO
     940             :             !
     941          64 :             NULLIFY (mpe, mhe)
     942         520 :             ALLOCATE (mpe(nspins, 1), mhe(nspins, 1))
     943         132 :             DO ispin = 1, nspins
     944          68 :                mhe(ispin, 1)%matrix => matrix_hfx_admm(ispin)%matrix
     945         132 :                mpe(ispin, 1)%matrix => matrix_px1_admm(ispin)%matrix
     946             :             END DO
     947          64 :             IF (x_data(1, 1)%do_hfx_ri) THEN
     948             :                eh1 = 0.0_dp
     949             :                CALL hfx_ri_update_ks(qs_env, x_data(1, 1)%ri_data, mhe, eh1, rho_ao=mpe, &
     950             :                                      geometry_did_change=s_mstruct_changed, nspins=nspins, &
     951           6 :                                      hf_fraction=x_data(1, 1)%general_parameter%fraction)
     952             :             ELSE
     953         116 :                DO ispin = 1, mspin
     954             :                   eh1 = 0.0
     955             :                   CALL integrate_four_center(qs_env, x_data, mhe, eh1, mpe, hfx_section, &
     956             :                                              para_env, s_mstruct_changed, 1, distribute_fock_matrix, &
     957         116 :                                              ispin=ispin)
     958             :                END DO
     959             :             END IF
     960             :             !anti-symmetric density
     961         132 :             DO ispin = 1, nspins
     962          68 :                mhe(ispin, 1)%matrix => matrix_hfx_admm_asymm(ispin)%matrix
     963         132 :                mpe(ispin, 1)%matrix => matrix_px1_admm_asymm(ispin)%matrix
     964             :             END DO
     965          64 :             IF (x_data(1, 1)%do_hfx_ri) THEN
     966             :                eh1 = 0.0_dp
     967             :                CALL hfx_ri_update_ks(qs_env, x_data(1, 1)%ri_data, mhe, eh1, rho_ao=mpe, &
     968             :                                      geometry_did_change=s_mstruct_changed, nspins=nspins, &
     969           6 :                                      hf_fraction=x_data(1, 1)%general_parameter%fraction)
     970             :             ELSE
     971         116 :                DO ispin = 1, mspin
     972             :                   eh1 = 0.0
     973             :                   CALL integrate_four_center(qs_env, x_data, mhe, eh1, mpe, hfx_section, &
     974             :                                              para_env, s_mstruct_changed, 1, distribute_fock_matrix, &
     975         116 :                                              ispin=ispin)
     976             :                END DO
     977             :             END IF
     978             :             !
     979          64 :             nao = admm_env%nao_orb
     980          64 :             nao_aux = admm_env%nao_aux_fit
     981          64 :             ALLOCATE (dbwork, dbwork_asymm)
     982          64 :             CALL dbcsr_create(dbwork, template=matrix_hfx(1)%matrix)
     983          64 :             CALL dbcsr_create(dbwork_asymm, template=matrix_hfx(1)%matrix, matrix_type=dbcsr_type_antisymmetric)
     984         132 :             DO ispin = 1, nspins
     985             :                CALL cp_dbcsr_sm_fm_multiply(matrix_hfx_admm(ispin)%matrix, admm_env%A, &
     986          68 :                                             admm_env%work_aux_orb, nao)
     987             :                CALL parallel_gemm('T', 'N', nao, nao, nao_aux, &
     988             :                                   1.0_dp, admm_env%A, admm_env%work_aux_orb, 0.0_dp, &
     989          68 :                                   admm_env%work_orb_orb)
     990          68 :                CALL dbcsr_copy(dbwork, matrix_hfx(1)%matrix)
     991          68 :                CALL dbcsr_set(dbwork, 0.0_dp)
     992          68 :                CALL copy_fm_to_dbcsr(admm_env%work_orb_orb, dbwork, keep_sparsity=.TRUE.)
     993          68 :                CALL dbcsr_add(matrix_hfx(ispin)%matrix, dbwork, 1.0_dp, 1.0_dp)
     994             :                !anti-symmetric case
     995             :                CALL cp_dbcsr_sm_fm_multiply(matrix_hfx_admm_asymm(ispin)%matrix, admm_env%A, &
     996          68 :                                             admm_env%work_aux_orb, nao)
     997             :                CALL parallel_gemm('T', 'N', nao, nao, nao_aux, &
     998             :                                   1.0_dp, admm_env%A, admm_env%work_aux_orb, 0.0_dp, &
     999          68 :                                   admm_env%work_orb_orb)
    1000          68 :                CALL dbcsr_copy(dbwork_asymm, matrix_hfx_asymm(1)%matrix)
    1001          68 :                CALL dbcsr_set(dbwork_asymm, 0.0_dp)
    1002          68 :                CALL copy_fm_to_dbcsr(admm_env%work_orb_orb, dbwork_asymm, keep_sparsity=.TRUE.)
    1003         132 :                CALL dbcsr_add(matrix_hfx_asymm(ispin)%matrix, dbwork_asymm, 1.0_dp, 1.0_dp)
    1004             :             END DO
    1005          64 :             CALL dbcsr_release(dbwork)
    1006          64 :             CALL dbcsr_release(dbwork_asymm)
    1007          64 :             DEALLOCATE (dbwork, dbwork_asymm)
    1008             :             ! forces
    1009             :             ! ADMM Projection force
    1010          82 :             IF (debug_forces) fodeb(1:3) = force(1)%overlap_admm(1:3, 1)
    1011          64 :             fval = 4.0_dp*REAL(nspins, KIND=dp)*0.5_dp !0.5 for symm/anti-symm
    1012          64 :             CALL admm_projection_derivative(qs_env, matrix_hfx_admm, matrix_px1, fval)
    1013          64 :             CALL admm_projection_derivative(qs_env, matrix_hfx_admm_asymm, matrix_px1_asymm, fval)
    1014          64 :             IF (debug_forces) THEN
    1015          24 :                fodeb(1:3) = force(1)%overlap_admm(1:3, 1) - fodeb(1:3)
    1016           6 :                CALL para_env%sum(fodeb)
    1017           6 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: P*Hx(P)*S' ", fodeb
    1018             :             END IF
    1019             :             !
    1020          64 :             use_virial = .FALSE.
    1021          64 :             NULLIFY (mdum)
    1022          64 :             fval = 2.0_dp*REAL(nspins, KIND=dp)*0.5_dp !0.5 factor because of symemtry/anti-symmetry
    1023          82 :             IF (debug_forces) fodeb(1:3) = force(1)%fock_4c(1:3, 1)
    1024         132 :             DO ispin = 1, nspins
    1025         132 :                mpe(ispin, 1)%matrix => matrix_px1_admm(ispin)%matrix
    1026             :             END DO
    1027          64 :             IF (x_data(1, 1)%do_hfx_ri) THEN
    1028             :                CALL hfx_ri_update_forces(qs_env, x_data(1, 1)%ri_data, nspins, &
    1029             :                                          x_data(1, 1)%general_parameter%fraction, &
    1030             :                                          rho_ao=mpe, rho_ao_resp=mdum, &
    1031           6 :                                          use_virial=use_virial, rescale_factor=fval)
    1032             :             ELSE
    1033             :                CALL derivatives_four_center(qs_env, mpe, mdum, hfx_section, para_env, 1, use_virial, &
    1034          58 :                                             adiabatic_rescale_factor=fval)
    1035             :             END IF
    1036         132 :             DO ispin = 1, nspins
    1037         132 :                mpe(ispin, 1)%matrix => matrix_px1_admm_asymm(ispin)%matrix
    1038             :             END DO
    1039          64 :             IF (x_data(1, 1)%do_hfx_ri) THEN
    1040             :                CALL hfx_ri_update_forces(qs_env, x_data(1, 1)%ri_data, nspins, &
    1041             :                                          x_data(1, 1)%general_parameter%fraction, &
    1042             :                                          rho_ao=mpe, rho_ao_resp=mdum, &
    1043           6 :                                          use_virial=use_virial, rescale_factor=fval)
    1044             :             ELSE
    1045             :                CALL derivatives_four_center(qs_env, mpe, mdum, hfx_section, para_env, 1, use_virial, &
    1046          58 :                                             adiabatic_rescale_factor=fval)
    1047             :             END IF
    1048          64 :             IF (debug_forces) THEN
    1049          24 :                fodeb(1:3) = force(1)%fock_4c(1:3, 1) - fodeb(1:3)
    1050           6 :                CALL para_env%sum(fodeb)
    1051           6 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Px*hfx'*Px ", fodeb
    1052             :             END IF
    1053             :             !
