LCOV - code coverage report
Current view: top level - src - response_solver.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:b8e0b09) Lines: 1220 1378 88.5 %
Date: 2024-08-31 06:31:37 Functions: 7 7 100.0 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2024 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief Calculate the CPKS equation and the resulting forces
      10             : !> \par History
      11             : !>       03.2014 created
      12             : !>       09.2019 Moved from KG to Kohn-Sham
      13             : !>       11.2019 Moved from energy_correction
      14             : !>       08.2020 AO linear response solver [fbelle]
      15             : !> \author JGH
      16             : ! **************************************************************************************************
      17             : MODULE response_solver
      18             :    USE admm_methods,                    ONLY: admm_projection_derivative
      19             :    USE admm_types,                      ONLY: admm_type,&
      20             :                                               get_admm_env
      21             :    USE atomic_kind_types,               ONLY: atomic_kind_type,&
      22             :                                               get_atomic_kind
      23             :    USE cell_types,                      ONLY: cell_type
      24             :    USE core_ae,                         ONLY: build_core_ae
      25             :    USE core_ppl,                        ONLY: build_core_ppl
      26             :    USE core_ppnl,                       ONLY: build_core_ppnl
      27             :    USE cp_blacs_env,                    ONLY: cp_blacs_env_type
      28             :    USE cp_control_types,                ONLY: dft_control_type
      29             :    USE cp_dbcsr_api,                    ONLY: &
      30             :         dbcsr_add, dbcsr_copy, dbcsr_create, dbcsr_distribution_type, dbcsr_multiply, &
      31             :         dbcsr_p_type, dbcsr_release, dbcsr_scale, dbcsr_set, dbcsr_type, dbcsr_type_no_symmetry
      32             :    USE cp_dbcsr_cp2k_link,              ONLY: cp_dbcsr_alloc_block_from_nbl
      33             :    USE cp_dbcsr_operations,             ONLY: copy_dbcsr_to_fm,&
      34             :                                               copy_fm_to_dbcsr,&
      35             :                                               cp_dbcsr_sm_fm_multiply,&
      36             :                                               dbcsr_allocate_matrix_set,&
      37             :                                               dbcsr_deallocate_matrix_set
      38             :    USE cp_fm_struct,                    ONLY: cp_fm_struct_create,&
      39             :                                               cp_fm_struct_release,&
      40             :                                               cp_fm_struct_type
      41             :    USE cp_fm_types,                     ONLY: cp_fm_create,&
      42             :                                               cp_fm_init_random,&
      43             :                                               cp_fm_release,&
      44             :                                               cp_fm_set_all,&
      45             :                                               cp_fm_to_fm,&
      46             :                                               cp_fm_type
      47             :    USE cp_log_handling,                 ONLY: cp_get_default_logger,&
      48             :                                               cp_logger_get_default_unit_nr,&
      49             :                                               cp_logger_type
      50             :    USE ec_env_types,                    ONLY: energy_correction_type
      51             :    USE ec_methods,                      ONLY: create_kernel,&
      52             :                                               ec_mos_init
      53             :    USE ec_orth_solver,                  ONLY: ec_response_ao
      54             :    USE exstates_types,                  ONLY: excited_energy_type
      55             :    USE hartree_local_methods,           ONLY: Vh_1c_gg_integrals,&
      56             :                                               init_coulomb_local
      57             :    USE hartree_local_types,             ONLY: hartree_local_create,&
      58             :                                               hartree_local_release,&
      59             :                                               hartree_local_type
      60             :    USE hfx_derivatives,                 ONLY: derivatives_four_center
      61             :    USE hfx_energy_potential,            ONLY: integrate_four_center
      62             :    USE hfx_ri,                          ONLY: hfx_ri_update_forces,&
      63             :                                               hfx_ri_update_ks
      64             :    USE hfx_types,                       ONLY: hfx_type
      65             :    USE input_constants,                 ONLY: &
      66             :         do_admm_aux_exch_func_none, ec_ls_solver, ec_mo_solver, kg_tnadd_atomic, kg_tnadd_embed, &
      67             :         kg_tnadd_embed_ri, ls_s_sqrt_ns, ls_s_sqrt_proot, ot_precond_full_all, &
      68             :         ot_precond_full_kinetic, ot_precond_full_single, ot_precond_full_single_inverse, &
      69             :         ot_precond_none, ot_precond_s_inverse, precond_mlp, xc_none
      70             :    USE input_section_types,             ONLY: section_vals_get,&
      71             :                                               section_vals_get_subs_vals,&
      72             :                                               section_vals_type,&
      73             :                                               section_vals_val_get
      74             :    USE kg_correction,                   ONLY: kg_ekin_subset
      75             :    USE kg_environment_types,            ONLY: kg_environment_type
      76             :    USE kg_tnadd_mat,                    ONLY: build_tnadd_mat
      77             :    USE kinds,                           ONLY: default_string_length,&
      78             :                                               dp
      79             :    USE machine,                         ONLY: m_flush
      80             :    USE mathlib,                         ONLY: det_3x3
      81             :    USE message_passing,                 ONLY: mp_para_env_type
      82             :    USE mulliken,                        ONLY: ao_charges
      83             :    USE parallel_gemm_api,               ONLY: parallel_gemm
      84             :    USE particle_types,                  ONLY: particle_type
      85             :    USE physcon,                         ONLY: pascal
      86             :    USE pw_env_types,                    ONLY: pw_env_get,&
      87             :                                               pw_env_type
      88             :    USE pw_methods,                      ONLY: pw_axpy,&
      89             :                                               pw_copy,&
      90             :                                               pw_integral_ab,&
      91             :                                               pw_scale,&
      92             :                                               pw_transfer,&
      93             :                                               pw_zero
      94             :    USE pw_poisson_methods,              ONLY: pw_poisson_solve
      95             :    USE pw_poisson_types,                ONLY: pw_poisson_type
      96             :    USE pw_pool_types,                   ONLY: pw_pool_type
      97             :    USE pw_types,                        ONLY: pw_c1d_gs_type,&
      98             :                                               pw_r3d_rs_type
      99             :    USE qs_2nd_kernel_ao,                ONLY: build_dm_response
     100             :    USE qs_collocate_density,            ONLY: calculate_rho_elec
     101             :    USE qs_density_matrices,             ONLY: calculate_whz_matrix,&
     102             :                                               calculate_wz_matrix
     103             :    USE qs_energy_types,                 ONLY: qs_energy_type
     104             :    USE qs_environment_types,            ONLY: get_qs_env,&
     105             :                                               qs_environment_type,&
     106             :                                               set_qs_env
     107             :    USE qs_force_types,                  ONLY: qs_force_type,&
     108             :                                               total_qs_force
     109             :    USE qs_gapw_densities,               ONLY: prepare_gapw_den
     110             :    USE qs_integrate_potential,          ONLY: integrate_v_core_rspace,&
     111             :                                               integrate_v_rspace
     112             :    USE qs_kind_types,                   ONLY: get_qs_kind,&
     113             :                                               get_qs_kind_set,&
     114             :                                               qs_kind_type
     115             :    USE qs_kinetic,                      ONLY: build_kinetic_matrix
     116             :    USE qs_ks_atom,                      ONLY: update_ks_atom
     117             :    USE qs_ks_methods,                   ONLY: calc_rho_tot_gspace
     118             :    USE qs_ks_types,                     ONLY: qs_ks_env_type
     119             :    USE qs_linres_methods,               ONLY: linres_solver
     120             :    USE qs_linres_types,                 ONLY: linres_control_type
     121             :    USE qs_local_rho_types,              ONLY: local_rho_set_create,&
     122             :                                               local_rho_set_release,&
     123             :                                               local_rho_type
     124             :    USE qs_matrix_pools,                 ONLY: mpools_rebuild_fm_pools
     125             :    USE qs_mo_methods,                   ONLY: make_basis_sm
     126             :    USE qs_mo_types,                     ONLY: deallocate_mo_set,&
     127             :                                               get_mo_set,&
     128             :                                               mo_set_type
     129             :    USE qs_neighbor_list_types,          ONLY: neighbor_list_set_p_type
     130             :    USE qs_oce_types,                    ONLY: oce_matrix_type
     131             :    USE qs_overlap,                      ONLY: build_overlap_matrix
     132             :    USE qs_p_env_methods,                ONLY: p_env_create,&
     133             :                                               p_env_psi0_changed
     134             :    USE qs_p_env_types,                  ONLY: p_env_release,&
     135             :                                               qs_p_env_type
     136             :    USE qs_rho0_ggrid,                   ONLY: integrate_vhg0_rspace,&
     137             :                                               rho0_s_grid_create
     138             :    USE qs_rho0_methods,                 ONLY: init_rho0
     139             :    USE qs_rho_atom_methods,             ONLY: allocate_rho_atom_internals,&
     140             :                                               calculate_rho_atom_coeff
     141             :    USE qs_rho_types,                    ONLY: qs_rho_get,&
     142             :                                               qs_rho_type
     143             :    USE qs_vxc_atom,                     ONLY: calculate_vxc_atom,&
     144             :                                               calculate_xc_2nd_deriv_atom
     145             :    USE task_list_types,                 ONLY: task_list_type
     146             :    USE virial_methods,                  ONLY: one_third_sum_diag
     147             :    USE virial_types,                    ONLY: virial_type
     148             :    USE xtb_ehess,                       ONLY: xtb_coulomb_hessian
     149             :    USE xtb_ehess_force,                 ONLY: calc_xtb_ehess_force
     150             :    USE xtb_matrices,                    ONLY: xtb_hab_force
     151             :    USE xtb_types,                       ONLY: get_xtb_atom_param,&
     152             :                                               xtb_atom_type
     153             : #include "./base/base_uses.f90"
     154             : 
     155             :    IMPLICIT NONE
     156             : 
     157             :    PRIVATE
     158             : 
     159             :    ! Global parameters
     160             : 
     161             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'response_solver'
     162             : 
     163             :    PUBLIC :: response_calculation, response_equation, response_force, response_force_xtb, &
     164             :              response_equation_new
     165             : 
     166             : ! **************************************************************************************************
     167             : 
     168             : CONTAINS
     169             : 
     170             : ! **************************************************************************************************
     171             : !> \brief Initializes solver of linear response equation for energy correction
     172             : !> \brief Call AO or MO based linear response solver for energy correction
     173             : !>
     174             : !> \param qs_env The quickstep environment
     175             : !> \param ec_env The energy correction environment
     176             : !>
     177             : !> \date    01.2020
     178             : !> \author  Fabian Belleflamme
     179             : ! **************************************************************************************************
     180         432 :    SUBROUTINE response_calculation(qs_env, ec_env)
     181             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     182             :       TYPE(energy_correction_type), POINTER              :: ec_env
     183             : 
     184             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'response_calculation'
     185             : 
     186             :       INTEGER                                            :: handle, homo, ispin, nao, nao_aux, nmo, &
     187             :                                                             nocc, nspins, solver_method, unit_nr
     188             :       LOGICAL                                            :: should_stop
     189             :       REAL(KIND=dp)                                      :: focc
     190             :       TYPE(admm_type), POINTER                           :: admm_env
     191             :       TYPE(cp_blacs_env_type), POINTER                   :: blacs_env
     192             :       TYPE(cp_fm_struct_type), POINTER                   :: fm_struct
     193             :       TYPE(cp_fm_type)                                   :: sv
     194         432 :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: cpmos, mo_occ
     195             :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
     196             :       TYPE(cp_logger_type), POINTER                      :: logger
     197         432 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_s, matrix_s_aux, rho_ao
     198             :       TYPE(dft_control_type), POINTER                    :: dft_control
     199             :       TYPE(linres_control_type), POINTER                 :: linres_control
     200         432 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
     201             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     202             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
     203         432 :          POINTER                                         :: sab_orb
     204             :       TYPE(qs_energy_type), POINTER                      :: energy
     205             :       TYPE(qs_p_env_type), POINTER                       :: p_env
     206             :       TYPE(qs_rho_type), POINTER                         :: rho
     207             :       TYPE(section_vals_type), POINTER                   :: input, solver_section
     208             : 
     209         432 :       CALL timeset(routineN, handle)
     210             : 
     211         432 :       NULLIFY (admm_env, dft_control, energy, logger, matrix_s, matrix_s_aux, mo_coeff, mos, para_env, &
     212         432 :                rho_ao, sab_orb, solver_section)
     213             : 
     214             :       ! Get useful output unit
     215         432 :       logger => cp_get_default_logger()
     216         432 :       IF (logger%para_env%is_source()) THEN
     217         216 :          unit_nr = cp_logger_get_default_unit_nr(logger, local=.TRUE.)
     218             :       ELSE
     219         216 :          unit_nr = -1
     220             :       END IF
     221             : 
     222             :       CALL get_qs_env(qs_env, &
     223             :                       dft_control=dft_control, &
     224             :                       input=input, &
     225             :                       matrix_s=matrix_s, &
     226             :                       para_env=para_env, &
     227         432 :                       sab_orb=sab_orb)
     228         432 :       nspins = dft_control%nspins
     229             : 
     230             :       ! initialize linres_control
     231             :       NULLIFY (linres_control)
     232         432 :       ALLOCATE (linres_control)
     233         432 :       linres_control%do_kernel = .TRUE.
     234             :       linres_control%lr_triplet = .FALSE.
     235             :       linres_control%converged = .FALSE.
     236         432 :       linres_control%energy_gap = 0.02_dp
     237             : 
     238             :       ! Read input
     239         432 :       solver_section => section_vals_get_subs_vals(input, "DFT%ENERGY_CORRECTION%RESPONSE_SOLVER")
     240         432 :       CALL section_vals_val_get(solver_section, "EPS", r_val=linres_control%eps)
     241         432 :       CALL section_vals_val_get(solver_section, "EPS_FILTER", r_val=linres_control%eps_filter)
     242         432 :       CALL section_vals_val_get(solver_section, "MAX_ITER", i_val=linres_control%max_iter)
     243         432 :       CALL section_vals_val_get(solver_section, "METHOD", i_val=solver_method)
     244         432 :       CALL section_vals_val_get(solver_section, "PRECONDITIONER", i_val=linres_control%preconditioner_type)
     245         432 :       CALL section_vals_val_get(solver_section, "RESTART", l_val=linres_control%linres_restart)
     246         432 :       CALL section_vals_val_get(solver_section, "RESTART_EVERY", i_val=linres_control%restart_every)
     247         432 :       CALL set_qs_env(qs_env, linres_control=linres_control)
     248             : 
     249             :       ! Write input section of response solver
     250         432 :       CALL response_solver_write_input(solver_section, linres_control, unit_nr)
     251             : 
     252             :       ! Allocate and initialize response density matrix Z,
     253             :       ! and the energy weighted response density matrix
     254             :       ! Template is the ground-state overlap matrix
     255         432 :       CALL dbcsr_allocate_matrix_set(ec_env%matrix_wz, nspins)
     256         432 :       CALL dbcsr_allocate_matrix_set(ec_env%matrix_z, nspins)
     257         864 :       DO ispin = 1, nspins
     258         432 :          ALLOCATE (ec_env%matrix_wz(ispin)%matrix)
     259         432 :          ALLOCATE (ec_env%matrix_z(ispin)%matrix)
     260             :          CALL dbcsr_create(ec_env%matrix_wz(ispin)%matrix, name="Wz MATRIX", &
     261         432 :                            template=matrix_s(1)%matrix)
     262             :          CALL dbcsr_create(ec_env%matrix_z(ispin)%matrix, name="Z MATRIX", &
     263         432 :                            template=matrix_s(1)%matrix)
     264         432 :          CALL cp_dbcsr_alloc_block_from_nbl(ec_env%matrix_wz(ispin)%matrix, sab_orb)
     265         432 :          CALL cp_dbcsr_alloc_block_from_nbl(ec_env%matrix_z(ispin)%matrix, sab_orb)
     266         432 :          CALL dbcsr_set(ec_env%matrix_wz(ispin)%matrix, 0.0_dp)
     267         864 :          CALL dbcsr_set(ec_env%matrix_z(ispin)%matrix, 0.0_dp)
     268             :       END DO
     269             : 
     270             :       ! MO solver requires MO's of the ground-state calculation,
     271             :       ! The MOs environment is not allocated if LS-DFT has been used.
     272             :       ! Introduce MOs here
     273             :       ! Remark: MOS environment also required for creation of p_env
     274         432 :       IF (dft_control%qs_control%do_ls_scf) THEN
     275             : 
     276             :          ! Allocate and initialize MO environment
     277          10 :          CALL ec_mos_init(qs_env, matrix_s(1)%matrix)
     278          10 :          CALL get_qs_env(qs_env, mos=mos, rho=rho)
     279             : 
     280             :          ! Get ground-state density matrix
     281          10 :          CALL qs_rho_get(rho, rho_ao=rho_ao)
     282             : 
     283          20 :          DO ispin = 1, nspins
     284             :             CALL get_mo_set(mo_set=mos(ispin), &
     285             :                             mo_coeff=mo_coeff, &
     286          10 :                             nmo=nmo, nao=nao, homo=homo)
     287             : 
     288          10 :             CALL cp_fm_set_all(mo_coeff, 0.0_dp)
     289          10 :             CALL cp_fm_init_random(mo_coeff, nmo)
     290             : 
     291          10 :             CALL cp_fm_create(sv, mo_coeff%matrix_struct, "SV")
     292             :             ! multiply times PS
     293             :             ! PS*C(:,1:nomo)+C(:,nomo+1:nmo) (nomo=NINT(nelectron/maxocc))
     294          10 :             CALL cp_dbcsr_sm_fm_multiply(matrix_s(1)%matrix, mo_coeff, sv, nmo)
     295          10 :             CALL cp_dbcsr_sm_fm_multiply(rho_ao(ispin)%matrix, sv, mo_coeff, homo)
     296          10 :             CALL cp_fm_release(sv)
     297             :             ! and ortho the result
     298          10 :             CALL make_basis_sm(mo_coeff, nmo, matrix_s(1)%matrix)
     299             : 
     300             :             ! rebuilds fm_pools
     301             :             ! originally done in qs_env_setup, only when mos associated
     302          10 :             NULLIFY (blacs_env)
     303          10 :             CALL get_qs_env(qs_env, blacs_env=blacs_env)
     304             :             CALL mpools_rebuild_fm_pools(qs_env%mpools, mos=mos, &
     305          40 :                                          blacs_env=blacs_env, para_env=para_env)
     306             :          END DO
     307             :       END IF
     308             : 
     309             :       ! initialize p_env
     310             :       ! Remark: mos environment is needed for this
     311         432 :       IF (ASSOCIATED(ec_env%p_env)) THEN
     312         220 :          CALL p_env_release(ec_env%p_env)
     313         220 :          DEALLOCATE (ec_env%p_env)
     314         220 :          NULLIFY (ec_env%p_env)
     315             :       END IF
     316        2160 :       ALLOCATE (ec_env%p_env)
     317             :       CALL p_env_create(ec_env%p_env, qs_env, orthogonal_orbitals=.TRUE., &
     318         432 :                         linres_control=linres_control)
     319         432 :       CALL p_env_psi0_changed(ec_env%p_env, qs_env)
     320             :       ! Total energy overwritten, replace with Etot from energy correction
     321         432 :       CALL get_qs_env(qs_env, energy=energy)
     322         432 :       energy%total = ec_env%etotal
     323             :       !