    1054          64 :             DEALLOCATE (mpe, mhe)
    1055             :             !
    1056          64 :             CALL dbcsr_deallocate_matrix_set(matrix_hfx_admm)
    1057          64 :             CALL dbcsr_deallocate_matrix_set(matrix_hfx_admm_asymm)
    1058             :          ELSE
    1059          60 :             NULLIFY (mpe, mhe)
    1060         496 :             ALLOCATE (mpe(nspins, 1), mhe(nspins, 1))
    1061         128 :             DO ispin = 1, nspins
    1062          68 :                mhe(ispin, 1)%matrix => matrix_hfx(ispin)%matrix
    1063         128 :                mpe(ispin, 1)%matrix => matrix_px1(ispin)%matrix
    1064             :             END DO
    1065          60 :             IF (x_data(1, 1)%do_hfx_ri) THEN
    1066             :                eh1 = 0.0_dp
    1067             :                CALL hfx_ri_update_ks(qs_env, x_data(1, 1)%ri_data, mhe, eh1, rho_ao=mpe, &
    1068             :                                      geometry_did_change=s_mstruct_changed, nspins=nspins, &
    1069          18 :                                      hf_fraction=x_data(1, 1)%general_parameter%fraction)
    1070             :             ELSE
    1071          84 :                DO ispin = 1, mspin
    1072             :                   eh1 = 0.0
    1073             :                   CALL integrate_four_center(qs_env, x_data, mhe, eh1, mpe, hfx_section, &
    1074             :                                              para_env, s_mstruct_changed, 1, distribute_fock_matrix, &
    1075          84 :                                              ispin=ispin)
    1076             :                END DO
    1077             :             END IF
    1078             : 
    1079             :             !anti-symmetric density matrix
    1080         128 :             DO ispin = 1, nspins
    1081          68 :                mhe(ispin, 1)%matrix => matrix_hfx_asymm(ispin)%matrix
    1082         128 :                mpe(ispin, 1)%matrix => matrix_px1_asymm(ispin)%matrix
    1083             :             END DO
    1084          60 :             IF (x_data(1, 1)%do_hfx_ri) THEN
    1085             :                eh1 = 0.0_dp
    1086             :                CALL hfx_ri_update_ks(qs_env, x_data(1, 1)%ri_data, mhe, eh1, rho_ao=mpe, &
    1087             :                                      geometry_did_change=s_mstruct_changed, nspins=nspins, &
    1088          18 :                                      hf_fraction=x_data(1, 1)%general_parameter%fraction)
    1089             :             ELSE
    1090          84 :                DO ispin = 1, mspin
    1091             :                   eh1 = 0.0
    1092             :                   CALL integrate_four_center(qs_env, x_data, mhe, eh1, mpe, hfx_section, &
    1093             :                                              para_env, s_mstruct_changed, 1, distribute_fock_matrix, &
    1094          84 :                                              ispin=ispin)
    1095             :                END DO
    1096             :             END IF
    1097             :             ! forces
    1098          60 :             use_virial = .FALSE.
    1099          60 :             NULLIFY (mdum)
    1100          60 :             fval = 2.0_dp*REAL(nspins, KIND=dp)*0.5_dp !extra 0.5 factor because of symmetry/antisymemtry
    1101          84 :             IF (debug_forces) fodeb(1:3) = force(1)%fock_4c(1:3, 1)
    1102         128 :             DO ispin = 1, nspins
    1103         128 :                mpe(ispin, 1)%matrix => matrix_px1(ispin)%matrix
    1104             :             END DO
    1105          60 :             IF (x_data(1, 1)%do_hfx_ri) THEN
    1106             :                CALL hfx_ri_update_forces(qs_env, x_data(1, 1)%ri_data, nspins, &
    1107             :                                          x_data(1, 1)%general_parameter%fraction, &
    1108             :                                          rho_ao=mpe, rho_ao_resp=mdum, &
    1109          18 :                                          use_virial=use_virial, rescale_factor=fval)
    1110             :             ELSE
    1111             :                CALL derivatives_four_center(qs_env, mpe, mdum, hfx_section, para_env, 1, use_virial, &
    1112          42 :                                             adiabatic_rescale_factor=fval)
    1113             :             END IF
    1114         128 :             DO ispin = 1, nspins
    1115         128 :                mpe(ispin, 1)%matrix => matrix_px1_asymm(ispin)%matrix
    1116             :             END DO
    1117          60 :             IF (x_data(1, 1)%do_hfx_ri) THEN
    1118             :                CALL hfx_ri_update_forces(qs_env, x_data(1, 1)%ri_data, nspins, &
    1119             :                                          x_data(1, 1)%general_parameter%fraction, &
    1120             :                                          rho_ao=mpe, rho_ao_resp=mdum, &
    1121          18 :                                          use_virial=use_virial, rescale_factor=fval)
    1122             :             ELSE
    1123             :                CALL derivatives_four_center(qs_env, mpe, mdum, hfx_section, para_env, 1, use_virial, &
    1124          42 :                                             adiabatic_rescale_factor=fval)
    1125             :             END IF
    1126          60 :             IF (debug_forces) THEN
    1127          32 :                fodeb(1:3) = force(1)%fock_4c(1:3, 1) - fodeb(1:3)
    1128           8 :                CALL para_env%sum(fodeb)
    1129           8 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Px*hfx'*Px ", fodeb
    1130             :             END IF
    1131             :             !