     324         432 :       p_env => ec_env%p_env
     325             :       !
     326         432 :       CALL dbcsr_allocate_matrix_set(p_env%p1, nspins)
     327         432 :       CALL dbcsr_allocate_matrix_set(p_env%w1, nspins)
     328         864 :       DO ispin = 1, nspins
     329         432 :          ALLOCATE (p_env%p1(ispin)%matrix, p_env%w1(ispin)%matrix)
     330         432 :          CALL dbcsr_create(matrix=p_env%p1(ispin)%matrix, template=matrix_s(1)%matrix)
     331         432 :          CALL dbcsr_create(matrix=p_env%w1(ispin)%matrix, template=matrix_s(1)%matrix)
     332         432 :          CALL cp_dbcsr_alloc_block_from_nbl(p_env%p1(ispin)%matrix, sab_orb)
     333         864 :          CALL cp_dbcsr_alloc_block_from_nbl(p_env%w1(ispin)%matrix, sab_orb)
     334             :       END DO
     335         432 :       IF (dft_control%do_admm) THEN
     336         104 :          CALL get_admm_env(qs_env%admm_env, matrix_s_aux_fit=matrix_s_aux)
     337         104 :          CALL dbcsr_allocate_matrix_set(p_env%p1_admm, nspins)
     338         208 :          DO ispin = 1, nspins
     339         104 :             ALLOCATE (p_env%p1_admm(ispin)%matrix)
     340             :             CALL dbcsr_create(p_env%p1_admm(ispin)%matrix, &
     341         104 :                               template=matrix_s_aux(1)%matrix)
     342         104 :             CALL dbcsr_copy(p_env%p1_admm(ispin)%matrix, matrix_s_aux(1)%matrix)
     343         208 :             CALL dbcsr_set(p_env%p1_admm(ispin)%matrix, 0.0_dp)
     344             :          END DO
     345             :       END IF
     346             : 
     347             :       ! Choose between MO-solver and AO-solver
     348         300 :       SELECT CASE (solver_method)
     349             :       CASE (ec_mo_solver)
     350             : 
     351             :          ! CPKS vector cpmos - RHS of response equation as Ax + b = 0 (sign of b)
     352             :          ! Sign is changed in linres_solver!
     353             :          ! Projector Q applied in linres_solver!
     354         300 :          CALL get_qs_env(qs_env, mos=mos)
     355        1800 :          ALLOCATE (cpmos(nspins), mo_occ(nspins))
     356         600 :          DO ispin = 1, nspins
     357         300 :             CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, homo=nocc)
     358         300 :             NULLIFY (fm_struct)
     359             :             CALL cp_fm_struct_create(fm_struct, ncol_global=nocc, &
     360         300 :                                      template_fmstruct=mo_coeff%matrix_struct)
     361         300 :             CALL cp_fm_create(cpmos(ispin), fm_struct)
     362         300 :             CALL cp_fm_set_all(cpmos(ispin), 0.0_dp)
     363         300 :             CALL cp_fm_create(mo_occ(ispin), fm_struct)
     364         300 :             CALL cp_fm_to_fm(mo_coeff, mo_occ(ispin), nocc)
     365         900 :             CALL cp_fm_struct_release(fm_struct)
     366             :          END DO
     367             : 
     368         300 :          focc = 2.0_dp
     369         300 :          IF (nspins == 1) focc = 4.0_dp
     370         600 :          DO ispin = 1, nspins
     371         300 :             CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, homo=nocc)
     372             :             CALL cp_dbcsr_sm_fm_multiply(ec_env%matrix_hz(ispin)%matrix, mo_occ(ispin), &
     373             :                                          cpmos(ispin), nocc, &
     374         600 :                                          alpha=focc, beta=0.0_dp)
     375             :          END DO
     376         300 :          CALL cp_fm_release(mo_occ)
     377             : 
     378         300 :          CALL response_equation_new(qs_env, p_env, cpmos, unit_nr)
     379             : 
     380             :          ! Get the response density matrix,
     381             :          ! and energy-weighted response density matrix
     382         600 :          DO ispin = 1, nspins
     383         300 :             CALL dbcsr_copy(ec_env%matrix_z(ispin)%matrix, p_env%p1(ispin)%matrix)
     384         600 :             CALL dbcsr_copy(ec_env%matrix_wz(ispin)%matrix, p_env%w1(ispin)%matrix)
     385             :          END DO
     386         300 :          CALL cp_fm_release(cpmos)
     387             : 
     388             :       CASE (ec_ls_solver)
     389             : 
     390             :          ! AO ortho solver
     391             :          CALL ec_response_ao(qs_env=qs_env, &
     392             :                              p_env=p_env, &
     393             :                              matrix_hz=ec_env%matrix_hz, &
     394             :                              matrix_pz=ec_env%matrix_z, &
     395             :                              matrix_wz=ec_env%matrix_wz, &
     396             :                              iounit=unit_nr, &
     397         132 :                              should_stop=should_stop)
     398             : 
     399         132 :          IF (dft_control%do_admm) THEN
     400          28 :             CALL get_qs_env(qs_env, admm_env=admm_env)
     401          28 :             CPASSERT(ASSOCIATED(admm_env%work_orb_orb))
     402          28 :             CPASSERT(ASSOCIATED(admm_env%work_aux_orb))
     403          28 :             CPASSERT(ASSOCIATED(admm_env%work_aux_aux))
     404          28 :             nao = admm_env%nao_orb
     405          28 :             nao_aux = admm_env%nao_aux_fit
     406          56 :             DO ispin = 1, nspins
     407          28 :                CALL copy_dbcsr_to_fm(ec_env%matrix_z(ispin)%matrix, admm_env%work_orb_orb)
     408             :                CALL parallel_gemm('N', 'N', nao_aux, nao, nao, &
     409             :                                   1.0_dp, admm_env%A, admm_env%work_orb_orb, 0.0_dp, &
     410          28 :                                   admm_env%work_aux_orb)
     411             :                CALL parallel_gemm('N', 'T', nao_aux, nao_aux, nao, &
     412             :                                   1.0_dp, admm_env%work_aux_orb, admm_env%A, 0.0_dp, &
     413          28 :                                   admm_env%work_aux_aux)
     414             :                CALL copy_fm_to_dbcsr(admm_env%work_aux_aux, p_env%p1_admm(ispin)%matrix, &
     415          56 :                                      keep_sparsity=.TRUE.)
     416             :             END DO
     417             :          END IF
     418             : 
     419             :       CASE DEFAULT
     420         432 :          CPABORT("Unknown solver for response equation requested")
     421             :       END SELECT
     422             : 
     423         432 :       IF (dft_control%do_admm) THEN
     424         104 :          CALL dbcsr_allocate_matrix_set(ec_env%z_admm, nspins)
     425         208 :          DO ispin = 1, nspins
     426         104 :             ALLOCATE (ec_env%z_admm(ispin)%matrix)
     427         104 :             CALL dbcsr_create(matrix=ec_env%z_admm(ispin)%matrix, template=matrix_s_aux(1)%matrix)
     428         104 :             CALL get_qs_env(qs_env, admm_env=admm_env)
     429         208 :             CALL dbcsr_copy(ec_env%z_admm(ispin)%matrix, p_env%p1_admm(ispin)%matrix)
     430             :          END DO
     431             :       END IF
     432             : 
     433             :       ! Get rid of MO environment again
     434         432 :       IF (dft_control%qs_control%do_ls_scf) THEN
     435          20 :          DO ispin = 1, nspins
     436          20 :             CALL deallocate_mo_set(mos(ispin))
     437             :          END DO
     438          10 :          IF (ASSOCIATED(qs_env%mos)) THEN
     439          20 :             DO ispin = 1, SIZE(qs_env%mos)
     440          20 :                CALL deallocate_mo_set(qs_env%mos(ispin))
     441             :             END DO
     442          10 :             DEALLOCATE (qs_env%mos)
     443             :          END IF
     444             :       END IF
     445             : 
     446         432 :       CALL timestop(handle)
     447             : 
     448         864 :    END SUBROUTINE response_calculation
     449             : 
     450             : ! **************************************************************************************************
     451             : !> \brief Parse the input section of the response solver
     452             : !> \param input Input section which controls response solver parameters
     453             : !> \param linres_control Environment for general setting of linear response calculation
     454             : !> \param unit_nr ...
     455             : !> \par History
     456             : !>       2020.05 created [Fabian Belleflamme]
     457             : !> \author Fabian Belleflamme
     458             : ! **************************************************************************************************
     459         432 :    SUBROUTINE response_solver_write_input(input, linres_control, unit_nr)
     460             :       TYPE(section_vals_type), POINTER                   :: input
     461             :       TYPE(linres_control_type), POINTER                 :: linres_control
     462             :       INTEGER, INTENT(IN)                                :: unit_nr
     463             : 
     464             :       CHARACTER(len=*), PARAMETER :: routineN = 'response_solver_write_input'
     465             : 
     466             :       INTEGER                                            :: handle, max_iter_lanczos, s_sqrt_method, &
     467             :                                                             s_sqrt_order, solver_method
     468             :       REAL(KIND=dp)                                      :: eps_lanczos
     469             : 
     470         432 :       CALL timeset(routineN, handle)
     471             : 
     472         432 :       IF (unit_nr > 0) THEN
     473             : 
     474             :          ! linres_control
     475             :          WRITE (unit_nr, '(/,T2,A)') &
     476         216 :             REPEAT("-", 30)//" Linear Response Solver "//REPEAT("-", 25)
     477             : 
     478             :          ! Which type of solver is used
     479         216 :          CALL section_vals_val_get(input, "METHOD", i_val=solver_method)
     480             : 
     481          66 :          SELECT CASE (solver_method)
     482             :          CASE (ec_ls_solver)
     483          66 :             WRITE (unit_nr, '(T2,A,T61,A20)') "Solver: ", "AO-based CG-solver"
     484             :          CASE (ec_mo_solver)
     485         216 :             WRITE (unit_nr, '(T2,A,T61,A20)') "Solver: ", "MO-based CG-solver"
     486             :          END SELECT
     487             : 
     488         216 :          WRITE (unit_nr, '(T2,A,T61,E20.3)') "eps:", linres_control%eps
     489         216 :          WRITE (unit_nr, '(T2,A,T61,E20.3)') "eps_filter:", linres_control%eps_filter
     490         216 :          WRITE (unit_nr, '(T2,A,T61,I20)') "Max iter:", linres_control%max_iter
     491             : 
     492         217 :          SELECT CASE (linres_control%preconditioner_type)
     493             :          CASE (ot_precond_full_all)
     494           1 :             WRITE (unit_nr, '(T2,A,T61,A20)') "Preconditioner: ", "FULL_ALL"
     495             :          CASE (ot_precond_full_single_inverse)
     496         149 :             WRITE (unit_nr, '(T2,A,T61,A20)') "Preconditioner: ", "FULL_SINGLE_INVERSE"
     497             :          CASE (ot_precond_full_single)
     498           0 :             WRITE (unit_nr, '(T2,A,T61,A20)') "Preconditioner: ", "FULL_SINGLE"
     499             :          CASE (ot_precond_full_kinetic)
     500           0 :             WRITE (unit_nr, '(T2,A,T61,A20)') "Preconditioner: ", "FULL_KINETIC"
     501             :          CASE (ot_precond_s_inverse)
     502           0 :             WRITE (unit_nr, '(T2,A,T61,A20)') "Preconditioner: ", "FULL_S_INVERSE"
     503             :          CASE (precond_mlp)
     504          65 :             WRITE (unit_nr, '(T2,A,T61,A20)') "Preconditioner: ", "MULTI_LEVEL"
     505             :          CASE (ot_precond_none)
     506         216 :             WRITE (unit_nr, '(T2,A,T61,A20)') "Preconditioner: ", "NONE"
     507             :          END SELECT
     508             : 
     509          66 :          SELECT CASE (solver_method)
     510             :          CASE (ec_ls_solver)
     511             : 
     512          66 :             CALL section_vals_val_get(input, "S_SQRT_METHOD", i_val=s_sqrt_method)
     513          66 :             CALL section_vals_val_get(input, "S_SQRT_ORDER", i_val=s_sqrt_order)
     514          66 :             CALL section_vals_val_get(input, "EPS_LANCZOS", r_val=eps_lanczos)
     515          66 :             CALL section_vals_val_get(input, "MAX_ITER_LANCZOS", i_val=max_iter_lanczos)
     516             : 
     517             :             ! Response solver transforms P and KS into orthonormal basis,
     518             :             ! reuires matrx S sqrt and its inverse
     519          66 :             SELECT CASE (s_sqrt_method)
     520             :             CASE (ls_s_sqrt_ns)
     521          66 :                WRITE (unit_nr, '(T2,A,T61,A20)') "S sqrt method:", "NEWTONSCHULZ"
     522             :             CASE (ls_s_sqrt_proot)
     523           0 :                WRITE (unit_nr, '(T2,A,T61,A20)') "S sqrt method:", "PROOT"
     524             :             CASE DEFAULT
     525          66 :                CPABORT("Unknown sqrt method.")
     526             :             END SELECT
     527         282 :             WRITE (unit_nr, '(T2,A,T61,I20)') "S sqrt order:", s_sqrt_order
     528             : 
     529             :          CASE (ec_mo_solver)
     530             :          END SELECT
     531             : 
     532         216 :          WRITE (unit_nr, '(T2,A)') REPEAT("-", 79)
     533             : 
     534         216 :          CALL m_flush(unit_nr)
     535             :       END IF
     536             : 
     537         432 :       CALL timestop(handle)
     538             : 
     539         432 :    END SUBROUTINE response_solver_write_input
     540             : 
     541             : ! **************************************************************************************************
     542             : !> \brief Initializes vectors for MO-coefficient based linear response solver
     543             : !>        and calculates response density, and energy-weighted response density matrix
     544             : !>
     545             : !> \param qs_env ...
     546             : !> \param p_env ...
     547             : !> \param cpmos ...
     548             : !> \param iounit ...
     549             : ! **************************************************************************************************
     550         350 :    SUBROUTINE response_equation_new(qs_env, p_env, cpmos, iounit)
     551             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     552             :       TYPE(qs_p_env_type)                                :: p_env
     553             :       TYPE(cp_fm_type), DIMENSION(:), INTENT(INOUT)      :: cpmos
     554             :       INTEGER, INTENT(IN)                                :: iounit
     555             : 
     556             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'response_equation_new'
     557             : 
     558             :       INTEGER                                            :: handle, ispin, nao, nao_aux, nocc, nspins
     559             :       LOGICAL                                            :: should_stop
     560             :       TYPE(admm_type), POINTER                           :: admm_env
     561             :       TYPE(cp_fm_struct_type), POINTER                   :: fm_struct
     562         350 :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: psi0, psi1
     563             :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
     564         350 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_ks, matrix_s
     565             :       TYPE(dft_control_type), POINTER                    :: dft_control
     566         350 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
     567             : 
     568         350 :       CALL timeset(routineN, handle)
     569             : 
     570         350 :       NULLIFY (dft_control, matrix_ks, mo_coeff, mos)
     571             : 
     572             :       CALL get_qs_env(qs_env, dft_control=dft_control, matrix_ks=matrix_ks, &
     573         350 :                       matrix_s=matrix_s, mos=mos)
     574         350 :       nspins = dft_control%nspins
     575             : 
     576             :       ! Initialize vectors:
     577             :       ! psi0 : The ground-state MO-coefficients
     578             :       ! psi1 : The "perturbed" linear response orbitals
     579        2474 :       ALLOCATE (psi0(nspins), psi1(nspins))
     580         712 :       DO ispin = 1, nspins
     581         362 :          CALL get_mo_set(mos(ispin), mo_coeff=mo_coeff, homo=nocc)
     582         362 :          NULLIFY (fm_struct)
     583             :          CALL cp_fm_struct_create(fm_struct, ncol_global=nocc, &
     584         362 :                                   template_fmstruct=mo_coeff%matrix_struct)
     585         362 :          CALL cp_fm_create(psi0(ispin), fm_struct)
     586         362 :          CALL cp_fm_to_fm(mo_coeff, psi0(ispin), nocc)
     587         362 :          CALL cp_fm_create(psi1(ispin), fm_struct)
     588         362 :          CALL cp_fm_set_all(psi1(ispin), 0.0_dp)
     589        1074 :          CALL cp_fm_struct_release(fm_struct)
     590             :       END DO
     591             : 
     592             :       should_stop = .FALSE.
     593             :       ! The response solver
     594         350 :       CALL linres_solver(p_env, qs_env, psi1, cpmos, psi0, iounit, should_stop)
     595             : 
     596             :       ! Building the response density matrix
     597         712 :       DO ispin = 1, nspins
     598         712 :          CALL dbcsr_copy(p_env%p1(ispin)%matrix, matrix_s(1)%matrix)
     599             :       END DO
     600         350 :       CALL build_dm_response(psi0, psi1, p_env%p1)
     601         712 :       DO ispin = 1, nspins
     602         712 :          CALL dbcsr_scale(p_env%p1(ispin)%matrix, 0.5_dp)
     603             :       END DO
     604             : 
     605         350 :       IF (dft_control%do_admm) THEN
     606          92 :          CALL get_qs_env(qs_env, admm_env=admm_env)
     607          92 :          CPASSERT(ASSOCIATED(admm_env%work_orb_orb))
     608          92 :          CPASSERT(ASSOCIATED(admm_env%work_aux_orb))
     609          92 :          CPASSERT(ASSOCIATED(admm_env%work_aux_aux))
     610          92 :          nao = admm_env%nao_orb
     611          92 :          nao_aux = admm_env%nao_aux_fit
     612         188 :          DO ispin = 1, nspins
     613          96 :             CALL copy_dbcsr_to_fm(p_env%p1(ispin)%matrix, admm_env%work_orb_orb)
     614             :             CALL parallel_gemm('N', 'N', nao_aux, nao, nao, &
     615             :                                1.0_dp, admm_env%A, admm_env%work_orb_orb, 0.0_dp, &
     616          96 :                                admm_env%work_aux_orb)
     617             :             CALL parallel_gemm('N', 'T', nao_aux, nao_aux, nao, &
     618             :                                1.0_dp, admm_env%work_aux_orb, admm_env%A, 0.0_dp, &
     619          96 :                                admm_env%work_aux_aux)
     620             :             CALL copy_fm_to_dbcsr(admm_env%work_aux_aux, p_env%p1_admm(ispin)%matrix, &
     621         188 :                                   keep_sparsity=.TRUE.)