    1132          60 :             DEALLOCATE (mpe, mhe)
    1133             :          END IF
    1134         124 :          fval = 2.0_dp*REAL(nspins, KIND=dp)*0.5_dp !extra 0.5 because of symm/antisymm
    1135         260 :          DO ispin = 1, nspins
    1136         136 :             CALL dbcsr_scale(matrix_hfx(ispin)%matrix, fval)
    1137         260 :             CALL dbcsr_scale(matrix_hfx_asymm(ispin)%matrix, fval)
    1138             :          END DO
    1139             :       END IF
    1140             : 
    1141         340 :       IF (gapw .OR. gapw_xc) THEN
    1142          56 :          CALL local_rho_set_release(local_rho_set)
    1143          56 :          CALL local_rho_set_release(local_rho_set_f)
    1144          56 :          CALL local_rho_set_release(local_rho_set_g)
    1145          56 :          IF (gapw) THEN
    1146          46 :             CALL hartree_local_release(hartree_local)
    1147             :          END IF
    1148             :       END IF
    1149         340 :       IF (do_admm) THEN
    1150          64 :          IF (admm_env%do_gapw) THEN
    1151          10 :             IF (tddfpt_control%admm_xc_correction) THEN
    1152           8 :                IF (qs_env%admm_env%aux_exch_func /= do_admm_aux_exch_func_none) THEN
    1153           2 :                   CALL local_rho_set_release(local_rho_set_admm)
    1154           2 :                   CALL local_rho_set_release(local_rho_set_f_admm)
    1155           2 :                   CALL local_rho_set_release(local_rho_set_g_admm)
    1156             :                END IF
    1157             :             END IF
    1158             :          END IF
    1159             :       END IF
    1160             : 
    1161             :       ! HFX short range
    1162         340 :       IF (do_hfxsr) THEN
    1163           0 :          CPABORT("HFXSR not implemented")
    1164             :       END IF
    1165             :       ! HFX long range
    1166         340 :       IF (do_hfxlr) THEN
    1167           0 :          CPABORT("HFXLR not implemented")
    1168             :       END IF
    1169             : 
    1170         340 :       CALL get_qs_env(qs_env, sab_orb=sab_orb)
    1171         340 :       NULLIFY (matrix_wx1)
    1172         340 :       CALL dbcsr_allocate_matrix_set(matrix_wx1, nspins)
    1173         340 :       cpmos => ex_env%cpmos
    1174         340 :       focc = 2.0_dp
    1175         340 :       IF (nspins == 2) focc = 1.0_dp
    1176         750 :       DO ispin = 1, nspins
    1177         410 :          mos => gs_mos(ispin)%mos_occ
    1178         410 :          CALL cp_fm_get_info(evect(ispin), ncol_global=norb)
    1179         410 :          CALL cp_fm_create(vcvec, mos%matrix_struct, "vcvec")
    1180         410 :          CALL cp_fm_get_info(vcvec, matrix_struct=fm_struct, nrow_global=nao)
    1181             :          CALL cp_fm_struct_create(fm_struct_mat, context=fm_struct%context, nrow_global=norb, &
    1182         410 :                                   ncol_global=norb, para_env=fm_struct%para_env)
    1183         410 :          CALL cp_fm_create(cvcmat, fm_struct_mat)
    1184         410 :          CALL cp_fm_struct_release(fm_struct_mat)
    1185             :          !
    1186         410 :          ALLOCATE (matrix_wx1(ispin)%matrix)
    1187         410 :          CALL dbcsr_create(matrix=matrix_wx1(ispin)%matrix, template=matrix_s(1)%matrix)
    1188         410 :          CALL cp_dbcsr_alloc_block_from_nbl(matrix_wx1(ispin)%matrix, sab_orb)
    1189         410 :          CALL dbcsr_set(matrix_wx1(ispin)%matrix, 0.0_dp)
    1190             :          !
    1191         410 :          IF (.NOT. is_rks_triplets) THEN
    1192             :             CALL cp_dbcsr_sm_fm_multiply(matrix_hx(ispin)%matrix, evect(ispin), &
    1193         372 :                                          cpmos(ispin), norb, alpha=focc, beta=1.0_dp)
    1194         372 :             CALL cp_dbcsr_sm_fm_multiply(matrix_hx(ispin)%matrix, mos, vcvec, norb, alpha=1.0_dp, beta=0.0_dp)
    1195         372 :             CALL parallel_gemm("T", "N", norb, norb, nao, 1.0_dp, mos, vcvec, 0.0_dp, cvcmat)
    1196         372 :             CALL parallel_gemm("N", "N", nao, norb, norb, 1.0_dp, evect(ispin), cvcmat, 0.0_dp, vcvec)
    1197             :             CALL cp_dbcsr_sm_fm_multiply(matrix_s(1)%matrix, vcvec, cpmos(ispin), &
    1198         372 :                                          norb, alpha=-focc, beta=1.0_dp)
    1199             :             !
    1200             :             CALL cp_dbcsr_plus_fm_fm_t(matrix_wx1(ispin)%matrix, matrix_v=mos, matrix_g=vcvec, &
    1201         372 :                                        ncol=norb, alpha=2.0_dp, symmetry_mode=1)
    1202             :          END IF
    1203             :          !
    1204         410 :          IF (myfun /= xc_none) THEN
    1205             :             CALL cp_dbcsr_sm_fm_multiply(matrix_fx(ispin)%matrix, evect(ispin), &
    1206         266 :                                          cpmos(ispin), norb, alpha=focc, beta=1.0_dp)
    1207         266 :             CALL cp_dbcsr_sm_fm_multiply(matrix_fx(ispin)%matrix, mos, vcvec, norb, alpha=1.0_dp, beta=0.0_dp)
    1208         266 :             CALL parallel_gemm("T", "N", norb, norb, nao, 1.0_dp, mos, vcvec, 0.0_dp, cvcmat)
    1209         266 :             CALL parallel_gemm("N", "N", nao, norb, norb, 1.0_dp, evect(ispin), cvcmat, 0.0_dp, vcvec)
    1210             :             CALL cp_dbcsr_sm_fm_multiply(matrix_s(1)%matrix, vcvec, cpmos(ispin), &
    1211         266 :                                          norb, alpha=-focc, beta=1.0_dp)
    1212             :             !
    1213             :             CALL cp_dbcsr_plus_fm_fm_t(matrix_wx1(ispin)%matrix, matrix_v=mos, matrix_g=vcvec, &
    1214         266 :                                        ncol=norb, alpha=2.0_dp, symmetry_mode=1)
    1215             :             !
    1216             :             CALL cp_dbcsr_sm_fm_multiply(matrix_gx(ispin)%matrix, mos, &
    1217         266 :                                          cpmos(ispin), norb, alpha=focc, beta=1.0_dp)
    1218             :             !
    1219         266 :             CALL cp_dbcsr_sm_fm_multiply(matrix_gx(ispin)%matrix, mos, vcvec, norb, alpha=1.0_dp, beta=0.0_dp)
    1220         266 :             CALL parallel_gemm("T", "N", norb, norb, nao, 1.0_dp, mos, vcvec, 0.0_dp, cvcmat)
    1221         266 :             CALL parallel_gemm("N", "N", nao, norb, norb, 1.0_dp, mos, cvcmat, 0.0_dp, vcvec)
    1222             :             CALL cp_dbcsr_plus_fm_fm_t(matrix_wx1(ispin)%matrix, matrix_v=mos, matrix_g=vcvec, &
    1223         266 :                                        ncol=norb, alpha=1.0_dp, symmetry_mode=1)
    1224             :          END IF
    1225             :          !
    1226         410 :          IF (do_hfx) THEN
    1227             :             CALL cp_dbcsr_sm_fm_multiply(matrix_hfx(ispin)%matrix, evect(ispin), &
    1228         136 :                                          cpmos(ispin), norb, alpha=focc, beta=1.0_dp)
    1229         136 :             CALL cp_dbcsr_sm_fm_multiply(matrix_hfx(ispin)%matrix, mos, vcvec, norb, alpha=1.0_dp, beta=0.0_dp)
    1230             :             CALL cp_dbcsr_sm_fm_multiply(matrix_hfx_asymm(ispin)%matrix, evect(ispin), &
    1231         136 :                                          cpmos(ispin), norb, alpha=focc, beta=1.0_dp)
    1232         136 :             CALL cp_dbcsr_sm_fm_multiply(matrix_hfx_asymm(ispin)%matrix, mos, vcvec, norb, alpha=1.0_dp, beta=1.0_dp)
    1233             :             !
    1234         136 :             CALL parallel_gemm("T", "N", norb, norb, nao, 1.0_dp, mos, vcvec, 0.0_dp, cvcmat)
    1235         136 :             CALL parallel_gemm("N", "N", nao, norb, norb, 1.0_dp, evect(ispin), cvcmat, 0.0_dp, vcvec)
    1236             :             CALL cp_dbcsr_sm_fm_multiply(matrix_s(1)%matrix, vcvec, cpmos(ispin), &
    1237         136 :                                          norb, alpha=-focc, beta=1.0_dp)
    1238             :             !
    1239             :             CALL cp_dbcsr_plus_fm_fm_t(matrix_wx1(ispin)%matrix, matrix_v=mos, matrix_g=vcvec, &
    1240         136 :                                        ncol=norb, alpha=2.0_dp, symmetry_mode=1)
    1241             :          END IF
    1242             :          !