     622             :          END DO
     623             :       END IF
     624             : 
     625             :       ! Calculate Wz = 0.5*(psi1*eps*psi0^T + psi0*eps*psi1^T)
     626         712 :       DO ispin = 1, nspins
     627             :          CALL calculate_wz_matrix(mos(ispin), psi1(ispin), matrix_ks(ispin)%matrix, &
     628         712 :                                   p_env%w1(ispin)%matrix)
     629             :       END DO
     630         712 :       DO ispin = 1, nspins
     631         712 :          CALL cp_fm_release(cpmos(ispin))
     632             :       END DO
     633         350 :       CALL cp_fm_release(psi1)
     634         350 :       CALL cp_fm_release(psi0)
     635             : 
     636         350 :       CALL timestop(handle)
     637             : 
     638         700 :    END SUBROUTINE response_equation_new
     639             : 
     640             : ! **************************************************************************************************
     641             : !> \brief Initializes vectors for MO-coefficient based linear response solver
     642             : !>        and calculates response density, and energy-weighted response density matrix
     643             : !>
     644             : !> \param qs_env ...
     645             : !> \param p_env ...
     646             : !> \param cpmos RHS of equation as Ax + b = 0 (sign of b)
     647             : !> \param iounit ...
     648             : !> \param lr_section ...
     649             : ! **************************************************************************************************
     650         566 :    SUBROUTINE response_equation(qs_env, p_env, cpmos, iounit, lr_section)
     651             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     652             :       TYPE(qs_p_env_type)                                :: p_env
     653             :       TYPE(cp_fm_type), DIMENSION(:), POINTER            :: cpmos
     654             :       INTEGER, INTENT(IN)                                :: iounit
     655             :       TYPE(section_vals_type), OPTIONAL, POINTER         :: lr_section
     656             : 
     657             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'response_equation'
     658             : 
     659             :       INTEGER                                            :: handle, ispin, nao, nao_aux, nocc, nspins
     660             :       LOGICAL                                            :: should_stop
     661             :       TYPE(admm_type), POINTER                           :: admm_env
     662             :       TYPE(cp_fm_struct_type), POINTER                   :: fm_struct
     663         566 :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: psi0, psi1
     664             :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
     665         566 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_ks, matrix_s, matrix_s_aux
     666             :       TYPE(dft_control_type), POINTER                    :: dft_control
     667             :       TYPE(linres_control_type), POINTER                 :: linres_control
     668         566 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
     669             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
     670         566 :          POINTER                                         :: sab_orb
     671             : 
     672         566 :       CALL timeset(routineN, handle)
     673             : 
     674             :       ! initialized linres_control
     675             :       NULLIFY (linres_control)
     676         566 :       ALLOCATE (linres_control)
     677         566 :       linres_control%do_kernel = .TRUE.
     678             :       linres_control%lr_triplet = .FALSE.
     679         566 :       IF (PRESENT(lr_section)) THEN
     680         566 :          CALL section_vals_val_get(lr_section, "RESTART", l_val=linres_control%linres_restart)
     681         566 :          CALL section_vals_val_get(lr_section, "MAX_ITER", i_val=linres_control%max_iter)
     682         566 :          CALL section_vals_val_get(lr_section, "EPS", r_val=linres_control%eps)
     683         566 :          CALL section_vals_val_get(lr_section, "EPS_FILTER", r_val=linres_control%eps_filter)
     684         566 :          CALL section_vals_val_get(lr_section, "RESTART_EVERY", i_val=linres_control%restart_every)
     685         566 :          CALL section_vals_val_get(lr_section, "PRECONDITIONER", i_val=linres_control%preconditioner_type)
     686         566 :          CALL section_vals_val_get(lr_section, "ENERGY_GAP", r_val=linres_control%energy_gap)
     687             :       ELSE
     688             :          linres_control%linres_restart = .FALSE.
     689           0 :          linres_control%max_iter = 100
     690           0 :          linres_control%eps = 1.0e-10_dp
     691           0 :          linres_control%eps_filter = 1.0e-15_dp
     692           0 :          linres_control%restart_every = 50
     693           0 :          linres_control%preconditioner_type = ot_precond_full_single_inverse
     694           0 :          linres_control%energy_gap = 0.02_dp
     695             :       END IF
     696             : 
     697             :       ! initialized p_env
     698             :       CALL p_env_create(p_env, qs_env, orthogonal_orbitals=.TRUE., &
     699         566 :                         linres_control=linres_control)
     700         566 :       CALL set_qs_env(qs_env, linres_control=linres_control)
     701         566 :       CALL p_env_psi0_changed(p_env, qs_env)
     702         566 :       p_env%new_preconditioner = .TRUE.
     703             : 
     704         566 :       CALL get_qs_env(qs_env, dft_control=dft_control, mos=mos)
     705             :       !
     706         566 :       nspins = dft_control%nspins
     707             : 
     708             :       ! Initialize vectors:
     709             :       ! psi0 : The ground-state MO-coefficients
     710             :       ! psi1 : The "perturbed" linear response orbitals
     711        4154 :       ALLOCATE (psi0(nspins), psi1(nspins))
     712        1228 :       DO ispin = 1, nspins
     713         662 :          CALL get_mo_set(mos(ispin), mo_coeff=mo_coeff, homo=nocc)
     714         662 :          NULLIFY (fm_struct)
     715             :          CALL cp_fm_struct_create(fm_struct, ncol_global=nocc, &
     716         662 :                                   template_fmstruct=mo_coeff%matrix_struct)
     717         662 :          CALL cp_fm_create(psi0(ispin), fm_struct)
     718         662 :          CALL cp_fm_to_fm(mo_coeff, psi0(ispin), nocc)
     719         662 :          CALL cp_fm_create(psi1(ispin), fm_struct)
     720         662 :          CALL cp_fm_set_all(psi1(ispin), 0.0_dp)
     721        1890 :          CALL cp_fm_struct_release(fm_struct)
     722             :       END DO
     723             : 
     724         566 :       should_stop = .FALSE.
     725             :       ! The response solver
     726         566 :       CALL get_qs_env(qs_env, matrix_s=matrix_s, sab_orb=sab_orb)
     727         566 :       CALL dbcsr_allocate_matrix_set(p_env%p1, nspins)
     728         566 :       CALL dbcsr_allocate_matrix_set(p_env%w1, nspins)
     729        1228 :       DO ispin = 1, nspins
     730         662 :          ALLOCATE (p_env%p1(ispin)%matrix, p_env%w1(ispin)%matrix)
     731         662 :          CALL dbcsr_create(matrix=p_env%p1(ispin)%matrix, template=matrix_s(1)%matrix)
     732         662 :          CALL dbcsr_create(matrix=p_env%w1(ispin)%matrix, template=matrix_s(1)%matrix)
     733         662 :          CALL cp_dbcsr_alloc_block_from_nbl(p_env%p1(ispin)%matrix, sab_orb)
     734        1228 :          CALL cp_dbcsr_alloc_block_from_nbl(p_env%w1(ispin)%matrix, sab_orb)
     735             :       END DO
     736         566 :       IF (dft_control%do_admm) THEN
     737         128 :          CALL get_admm_env(qs_env%admm_env, matrix_s_aux_fit=matrix_s_aux)
     738         128 :          CALL dbcsr_allocate_matrix_set(p_env%p1_admm, nspins)
     739         276 :          DO ispin = 1, nspins
     740         148 :             ALLOCATE (p_env%p1_admm(ispin)%matrix)
     741             :             CALL dbcsr_create(p_env%p1_admm(ispin)%matrix, &
     742         148 :                               template=matrix_s_aux(1)%matrix)
     743         148 :             CALL dbcsr_copy(p_env%p1_admm(ispin)%matrix, matrix_s_aux(1)%matrix)
     744         276 :             CALL dbcsr_set(p_env%p1_admm(ispin)%matrix, 0.0_dp)
     745             :          END DO
     746             :       END IF
     747             : 
     748         566 :       CALL linres_solver(p_env, qs_env, psi1, cpmos, psi0, iounit, should_stop)
     749             : 
     750             :       ! Building the response density matrix
     751        1228 :       DO ispin = 1, nspins
     752        1228 :          CALL dbcsr_copy(p_env%p1(ispin)%matrix, matrix_s(1)%matrix)
     753             :       END DO
     754         566 :       CALL build_dm_response(psi0, psi1, p_env%p1)
     755        1228 :       DO ispin = 1, nspins
     756        1228 :          CALL dbcsr_scale(p_env%p1(ispin)%matrix, 0.5_dp)
     757             :       END DO
     758         566 :       IF (dft_control%do_admm) THEN
     759         128 :          CALL get_qs_env(qs_env, admm_env=admm_env)
     760         128 :          CPASSERT(ASSOCIATED(admm_env%work_orb_orb))
     761         128 :          CPASSERT(ASSOCIATED(admm_env%work_aux_orb))
     762         128 :          CPASSERT(ASSOCIATED(admm_env%work_aux_aux))
     763         128 :          nao = admm_env%nao_orb
     764         128 :          nao_aux = admm_env%nao_aux_fit
     765         276 :          DO ispin = 1, nspins
     766         148 :             CALL copy_dbcsr_to_fm(p_env%p1(ispin)%matrix, admm_env%work_orb_orb)
     767             :             CALL parallel_gemm('N', 'N', nao_aux, nao, nao, &
     768             :                                1.0_dp, admm_env%A, admm_env%work_orb_orb, 0.0_dp, &
     769         148 :                                admm_env%work_aux_orb)
     770             :             CALL parallel_gemm('N', 'T', nao_aux, nao_aux, nao, &
     771             :                                1.0_dp, admm_env%work_aux_orb, admm_env%A, 0.0_dp, &
     772         148 :                                admm_env%work_aux_aux)
     773             :             CALL copy_fm_to_dbcsr(admm_env%work_aux_aux, p_env%p1_admm(ispin)%matrix, &
     774         276 :                                   keep_sparsity=.TRUE.)
     775             :          END DO
     776             :       END IF
     777             : 
     778             :       ! Calculate Wz = 0.5*(psi1*eps*psi0^T + psi0*eps*psi1^T)
     779         566 :       CALL get_qs_env(qs_env, matrix_ks=matrix_ks)
     780        1228 :       DO ispin = 1, nspins
     781             :          CALL calculate_wz_matrix(mos(ispin), psi1(ispin), matrix_ks(ispin)%matrix, &
     782        1228 :                                   p_env%w1(ispin)%matrix)
     783             :       END DO
     784         566 :       CALL cp_fm_release(psi0)
     785         566 :       CALL cp_fm_release(psi1)
     786             : 
     787         566 :       CALL timestop(handle)
     788             : 
     789        1698 :    END SUBROUTINE response_equation
     790             : 
     791             : ! **************************************************************************************************
     792             : !> \brief ...
     793             : !> \param qs_env ...
     794             : !> \param vh_rspace ...
     795             : !> \param vxc_rspace ...
     796             : !> \param vtau_rspace ...
     797             : !> \param vadmm_rspace ...
     798             : !> \param matrix_hz Right-hand-side of linear response equation
     799             : !> \param matrix_pz Linear response density matrix
     800             : !> \param matrix_pz_admm Linear response density matrix in ADMM basis
     801             : !> \param matrix_wz Energy-weighted linear response density
     802             : !> \param zehartree Hartree volume response contribution to stress tensor
     803             : !> \param zexc XC volume response contribution to stress tensor
     804             : !> \param zexc_aux_fit ADMM XC volume response contribution to stress tensor
     805             : !> \param rhopz_r Response density on real space grid
     806             : !> \param p_env ...
     807             : !> \param ex_env ...
     808             : !> \param debug ...
     809             : ! **************************************************************************************************
     810         982 :    SUBROUTINE response_force(qs_env, vh_rspace, vxc_rspace, vtau_rspace, vadmm_rspace, &
     811             :                              matrix_hz, matrix_pz, matrix_pz_admm, matrix_wz, &
     812         982 :                              zehartree, zexc, zexc_aux_fit, rhopz_r, p_env, ex_env, debug)
     813             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     814             :       TYPE(pw_r3d_rs_type), INTENT(IN)                   :: vh_rspace
     815             :       TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER        :: vxc_rspace, vtau_rspace, vadmm_rspace
     816             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_hz, matrix_pz, matrix_pz_admm, &
     817             :                                                             matrix_wz
     818             :       REAL(KIND=dp), OPTIONAL                            :: zehartree, zexc, zexc_aux_fit
     819             :       TYPE(pw_r3d_rs_type), DIMENSION(:), &
     820             :          INTENT(INOUT), OPTIONAL                         :: rhopz_r
     821             :       TYPE(qs_p_env_type), OPTIONAL                      :: p_env
     822             :       TYPE(excited_energy_type), OPTIONAL, POINTER       :: ex_env
     823             :       LOGICAL, INTENT(IN), OPTIONAL                      :: debug
     824             : 
     825             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'response_force'
     826             : 
     827             :       CHARACTER(LEN=default_string_length)               :: basis_type
     828             :       INTEGER                                            :: handle, iounit, ispin, mspin, myfun, &
     829             :                                                             n_rep_hf, nao, nao_aux, natom, nder, &
     830             :                                                             nimages, nocc, nspins
     831         982 :       INTEGER, DIMENSION(:, :, :), POINTER               :: cell_to_index
     832             :       LOGICAL :: debug_forces, debug_stress, distribute_fock_matrix, do_ex, do_hfx, gapw, gapw_xc, &
     833             :          hfx_treat_lsd_in_core, resp_only, s_mstruct_changed, use_virial
     834             :       REAL(KIND=dp)                                      :: eh1, ehartree, ekin_mol, eps_filter, &
     835             :                                                             eps_ppnl, exc, exc_aux_fit, fconv, &
     836             :                                                             focc, hartree_gs, hartree_t
     837         982 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :)        :: ftot1, ftot2, ftot3
     838             :       REAL(KIND=dp), DIMENSION(2)                        :: total_rho_gs, total_rho_t
     839             :       REAL(KIND=dp), DIMENSION(3)                        :: fodeb
     840             :       REAL(KIND=dp), DIMENSION(3, 3)                     :: h_stress, pv_loc, stdeb, sttot, sttot2
     841             :       TYPE(admm_type), POINTER                           :: admm_env
     842         982 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
     843             :       TYPE(cell_type), POINTER                           :: cell
     844             :       TYPE(cp_logger_type), POINTER                      :: logger
     845             :       TYPE(dbcsr_distribution_type), POINTER             :: dbcsr_dist
     846         982 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_ht, matrix_pd, matrix_pza, &
     847         982 :                                                             matrix_s, mpa, scrm
     848         982 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: matrix_h, matrix_p, mhd, mhx, mhy, mhz, &
     849         982 :                                                             mpd, mpz
     850             :       TYPE(dbcsr_type), POINTER                          :: dbwork
     851             :       TYPE(dft_control_type), POINTER                    :: dft_control
     852             :       TYPE(hartree_local_type), POINTER                  :: hartree_local_gs, hartree_local_t
     853         982 :       TYPE(hfx_type), DIMENSION(:, :), POINTER           :: x_data
     854             :       TYPE(kg_environment_type), POINTER                 :: kg_env
     855             :       TYPE(local_rho_type), POINTER                      :: local_rho_set_f, local_rho_set_gs, &
     856             :                                                             local_rho_set_t, local_rho_set_vxc, &
     857             :                                                             local_rhoz_set_admm
     858         982 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
     859             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     860             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
     861         982 :          POINTER                                         :: sab_aux_fit, sab_orb, sac_ae, sac_ppl, &
     862         982 :                                                             sap_ppnl
     863             :       TYPE(oce_matrix_type), POINTER                     :: oce
     864         982 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     865             :       TYPE(pw_c1d_gs_type) :: rho_tot_gspace, rho_tot_gspace_gs, rho_tot_gspace_t, &
     866             :          rhoz_tot_gspace, v_hartree_gspace_gs, v_hartree_gspace_t, zv_hartree_gspace
     867         982 :       TYPE(pw_c1d_gs_type), DIMENSION(:), POINTER        :: rho_g_aux, rho_g_gs, rho_g_t, rhoz_g, &
     868         982 :                                                             rhoz_g_aux, rhoz_g_xc
     869             :       TYPE(pw_c1d_gs_type), POINTER                      :: rho_core
     870             :       TYPE(pw_env_type), POINTER                         :: pw_env
     871             :       TYPE(pw_poisson_type), POINTER                     :: poisson_env
     872             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
     873             :       TYPE(pw_r3d_rs_type)                               :: v_hartree_rspace_gs, v_hartree_rspace_t, &
     874             :                                                             vhxc_rspace, zv_hartree_rspace
     875         982 :       TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER        :: rho_r_aux, rho_r_gs, rho_r_t, rhoz_r, &
     876         982 :                                                             rhoz_r_aux, rhoz_r_xc, tau_r_aux, &
     877         982 :                                                             tauz_r, tauz_r_xc, v_xc, v_xc_tau
     878         982 :       TYPE(qs_force_type), DIMENSION(:), POINTER         :: force
     879         982 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     880             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
     881             :       TYPE(qs_rho_type), POINTER                         :: rho, rho_aux_fit, rho_xc
     882             :       TYPE(section_vals_type), POINTER                   :: hfx_section, xc_fun_section, xc_section
     883             :       TYPE(task_list_type), POINTER                      :: task_list, task_list_aux_fit
     884             :       TYPE(virial_type), POINTER                         :: virial
     885             : 
     886         982 :       CALL timeset(routineN, handle)
     887             : 
     888         982 :       IF (PRESENT(debug)) THEN
     889         982 :          debug_forces = debug
     890         982 :          debug_stress = debug
     891             :       ELSE
     892             :          debug_forces = .FALSE.
     893             :          debug_stress = .FALSE.
     894             :       END IF
     895             : 
     896         982 :       logger => cp_get_default_logger()
     897         982 :       logger => cp_get_default_logger()
     898         982 :       IF (logger%para_env%is_source()) THEN
     899         491 :          iounit = cp_logger_get_default_unit_nr(logger, local=.TRUE.)
     900             :       ELSE
     901             :          iounit = -1
     902             :       END IF
     903             : 
     904         982 :       do_ex = .FALSE.