    1243         410 :          CALL cp_fm_release(vcvec)
    1244        1570 :          CALL cp_fm_release(cvcmat)
    1245             :       END DO
    1246             : 
    1247         340 :       IF (.NOT. is_rks_triplets) THEN
    1248         302 :          CALL dbcsr_deallocate_matrix_set(matrix_hx)
    1249             :       END IF
    1250         340 :       IF (ASSOCIATED(ex_env%matrix_wx1)) CALL dbcsr_deallocate_matrix_set(ex_env%matrix_wx1)
    1251         340 :       ex_env%matrix_wx1 => matrix_wx1
    1252         340 :       IF (myfun /= xc_none) THEN
    1253         230 :          CALL dbcsr_deallocate_matrix_set(matrix_fx)
    1254         230 :          CALL dbcsr_deallocate_matrix_set(matrix_gx)
    1255             :       END IF
    1256         340 :       IF (do_hfx) THEN
    1257         124 :          CALL dbcsr_deallocate_matrix_set(matrix_hfx)
    1258         124 :          CALL dbcsr_deallocate_matrix_set(matrix_hfx_asymm)
    1259             :       END IF
    1260             : 
    1261         340 :       CALL timestop(handle)
    1262             : 
    1263         680 :    END SUBROUTINE fhxc_force
    1264             : 
    1265             : ! **************************************************************************************************
    1266             : !> \brief Simplified Tamm Dancoff approach (sTDA). Kernel contribution to forces
    1267             : !> \param qs_env ...
    1268             : !> \param ex_env ...
    1269             : !> \param gs_mos ...
    1270             : !> \param stda_env ...
    1271             : !> \param sub_env ...
    1272             : !> \param work ...
    1273             : !> \param debug_forces ...
    1274             : ! **************************************************************************************************
    1275         158 :    SUBROUTINE stda_force(qs_env, ex_env, gs_mos, stda_env, sub_env, work, debug_forces)
    1276             : 
    1277             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1278             :       TYPE(excited_energy_type), POINTER                 :: ex_env
    1279             :       TYPE(tddfpt_ground_state_mos), DIMENSION(:), &
    1280             :          POINTER                                         :: gs_mos
    1281             :       TYPE(stda_env_type), POINTER                       :: stda_env
    1282             :       TYPE(tddfpt_subgroup_env_type)                     :: sub_env
    1283             :       TYPE(tddfpt_work_matrices)                         :: work
    1284             :       LOGICAL, INTENT(IN)                                :: debug_forces
    1285             : 
    1286             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'stda_force'
    1287             : 
    1288             :       INTEGER :: atom_i, atom_j, blk, ewald_type, handle, i, ia, iatom, idimk, ikind, iounit, is, &
    1289             :          ispin, jatom, jkind, jspin, nao, natom, norb, nsgf, nspins
    1290         158 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: atom_of_kind, first_sgf, kind_of, &
    1291         158 :                                                             last_sgf
    1292             :       INTEGER, DIMENSION(2)                              :: nactive, nlim
    1293             :       LOGICAL                                            :: calculate_forces, do_coulomb, do_ewald, &
    1294             :                                                             found, is_rks_triplets, use_virial
    1295             :       REAL(KIND=dp)                                      :: alpha, bp, dgabr, dr, eta, fdim, gabr, &
    1296             :                                                             hfx, rbeta, spinfac, xfac
    1297         158 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: tcharge, tv
    1298         158 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :)        :: gtcharge
    1299             :       REAL(KIND=dp), DIMENSION(3)                        :: fij, fodeb, rij
    1300         158 :       REAL(KIND=dp), DIMENSION(:, :), POINTER            :: gab, pblock
    1301         158 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
    1302             :       TYPE(cell_type), POINTER                           :: cell
    1303             :       TYPE(cp_fm_struct_type), POINTER                   :: fmstruct, fmstruct_mat, fmstructjspin
    1304             :       TYPE(cp_fm_type)                                   :: cvcmat, cvec, cvecjspin, t0matrix, &
    1305             :                                                             t1matrix, vcvec, xvec
    1306         158 :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: xtransformed
    1307         158 :       TYPE(cp_fm_type), DIMENSION(:), POINTER            :: cpmos, X
    1308             :       TYPE(cp_fm_type), POINTER                          :: ct, ctjspin, ucmatrix, uxmatrix
    1309             :       TYPE(cp_logger_type), POINTER                      :: logger
    1310             :       TYPE(dbcsr_iterator_type)                          :: iter
    1311         158 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: gamma_matrix, matrix_plo, matrix_s, &
    1312         158 :                                                             matrix_wx1, scrm
    1313             :       TYPE(dbcsr_type)                                   :: pdens, ptrans
    1314             :       TYPE(dbcsr_type), POINTER                          :: tempmat
    1315             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1316             :       TYPE(ewald_environment_type), POINTER              :: ewald_env
    1317             :       TYPE(ewald_pw_type), POINTER                       :: ewald_pw
    1318             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    1319             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    1320         158 :          POINTER                                         :: n_list, sab_orb
    1321         158 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    1322         158 :       TYPE(qs_force_type), DIMENSION(:), POINTER         :: force
    1323         158 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    1324             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
    1325             :       TYPE(stda_control_type), POINTER                   :: stda_control
    1326             :       TYPE(tddfpt2_control_type), POINTER                :: tddfpt_control
    1327             :       TYPE(virial_type), POINTER                         :: virial
    1328             : 
    1329         158 :       CALL timeset(routineN, handle)
    1330             : 
    1331         158 :       CPASSERT(ASSOCIATED(ex_env))
    1332         158 :       CPASSERT(ASSOCIATED(gs_mos))
    1333             : 
    1334         158 :       logger => cp_get_default_logger()
    1335         158 :       IF (logger%para_env%is_source()) THEN
    1336          79 :          iounit = cp_logger_get_default_unit_nr(logger, local=.TRUE.)
    1337             :       ELSE
    1338             :          iounit = -1
    1339             :       END IF
    1340             : 
    1341         158 :       CALL get_qs_env(qs_env, dft_control=dft_control)
    1342         158 :       tddfpt_control => dft_control%tddfpt2_control
    1343         158 :       stda_control => tddfpt_control%stda_control
    1344         158 :       nspins = dft_control%nspins
    1345         158 :       is_rks_triplets = tddfpt_control%rks_triplets .AND. (nspins == 1)
    1346             : 
    1347         158 :       X => ex_env%evect
    1348             : 
    1349         474 :       nactive(:) = stda_env%nactive(:)
    1350         158 :       xfac = 2.0_dp
    1351         158 :       spinfac = 2.0_dp
    1352         158 :       IF (nspins == 2) spinfac = 1.0_dp
    1353         158 :       NULLIFY (matrix_wx1)
    1354         158 :       CALL dbcsr_allocate_matrix_set(matrix_wx1, nspins)
    1355         158 :       NULLIFY (matrix_plo)
    1356         158 :       CALL dbcsr_allocate_matrix_set(matrix_plo, nspins)
    1357             : 
    1358         158 :       IF (nspins == 1 .AND. is_rks_triplets) THEN
    1359             :          do_coulomb = .FALSE.
    1360             :       ELSE
    1361         142 :          do_coulomb = .TRUE.