     905         982 :       IF (PRESENT(ex_env)) do_ex = .TRUE.
     906             :       IF (do_ex) THEN
     907         550 :          CPASSERT(PRESENT(p_env))
     908             :       END IF
     909             : 
     910         982 :       NULLIFY (ks_env, sab_orb, sac_ae, sac_ppl, sap_ppnl, virial)
     911             :       CALL get_qs_env(qs_env=qs_env, &
     912             :                       cell=cell, &
     913             :                       force=force, &
     914             :                       ks_env=ks_env, &
     915             :                       dft_control=dft_control, &
     916             :                       para_env=para_env, &
     917             :                       sab_orb=sab_orb, &
     918             :                       sac_ae=sac_ae, &
     919             :                       sac_ppl=sac_ppl, &
     920             :                       sap_ppnl=sap_ppnl, &
     921         982 :                       virial=virial)
     922         982 :       nspins = dft_control%nspins
     923         982 :       gapw = dft_control%qs_control%gapw
     924         982 :       gapw_xc = dft_control%qs_control%gapw_xc
     925             : 
     926         982 :       IF (debug_forces) THEN
     927          56 :          CALL get_qs_env(qs_env, natom=natom, atomic_kind_set=atomic_kind_set)
     928         168 :          ALLOCATE (ftot1(3, natom))
     929          56 :          CALL total_qs_force(ftot1, force, atomic_kind_set)
     930             :       END IF
     931             : 
     932             :       ! check for virial
     933         982 :       use_virial = virial%pv_availability .AND. (.NOT. virial%pv_numer)
     934             : 
     935         982 :       IF (use_virial .AND. do_ex) THEN
     936           0 :          CALL cp_abort(__LOCATION__, "Stress Tensor not available for TDDFT calculations.")
     937             :       END IF
     938             : 
     939         982 :       fconv = 1.0E-9_dp*pascal/cell%deth
     940         982 :       IF (debug_stress .AND. use_virial) THEN
     941           0 :          sttot = virial%pv_virial
     942             :       END IF
     943             : 
     944             :       !     *** If LSD, then combine alpha density and beta density to
     945             :       !     *** total density: alpha <- alpha + beta   and
     946         982 :       NULLIFY (mpa)
     947         982 :       NULLIFY (matrix_ht)
     948         982 :       IF (do_ex) THEN
     949         550 :          CALL dbcsr_allocate_matrix_set(mpa, nspins)
     950        1196 :          DO ispin = 1, nspins
     951         646 :             ALLOCATE (mpa(ispin)%matrix)
     952         646 :             CALL dbcsr_create(mpa(ispin)%matrix, template=p_env%p1(ispin)%matrix)
     953         646 :             CALL dbcsr_copy(mpa(ispin)%matrix, p_env%p1(ispin)%matrix)
     954         646 :             CALL dbcsr_add(mpa(ispin)%matrix, ex_env%matrix_pe(ispin)%matrix, 1.0_dp, 1.0_dp)
     955        1196 :             CALL dbcsr_set(matrix_hz(ispin)%matrix, 0.0_dp)
     956             :          END DO
     957             : 
     958         550 :          CALL dbcsr_allocate_matrix_set(matrix_ht, nspins)
     959        1196 :          DO ispin = 1, nspins
     960         646 :             ALLOCATE (matrix_ht(ispin)%matrix)
     961         646 :             CALL dbcsr_create(matrix_ht(ispin)%matrix, template=matrix_hz(ispin)%matrix)
     962         646 :             CALL dbcsr_copy(matrix_ht(ispin)%matrix, matrix_hz(ispin)%matrix)
     963        1196 :             CALL dbcsr_set(matrix_ht(ispin)%matrix, 0.0_dp)
     964             :          END DO
     965             :       ELSE
     966         432 :          mpa => matrix_pz
     967             :       END IF
     968             :       !
     969             :       ! START OF Tr(P+Z)Hcore
     970             :       !
     971         982 :       IF (nspins == 2) THEN
     972          96 :          CALL dbcsr_add(mpa(1)%matrix, mpa(2)%matrix, 1.0_dp, 1.0_dp)
     973             :       END IF
     974         982 :       nimages = 1
     975             : 
     976             :       ! Kinetic energy matrix
     977         982 :       NULLIFY (scrm)
     978        1150 :       IF (debug_forces) fodeb(1:3) = force(1)%kinetic(1:3, 1)
     979         982 :       IF (debug_stress .AND. use_virial) stdeb = virial%pv_ekinetic
     980             :       CALL build_kinetic_matrix(ks_env, matrix_t=scrm, &
     981             :                                 matrix_name="KINETIC ENERGY MATRIX", &
     982             :                                 basis_type="ORB", &
     983             :                                 sab_nl=sab_orb, calculate_forces=.TRUE., &
     984         982 :                                 matrix_p=mpa(1)%matrix)
     985         982 :       IF (debug_forces) THEN
     986         224 :          fodeb(1:3) = force(1)%kinetic(1:3, 1) - fodeb(1:3)
     987          56 :          CALL para_env%sum(fodeb)
     988          56 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*dT      ", fodeb
     989             :       END IF
     990         982 :       IF (debug_stress .AND. use_virial) THEN
     991           0 :          stdeb = fconv*(virial%pv_ekinetic - stdeb)
     992           0 :          CALL para_env%sum(stdeb)
     993           0 :          IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
     994           0 :             'STRESS| Kinetic energy', one_third_sum_diag(stdeb), det_3x3(stdeb)
     995             :       END IF
     996             : 
     997         982 :       IF (nspins == 2) THEN
     998          96 :          CALL dbcsr_add(mpa(1)%matrix, mpa(2)%matrix, 1.0_dp, -1.0_dp)
     999             :       END IF
    1000         982 :       CALL dbcsr_deallocate_matrix_set(scrm)
    1001             : 
    1002             :       ! Initialize a matrix scrm, later used for scratch purposes
    1003         982 :       CALL get_qs_env(qs_env=qs_env, matrix_s=matrix_s)
    1004         982 :       CALL dbcsr_allocate_matrix_set(scrm, nspins)
    1005        2060 :       DO ispin = 1, nspins
    1006        1078 :          ALLOCATE (scrm(ispin)%matrix)
    1007        1078 :          CALL dbcsr_create(scrm(ispin)%matrix, template=matrix_s(1)%matrix)
    1008        1078 :          CALL dbcsr_copy(scrm(ispin)%matrix, matrix_s(1)%matrix)
    1009        2060 :          CALL dbcsr_set(scrm(ispin)%matrix, 0.0_dp)
    1010             :       END DO
    1011             : 
    1012             :       CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set, particle_set=particle_set, &
    1013         982 :                       atomic_kind_set=atomic_kind_set)
    1014             : 
    1015         982 :       NULLIFY (cell_to_index)
    1016        8048 :       ALLOCATE (matrix_p(nspins, 1), matrix_h(nspins, 1))
    1017        2060 :       DO ispin = 1, nspins
    1018        1078 :          matrix_p(ispin, 1)%matrix => mpa(ispin)%matrix
    1019        2060 :          matrix_h(ispin, 1)%matrix => scrm(ispin)%matrix
    1020             :       END DO
    1021         982 :       matrix_h(1, 1)%matrix => scrm(1)%matrix
    1022             : 
    1023         982 :       IF (ASSOCIATED(sac_ae)) THEN
    1024           4 :          nder = 1
    1025          16 :          IF (debug_forces) fodeb(1:3) = force(1)%all_potential(1:3, 1)
    1026           4 :          IF (debug_stress .AND. use_virial) stdeb = virial%pv_ppl
    1027             :          CALL build_core_ae(matrix_h, matrix_p, force, virial, .TRUE., use_virial, nder, &
    1028             :                             qs_kind_set, atomic_kind_set, particle_set, sab_orb, sac_ae, &
    1029           4 :                             nimages, cell_to_index)
    1030           4 :          IF (debug_forces) THEN
    1031          16 :             fodeb(1:3) = force(1)%all_potential(1:3, 1) - fodeb(1:3)
    1032           4 :             CALL para_env%sum(fodeb)
    1033           4 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*dHae    ", fodeb
    1034             :          END IF
    1035           4 :          IF (debug_stress .AND. use_virial) THEN
    1036           0 :             stdeb = fconv*(virial%pv_ppl - stdeb)
    1037           0 :             CALL para_env%sum(stdeb)
    1038           0 :             IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1039           0 :                'STRESS| Pz*dHae    ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1040             :          END IF
    1041             :       END IF
    1042             : 
    1043         982 :       IF (ASSOCIATED(sac_ppl)) THEN
    1044         978 :          nder = 1
    1045        1134 :          IF (debug_forces) fodeb(1:3) = force(1)%gth_ppl(1:3, 1)
    1046         978 :          IF (debug_stress .AND. use_virial) stdeb = virial%pv_ppl
    1047             :          CALL build_core_ppl(matrix_h, matrix_p, force, &
    1048             :                              virial, .TRUE., use_virial, nder, &
    1049             :                              qs_kind_set, atomic_kind_set, particle_set, &
    1050         978 :                              sab_orb, sac_ppl, nimages, cell_to_index, "ORB")
    1051         978 :          IF (debug_forces) THEN
    1052         208 :             fodeb(1:3) = force(1)%gth_ppl(1:3, 1) - fodeb(1:3)
    1053          52 :             CALL para_env%sum(fodeb)
    1054          52 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*dHppl   ", fodeb
    1055             :          END IF
    1056         978 :          IF (debug_stress .AND. use_virial) THEN
    1057           0 :             stdeb = fconv*(virial%pv_ppl - stdeb)
    1058           0 :             CALL para_env%sum(stdeb)
    1059           0 :             IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1060           0 :                'STRESS| Pz*dHppl   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1061             :          END IF
    1062             :       END IF
    1063         982 :       eps_ppnl = dft_control%qs_control%eps_ppnl
    1064         982 :       IF (ASSOCIATED(sap_ppnl)) THEN
    1065         978 :          nder = 1
    1066        1134 :          IF (debug_forces) fodeb(1:3) = force(1)%gth_ppnl(1:3, 1)
    1067         978 :          IF (debug_stress .AND. use_virial) stdeb = virial%pv_ppnl
    1068             :          CALL build_core_ppnl(matrix_h, matrix_p, force, &
    1069             :                               virial, .TRUE., use_virial, nder, &
    1070             :                               qs_kind_set, atomic_kind_set, particle_set, &
    1071         978 :                               sab_orb, sap_ppnl, eps_ppnl, nimages, cell_to_index, "ORB")
    1072         978 :          IF (debug_forces) THEN
    1073         208 :             fodeb(1:3) = force(1)%gth_ppnl(1:3, 1) - fodeb(1:3)
    1074          52 :             CALL para_env%sum(fodeb)
    1075          52 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*dHppnl  ", fodeb
    1076             :          END IF
    1077         978 :          IF (debug_stress .AND. use_virial) THEN
    1078           0 :             stdeb = fconv*(virial%pv_ppnl - stdeb)
    1079           0 :             CALL para_env%sum(stdeb)
    1080           0 :             IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1081           0 :                'STRESS| Pz*dHppnl   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1082             :          END IF
    1083             : 
    1084             :       END IF
    1085             :       ! Kim-Gordon subsystem DFT
    1086             :       ! Atomic potential for nonadditive kinetic energy contribution
    1087         982 :       IF (dft_control%qs_control%do_kg) THEN
    1088          24 :          IF (qs_env%kg_env%tnadd_method == kg_tnadd_atomic) THEN
    1089          12 :             CALL get_qs_env(qs_env=qs_env, kg_env=kg_env, dbcsr_dist=dbcsr_dist)
    1090             : 
    1091          12 :             IF (use_virial) THEN
    1092         130 :                pv_loc = virial%pv_virial
    1093             :             END IF
    1094             : 
    1095          12 :             IF (debug_forces) fodeb(1:3) = force(1)%kinetic(1:3, 1)
    1096          12 :             IF (debug_stress .AND. use_virial) stdeb = virial%pv_virial
    1097             :             CALL build_tnadd_mat(kg_env=kg_env, matrix_p=matrix_p, force=force, virial=virial, &
    1098             :                                  calculate_forces=.TRUE., use_virial=use_virial, &
    1099             :                                  qs_kind_set=qs_kind_set, atomic_kind_set=atomic_kind_set, &
    1100          12 :                                  particle_set=particle_set, sab_orb=sab_orb, dbcsr_dist=dbcsr_dist)
    1101          12 :             IF (debug_forces) THEN
    1102           0 :                fodeb(1:3) = force(1)%kinetic(1:3, 1) - fodeb(1:3)
    1103           0 :                CALL para_env%sum(fodeb)
    1104           0 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*dTnadd  ", fodeb
    1105             :             END IF
    1106          12 :             IF (debug_stress .AND. use_virial) THEN
    1107           0 :                stdeb = fconv*(virial%pv_virial - stdeb)
    1108           0 :                CALL para_env%sum(stdeb)
    1109           0 :                IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1110           0 :                   'STRESS| Pz*dTnadd   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1111             :             END IF
    1112             : 
    1113             :             ! Stress-tensor update components
    1114          12 :             IF (use_virial) THEN
    1115         130 :                virial%pv_ekinetic = virial%pv_ekinetic + (virial%pv_virial - pv_loc)
    1116             :             END IF
    1117             : 
    1118             :          END IF
    1119             :       END IF
    1120             : 
    1121         982 :       DEALLOCATE (matrix_h)
    1122         982 :       DEALLOCATE (matrix_p)
    1123         982 :       CALL dbcsr_deallocate_matrix_set(scrm)
    1124             : 
    1125             :       ! initialize src matrix
    1126             :       ! Necessary as build_kinetic_matrix will only allocate scrm(1)
    1127             :       ! and not scrm(2) in open-shell case
    1128         982 :       NULLIFY (scrm)
    1129         982 :       CALL dbcsr_allocate_matrix_set(scrm, nspins)
    1130        2060 :       DO ispin = 1, nspins
    1131        1078 :          ALLOCATE (scrm(ispin)%matrix)
    1132        1078 :          CALL dbcsr_create(scrm(ispin)%matrix, template=matrix_pz(1)%matrix)
    1133        1078 :          CALL dbcsr_copy(scrm(ispin)%matrix, matrix_pz(ispin)%matrix)
    1134        2060 :          CALL dbcsr_set(scrm(ispin)%matrix, 0.0_dp)
    1135             :       END DO
    1136             : 
    1137         982 :       IF (debug_forces) THEN
    1138         168 :          ALLOCATE (ftot2(3, natom))
    1139          56 :          CALL total_qs_force(ftot2, force, atomic_kind_set)
    1140         224 :          fodeb(1:3) = ftot2(1:3, 1) - ftot1(1:3, 1)
    1141          56 :          CALL para_env%sum(fodeb)
    1142          56 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*dHcore", fodeb
    1143             :       END IF
    1144         982 :       IF (debug_stress .AND. use_virial) THEN
    1145           0 :          stdeb = fconv*(virial%pv_virial - sttot)
    1146           0 :          CALL para_env%sum(stdeb)
    1147           0 :          IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1148           0 :             'STRESS| Stress Pz*dHcore   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1149             :          ! save current total viral, does not contain volume terms yet
    1150           0 :          sttot2 = virial%pv_virial
    1151             :       END IF
    1152             :       !
    1153             :       ! END OF Tr(P+Z)Hcore
    1154             :       !
    1155             :       !
    1156             :       ! Vhxc (KS potentials calculated externally)
    1157         982 :       CALL get_qs_env(qs_env, pw_env=pw_env)
    1158         982 :       CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, poisson_env=poisson_env)
    1159             :       !
    1160         982 :       IF (dft_control%do_admm) THEN
    1161         232 :          CALL get_qs_env(qs_env, admm_env=admm_env)
    1162         232 :          xc_section => admm_env%xc_section_primary
    1163             :       ELSE
    1164         750 :          xc_section => section_vals_get_subs_vals(qs_env%input, "DFT%XC")
    1165             :       END IF
    1166         982 :       xc_fun_section => section_vals_get_subs_vals(xc_section, "XC_FUNCTIONAL")
    1167         982 :       CALL section_vals_val_get(xc_fun_section, "_SECTION_PARAMETERS_", i_val=myfun)
    1168             :       !
    1169         982 :       IF (gapw .OR. gapw_xc) THEN
    1170          76 :          NULLIFY (oce, sab_orb)
    1171          76 :          CALL get_qs_env(qs_env=qs_env, oce=oce, sab_orb=sab_orb)
    1172             :          ! set up local_rho_set for GS density
    1173          76 :          NULLIFY (local_rho_set_gs)
    1174          76 :          CALL get_qs_env(qs_env=qs_env, rho=rho)
    1175          76 :          CALL qs_rho_get(rho, rho_ao_kp=matrix_p)
    1176          76 :          CALL local_rho_set_create(local_rho_set_gs)
    1177             :          CALL allocate_rho_atom_internals(local_rho_set_gs%rho_atom_set, atomic_kind_set, &
    1178          76 :                                           qs_kind_set, dft_control, para_env)
    1179          76 :          CALL init_rho0(local_rho_set_gs, qs_env, dft_control%qs_control%gapw_control)
    1180          76 :          CALL rho0_s_grid_create(pw_env, local_rho_set_gs%rho0_mpole)
    1181             :          CALL calculate_rho_atom_coeff(qs_env, matrix_p(:, 1), local_rho_set_gs%rho_atom_set, &
    1182          76 :                                        qs_kind_set, oce, sab_orb, para_env)
    1183          76 :          CALL prepare_gapw_den(qs_env, local_rho_set_gs, do_rho0=gapw)
    1184             :          ! set up local_rho_set for response density
    1185          76 :          NULLIFY (local_rho_set_t)
    1186          76 :          CALL local_rho_set_create(local_rho_set_t)
    1187             :          CALL allocate_rho_atom_internals(local_rho_set_t%rho_atom_set, atomic_kind_set, &
    1188          76 :                                           qs_kind_set, dft_control, para_env)
    1189             :          CALL init_rho0(local_rho_set_t, qs_env, dft_control%qs_control%gapw_control, &
    1190          76 :                         zcore=0.0_dp)
    1191          76 :          CALL rho0_s_grid_create(pw_env, local_rho_set_t%rho0_mpole)
    1192             :          CALL calculate_rho_atom_coeff(qs_env, mpa(:), local_rho_set_t%rho_atom_set, &
    1193          76 :                                        qs_kind_set, oce, sab_orb, para_env)
    1194          76 :          CALL prepare_gapw_den(qs_env, local_rho_set_t, do_rho0=gapw)
    1195             : 
    1196             :          ! compute soft GS potential
    1197         532 :          ALLOCATE (rho_r_gs(nspins), rho_g_gs(nspins))
    1198         152 :          DO ispin = 1, nspins
    1199          76 :             CALL auxbas_pw_pool%create_pw(rho_r_gs(ispin))
    1200         152 :             CALL auxbas_pw_pool%create_pw(rho_g_gs(ispin))
    1201             :          END DO
    1202          76 :          CALL auxbas_pw_pool%create_pw(rho_tot_gspace_gs)
    1203             :          ! compute soft GS density
    1204          76 :          total_rho_gs = 0.0_dp
    1205          76 :          CALL pw_zero(rho_tot_gspace_gs)
    1206         152 :          DO ispin = 1, nspins
    1207             :             CALL calculate_rho_elec(ks_env=ks_env, matrix_p=matrix_p(ispin, 1)%matrix, &
    1208             :                                     rho=rho_r_gs(ispin), &
    1209             :                                     rho_gspace=rho_g_gs(ispin), &
    1210             :                                     soft_valid=(gapw .OR. gapw_xc), &
    1211          76 :                                     total_rho=total_rho_gs(ispin))
    1212         152 :             CALL pw_axpy(rho_g_gs(ispin), rho_tot_gspace_gs)
    1213             :          END DO
    1214          76 :          IF (gapw) THEN
    1215          62 :             CALL get_qs_env(qs_env, natom=natom)
    1216             :             ! add rho0 contributions to GS density (only for Coulomb) only for gapw
    1217          62 :             CALL pw_axpy(local_rho_set_gs%rho0_mpole%rho0_s_gs, rho_tot_gspace_gs)
    1218          62 :             IF (dft_control%qs_control%gapw_control%nopaw_as_gpw) THEN
    1219           4 :                CALL get_qs_env(qs_env=qs_env, rho_core=rho_core)
    1220           4 :                CALL pw_axpy(rho_core, rho_tot_gspace_gs)
    1221             :             END IF
    1222             :             ! compute GS potential
    1223          62 :             CALL auxbas_pw_pool%create_pw(v_hartree_gspace_gs)
    1224          62 :             CALL auxbas_pw_pool%create_pw(v_hartree_rspace_gs)
    1225          62 :             NULLIFY (hartree_local_gs)
    1226          62 :             CALL hartree_local_create(hartree_local_gs)
    1227          62 :             CALL init_coulomb_local(hartree_local_gs, natom)
    1228          62 :             CALL pw_poisson_solve(poisson_env, rho_tot_gspace_gs, hartree_gs, v_hartree_gspace_gs)
    1229          62 :             CALL pw_transfer(v_hartree_gspace_gs, v_hartree_rspace_gs)
    1230          62 :             CALL pw_scale(v_hartree_rspace_gs, v_hartree_rspace_gs%pw_grid%dvol)
    1231             :          END IF
    1232             :       END IF
    1233             : 
    1234         982 :       IF (gapw) THEN
    1235             :          ! Hartree grid PAW term
    1236          62 :          CPASSERT(do_ex)
    1237          62 :          CPASSERT(.NOT. use_virial)
    1238         212 :          IF (debug_forces) fodeb(1:3) = force(1)%g0s_Vh_elec(1:3, 1)
    1239             :          CALL Vh_1c_gg_integrals(qs_env, hartree_gs, hartree_local_gs%ecoul_1c, local_rho_set_t, para_env, tddft=.TRUE., &
    1240          62 :                                  local_rho_set_2nd=local_rho_set_gs, core_2nd=.FALSE.) ! n^core for GS potential
    1241             :          ! 1st to define integral space, 2nd for potential, integral contributions stored on local_rho_set_gs
    1242             :          CALL integrate_vhg0_rspace(qs_env, v_hartree_rspace_gs, para_env, calculate_forces=.TRUE., &
    1243          62 :                                     local_rho_set=local_rho_set_t, local_rho_set_2nd=local_rho_set_gs)
    1244          62 :          IF (debug_forces) THEN
    1245         200 :             fodeb(1:3) = force(1)%g0s_Vh_elec(1:3, 1) - fodeb(1:3)
    1246          50 :             CALL para_env%sum(fodeb)
    1247          50 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: (T+Dz)*dVh[D^GS]PAWg0", fodeb
    1248             :          END IF
    1249             :       END IF
    1250         982 :       IF (gapw .OR. gapw_xc) THEN
    1251          76 :          IF (myfun /= xc_none) THEN
    1252             :             ! add 1c hard and soft XC contributions
    1253          74 :             NULLIFY (local_rho_set_vxc)
    1254          74 :             CALL local_rho_set_create(local_rho_set_vxc)
    1255             :             CALL allocate_rho_atom_internals(local_rho_set_vxc%rho_atom_set, atomic_kind_set, &
    1256          74 :                                              qs_kind_set, dft_control, para_env)
    1257             :             CALL calculate_rho_atom_coeff(qs_env, matrix_p(:, 1), local_rho_set_vxc%rho_atom_set, &
    1258          74 :                                           qs_kind_set, oce, sab_orb, para_env)
    1259          74 :             CALL prepare_gapw_den(qs_env, local_rho_set_vxc, do_rho0=.FALSE.)
    1260             :             ! compute hard and soft atomic contributions
    1261             :             CALL calculate_vxc_atom(qs_env, .FALSE., exc1=hartree_gs, xc_section_external=xc_section, &
    1262          74 :                                     rho_atom_set_external=local_rho_set_vxc%rho_atom_set)
    1263             :          END IF ! myfun
    1264             :       END IF ! gapw
    1265             : 
    1266         982 :       CALL auxbas_pw_pool%create_pw(vhxc_rspace)
    1267             :       !
    1268             :       ! Stress-tensor: integration contribution direct term
    1269             :       ! int v_Hxc[n^in]*n^z
    1270         982 :       IF (use_virial) THEN
    1271        2184 :          pv_loc = virial%pv_virial
    1272             :       END IF
    1273             : 
    1274        1150 :       IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    1275         982 :       IF (debug_stress .AND. use_virial) stdeb = virial%pv_virial
    1276         982 :       IF (gapw .OR. gapw_xc) THEN
    1277             :          ! vtot = v_xc + v_hartree
    1278         152 :          DO ispin = 1, nspins
    1279          76 :             CALL pw_zero(vhxc_rspace)
    1280          76 :             IF (gapw) THEN
    1281          62 :                CALL pw_transfer(v_hartree_rspace_gs, vhxc_rspace)
    1282          14 :             ELSEIF (gapw_xc) THEN
    1283          14 :                CALL pw_transfer(vh_rspace, vhxc_rspace)
    1284             :             END IF
    1285             :             CALL integrate_v_rspace(v_rspace=vhxc_rspace, &
    1286             :                                     hmat=scrm(ispin), pmat=mpa(ispin), &
    1287             :                                     qs_env=qs_env, gapw=gapw, &
    1288         152 :                                     calculate_forces=.TRUE.)
    1289             :          END DO
    1290          76 :          IF (myfun /= xc_none) THEN
    1291         148 :             DO ispin = 1, nspins
    1292          74 :                CALL pw_zero(vhxc_rspace)
    1293          74 :                CALL pw_axpy(vxc_rspace(ispin), vhxc_rspace)
    1294             :                CALL integrate_v_rspace(v_rspace=vhxc_rspace, &
    1295             :                                        hmat=scrm(ispin), pmat=mpa(ispin), &
    1296             :                                        qs_env=qs_env, gapw=(gapw .OR. gapw_xc), &
    1297         148 :                                        calculate_forces=.TRUE.)
    1298             :             END DO
    1299             :          END IF
    1300             :       ELSE ! original GPW with Standard Hartree as Potential
    1301        1908 :          DO ispin = 1, nspins
    1302        1002 :             CALL pw_transfer(vh_rspace, vhxc_rspace)
    1303        1002 :             CALL pw_axpy(vxc_rspace(ispin), vhxc_rspace)
    1304             :             CALL integrate_v_rspace(v_rspace=vhxc_rspace, &
    1305             :                                     hmat=scrm(ispin), pmat=mpa(ispin), &
    1306        1908 :                                     qs_env=qs_env, gapw=gapw, calculate_forces=.TRUE.)
    1307             :          END DO
    1308             :       END IF
    1309             : 
    1310         982 :       IF (debug_forces) THEN
    1311         224 :          fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    1312          56 :          CALL para_env%sum(fodeb)
    1313          56 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: (T+Dz)*dVhxc[D^GS]   ", fodeb
    1314             :       END IF
    1315         982 :       IF (debug_stress .AND. use_virial) THEN
    1316           0 :          stdeb = fconv*(virial%pv_virial - pv_loc)
    1317           0 :          CALL para_env%sum(stdeb)
    1318           0 :          IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1319           0 :             'STRESS| INT Pz*dVhxc   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1320             :       END IF
    1321             : 
    1322         982 :       IF (gapw .OR. gapw_xc) THEN
    1323          76 :          CPASSERT(do_ex)
    1324             :          ! HXC term
    1325         244 :          IF (debug_forces) fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1)
    1326          76 :          IF (gapw) CALL update_ks_atom(qs_env, scrm, mpa, forces=.TRUE., tddft=.FALSE., &
    1327          62 :                                        rho_atom_external=local_rho_set_gs%rho_atom_set)
    1328          76 :          IF (myfun /= xc_none) CALL update_ks_atom(qs_env, scrm, mpa, forces=.TRUE., tddft=.FALSE., &
    1329          74 :                                                    rho_atom_external=local_rho_set_vxc%rho_atom_set)
    1330          76 :          IF (debug_forces) THEN
    1331         224 :             fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1) - fodeb(1:3)
    1332          56 :             CALL para_env%sum(fodeb)
    1333          56 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: (T+Dz)*dVhxc[D^GS]PAW ", fodeb
    1334             :          END IF
    1335             :          ! release local environments for GAPW
    1336          76 :          IF (myfun /= xc_none) THEN
    1337          74 :             IF (ASSOCIATED(local_rho_set_vxc)) CALL local_rho_set_release(local_rho_set_vxc)
    1338             :          END IF
    1339          76 :          IF (ASSOCIATED(local_rho_set_gs)) CALL local_rho_set_release(local_rho_set_gs)
    1340          76 :          IF (gapw) THEN
    1341          62 :             IF (ASSOCIATED(hartree_local_gs)) CALL hartree_local_release(hartree_local_gs)
    1342          62 :             CALL auxbas_pw_pool%give_back_pw(v_hartree_gspace_gs)
    1343          62 :             CALL auxbas_pw_pool%give_back_pw(v_hartree_rspace_gs)
    1344             :          END IF
    1345          76 :          CALL auxbas_pw_pool%give_back_pw(rho_tot_gspace_gs)
    1346          76 :          IF (ASSOCIATED(rho_r_gs)) THEN
    1347         152 :          DO ispin = 1, nspins
    1348         152 :             CALL auxbas_pw_pool%give_back_pw(rho_r_gs(ispin))
    1349             :          END DO
    1350          76 :          DEALLOCATE (rho_r_gs)
    1351             :          END IF
    1352          76 :          IF (ASSOCIATED(rho_g_gs)) THEN
    1353         152 :          DO ispin = 1, nspins
    1354         152 :             CALL auxbas_pw_pool%give_back_pw(rho_g_gs(ispin))
    1355             :          END DO
    1356          76 :          DEALLOCATE (rho_g_gs)
    1357             :          END IF
    1358             :       END IF !gapw
    1359             : 
    1360         982 :       IF (ASSOCIATED(vtau_rspace)) THEN
    1361          32 :          CPASSERT(.NOT. (gapw .OR. gapw_xc))
    1362          32 :          IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    1363          32 :          IF (debug_stress .AND. use_virial) stdeb = virial%pv_virial
    1364          64 :          DO ispin = 1, nspins
    1365             :             CALL integrate_v_rspace(v_rspace=vtau_rspace(ispin), &
    1366             :                                     hmat=scrm(ispin), pmat=mpa(ispin), &
    1367             :                                     qs_env=qs_env, gapw=(gapw .OR. gapw_xc), &
    1368          96 :                                     calculate_forces=.TRUE., compute_tau=.TRUE.)
    1369             :          END DO
    1370          32 :          IF (debug_forces) THEN
    1371           0 :             fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    1372           0 :             CALL para_env%sum(fodeb)
    1373           0 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*dVxc_tau   ", fodeb
    1374             :          END IF
    1375          32 :          IF (debug_stress .AND. use_virial) THEN
    1376           0 :             stdeb = fconv*(virial%pv_virial - pv_loc)
    1377           0 :             CALL para_env%sum(stdeb)
    1378           0 :             IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1379           0 :                'STRESS| INT Pz*dVxc_tau   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1380             :          END IF
    1381             :       END IF
    1382         982 :       CALL auxbas_pw_pool%give_back_pw(vhxc_rspace)
    1383             : 
    1384             :       ! Stress-tensor Pz*v_Hxc[Pin]
    1385         982 :       IF (use_virial) THEN
    1386        2184 :          virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
    1387             :       END IF
    1388             : 
    1389             :       ! KG Embedding
    1390             :       ! calculate kinetic energy potential and integrate with response density
    1391         982 :       IF (dft_control%qs_control%do_kg) THEN
    1392          24 :          IF (qs_env%kg_env%tnadd_method == kg_tnadd_embed .OR. &
    1393             :              qs_env%kg_env%tnadd_method == kg_tnadd_embed_ri) THEN
    1394             : 
    1395          12 :             ekin_mol = 0.0_dp
    1396          12 :             IF (use_virial) THEN
    1397         104 :                pv_loc = virial%pv_virial
    1398             :             END IF
    1399             : 
    1400          12 :             IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    1401             :             CALL kg_ekin_subset(qs_env=qs_env, &
    1402             :                                 ks_matrix=scrm, &
    1403             :                                 ekin_mol=ekin_mol, &
    1404             :                                 calc_force=.TRUE., &
    1405             :                                 do_kernel=.FALSE., &
    1406          12 :                                 pmat_ext=mpa)
    1407          12 :             IF (debug_forces) THEN
    1408           0 :                fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    1409           0 :                CALL para_env%sum(fodeb)
    1410           0 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*dVkg   ", fodeb
    1411             :             END IF
    1412          12 :             IF (debug_stress .AND. use_virial) THEN
    1413             :                !IF (iounit > 0) WRITE(iounit, *) &
    1414             :                !   "response_force | VOL 1st KG - v_KG[n_in]*n_z: ", ekin_mol
    1415           0 :                stdeb = 1.0_dp*fconv*ekin_mol
    1416           0 :                IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1417           0 :                   'STRESS| VOL KG Pz*dVKG ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1418             : 
    1419           0 :                stdeb = fconv*(virial%pv_virial - pv_loc)
    1420           0 :                CALL para_env%sum(stdeb)
    1421           0 :                IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1422           0 :                   'STRESS| INT KG Pz*dVKG  ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1423             : 
    1424           0 :                stdeb = fconv*virial%pv_xc
    1425           0 :                CALL para_env%sum(stdeb)
    1426           0 :                IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1427           0 :                   'STRESS| GGA KG Pz*dVKG  ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1428             :             END IF
    1429          12 :             IF (use_virial) THEN
    1430             :                ! Direct integral contribution
    1431         104 :                virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
    1432             :             END IF
    1433             : 
    1434             :          END IF ! tnadd_method
    1435             :       END IF ! do_kg
    1436             : 
    1437         982 :       CALL dbcsr_deallocate_matrix_set(scrm)
    1438             : 
    1439             :       !
    1440             :       ! Hartree potential of response density
    1441             :       !
    1442        7066 :       ALLOCATE (rhoz_r(nspins), rhoz_g(nspins))
    1443        2060 :       DO ispin = 1, nspins
    1444        1078 :          CALL auxbas_pw_pool%create_pw(rhoz_r(ispin))
    1445        2060 :          CALL auxbas_pw_pool%create_pw(rhoz_g(ispin))
    1446             :       END DO
    1447         982 :       CALL auxbas_pw_pool%create_pw(rhoz_tot_gspace)
    1448         982 :       CALL auxbas_pw_pool%create_pw(zv_hartree_rspace)
    1449         982 :       CALL auxbas_pw_pool%create_pw(zv_hartree_gspace)
    1450             : 
    1451         982 :       CALL pw_zero(rhoz_tot_gspace)
    1452        2060 :       DO ispin = 1, nspins
    1453             :          CALL calculate_rho_elec(ks_env=ks_env, matrix_p=mpa(ispin)%matrix, &
    1454             :                                  rho=rhoz_r(ispin), rho_gspace=rhoz_g(ispin), &
    1455        1078 :                                  soft_valid=gapw)
    1456        2060 :          CALL pw_axpy(rhoz_g(ispin), rhoz_tot_gspace)
    1457             :       END DO
    1458         982 :       IF (gapw_xc) THEN
    1459          14 :          NULLIFY (tauz_r_xc)
    1460          70 :          ALLOCATE (rhoz_r_xc(nspins), rhoz_g_xc(nspins))
    1461          28 :          DO ispin = 1, nspins
    1462          14 :             CALL auxbas_pw_pool%create_pw(rhoz_r_xc(ispin))
    1463          28 :             CALL auxbas_pw_pool%create_pw(rhoz_g_xc(ispin))
    1464             :          END DO
    1465          28 :          DO ispin = 1, nspins
    1466             :             CALL calculate_rho_elec(ks_env=ks_env, matrix_p=mpa(ispin)%matrix, &
    1467             :                                     rho=rhoz_r_xc(ispin), rho_gspace=rhoz_g_xc(ispin), &
    1468          28 :                                     soft_valid=gapw_xc)
    1469             :          END DO
    1470             :       END IF
    1471             : 
    1472         982 :       IF (ASSOCIATED(vtau_rspace)) THEN
    1473          32 :          CPASSERT(.NOT. (gapw .OR. gapw_xc))
    1474             :          BLOCK
    1475             :             TYPE(pw_c1d_gs_type) :: work_g
    1476          96 :             ALLOCATE (tauz_r(nspins))
    1477          32 :             CALL auxbas_pw_pool%create_pw(work_g)
    1478          64 :             DO ispin = 1, nspins
    1479          32 :                CALL auxbas_pw_pool%create_pw(tauz_r(ispin))
    1480             :                CALL calculate_rho_elec(ks_env=ks_env, matrix_p=mpa(ispin)%matrix, &
    1481             :                                        rho=tauz_r(ispin), rho_gspace=work_g, &
    1482          64 :                                        compute_tau=.TRUE.)
    1483             :             END DO
    1484          64 :             CALL auxbas_pw_pool%give_back_pw(work_g)
    1485             :          END BLOCK
    1486             :       END IF
    1487             : 
    1488             :       !