    1362             :       END IF
    1363         158 :       do_ewald = stda_control%do_ewald
    1364             : 
    1365         158 :       CALL get_qs_env(qs_env, para_env=para_env, force=force)
    1366             : 
    1367             :       CALL get_qs_env(qs_env, natom=natom, cell=cell, &
    1368         158 :                       particle_set=particle_set, qs_kind_set=qs_kind_set)
    1369         474 :       ALLOCATE (first_sgf(natom))
    1370         316 :       ALLOCATE (last_sgf(natom))
    1371         158 :       CALL get_particle_set(particle_set, qs_kind_set, first_sgf=first_sgf, last_sgf=last_sgf)
    1372             : 
    1373         158 :       CALL get_qs_env(qs_env, ks_env=ks_env, matrix_s=matrix_s, sab_orb=sab_orb, atomic_kind_set=atomic_kind_set)
    1374         158 :       CALL get_atomic_kind_set(atomic_kind_set=atomic_kind_set, kind_of=kind_of, atom_of_kind=atom_of_kind)
    1375             : 
    1376             :       ! calculate Loewdin transformed Davidson trial vector tilde(X)=S^1/2*X
    1377             :       ! and tilde(tilde(X))=S^1/2_A*tilde(X)_A
    1378         658 :       ALLOCATE (xtransformed(nspins))
    1379         342 :       DO ispin = 1, nspins
    1380         184 :          NULLIFY (fmstruct)
    1381         184 :          ct => work%ctransformed(ispin)
    1382         184 :          CALL cp_fm_get_info(ct, matrix_struct=fmstruct)
    1383         342 :          CALL cp_fm_create(matrix=xtransformed(ispin), matrix_struct=fmstruct, name="XTRANSFORMED")
    1384             :       END DO
    1385         158 :       CALL get_lowdin_x(work%shalf, X, xtransformed)
    1386             : 
    1387         790 :       ALLOCATE (tcharge(natom), gtcharge(natom, 4))
    1388             : 
    1389         158 :       cpmos => ex_env%cpmos
    1390             : 
    1391         342 :       DO ispin = 1, nspins
    1392         184 :          ct => work%ctransformed(ispin)
    1393         184 :          CALL cp_fm_get_info(ct, matrix_struct=fmstruct, nrow_global=nsgf)
    1394         552 :          ALLOCATE (tv(nsgf))
    1395         184 :          CALL cp_fm_create(cvec, fmstruct)
    1396         184 :          CALL cp_fm_create(xvec, fmstruct)
    1397             :          !
    1398         184 :          ALLOCATE (matrix_wx1(ispin)%matrix)
    1399         184 :          CALL dbcsr_create(matrix=matrix_wx1(ispin)%matrix, template=matrix_s(1)%matrix)
    1400         184 :          CALL cp_dbcsr_alloc_block_from_nbl(matrix_wx1(ispin)%matrix, sab_orb)
    1401         184 :          CALL dbcsr_set(matrix_wx1(ispin)%matrix, 0.0_dp)
    1402         184 :          ALLOCATE (matrix_plo(ispin)%matrix)
    1403         184 :          CALL dbcsr_create(matrix=matrix_plo(ispin)%matrix, template=matrix_s(1)%matrix)
    1404         184 :          CALL cp_dbcsr_alloc_block_from_nbl(matrix_plo(ispin)%matrix, sab_orb)
    1405         184 :          CALL dbcsr_set(matrix_plo(ispin)%matrix, 0.0_dp)
    1406             :          !
    1407             :          ! *** Coulomb contribution
    1408             :          !
    1409         184 :          IF (do_coulomb) THEN
    1410             :             !
    1411         174 :             IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    1412             :             !
    1413         870 :             tcharge(:) = 0.0_dp
    1414         388 :             DO jspin = 1, nspins
    1415         220 :                ctjspin => work%ctransformed(jspin)
    1416         220 :                CALL cp_fm_get_info(ctjspin, matrix_struct=fmstructjspin)
    1417         220 :                CALL cp_fm_get_info(ctjspin, matrix_struct=fmstructjspin, nrow_global=nsgf)
    1418         220 :                CALL cp_fm_create(cvecjspin, fmstructjspin)
    1419             :                ! CV(mu,j) = CT(mu,j)*XT(mu,j)
    1420         220 :                CALL cp_fm_schur_product(ctjspin, xtransformed(jspin), cvecjspin)
    1421             :                ! TV(mu) = SUM_j CV(mu,j)
    1422         220 :                CALL cp_fm_vectorssum(cvecjspin, tv, "R")
    1423             :                ! contract charges
    1424             :                ! TC(a) = SUM_(mu of a) TV(mu)
    1425        1078 :                DO ia = 1, natom
    1426        5692 :                   DO is = first_sgf(ia), last_sgf(ia)
    1427        5472 :                      tcharge(ia) = tcharge(ia) + tv(is)
    1428             :                   END DO
    1429             :                END DO
    1430         608 :                CALL cp_fm_release(cvecjspin)
    1431             :             END DO !jspin
    1432             :             ! Apply tcharge*gab -> gtcharge
    1433             :             ! gT(b) = SUM_a g(a,b)*TC(a)
    1434             :             ! gab = work%gamma_exchange(1)%matrix
    1435        3648 :             gtcharge = 0.0_dp
    1436             :             ! short range contribution
    1437         168 :             NULLIFY (gamma_matrix)
    1438         168 :             CALL setup_gamma(qs_env, stda_env, sub_env, gamma_matrix, ndim=4)
    1439         168 :             tempmat => gamma_matrix(1)%matrix
    1440         168 :             CALL dbcsr_iterator_start(iter, tempmat)
    1441        5323 :             DO WHILE (dbcsr_iterator_blocks_left(iter))
    1442        5155 :                CALL dbcsr_iterator_next_block(iter, iatom, jatom, gab, blk)
    1443        5155 :                gtcharge(iatom, 1) = gtcharge(iatom, 1) + gab(1, 1)*tcharge(jatom)
    1444        5155 :                IF (iatom /= jatom) THEN
    1445        4804 :                   gtcharge(jatom, 1) = gtcharge(jatom, 1) + gab(1, 1)*tcharge(iatom)
    1446             :                END IF
    1447       20788 :                DO idimk = 2, 4
    1448       15465 :                   fdim = -1.0_dp
    1449             :                   CALL dbcsr_get_block_p(matrix=gamma_matrix(idimk)%matrix, &
    1450       15465 :                                          row=iatom, col=jatom, block=gab, found=found)
    1451       20620 :                   IF (found) THEN
    1452       15465 :                      gtcharge(iatom, idimk) = gtcharge(iatom, idimk) + gab(1, 1)*tcharge(jatom)
    1453       15465 :                      IF (iatom /= jatom) THEN
    1454       14412 :                         gtcharge(jatom, idimk) = gtcharge(jatom, idimk) + fdim*gab(1, 1)*tcharge(iatom)
    1455             :                      END IF
    1456             :                   END IF
    1457             :                END DO
    1458             :             END DO
    1459         168 :             CALL dbcsr_iterator_stop(iter)
    1460         168 :             CALL dbcsr_deallocate_matrix_set(gamma_matrix)
    1461             :             ! Ewald long range contribution
    1462         168 :             IF (do_ewald) THEN
    1463          40 :                ewald_env => work%ewald_env
    1464          40 :                ewald_pw => work%ewald_pw
    1465          40 :                CALL ewald_env_get(ewald_env, alpha=alpha, ewald_type=ewald_type)
    1466          40 :                CALL get_qs_env(qs_env=qs_env, sab_orb=n_list, virial=virial)
    1467          40 :                use_virial = .FALSE.
    1468          40 :                calculate_forces = .FALSE.
    1469          40 :                CALL tb_ewald_overlap(gtcharge, tcharge, alpha, n_list, virial, use_virial)
    1470             :                CALL tb_spme_evaluate(ewald_env, ewald_pw, particle_set, cell, &
    1471          40 :                                      gtcharge, tcharge, calculate_forces, virial, use_virial)
    1472             :                ! add self charge interaction contribution
    1473          40 :                IF (para_env%is_source()) THEN
    1474         173 :                   gtcharge(:, 1) = gtcharge(:, 1) - 2._dp*alpha*oorootpi*tcharge(:)
    1475             :                END IF
    1476             :             ELSE
    1477         128 :                nlim = get_limit(natom, para_env%num_pe, para_env%mepos)
    1478         326 :                DO iatom = nlim(1), nlim(2)
    1479         536 :                   DO jatom = 1, iatom - 1
    1480         840 :                      rij = particle_set(iatom)%r - particle_set(jatom)%r
    1481         840 :                      rij = pbc(rij, cell)
    1482         840 :                      dr = SQRT(SUM(rij(:)**2))
    1483         408 :                      IF (dr > 1.e-6_dp) THEN
    1484         210 :                         gtcharge(iatom, 1) = gtcharge(iatom, 1) + tcharge(jatom)/dr
    1485         210 :                         gtcharge(jatom, 1) = gtcharge(jatom, 1) + tcharge(iatom)/dr
    1486         840 :                         DO idimk = 2, 4
    1487         630 :                            gtcharge(iatom, idimk) = gtcharge(iatom, idimk) + rij(idimk - 1)*tcharge(jatom)/dr**3
    1488         840 :                            gtcharge(jatom, idimk) = gtcharge(jatom, idimk) - rij(idimk - 1)*tcharge(iatom)/dr**3
    1489             :                         END DO
    1490             :                      END IF
    1491             :                   END DO
    1492             :                END DO
    1493             :             END IF
    1494         168 :             CALL para_env%sum(gtcharge(:, 1))
    1495             :             ! expand charges
    1496             :             ! TV(mu) = TC(a of mu)
    1497        3898 :             tv(1:nsgf) = 0.0_dp
    1498         870 :             DO ia = 1, natom
    1499        4600 :                DO is = first_sgf(ia), last_sgf(ia)
    1500        4432 :                   tv(is) = gtcharge(ia, 1)
    1501             :                END DO
    1502             :             END DO
    1503             :             !
    1504         870 :             DO iatom = 1, natom
    1505         702 :                ikind = kind_of(iatom)
    1506         702 :                atom_i = atom_of_kind(iatom)
    1507        2808 :                DO i = 1, 3
    1508        2808 :                   fij(i) = spinfac*spinfac*gtcharge(iatom, i + 1)*tcharge(iatom)
    1509             :                END DO
    1510         702 :                force(ikind)%rho_elec(1, atom_i) = force(ikind)%rho_elec(1, atom_i) - fij(1)
    1511         702 :                force(ikind)%rho_elec(2, atom_i) = force(ikind)%rho_elec(2, atom_i) - fij(2)
    1512         870 :                force(ikind)%rho_elec(3, atom_i) = force(ikind)%rho_elec(3, atom_i) - fij(3)
    1513             :             END DO
    1514             :             !
    1515         168 :             IF (debug_forces) THEN
    1516           8 :                fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    1517           2 :                CALL para_env%sum(fodeb)
    1518           2 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Coul[X]   ", fodeb
    1519             :             END IF
    1520         168 :             norb = nactive(ispin)
    1521             :             ! forces from Lowdin charge derivative
    1522         168 :             CALL cp_fm_get_info(work%S_C0_C0T(ispin), matrix_struct=fmstruct)
    1523         168 :             CALL cp_fm_create(t0matrix, matrix_struct=fmstruct, name="T0 SCRATCH")
    1524         168 :             CALL cp_fm_create(t1matrix, matrix_struct=fmstruct, name="T1 SCRATCH")
    1525         168 :             ALLOCATE (ucmatrix)
    1526         168 :             CALL fm_pool_create_fm(work%fm_pool_ao_mo_occ(ispin)%pool, ucmatrix)
    1527         168 :             ALLOCATE (uxmatrix)
    1528         168 :             CALL fm_pool_create_fm(work%fm_pool_ao_mo_occ(ispin)%pool, uxmatrix)
    1529         168 :             ct => work%ctransformed(ispin)
    1530         168 :             CALL cp_fm_to_fm(ct, cvec)
    1531         168 :             CALL cp_fm_row_scale(cvec, tv)
    1532             :             CALL parallel_gemm('T', 'N', nsgf, norb, nsgf, 1.0_dp, work%S_eigenvectors, &
    1533         168 :                                cvec, 0.0_dp, ucmatrix)
    1534             :             CALL parallel_gemm('T', 'N', nsgf, norb, nsgf, 1.0_dp, work%S_eigenvectors, &
    1535         168 :                                X(ispin), 0.0_dp, uxmatrix)
    1536         168 :             CALL parallel_gemm('N', 'T', nsgf, nsgf, norb, 1.0_dp, uxmatrix, ucmatrix, 0.0_dp, t0matrix)
    1537         168 :             CALL cp_fm_to_fm(xtransformed(ispin), cvec)
    1538         168 :             CALL cp_fm_row_scale(cvec, tv)
    1539             :             CALL parallel_gemm('T', 'N', nsgf, norb, nsgf, 1.0_dp, work%S_eigenvectors, &
    1540         168 :                                cvec, 0.0_dp, uxmatrix)
    1541             :             CALL parallel_gemm('T', 'N', nsgf, norb, nsgf, 1.0_dp, work%S_eigenvectors, &
    1542         168 :                                gs_mos(ispin)%mos_occ, 0.0_dp, ucmatrix)
    1543         168 :             CALL parallel_gemm('N', 'T', nsgf, nsgf, norb, 1.0_dp, ucmatrix, uxmatrix, 1.0_dp, t0matrix)
    1544         168 :             CALL cp_fm_schur_product(work%slambda, t0matrix, t1matrix)
    1545             :             !
    1546             :             CALL parallel_gemm('N', 'N', nsgf, nsgf, nsgf, spinfac, work%S_eigenvectors, t1matrix, &
    1547         168 :                                0.0_dp, t0matrix)
    1548             :             CALL cp_dbcsr_plus_fm_fm_t(matrix_plo(ispin)%matrix, matrix_v=t0matrix, &
    1549         168 :                                        matrix_g=work%S_eigenvectors, ncol=nsgf, alpha=2.0_dp, symmetry_mode=1)
    1550         168 :             CALL fm_pool_give_back_fm(work%fm_pool_ao_mo_occ(ispin)%pool, ucmatrix)
    1551         168 :             DEALLOCATE (ucmatrix)
    1552         168 :             CALL fm_pool_give_back_fm(work%fm_pool_ao_mo_occ(ispin)%pool, uxmatrix)
    1553         168 :             DEALLOCATE (uxmatrix)
    1554         168 :             CALL cp_fm_release(t0matrix)
    1555         168 :             CALL cp_fm_release(t1matrix)
    1556             :             !
    1557             :             ! CV(mu,i) = TV(mu)*XT(mu,i)
    1558         168 :             CALL cp_fm_to_fm(xtransformed(ispin), cvec)
    1559         168 :             CALL cp_fm_row_scale(cvec, tv)
    1560         168 :             CALL cp_dbcsr_sm_fm_multiply(work%shalf, cvec, cpmos(ispin), norb, 2.0_dp*spinfac, 1.0_dp)
    1561             :             ! CV(mu,i) = TV(mu)*CT(mu,i)
    1562         168 :             ct => work%ctransformed(ispin)
    1563         168 :             CALL cp_fm_to_fm(ct, cvec)
    1564         168 :             CALL cp_fm_row_scale(cvec, tv)
    1565             :             ! Shalf(nu,mu)*CV(mu,i)
    1566         168 :             CALL cp_fm_get_info(cvec, matrix_struct=fmstruct, nrow_global=nao)
    1567         168 :             CALL cp_fm_create(vcvec, fmstruct)
    1568         168 :             CALL cp_dbcsr_sm_fm_multiply(work%shalf, cvec, vcvec, norb, 1.0_dp, 0.0_dp)
    1569             :             CALL cp_fm_struct_create(fmstruct_mat, context=fmstruct%context, nrow_global=norb, &
    1570         168 :                                      ncol_global=norb, para_env=fmstruct%para_env)
    1571         168 :             CALL cp_fm_create(cvcmat, fmstruct_mat)
    1572         168 :             CALL cp_fm_struct_release(fmstruct_mat)
    1573         168 :             CALL parallel_gemm("T", "N", norb, norb, nao, 1.0_dp, gs_mos(ispin)%mos_occ, vcvec, 0.0_dp, cvcmat)
    1574         168 :             CALL parallel_gemm("N", "N", nao, norb, norb, 1.0_dp, X(ispin), cvcmat, 0.0_dp, vcvec)
    1575             :             CALL cp_dbcsr_sm_fm_multiply(matrix_s(1)%matrix, vcvec, cpmos(ispin), &
    1576         168 :                                          nactive(ispin), alpha=-2.0_dp*spinfac, beta=1.0_dp)
    1577             :             ! wx1
    1578         168 :             alpha = 2.0_dp
    1579             :             CALL cp_dbcsr_plus_fm_fm_t(matrix_wx1(ispin)%matrix, matrix_v=gs_mos(ispin)%mos_occ, &
    1580         168 :                                        matrix_g=vcvec, ncol=norb, alpha=2.0_dp*alpha, symmetry_mode=1)
    1581         168 :             CALL cp_fm_release(vcvec)
    1582         168 :             CALL cp_fm_release(cvcmat)
    1583             :          END IF
    1584             :          !