    1489         982 :       IF (PRESENT(rhopz_r)) THEN
    1490         864 :          DO ispin = 1, nspins
    1491         864 :             CALL pw_copy(rhoz_r(ispin), rhopz_r(ispin))
    1492             :          END DO
    1493             :       END IF
    1494             : 
    1495             :       ! Stress-tensor contribution second derivative
    1496             :       ! Volume : int v_H[n^z]*n_in
    1497             :       ! Volume : int epsilon_xc*n_z
    1498         982 :       IF (use_virial) THEN
    1499             : 
    1500         168 :          CALL get_qs_env(qs_env, rho=rho)
    1501         168 :          CALL auxbas_pw_pool%create_pw(rho_tot_gspace)
    1502             : 
    1503             :          ! Get the total input density in g-space [ions + electrons]
    1504         168 :          CALL calc_rho_tot_gspace(rho_tot_gspace, qs_env, rho)
    1505             : 
    1506         168 :          h_stress(:, :) = 0.0_dp
    1507             :          ! calculate associated hartree potential
    1508             :          ! This term appears twice in the derivation of the equations
    1509             :          ! v_H[n_in]*n_z and v_H[n_z]*n_in
    1510             :          ! due to symmetry we only need to call this routine once,
    1511             :          ! and count the Volume and Green function contribution
    1512             :          ! which is stored in h_stress twice
    1513             :          CALL pw_poisson_solve(poisson_env, &
    1514             :                                density=rhoz_tot_gspace, &     ! n_z
    1515             :                                ehartree=ehartree, &
    1516             :                                vhartree=zv_hartree_gspace, &  ! v_H[n_z]
    1517             :                                h_stress=h_stress, &
    1518         168 :                                aux_density=rho_tot_gspace)  ! n_in
    1519             : 
    1520         168 :          CALL auxbas_pw_pool%give_back_pw(rho_tot_gspace)
    1521             : 
    1522             :          ! Stress tensor Green function contribution
    1523        2184 :          virial%pv_ehartree = virial%pv_ehartree + 2.0_dp*h_stress/REAL(para_env%num_pe, dp)
    1524        2184 :          virial%pv_virial = virial%pv_virial + 2.0_dp*h_stress/REAL(para_env%num_pe, dp)
    1525             : 
    1526         168 :          IF (debug_stress) THEN
    1527           0 :             stdeb = -1.0_dp*fconv*ehartree
    1528           0 :             IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1529           0 :                'STRESS| VOL 1st v_H[n_z]*n_in  ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1530           0 :             stdeb = -1.0_dp*fconv*ehartree
    1531           0 :             IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1532           0 :                'STRESS| VOL 2nd v_H[n_in]*n_z  ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1533           0 :             stdeb = fconv*(h_stress/REAL(para_env%num_pe, dp))
    1534           0 :             CALL para_env%sum(stdeb)
    1535           0 :             IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1536           0 :                'STRESS| GREEN 1st v_H[n_z]*n_in  ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1537           0 :             stdeb = fconv*(h_stress/REAL(para_env%num_pe, dp))
    1538           0 :             CALL para_env%sum(stdeb)
    1539           0 :             IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1540           0 :                'STRESS| GREEN 2nd v_H[n_in]*n_z   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1541             :          END IF
    1542             : 
    1543             :          ! Stress tensor volume term: \int v_xc[n_in]*n_z
    1544             :          ! vxc_rspace already scaled, we need to unscale it!
    1545         168 :          exc = 0.0_dp
    1546         336 :          DO ispin = 1, nspins
    1547             :             exc = exc + pw_integral_ab(rhoz_r(ispin), vxc_rspace(ispin))/ &
    1548         336 :                   vxc_rspace(ispin)%pw_grid%dvol
    1549             :          END DO
    1550         168 :          IF (ASSOCIATED(vtau_rspace)) THEN
    1551          32 :             DO ispin = 1, nspins
    1552             :                exc = exc + pw_integral_ab(tauz_r(ispin), vtau_rspace(ispin))/ &
    1553          32 :                      vtau_rspace(ispin)%pw_grid%dvol
    1554             :             END DO
    1555             :          END IF
    1556             : 
    1557             :          ! Add KG embedding correction
    1558         168 :          IF (dft_control%qs_control%do_kg) THEN
    1559          18 :             IF (qs_env%kg_env%tnadd_method == kg_tnadd_embed .OR. &
    1560             :                 qs_env%kg_env%tnadd_method == kg_tnadd_embed_ri) THEN
    1561           8 :                exc = exc - ekin_mol
    1562             :             END IF
    1563             :          END IF
    1564             : 
    1565         168 :          IF (debug_stress) THEN
    1566           0 :             stdeb = -1.0_dp*fconv*exc
    1567           0 :             IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1568           0 :                'STRESS| VOL 1st eps_XC[n_in]*n_z', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1569             :          END IF
    1570             : 
    1571             :       ELSE ! use_virial
    1572             : 
    1573             :          ! calculate associated hartree potential
    1574             :          ! contribution for both T and D^Z
    1575         814 :          IF (gapw) THEN
    1576          62 :             CALL pw_axpy(local_rho_set_t%rho0_mpole%rho0_s_gs, rhoz_tot_gspace)
    1577             :          END IF
    1578         814 :          CALL pw_poisson_solve(poisson_env, rhoz_tot_gspace, ehartree, zv_hartree_gspace)
    1579             : 
    1580             :       END IF ! use virial
    1581         982 :       IF (gapw .OR. gapw_xc) THEN
    1582          76 :          IF (ASSOCIATED(local_rho_set_t)) CALL local_rho_set_release(local_rho_set_t)
    1583             :       END IF
    1584             : 
    1585        1150 :       IF (debug_forces) fodeb(1:3) = force(1)%rho_core(1:3, 1)
    1586         982 :       IF (debug_stress .AND. use_virial) stdeb = virial%pv_ehartree
    1587         982 :       CALL pw_transfer(zv_hartree_gspace, zv_hartree_rspace)
    1588         982 :       CALL pw_scale(zv_hartree_rspace, zv_hartree_rspace%pw_grid%dvol)
    1589             :       ! Getting nuclear force contribution from the core charge density (not for GAPW)
    1590         982 :       CALL integrate_v_core_rspace(zv_hartree_rspace, qs_env)
    1591         982 :       IF (debug_forces) THEN
    1592         224 :          fodeb(1:3) = force(1)%rho_core(1:3, 1) - fodeb(1:3)
    1593          56 :          CALL para_env%sum(fodeb)
    1594          56 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Vh(rhoz)*dncore ", fodeb
    1595             :       END IF
    1596         982 :       IF (debug_stress .AND. use_virial) THEN
    1597           0 :          stdeb = fconv*(virial%pv_ehartree - stdeb)
    1598           0 :          CALL para_env%sum(stdeb)
    1599           0 :          IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1600           0 :             'STRESS| INT Vh(rhoz)*dncore   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1601             :       END IF
    1602             : 
    1603             :       !
    1604         982 :       IF (gapw_xc) THEN
    1605          14 :          CALL get_qs_env(qs_env=qs_env, rho_xc=rho_xc)
    1606             :       ELSE
    1607         968 :          CALL get_qs_env(qs_env=qs_env, rho=rho)
    1608             :       END IF
    1609         982 :       IF (dft_control%do_admm) THEN
    1610         232 :          CALL get_qs_env(qs_env, admm_env=admm_env)
    1611         232 :          xc_section => admm_env%xc_section_primary
    1612             :       ELSE
    1613         750 :          xc_section => section_vals_get_subs_vals(qs_env%input, "DFT%XC")
    1614             :       END IF
    1615             : 
    1616         982 :       IF (use_virial) THEN
    1617        2184 :          virial%pv_xc = 0.0_dp
    1618             :       END IF
    1619             :       !
    1620         982 :       NULLIFY (v_xc, v_xc_tau)
    1621         982 :       IF (gapw_xc) THEN
    1622             :          CALL create_kernel(qs_env, vxc=v_xc, vxc_tau=v_xc_tau, &
    1623             :                             rho=rho_xc, rho1_r=rhoz_r_xc, rho1_g=rhoz_g_xc, tau1_r=tauz_r_xc, &
    1624          14 :                             xc_section=xc_section, compute_virial=use_virial, virial_xc=virial%pv_xc)
    1625             :       ELSE
    1626             :          CALL create_kernel(qs_env, vxc=v_xc, vxc_tau=v_xc_tau, &
    1627             :                             rho=rho, rho1_r=rhoz_r, rho1_g=rhoz_g, tau1_r=tauz_r, &
    1628         968 :                             xc_section=xc_section, compute_virial=use_virial, virial_xc=virial%pv_xc)
    1629             :       END IF
    1630             : 
    1631         982 :       IF (gapw .OR. gapw_xc) THEN
    1632             :          !get local_rho_set for GS density and response potential / density
    1633          76 :          NULLIFY (local_rho_set_t)
    1634          76 :          CALL local_rho_set_create(local_rho_set_t)
    1635             :          CALL allocate_rho_atom_internals(local_rho_set_t%rho_atom_set, atomic_kind_set, &
    1636          76 :                                           qs_kind_set, dft_control, para_env)
    1637             :          CALL init_rho0(local_rho_set_t, qs_env, dft_control%qs_control%gapw_control, &
    1638          76 :                         zcore=0.0_dp)
    1639          76 :          CALL rho0_s_grid_create(pw_env, local_rho_set_t%rho0_mpole)
    1640             :          CALL calculate_rho_atom_coeff(qs_env, mpa(:), local_rho_set_t%rho_atom_set, &
    1641          76 :                                        qs_kind_set, oce, sab_orb, para_env)
    1642          76 :          CALL prepare_gapw_den(qs_env, local_rho_set_t, do_rho0=gapw)
    1643          76 :          NULLIFY (local_rho_set_gs)
    1644          76 :          CALL local_rho_set_create(local_rho_set_gs)
    1645             :          CALL allocate_rho_atom_internals(local_rho_set_gs%rho_atom_set, atomic_kind_set, &
    1646          76 :                                           qs_kind_set, dft_control, para_env)
    1647          76 :          CALL init_rho0(local_rho_set_gs, qs_env, dft_control%qs_control%gapw_control)
    1648          76 :          CALL rho0_s_grid_create(pw_env, local_rho_set_gs%rho0_mpole)
    1649             :          CALL calculate_rho_atom_coeff(qs_env, matrix_p(:, 1), local_rho_set_gs%rho_atom_set, &
    1650          76 :                                        qs_kind_set, oce, sab_orb, para_env)
    1651          76 :          CALL prepare_gapw_den(qs_env, local_rho_set_gs, do_rho0=gapw)
    1652             :          ! compute response potential
    1653         380 :          ALLOCATE (rho_r_t(nspins), rho_g_t(nspins))
    1654         152 :          DO ispin = 1, nspins
    1655          76 :             CALL auxbas_pw_pool%create_pw(rho_r_t(ispin))
    1656         152 :             CALL auxbas_pw_pool%create_pw(rho_g_t(ispin))
    1657             :          END DO
    1658          76 :          CALL auxbas_pw_pool%create_pw(rho_tot_gspace_t)
    1659          76 :          total_rho_t = 0.0_dp
    1660          76 :          CALL pw_zero(rho_tot_gspace_t)
    1661         152 :          DO ispin = 1, nspins
    1662             :             CALL calculate_rho_elec(ks_env=ks_env, matrix_p=mpa(ispin)%matrix, &
    1663             :                                     rho=rho_r_t(ispin), &
    1664             :                                     rho_gspace=rho_g_t(ispin), &
    1665             :                                     soft_valid=gapw, &
    1666          76 :                                     total_rho=total_rho_t(ispin))
    1667         152 :             CALL pw_axpy(rho_g_t(ispin), rho_tot_gspace_t)
    1668             :          END DO
    1669             :          ! add rho0 contributions to response density (only for Coulomb) only for gapw
    1670          76 :          IF (gapw) THEN
    1671          62 :             CALL pw_axpy(local_rho_set_t%rho0_mpole%rho0_s_gs, rho_tot_gspace_t)
    1672             :             ! compute response Coulomb potential
    1673          62 :             CALL auxbas_pw_pool%create_pw(v_hartree_gspace_t)
    1674          62 :             CALL auxbas_pw_pool%create_pw(v_hartree_rspace_t)
    1675          62 :             NULLIFY (hartree_local_t)
    1676          62 :             CALL hartree_local_create(hartree_local_t)
    1677          62 :             CALL init_coulomb_local(hartree_local_t, natom)
    1678          62 :             CALL pw_poisson_solve(poisson_env, rho_tot_gspace_t, hartree_t, v_hartree_gspace_t)
    1679          62 :             CALL pw_transfer(v_hartree_gspace_t, v_hartree_rspace_t)
    1680          62 :             CALL pw_scale(v_hartree_rspace_t, v_hartree_rspace_t%pw_grid%dvol)
    1681             :             !
    1682         212 :             IF (debug_forces) fodeb(1:3) = force(1)%g0s_Vh_elec(1:3, 1)
    1683             :             CALL Vh_1c_gg_integrals(qs_env, hartree_t, hartree_local_t%ecoul_1c, local_rho_set_gs, para_env, tddft=.FALSE., &
    1684          62 :                                     local_rho_set_2nd=local_rho_set_t, core_2nd=.TRUE.) ! n^core for GS potential
    1685             :             CALL integrate_vhg0_rspace(qs_env, v_hartree_rspace_t, para_env, calculate_forces=.TRUE., &
    1686          62 :                                        local_rho_set=local_rho_set_gs, local_rho_set_2nd=local_rho_set_t)
    1687          62 :             IF (debug_forces) THEN
    1688         200 :                fodeb(1:3) = force(1)%g0s_Vh_elec(1:3, 1) - fodeb(1:3)
    1689          50 :                CALL para_env%sum(fodeb)
    1690          50 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Vh(T)*dncore PAWg0", fodeb
    1691             :             END IF
    1692             :          END IF !gapw
    1693             :       END IF !gapw
    1694             : 
    1695         982 :       IF (gapw .OR. gapw_xc) THEN
    1696             :          !GAPW compute atomic fxc contributions
    1697          76 :          IF (myfun /= xc_none) THEN
    1698             :             ! local_rho_set_f
    1699          74 :             NULLIFY (local_rho_set_f)
    1700          74 :             CALL local_rho_set_create(local_rho_set_f)
    1701             :             CALL allocate_rho_atom_internals(local_rho_set_f%rho_atom_set, atomic_kind_set, &
    1702          74 :                                              qs_kind_set, dft_control, para_env)
    1703             :             CALL calculate_rho_atom_coeff(qs_env, mpa, local_rho_set_f%rho_atom_set, &
    1704          74 :                                           qs_kind_set, oce, sab_orb, para_env)
    1705          74 :             CALL prepare_gapw_den(qs_env, local_rho_set_f, do_rho0=.FALSE.)
    1706             :             ! add hard and soft atomic contributions
    1707             :             CALL calculate_xc_2nd_deriv_atom(local_rho_set_gs%rho_atom_set, &
    1708             :                                              local_rho_set_f%rho_atom_set, &
    1709             :                                              qs_env, xc_section, para_env, &
    1710          74 :                                              do_tddft=.FALSE., do_triplet=.FALSE.)
    1711             :          END IF ! myfun
    1712             :       END IF
    1713             : 
    1714             :       ! Stress-tensor XC-kernel GGA contribution
    1715         982 :       IF (use_virial) THEN
    1716        2184 :          virial%pv_exc = virial%pv_exc + virial%pv_xc
    1717        2184 :          virial%pv_virial = virial%pv_virial + virial%pv_xc
    1718             :       END IF
    1719             : 
    1720         982 :       IF (debug_stress .AND. use_virial) THEN
    1721           0 :          stdeb = 1.0_dp*fconv*virial%pv_xc
    1722           0 :          CALL para_env%sum(stdeb)
    1723           0 :          IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1724           0 :             'STRESS| GGA 2nd Pin*dK*rhoz', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1725             :       END IF
    1726             : 
    1727             :       ! Stress-tensor integral contribution of 2nd derivative terms
    1728         982 :       IF (use_virial) THEN
    1729        2184 :          pv_loc = virial%pv_virial
    1730             :       END IF
    1731             : 
    1732         982 :       CALL get_qs_env(qs_env=qs_env, rho=rho)
    1733         982 :       CALL qs_rho_get(rho, rho_ao_kp=matrix_p)
    1734         982 :       IF (debug_stress .AND. use_virial) stdeb = virial%pv_virial
    1735             : 
    1736        2060 :       DO ispin = 1, nspins
    1737        2060 :          CALL pw_scale(v_xc(ispin), v_xc(ispin)%pw_grid%dvol)
    1738             :       END DO
    1739         982 :       IF ((.NOT. (gapw)) .AND. (.NOT. gapw_xc)) THEN
    1740         906 :          IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    1741        1908 :          DO ispin = 1, nspins
    1742        1002 :             CALL pw_axpy(zv_hartree_rspace, v_xc(ispin)) ! Hartree potential of response density
    1743             :             CALL integrate_v_rspace(qs_env=qs_env, &
    1744             :                                     v_rspace=v_xc(ispin), &
    1745             :                                     hmat=matrix_hz(ispin), &
    1746             :                                     pmat=matrix_p(ispin, 1), &
    1747             :                                     gapw=.FALSE., &
    1748        1908 :                                     calculate_forces=.TRUE.)
    1749             :          END DO
    1750         906 :          IF (debug_forces) THEN
    1751           0 :             fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    1752           0 :             CALL para_env%sum(fodeb)
    1753           0 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pin*dKhxc*rhoz ", fodeb
    1754             :          END IF
    1755             :       ELSE
    1756         244 :          IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    1757          76 :          IF (myfun /= xc_none) THEN
    1758         148 :             DO ispin = 1, nspins
    1759             :                CALL integrate_v_rspace(qs_env=qs_env, &
    1760             :                                        v_rspace=v_xc(ispin), &
    1761             :                                        hmat=matrix_hz(ispin), &
    1762             :                                        pmat=matrix_p(ispin, 1), &
    1763             :                                        gapw=.TRUE., &
    1764         148 :                                        calculate_forces=.TRUE.)
    1765             :             END DO
    1766             :          END IF ! my_fun
    1767             :          ! Coulomb T+Dz
    1768         152 :          DO ispin = 1, nspins
    1769          76 :             CALL pw_zero(v_xc(ispin))
    1770          76 :             IF (gapw) THEN ! Hartree potential of response density
    1771          62 :                CALL pw_axpy(v_hartree_rspace_t, v_xc(ispin))
    1772          14 :             ELSEIF (gapw_xc) THEN
    1773          14 :                CALL pw_axpy(zv_hartree_rspace, v_xc(ispin))
    1774             :             END IF
    1775             :             CALL integrate_v_rspace(qs_env=qs_env, &
    1776             :                                     v_rspace=v_xc(ispin), &
    1777             :                                     hmat=matrix_ht(ispin), &
    1778             :                                     pmat=matrix_p(ispin, 1), &
    1779             :                                     gapw=gapw, &
    1780         152 :                                     calculate_forces=.TRUE.)