    1585             :          ! *** Exchange contribution
    1586             :          !
    1587         184 :          IF (stda_env%do_exchange) THEN
    1588             :             !
    1589         166 :             IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    1590             :             !
    1591         160 :             norb = nactive(ispin)
    1592             :             !
    1593         160 :             tempmat => work%shalf
    1594         160 :             CALL dbcsr_create(pdens, template=tempmat, matrix_type=dbcsr_type_no_symmetry)
    1595             :             ! P(nu,mu) = SUM_j XT(nu,j)*CT(mu,j)
    1596         160 :             ct => work%ctransformed(ispin)
    1597         160 :             CALL dbcsr_set(pdens, 0.0_dp)
    1598             :             CALL cp_dbcsr_plus_fm_fm_t(pdens, xtransformed(ispin), ct, nactive(ispin), &
    1599         160 :                                        1.0_dp, keep_sparsity=.FALSE.)
    1600         160 :             CALL dbcsr_filter(pdens, stda_env%eps_td_filter)
    1601             :             ! Apply PP*gab -> PP; gab = gamma_coulomb
    1602             :             ! P(nu,mu) = P(nu,mu)*g(a of nu,b of mu)
    1603         160 :             bp = stda_env%beta_param
    1604         160 :             hfx = stda_env%hfx_fraction
    1605         160 :             CALL dbcsr_iterator_start(iter, pdens)
    1606       10063 :             DO WHILE (dbcsr_iterator_blocks_left(iter))
    1607        9903 :                CALL dbcsr_iterator_next_block(iter, iatom, jatom, pblock, blk)
    1608       39612 :                rij = particle_set(iatom)%r - particle_set(jatom)%r
    1609       39612 :                rij = pbc(rij, cell)
    1610       39612 :                dr = SQRT(SUM(rij(:)**2))
    1611        9903 :                ikind = kind_of(iatom)
    1612        9903 :                jkind = kind_of(jatom)
    1613             :                eta = (stda_env%kind_param_set(ikind)%kind_param%hardness_param + &
    1614        9903 :                       stda_env%kind_param_set(jkind)%kind_param%hardness_param)/2.0_dp
    1615        9903 :                rbeta = dr**bp
    1616        9903 :                IF (hfx > 0.0_dp) THEN
    1617        9844 :                   gabr = (1._dp/(rbeta + (hfx*eta)**(-bp)))**(1._dp/bp)
    1618             :                ELSE
    1619          59 :                   IF (dr < 1.0e-6_dp) THEN
    1620             :                      gabr = 0.0_dp
    1621             :                   ELSE
    1622          42 :                      gabr = 1._dp/dr
    1623             :                   END IF
    1624             :                END IF
    1625             :                !      gabr = (1._dp/(rbeta + (hfx*eta)**(-bp)))**(1._dp/bp)
    1626             :                ! forces
    1627        9886 :                IF (dr > 1.0e-6_dp) THEN
    1628        9584 :                   IF (hfx > 0.0_dp) THEN
    1629        9542 :                      dgabr = -(1._dp/bp)*(1._dp/(rbeta + (hfx*eta)**(-bp)))**(1._dp/bp + 1._dp)
    1630        9542 :                      dgabr = bp*rbeta/dr**2*dgabr
    1631      112536 :                      dgabr = SUM(pblock**2)*dgabr
    1632             :                   ELSE
    1633          42 :                      dgabr = -1.0_dp/dr**3
    1634        3142 :                      dgabr = SUM(pblock**2)*dgabr
    1635             :                   END IF
    1636        9584 :                   atom_i = atom_of_kind(iatom)
    1637        9584 :                   atom_j = atom_of_kind(jatom)
    1638       38336 :                   DO i = 1, 3
    1639       38336 :                      fij(i) = dgabr*rij(i)
    1640             :                   END DO
    1641        9584 :                   force(ikind)%rho_elec(1, atom_i) = force(ikind)%rho_elec(1, atom_i) - fij(1)
    1642        9584 :                   force(ikind)%rho_elec(2, atom_i) = force(ikind)%rho_elec(2, atom_i) - fij(2)
    1643        9584 :                   force(ikind)%rho_elec(3, atom_i) = force(ikind)%rho_elec(3, atom_i) - fij(3)
    1644        9584 :                   force(jkind)%rho_elec(1, atom_j) = force(jkind)%rho_elec(1, atom_j) + fij(1)
    1645        9584 :                   force(jkind)%rho_elec(2, atom_j) = force(jkind)%rho_elec(2, atom_j) + fij(2)
    1646        9584 :                   force(jkind)%rho_elec(3, atom_j) = force(jkind)%rho_elec(3, atom_j) + fij(3)
    1647             :                END IF
    1648             :                !
    1649      132835 :                pblock = gabr*pblock
    1650             :             END DO
    1651         160 :             CALL dbcsr_iterator_stop(iter)
    1652             :             !
    1653             :             ! Transpose pdens matrix
    1654         160 :             CALL dbcsr_create(ptrans, template=pdens)
    1655         160 :             CALL dbcsr_transposed(ptrans, pdens)
    1656             :             !