    1781             :          END DO
    1782          76 :          IF (debug_forces) THEN
    1783         224 :             fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    1784          56 :             CALL para_env%sum(fodeb)
    1785          56 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pin*dKhxc*rhoz ", fodeb
    1786             :          END IF
    1787             :       END IF
    1788             : 
    1789         982 :       IF (gapw .OR. gapw_xc) THEN
    1790             :          ! compute hard and soft atomic contributions
    1791          76 :          IF (myfun /= xc_none) THEN
    1792         236 :             IF (debug_forces) fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1)
    1793             :             CALL update_ks_atom(qs_env, matrix_hz, matrix_p, forces=.TRUE., tddft=.FALSE., &
    1794          74 :                                 rho_atom_external=local_rho_set_f%rho_atom_set)
    1795          74 :             IF (debug_forces) THEN
    1796         216 :                fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1) - fodeb(1:3)
    1797          54 :                CALL para_env%sum(fodeb)
    1798          54 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: P^GS*dKxc*(Dz+T) PAW", fodeb
    1799             :             END IF
    1800             :          END IF !myfun
    1801             :          ! Coulomb contributions
    1802          76 :          IF (gapw) THEN
    1803         212 :             IF (debug_forces) fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1)
    1804             :             CALL update_ks_atom(qs_env, matrix_ht, matrix_p, forces=.TRUE., tddft=.FALSE., &
    1805          62 :                                 rho_atom_external=local_rho_set_t%rho_atom_set)
    1806          62 :             IF (debug_forces) THEN
    1807         200 :                fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1) - fodeb(1:3)
    1808          50 :                CALL para_env%sum(fodeb)
    1809          50 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: P^GS*dKh*(Dz+T) PAW", fodeb
    1810             :             END IF
    1811             :          END IF
    1812             :          ! add Coulomb and XC
    1813         152 :          DO ispin = 1, nspins
    1814         152 :             CALL dbcsr_add(matrix_hz(ispin)%matrix, matrix_ht(ispin)%matrix, 1.0_dp, 1.0_dp)
    1815             :          END DO
    1816             : 
    1817             :          ! release
    1818          76 :          IF (myfun /= xc_none) THEN
    1819          74 :             IF (ASSOCIATED(local_rho_set_f)) CALL local_rho_set_release(local_rho_set_f)
    1820             :          END IF
    1821          76 :          IF (ASSOCIATED(local_rho_set_t)) CALL local_rho_set_release(local_rho_set_t)
    1822          76 :          IF (ASSOCIATED(local_rho_set_gs)) CALL local_rho_set_release(local_rho_set_gs)
    1823          76 :          IF (gapw) THEN
    1824          62 :             IF (ASSOCIATED(hartree_local_t)) CALL hartree_local_release(hartree_local_t)
    1825          62 :             CALL auxbas_pw_pool%give_back_pw(v_hartree_gspace_t)
    1826          62 :             CALL auxbas_pw_pool%give_back_pw(v_hartree_rspace_t)
    1827             :          END IF
    1828          76 :          CALL auxbas_pw_pool%give_back_pw(rho_tot_gspace_t)
    1829         152 :          DO ispin = 1, nspins
    1830          76 :             CALL auxbas_pw_pool%give_back_pw(rho_r_t(ispin))
    1831         152 :             CALL auxbas_pw_pool%give_back_pw(rho_g_t(ispin))
    1832             :          END DO
    1833          76 :          DEALLOCATE (rho_r_t, rho_g_t)
    1834             :       END IF ! gapw
    1835             : 
    1836         982 :       IF (debug_stress .AND. use_virial) THEN
    1837           0 :          stdeb = fconv*(virial%pv_virial - stdeb)
    1838           0 :          CALL para_env%sum(stdeb)
    1839           0 :          IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1840           0 :             'STRESS| INT 2nd f_Hxc[Pz]*Pin', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1841             :       END IF
    1842             :       !
    1843         982 :       IF (ASSOCIATED(v_xc_tau)) THEN
    1844          32 :          CPASSERT(.NOT. (gapw .OR. gapw_xc))
    1845          32 :          IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    1846          32 :          IF (debug_stress .AND. use_virial) stdeb = virial%pv_virial
    1847          64 :          DO ispin = 1, nspins
    1848          32 :             CALL pw_scale(v_xc_tau(ispin), v_xc_tau(ispin)%pw_grid%dvol)
    1849             :             CALL integrate_v_rspace(qs_env=qs_env, &
    1850             :                                     v_rspace=v_xc_tau(ispin), &
    1851             :                                     hmat=matrix_hz(ispin), &
    1852             :                                     pmat=matrix_p(ispin, 1), &
    1853             :                                     compute_tau=.TRUE., &
    1854             :                                     gapw=(gapw .OR. gapw_xc), &
    1855          96 :                                     calculate_forces=.TRUE.)
    1856             :          END DO
    1857          32 :          IF (debug_forces) THEN
    1858           0 :             fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    1859           0 :             CALL para_env%sum(fodeb)
    1860           0 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pin*dKtau*tauz ", fodeb
    1861             :          END IF
    1862             :       END IF
    1863         982 :       IF (debug_stress .AND. use_virial) THEN
    1864           0 :          stdeb = fconv*(virial%pv_virial - stdeb)
    1865           0 :          CALL para_env%sum(stdeb)
    1866           0 :          IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1867           0 :             'STRESS| INT 2nd f_xctau[Pz]*Pin', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1868             :       END IF
    1869             :       ! Stress-tensor integral contribution of 2nd derivative terms
    1870         982 :       IF (use_virial) THEN
    1871        2184 :          virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
    1872             :       END IF
    1873             : 
    1874             :       ! KG Embedding
    1875             :       ! calculate kinetic energy kernel, folded with response density for partial integration
    1876         982 :       IF (dft_control%qs_control%do_kg) THEN
    1877          24 :          IF (qs_env%kg_env%tnadd_method == kg_tnadd_embed) THEN
    1878          12 :             ekin_mol = 0.0_dp
    1879          12 :             IF (use_virial) THEN
    1880         104 :                pv_loc = virial%pv_virial
    1881             :             END IF
    1882             : 
    1883          12 :             IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    1884         108 :             IF (use_virial) virial%pv_xc = 0.0_dp
    1885             :             CALL kg_ekin_subset(qs_env=qs_env, &
    1886             :                                 ks_matrix=matrix_hz, &
    1887             :                                 ekin_mol=ekin_mol, &
    1888             :                                 calc_force=.TRUE., &
    1889             :                                 do_kernel=.TRUE., &
    1890          12 :                                 pmat_ext=matrix_pz)
    1891             : 
    1892          12 :             IF (debug_forces) THEN
    1893           0 :                fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    1894           0 :                CALL para_env%sum(fodeb)
    1895           0 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pin*d(Kkg)*rhoz ", fodeb
    1896             :             END IF
    1897          12 :             IF (debug_stress .AND. use_virial) THEN
    1898           0 :                stdeb = fconv*(virial%pv_virial - pv_loc)
    1899           0 :                CALL para_env%sum(stdeb)
    1900           0 :                IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1901           0 :                   'STRESS| INT KG Pin*d(KKG)*rhoz    ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1902             : 
    1903           0 :                stdeb = fconv*(virial%pv_xc)
    1904           0 :                CALL para_env%sum(stdeb)
    1905           0 :                IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1906           0 :                   'STRESS| GGA KG Pin*d(KKG)*rhoz    ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1907             :             END IF
    1908             : 
    1909             :             ! Stress tensor
    1910          12 :             IF (use_virial) THEN
    1911             :                ! XC-kernel Integral contribution
    1912         104 :                virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
    1913             : 
    1914             :                ! XC-kernel GGA contribution
    1915         104 :                virial%pv_exc = virial%pv_exc - virial%pv_xc
    1916         104 :                virial%pv_virial = virial%pv_virial - virial%pv_xc
    1917         104 :                virial%pv_xc = 0.0_dp
    1918             :             END IF
    1919             :          END IF
    1920             :       END IF
    1921         982 :       CALL auxbas_pw_pool%give_back_pw(rhoz_tot_gspace)
    1922         982 :       CALL auxbas_pw_pool%give_back_pw(zv_hartree_gspace)
    1923         982 :       CALL auxbas_pw_pool%give_back_pw(zv_hartree_rspace)
    1924        2060 :       DO ispin = 1, nspins
    1925        1078 :          CALL auxbas_pw_pool%give_back_pw(rhoz_r(ispin))
    1926        1078 :          CALL auxbas_pw_pool%give_back_pw(rhoz_g(ispin))
    1927        2060 :          CALL auxbas_pw_pool%give_back_pw(v_xc(ispin))
    1928             :       END DO
    1929         982 :       DEALLOCATE (rhoz_r, rhoz_g, v_xc)
    1930         982 :       IF (gapw_xc) THEN
    1931          28 :          DO ispin = 1, nspins
    1932          14 :             CALL auxbas_pw_pool%give_back_pw(rhoz_r_xc(ispin))
    1933          28 :             CALL auxbas_pw_pool%give_back_pw(rhoz_g_xc(ispin))
    1934             :          END DO
    1935          14 :          DEALLOCATE (rhoz_r_xc, rhoz_g_xc)
    1936             :       END IF
    1937         982 :       IF (ASSOCIATED(v_xc_tau)) THEN
    1938          64 :       DO ispin = 1, nspins
    1939          32 :          CALL auxbas_pw_pool%give_back_pw(tauz_r(ispin))
    1940          64 :          CALL auxbas_pw_pool%give_back_pw(v_xc_tau(ispin))
    1941             :       END DO
    1942          32 :       DEALLOCATE (tauz_r, v_xc_tau)
    1943             :       END IF
    1944         982 :       IF (debug_forces) THEN
    1945         168 :          ALLOCATE (ftot3(3, natom))
    1946          56 :          CALL total_qs_force(ftot3, force, atomic_kind_set)
    1947         224 :          fodeb(1:3) = ftot3(1:3, 1) - ftot2(1:3, 1)
    1948          56 :          CALL para_env%sum(fodeb)
    1949          56 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pin*V(rhoz)", fodeb
    1950             :       END IF
    1951         982 :       CALL dbcsr_deallocate_matrix_set(scrm)
    1952         982 :       CALL dbcsr_deallocate_matrix_set(matrix_ht)
    1953             : 
    1954             :       ! -----------------------------------------
    1955             :       ! Apply ADMM exchange correction
    1956             :       ! -----------------------------------------
    1957             : 
    1958         982 :       IF (dft_control%do_admm) THEN
    1959             :          ! volume term
    1960         232 :          exc_aux_fit = 0.0_dp
    1961             : 
    1962         232 :          IF (qs_env%admm_env%aux_exch_func == do_admm_aux_exch_func_none) THEN
    1963             :             ! nothing to do
    1964          98 :             NULLIFY (mpz, mhz, mhx, mhy)
    1965             :          ELSE
    1966             :             ! add ADMM xc_section_aux terms: Pz*Vxc + P0*K0[rhoz]
    1967         134 :             CALL get_qs_env(qs_env, admm_env=admm_env)
    1968             :             CALL get_admm_env(admm_env, rho_aux_fit=rho_aux_fit, matrix_s_aux_fit=scrm, &
    1969         134 :                               task_list_aux_fit=task_list_aux_fit)
    1970             :             !
    1971         134 :             NULLIFY (mpz, mhz, mhx, mhy)
    1972         134 :             CALL dbcsr_allocate_matrix_set(mhx, nspins, 1)
    1973         134 :             CALL dbcsr_allocate_matrix_set(mhy, nspins, 1)
    1974         134 :             CALL dbcsr_allocate_matrix_set(mpz, nspins, 1)
    1975         276 :             DO ispin = 1, nspins
    1976         142 :                ALLOCATE (mhx(ispin, 1)%matrix)
    1977         142 :                CALL dbcsr_create(mhx(ispin, 1)%matrix, template=scrm(1)%matrix)
    1978         142 :                CALL dbcsr_copy(mhx(ispin, 1)%matrix, scrm(1)%matrix)
    1979         142 :                CALL dbcsr_set(mhx(ispin, 1)%matrix, 0.0_dp)
    1980         142 :                ALLOCATE (mhy(ispin, 1)%matrix)
    1981         142 :                CALL dbcsr_create(mhy(ispin, 1)%matrix, template=scrm(1)%matrix)
    1982         142 :                CALL dbcsr_copy(mhy(ispin, 1)%matrix, scrm(1)%matrix)
    1983         142 :                CALL dbcsr_set(mhy(ispin, 1)%matrix, 0.0_dp)
    1984         142 :                ALLOCATE (mpz(ispin, 1)%matrix)
    1985         276 :                IF (do_ex) THEN
    1986          86 :                   CALL dbcsr_create(mpz(ispin, 1)%matrix, template=p_env%p1_admm(ispin)%matrix)
    1987          86 :                   CALL dbcsr_copy(mpz(ispin, 1)%matrix, p_env%p1_admm(ispin)%matrix)
    1988             :                   CALL dbcsr_add(mpz(ispin, 1)%matrix, ex_env%matrix_pe_admm(ispin)%matrix, &
    1989          86 :                                  1.0_dp, 1.0_dp)
    1990             :                ELSE
    1991          56 :                   CALL dbcsr_create(mpz(ispin, 1)%matrix, template=matrix_pz_admm(ispin)%matrix)
    1992          56 :                   CALL dbcsr_copy(mpz(ispin, 1)%matrix, matrix_pz_admm(ispin)%matrix)
    1993             :                END IF
    1994             :             END DO
    1995             :             !
    1996         134 :             xc_section => admm_env%xc_section_aux
    1997             :             ! Stress-tensor: integration contribution direct term
    1998             :             ! int Pz*v_xc[rho_admm]
    1999         134 :             IF (use_virial) THEN
    2000         260 :                pv_loc = virial%pv_virial
    2001             :             END IF
    2002             : 
    2003         134 :             basis_type = "AUX_FIT"
    2004         134 :             task_list => task_list_aux_fit
    2005         134 :             IF (admm_env%do_gapw) THEN
    2006           4 :                basis_type = "AUX_FIT_SOFT"
    2007           4 :                task_list => admm_env%admm_gapw_env%task_list
    2008             :             END IF
    2009             :             !
    2010         146 :             IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    2011         134 :             IF (debug_stress .AND. use_virial) stdeb = virial%pv_virial
    2012         276 :             DO ispin = 1, nspins
    2013             :                CALL integrate_v_rspace(v_rspace=vadmm_rspace(ispin), &
    2014             :                                        hmat=mhx(ispin, 1), pmat=mpz(ispin, 1), &
    2015             :                                        qs_env=qs_env, calculate_forces=.TRUE., &
    2016         276 :                                        basis_type=basis_type, task_list_external=task_list)
    2017             :             END DO
    2018         134 :             IF (debug_forces) THEN
    2019          16 :                fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    2020           4 :                CALL para_env%sum(fodeb)
    2021           4 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*Vxc(rho_admm)", fodeb
    2022             :             END IF
    2023         134 :             IF (debug_stress .AND. use_virial) THEN
    2024           0 :                stdeb = fconv*(virial%pv_virial - pv_loc)
    2025           0 :                CALL para_env%sum(stdeb)
    2026           0 :                IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    2027           0 :                   'STRESS| INT 1st Pz*dVxc(rho_admm)   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    2028             :             END IF
    2029             :             ! Stress-tensor Pz_admm*v_xc[rho_admm]
    2030         134 :             IF (use_virial) THEN
    2031         260 :                virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
    2032             :             END IF
    2033             :             !
    2034         134 :             IF (admm_env%do_gapw) THEN
    2035           4 :                CALL get_admm_env(admm_env, sab_aux_fit=sab_aux_fit)
    2036          16 :                IF (debug_forces) fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1)
    2037             :                CALL update_ks_atom(qs_env, mhx(:, 1), mpz(:, 1), forces=.TRUE., tddft=.FALSE., &
    2038             :                                    rho_atom_external=admm_env%admm_gapw_env%local_rho_set%rho_atom_set, &
    2039             :                                    kind_set_external=admm_env%admm_gapw_env%admm_kind_set, &
    2040             :                                    oce_external=admm_env%admm_gapw_env%oce, &
    2041           4 :                                    sab_external=sab_aux_fit)
    2042           4 :                IF (debug_forces) THEN
    2043          16 :                   fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1) - fodeb(1:3)
    2044           4 :                   CALL para_env%sum(fodeb)
    2045           4 :                   IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*Vxc(rho_admm)PAW", fodeb
    2046             :                END IF
    2047             :             END IF
    2048             :             !
    2049         134 :             NULLIFY (rho_g_aux, rho_r_aux, tau_r_aux)
    2050         134 :             CALL qs_rho_get(rho_aux_fit, rho_r=rho_r_aux, rho_g=rho_g_aux, tau_r=tau_r_aux)
    2051             :             ! rhoz_aux
    2052         134 :             NULLIFY (rhoz_g_aux, rhoz_r_aux)
    2053         954 :             ALLOCATE (rhoz_r_aux(nspins), rhoz_g_aux(nspins))
    2054         276 :             DO ispin = 1, nspins
    2055         142 :                CALL auxbas_pw_pool%create_pw(rhoz_r_aux(ispin))
    2056         276 :                CALL auxbas_pw_pool%create_pw(rhoz_g_aux(ispin))
    2057             :             END DO
    2058         276 :             DO ispin = 1, nspins
    2059             :                CALL calculate_rho_elec(ks_env=ks_env, matrix_p=mpz(ispin, 1)%matrix, &
    2060             :                                        rho=rhoz_r_aux(ispin), rho_gspace=rhoz_g_aux(ispin), &
    2061         276 :                                        basis_type=basis_type, task_list_external=task_list)
    2062             :             END DO
    2063             :             !
    2064             :             ! Add ADMM volume contribution to stress tensor
    2065         134 :             IF (use_virial) THEN
    2066             : 
    2067             :                ! Stress tensor volume term: \int v_xc[n_in_admm]*n_z_admm
    2068             :                ! vadmm_rspace already scaled, we need to unscale it!