    1657             :             ! forces from Lowdin charge derivative
    1658         160 :             CALL cp_fm_get_info(work%S_C0_C0T(ispin), matrix_struct=fmstruct)
    1659         160 :             CALL cp_fm_create(t0matrix, matrix_struct=fmstruct, name="T0 SCRATCH")
    1660         160 :             CALL cp_fm_create(t1matrix, matrix_struct=fmstruct, name="T1 SCRATCH")
    1661         160 :             ALLOCATE (ucmatrix)
    1662         160 :             CALL fm_pool_create_fm(work%fm_pool_ao_mo_occ(ispin)%pool, ucmatrix)
    1663         160 :             ALLOCATE (uxmatrix)
    1664         160 :             CALL fm_pool_create_fm(work%fm_pool_ao_mo_occ(ispin)%pool, uxmatrix)
    1665         160 :             ct => work%ctransformed(ispin)
    1666         160 :             CALL cp_dbcsr_sm_fm_multiply(pdens, ct, cvec, norb, 1.0_dp, 0.0_dp)
    1667             :             CALL parallel_gemm('T', 'N', nsgf, norb, nsgf, 1.0_dp, work%S_eigenvectors, &
    1668         160 :                                cvec, 0.0_dp, ucmatrix)
    1669             :             CALL parallel_gemm('T', 'N', nsgf, norb, nsgf, 1.0_dp, work%S_eigenvectors, &
    1670         160 :                                X(ispin), 0.0_dp, uxmatrix)
    1671         160 :             CALL parallel_gemm('N', 'T', nsgf, nsgf, norb, 1.0_dp, uxmatrix, ucmatrix, 0.0_dp, t0matrix)
    1672         160 :             CALL cp_dbcsr_sm_fm_multiply(ptrans, xtransformed(ispin), cvec, norb, 1.0_dp, 0.0_dp)
    1673             :             CALL parallel_gemm('T', 'N', nsgf, norb, nsgf, 1.0_dp, work%S_eigenvectors, &
    1674         160 :                                cvec, 0.0_dp, uxmatrix)
    1675             :             CALL parallel_gemm('T', 'N', nsgf, norb, nsgf, 1.0_dp, work%S_eigenvectors, &
    1676         160 :                                gs_mos(ispin)%mos_occ, 0.0_dp, ucmatrix)
    1677         160 :             CALL parallel_gemm('N', 'T', nsgf, nsgf, norb, 1.0_dp, ucmatrix, uxmatrix, 1.0_dp, t0matrix)
    1678         160 :             CALL cp_fm_schur_product(work%slambda, t0matrix, t1matrix)
    1679             :             CALL parallel_gemm('N', 'N', nsgf, nsgf, nsgf, -1.0_dp, work%S_eigenvectors, t1matrix, &
    1680         160 :                                0.0_dp, t0matrix)
    1681             :             CALL cp_dbcsr_plus_fm_fm_t(matrix_plo(ispin)%matrix, matrix_v=t0matrix, &
    1682         160 :                                        matrix_g=work%S_eigenvectors, ncol=nsgf, alpha=2.0_dp, symmetry_mode=1)
    1683         160 :             CALL fm_pool_give_back_fm(work%fm_pool_ao_mo_occ(ispin)%pool, ucmatrix)
    1684         160 :             DEALLOCATE (ucmatrix)
    1685         160 :             CALL fm_pool_give_back_fm(work%fm_pool_ao_mo_occ(ispin)%pool, uxmatrix)
    1686         160 :             DEALLOCATE (uxmatrix)
    1687         160 :             CALL cp_fm_release(t0matrix)
    1688         160 :             CALL cp_fm_release(t1matrix)
    1689             : 
    1690             :             ! RHS contribution to response matrix
    1691             :             ! CV(nu,i) = P(nu,mu)*XT(mu,i)
    1692         160 :             CALL cp_dbcsr_sm_fm_multiply(ptrans, xtransformed(ispin), cvec, norb, 1.0_dp, 0.0_dp)
    1693             :             CALL cp_dbcsr_sm_fm_multiply(work%shalf, cvec, cpmos(ispin), norb, &
    1694         160 :                                          alpha=-xfac, beta=1.0_dp)
    1695             :             !
    1696         160 :             CALL cp_fm_get_info(cvec, matrix_struct=fmstruct, nrow_global=nao)
    1697         160 :             CALL cp_fm_create(vcvec, fmstruct)
    1698             :             ! CV(nu,i) = P(nu,mu)*CT(mu,i)
    1699         160 :             CALL cp_dbcsr_sm_fm_multiply(ptrans, ct, cvec, norb, 1.0_dp, 0.0_dp)
    1700         160 :             CALL cp_dbcsr_sm_fm_multiply(work%shalf, cvec, vcvec, norb, 1.0_dp, 0.0_dp)
    1701             :             CALL cp_fm_struct_create(fmstruct_mat, context=fmstruct%context, nrow_global=norb, &
    1702         160 :                                      ncol_global=norb, para_env=fmstruct%para_env)
    1703         160 :             CALL cp_fm_create(cvcmat, fmstruct_mat)
    1704         160 :             CALL cp_fm_struct_release(fmstruct_mat)
    1705         160 :             CALL parallel_gemm("T", "N", norb, norb, nao, 1.0_dp, gs_mos(ispin)%mos_occ, vcvec, 0.0_dp, cvcmat)
    1706         160 :             CALL parallel_gemm("N", "N", nao, norb, norb, 1.0_dp, X(ispin), cvcmat, 0.0_dp, vcvec)
    1707             :             CALL cp_dbcsr_sm_fm_multiply(matrix_s(1)%matrix, vcvec, cpmos(ispin), &
    1708         160 :                                          norb, alpha=xfac, beta=1.0_dp)
    1709             :             ! wx1
    1710         160 :             IF (nspins == 2) THEN
    1711          44 :                alpha = -2.0_dp
    1712             :             ELSE
    1713         116 :                alpha = -1.0_dp
    1714             :             END IF
    1715             :             CALL cp_dbcsr_plus_fm_fm_t(matrix_wx1(ispin)%matrix, matrix_v=gs_mos(ispin)%mos_occ, &
    1716             :                                        matrix_g=vcvec, &
    1717         160 :                                        ncol=norb, alpha=2.0_dp*alpha, symmetry_mode=1)
    1718         160 :             CALL cp_fm_release(vcvec)
    1719         160 :             CALL cp_fm_release(cvcmat)
    1720             :             !
    1721         160 :             CALL dbcsr_release(pdens)
    1722         160 :             CALL dbcsr_release(ptrans)
    1723             :             !
    1724         160 :             IF (debug_forces) THEN
    1725           8 :                fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    1726           2 :                CALL para_env%sum(fodeb)
    1727           2 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Exch[X]   ", fodeb
    1728             :             END IF
    1729             :          END IF
    1730             :          !
    1731         184 :          CALL cp_fm_release(cvec)
    1732         184 :          CALL cp_fm_release(xvec)
    1733         710 :          DEALLOCATE (tv)
    1734             :       END DO
    1735             : 
    1736         158 :       CALL cp_fm_release(xtransformed)
    1737         158 :       DEALLOCATE (tcharge, gtcharge)
    1738         158 :       DEALLOCATE (first_sgf, last_sgf)
    1739             : 
    1740             :       ! Lowdin forces
    1741         158 :       IF (nspins == 2) THEN
    1742             :          CALL dbcsr_add(matrix_plo(1)%matrix, matrix_plo(2)%matrix, &
    1743          26 :                         alpha_scalar=1.0_dp, beta_scalar=1.0_dp)
    1744             :       END IF
    1745         158 :       CALL dbcsr_scale(matrix_plo(1)%matrix, -1.0_dp)
    1746         158 :       NULLIFY (scrm)
    1747         164 :       IF (debug_forces) fodeb(1:3) = force(1)%overlap(1:3, 1)
    1748             :       CALL build_overlap_matrix(ks_env, matrix_s=scrm, &
    1749             :                                 matrix_name="OVERLAP MATRIX", &
    1750             :                                 basis_type_a="ORB", basis_type_b="ORB", &
    1751             :                                 sab_nl=sab_orb, calculate_forces=.TRUE., &
    1752         158 :                                 matrix_p=matrix_plo(1)%matrix)
    1753         158 :       CALL dbcsr_deallocate_matrix_set(scrm)
    1754         158 :       CALL dbcsr_deallocate_matrix_set(matrix_plo)
    1755         158 :       IF (debug_forces) THEN
    1756           8 :          fodeb(1:3) = force(1)%overlap(1:3, 1) - fodeb(1:3)
    1757           2 :          CALL para_env%sum(fodeb)
    1758           2 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Lowdin ", fodeb
    1759             :       END IF
    1760             : 
    1761         158 :       IF (ASSOCIATED(ex_env%matrix_wx1)) CALL dbcsr_deallocate_matrix_set(ex_env%matrix_wx1)
    1762         158 :       ex_env%matrix_wx1 => matrix_wx1
    1763             : 
    1764         158 :       CALL timestop(handle)
    1765             : 
    1766         316 :    END SUBROUTINE stda_force
    1767             : 
    1768             : ! **************************************************************************************************
    1769             : 
    1770             : END MODULE qs_tddfpt2_fhxc_forces

Generated by: LCOV version 1.15