    2069          40 :                DO ispin = 1, nspins
    2070             :                   exc_aux_fit = exc_aux_fit + pw_integral_ab(rhoz_r_aux(ispin), vadmm_rspace(ispin))/ &
    2071          40 :                                 vadmm_rspace(ispin)%pw_grid%dvol
    2072             :                END DO
    2073             : 
    2074          20 :                IF (debug_stress) THEN
    2075           0 :                   stdeb = -1.0_dp*fconv*exc_aux_fit
    2076           0 :                   IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T43,2(1X,ES19.11))") &
    2077           0 :                      'STRESS| VOL 1st eps_XC[n_in_admm]*n_z_admm', one_third_sum_diag(stdeb), det_3x3(stdeb)
    2078             :                END IF
    2079             : 
    2080             :             END IF
    2081             :             !
    2082         134 :             NULLIFY (v_xc)
    2083             : 
    2084         374 :             IF (use_virial) virial%pv_xc = 0.0_dp
    2085             : 
    2086             :             CALL create_kernel(qs_env=qs_env, &
    2087             :                                vxc=v_xc, &
    2088             :                                vxc_tau=v_xc_tau, &
    2089             :                                rho=rho_aux_fit, &
    2090             :                                rho1_r=rhoz_r_aux, &
    2091             :                                rho1_g=rhoz_g_aux, &
    2092             :                                tau1_r=tau_r_aux, &
    2093             :                                xc_section=xc_section, &
    2094             :                                compute_virial=use_virial, &
    2095         134 :                                virial_xc=virial%pv_xc)
    2096             : 
    2097             :             ! Stress-tensor ADMM-kernel GGA contribution
    2098         134 :             IF (use_virial) THEN
    2099         260 :                virial%pv_exc = virial%pv_exc + virial%pv_xc
    2100         260 :                virial%pv_virial = virial%pv_virial + virial%pv_xc
    2101             :             END IF
    2102             : 
    2103         134 :             IF (debug_stress .AND. use_virial) THEN
    2104           0 :                stdeb = 1.0_dp*fconv*virial%pv_xc
    2105           0 :                CALL para_env%sum(stdeb)
    2106           0 :                IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    2107           0 :                   'STRESS| GGA 2nd Pin_admm*dK*rhoz_admm', one_third_sum_diag(stdeb), det_3x3(stdeb)
    2108             :             END IF
    2109             :             !
    2110         134 :             CALL qs_rho_get(rho_aux_fit, rho_ao_kp=matrix_p)
    2111             :             ! Stress-tensor Pin*dK*rhoz_admm
    2112         134 :             IF (use_virial) THEN
    2113         260 :                virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
    2114             :             END IF
    2115         146 :             IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    2116         134 :             IF (debug_stress .AND. use_virial) stdeb = virial%pv_virial
    2117         276 :             DO ispin = 1, nspins
    2118         142 :                CALL dbcsr_set(mhy(ispin, 1)%matrix, 0.0_dp)
    2119         142 :                CALL pw_scale(v_xc(ispin), v_xc(ispin)%pw_grid%dvol)
    2120             :                CALL integrate_v_rspace(qs_env=qs_env, v_rspace=v_xc(ispin), &
    2121             :                                        hmat=mhy(ispin, 1), pmat=matrix_p(ispin, 1), &
    2122             :                                        calculate_forces=.TRUE., &
    2123         276 :                                        basis_type=basis_type, task_list_external=task_list)
    2124             :             END DO
    2125         134 :             IF (debug_forces) THEN
    2126          16 :                fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    2127           4 :                CALL para_env%sum(fodeb)
    2128           4 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pin*dK*rhoz_admm ", fodeb
    2129             :             END IF
    2130         134 :             IF (debug_stress .AND. use_virial) THEN
    2131           0 :                stdeb = fconv*(virial%pv_virial - pv_loc)
    2132           0 :                CALL para_env%sum(stdeb)
    2133           0 :                IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    2134           0 :                   'STRESS| INT 2nd Pin*dK*rhoz_admm   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    2135             :             END IF
    2136             :             ! Stress-tensor Pin*dK*rhoz_admm
    2137         134 :             IF (use_virial) THEN
    2138         260 :                virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
    2139             :             END IF
    2140         276 :             DO ispin = 1, nspins
    2141         142 :                CALL auxbas_pw_pool%give_back_pw(v_xc(ispin))
    2142         142 :                CALL auxbas_pw_pool%give_back_pw(rhoz_r_aux(ispin))
    2143         276 :                CALL auxbas_pw_pool%give_back_pw(rhoz_g_aux(ispin))
    2144             :             END DO
    2145         134 :             DEALLOCATE (v_xc, rhoz_r_aux, rhoz_g_aux)
    2146             :             !
    2147         134 :             IF (admm_env%do_gapw) THEN
    2148           4 :                CALL local_rho_set_create(local_rhoz_set_admm)
    2149             :                CALL allocate_rho_atom_internals(local_rhoz_set_admm%rho_atom_set, atomic_kind_set, &
    2150           4 :                                                 admm_env%admm_gapw_env%admm_kind_set, dft_control, para_env)
    2151             :                CALL calculate_rho_atom_coeff(qs_env, mpz(:, 1), local_rhoz_set_admm%rho_atom_set, &
    2152             :                                              admm_env%admm_gapw_env%admm_kind_set, &
    2153           4 :                                              admm_env%admm_gapw_env%oce, sab_aux_fit, para_env)
    2154             :                CALL prepare_gapw_den(qs_env, local_rho_set=local_rhoz_set_admm, &
    2155           4 :                                      do_rho0=.FALSE., kind_set_external=admm_env%admm_gapw_env%admm_kind_set)
    2156             :                !compute the potential due to atomic densities
    2157             :                CALL calculate_xc_2nd_deriv_atom(admm_env%admm_gapw_env%local_rho_set%rho_atom_set, &
    2158             :                                                 local_rhoz_set_admm%rho_atom_set, &
    2159             :                                                 qs_env, xc_section, para_env, do_tddft=.FALSE., do_triplet=.FALSE., &
    2160           4 :                                                 kind_set_external=admm_env%admm_gapw_env%admm_kind_set)
    2161             :                !
    2162          16 :                IF (debug_forces) fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1)
    2163             :                CALL update_ks_atom(qs_env, mhy(:, 1), matrix_p(:, 1), forces=.TRUE., tddft=.FALSE., &
    2164             :                                    rho_atom_external=local_rhoz_set_admm%rho_atom_set, &
    2165             :                                    kind_set_external=admm_env%admm_gapw_env%admm_kind_set, &
    2166             :                                    oce_external=admm_env%admm_gapw_env%oce, &
    2167           4 :                                    sab_external=sab_aux_fit)
    2168           4 :                IF (debug_forces) THEN
    2169          16 :                   fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1) - fodeb(1:3)
    2170           4 :                   CALL para_env%sum(fodeb)
    2171           4 :                   IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pin*dK*rhoz_admm[PAW] ", fodeb
    2172             :                END IF
    2173           4 :                CALL local_rho_set_release(local_rhoz_set_admm)
    2174             :             END IF
    2175             :             !
    2176         134 :             nao = admm_env%nao_orb
    2177         134 :             nao_aux = admm_env%nao_aux_fit
    2178         134 :             ALLOCATE (dbwork)
    2179         134 :             CALL dbcsr_create(dbwork, template=matrix_hz(1)%matrix)
    2180         276 :             DO ispin = 1, nspins
    2181             :                CALL cp_dbcsr_sm_fm_multiply(mhy(ispin, 1)%matrix, admm_env%A, &
    2182         142 :                                             admm_env%work_aux_orb, nao)
    2183             :                CALL parallel_gemm('T', 'N', nao, nao, nao_aux, &
    2184             :                                   1.0_dp, admm_env%A, admm_env%work_aux_orb, 0.0_dp, &
    2185         142 :                                   admm_env%work_orb_orb)
    2186         142 :                CALL dbcsr_copy(dbwork, matrix_hz(ispin)%matrix)
    2187         142 :                CALL dbcsr_set(dbwork, 0.0_dp)
    2188         142 :                CALL copy_fm_to_dbcsr(admm_env%work_orb_orb, dbwork, keep_sparsity=.TRUE.)
    2189         276 :                CALL dbcsr_add(matrix_hz(ispin)%matrix, dbwork, 1.0_dp, 1.0_dp)
    2190             :             END DO
    2191         134 :             CALL dbcsr_release(dbwork)
    2192         134 :             DEALLOCATE (dbwork)
    2193         134 :             CALL dbcsr_deallocate_matrix_set(mpz)
    2194             :          END IF ! qs_env%admm_env%aux_exch_func == do_admm_aux_exch_func_none
    2195             :       END IF ! do_admm
    2196             : 
    2197             :       ! -----------------------------------------
    2198             :       !  HFX
    2199             :       ! -----------------------------------------
    2200             : 
    2201             :       ! HFX
    2202         982 :       hfx_section => section_vals_get_subs_vals(xc_section, "HF")
    2203         982 :       CALL section_vals_get(hfx_section, explicit=do_hfx)
    2204         982 :       IF (do_hfx) THEN
    2205         436 :          CALL section_vals_get(hfx_section, n_repetition=n_rep_hf)
    2206         436 :          CPASSERT(n_rep_hf == 1)
    2207             :          CALL section_vals_val_get(hfx_section, "TREAT_LSD_IN_CORE", l_val=hfx_treat_lsd_in_core, &
    2208         436 :                                    i_rep_section=1)
    2209         436 :          mspin = 1
    2210         436 :          IF (hfx_treat_lsd_in_core) mspin = nspins
    2211        1252 :          IF (use_virial) virial%pv_fock_4c = 0.0_dp
    2212             :          !
    2213             :          CALL get_qs_env(qs_env=qs_env, rho=rho, x_data=x_data, &
    2214         436 :                          s_mstruct_changed=s_mstruct_changed)
    2215         436 :          distribute_fock_matrix = .TRUE.
    2216             : 
    2217             :          ! -----------------------------------------
    2218             :          !  HFX-ADMM
    2219             :          ! -----------------------------------------
    2220         436 :          IF (dft_control%do_admm) THEN
    2221         232 :             CALL get_qs_env(qs_env=qs_env, admm_env=admm_env)
    2222         232 :             CALL get_admm_env(admm_env, matrix_s_aux_fit=scrm, rho_aux_fit=rho_aux_fit)
    2223         232 :             CALL qs_rho_get(rho_aux_fit, rho_ao_kp=matrix_p)
    2224         232 :             NULLIFY (mpz, mhz, mpd, mhd)
    2225         232 :             CALL dbcsr_allocate_matrix_set(mpz, nspins, 1)
    2226         232 :             CALL dbcsr_allocate_matrix_set(mhz, nspins, 1)
    2227         232 :             CALL dbcsr_allocate_matrix_set(mpd, nspins, 1)
    2228         232 :             CALL dbcsr_allocate_matrix_set(mhd, nspins, 1)
    2229         484 :             DO ispin = 1, nspins
    2230         252 :                ALLOCATE (mhz(ispin, 1)%matrix, mhd(ispin, 1)%matrix)
    2231         252 :                CALL dbcsr_create(mhz(ispin, 1)%matrix, template=scrm(1)%matrix)
    2232         252 :                CALL dbcsr_create(mhd(ispin, 1)%matrix, template=scrm(1)%matrix)
    2233         252 :                CALL dbcsr_copy(mhz(ispin, 1)%matrix, scrm(1)%matrix)
    2234         252 :                CALL dbcsr_copy(mhd(ispin, 1)%matrix, scrm(1)%matrix)
    2235         252 :                CALL dbcsr_set(mhz(ispin, 1)%matrix, 0.0_dp)
    2236         252 :                CALL dbcsr_set(mhd(ispin, 1)%matrix, 0.0_dp)
    2237         252 :                ALLOCATE (mpz(ispin, 1)%matrix)
    2238         252 :                IF (do_ex) THEN
    2239         148 :                   CALL dbcsr_create(mpz(ispin, 1)%matrix, template=scrm(1)%matrix)
    2240         148 :                   CALL dbcsr_copy(mpz(ispin, 1)%matrix, p_env%p1_admm(ispin)%matrix)
    2241             :                   CALL dbcsr_add(mpz(ispin, 1)%matrix, ex_env%matrix_pe_admm(ispin)%matrix, &
    2242         148 :                                  1.0_dp, 1.0_dp)
    2243             :                ELSE
    2244         104 :                   CALL dbcsr_create(mpz(ispin, 1)%matrix, template=scrm(1)%matrix)
    2245         104 :                   CALL dbcsr_copy(mpz(ispin, 1)%matrix, matrix_pz_admm(ispin)%matrix)
    2246             :                END IF
    2247         484 :                mpd(ispin, 1)%matrix => matrix_p(ispin, 1)%matrix
    2248             :             END DO
    2249             :             !
    2250         232 :             IF (x_data(1, 1)%do_hfx_ri) THEN
    2251             : 
    2252             :                eh1 = 0.0_dp
    2253             :                CALL hfx_ri_update_ks(qs_env, x_data(1, 1)%ri_data, mhz, eh1, rho_ao=mpz, &
    2254             :                                      geometry_did_change=s_mstruct_changed, nspins=nspins, &
    2255           6 :                                      hf_fraction=x_data(1, 1)%general_parameter%fraction)
    2256             : 
    2257             :                eh1 = 0.0_dp
    2258             :                CALL hfx_ri_update_ks(qs_env, x_data(1, 1)%ri_data, mhd, eh1, rho_ao=mpd, &
    2259             :                                      geometry_did_change=s_mstruct_changed, nspins=nspins, &
    2260           6 :                                      hf_fraction=x_data(1, 1)%general_parameter%fraction)
    2261             : 
    2262             :             ELSE
    2263         452 :                DO ispin = 1, mspin
    2264             :                   eh1 = 0.0
    2265             :                   CALL integrate_four_center(qs_env, x_data, mhz, eh1, mpz, hfx_section, &
    2266             :                                              para_env, s_mstruct_changed, 1, distribute_fock_matrix, &
    2267         452 :                                              ispin=ispin)
    2268             :                END DO
    2269         452 :                DO ispin = 1, mspin
    2270             :                   eh1 = 0.0
    2271             :                   CALL integrate_four_center(qs_env, x_data, mhd, eh1, mpd, hfx_section, &
    2272             :                                              para_env, s_mstruct_changed, 1, distribute_fock_matrix, &
    2273         452 :                                              ispin=ispin)
    2274             :                END DO
    2275             :             END IF
    2276             :             !
    2277         232 :             CALL get_qs_env(qs_env, admm_env=admm_env)
    2278         232 :             CPASSERT(ASSOCIATED(admm_env%work_aux_orb))
    2279         232 :             CPASSERT(ASSOCIATED(admm_env%work_orb_orb))
    2280         232 :             nao = admm_env%nao_orb
    2281         232 :             nao_aux = admm_env%nao_aux_fit
    2282         232 :             ALLOCATE (dbwork)
    2283         232 :             CALL dbcsr_create(dbwork, template=matrix_hz(1)%matrix)
    2284         484 :             DO ispin = 1, nspins
    2285             :                CALL cp_dbcsr_sm_fm_multiply(mhz(ispin, 1)%matrix, admm_env%A, &
    2286         252 :                                             admm_env%work_aux_orb, nao)
    2287             :                CALL parallel_gemm('T', 'N', nao, nao, nao_aux, &
    2288             :                                   1.0_dp, admm_env%A, admm_env%work_aux_orb, 0.0_dp, &
    2289         252 :                                   admm_env%work_orb_orb)
    2290         252 :                CALL dbcsr_copy(dbwork, matrix_hz(ispin)%matrix)
    2291         252 :                CALL dbcsr_set(dbwork, 0.0_dp)
    2292         252 :                CALL copy_fm_to_dbcsr(admm_env%work_orb_orb, dbwork, keep_sparsity=.TRUE.)
    2293         484 :                CALL dbcsr_add(matrix_hz(ispin)%matrix, dbwork, 1.0_dp, 1.0_dp)
    2294             :             END DO
    2295         232 :             CALL dbcsr_release(dbwork)
    2296         232 :             DEALLOCATE (dbwork)
    2297             :             ! derivatives Tr (Pz [A(T)H dA/dR])
    2298         250 :             IF (debug_forces) fodeb(1:3) = force(1)%overlap_admm(1:3, 1)
    2299         232 :             IF (ASSOCIATED(mhx) .AND. ASSOCIATED(mhy)) THEN
    2300         276 :                DO ispin = 1, nspins
    2301         142 :                   CALL dbcsr_add(mhd(ispin, 1)%matrix, mhx(ispin, 1)%matrix, 1.0_dp, 1.0_dp)
    2302         276 :                   CALL dbcsr_add(mhz(ispin, 1)%matrix, mhy(ispin, 1)%matrix, 1.0_dp, 1.0_dp)
    2303             :                END DO
    2304             :             END IF
    2305         232 :             CALL qs_rho_get(rho, rho_ao=matrix_pd)
    2306         232 :             CALL admm_projection_derivative(qs_env, mhd(:, 1), mpa)
    2307         232 :             CALL admm_projection_derivative(qs_env, mhz(:, 1), matrix_pd)
    2308         232 :             IF (debug_forces) THEN
    2309          24 :                fodeb(1:3) = force(1)%overlap_admm(1:3, 1) - fodeb(1:3)
    2310           6 :                CALL para_env%sum(fodeb)
    2311           6 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*hfx*S' ", fodeb
    2312             :             END IF
    2313         232 :             CALL dbcsr_deallocate_matrix_set(mpz)
    2314         232 :             CALL dbcsr_deallocate_matrix_set(mhz)
    2315         232 :             CALL dbcsr_deallocate_matrix_set(mhd)
    2316         232 :             IF (ASSOCIATED(mhx) .AND. ASSOCIATED(mhy)) THEN
    2317         134 :                CALL dbcsr_deallocate_matrix_set(mhx)
    2318         134 :                CALL dbcsr_deallocate_matrix_set(mhy)
    2319             :             END IF
    2320         232 :             DEALLOCATE (mpd)
    2321             :          ELSE
    2322             :             ! -----------------------------------------
    2323             :             !  conventional HFX
    2324             :             ! -----------------------------------------
    2325        1672 :             ALLOCATE (mpz(nspins, 1), mhz(nspins, 1))
    2326         428 :             DO ispin = 1, nspins
    2327         224 :                mhz(ispin, 1)%matrix => matrix_hz(ispin)%matrix
    2328         428 :                mpz(ispin, 1)%matrix => mpa(ispin)%matrix
    2329             :             END DO
    2330             : 
    2331         204 :             IF (x_data(1, 1)%do_hfx_ri) THEN
    2332             : 
    2333             :                eh1 = 0.0_dp
    2334             :                CALL hfx_ri_update_ks(qs_env, x_data(1, 1)%ri_data, mhz, eh1, rho_ao=mpz, &
    2335             :                                      geometry_did_change=s_mstruct_changed, nspins=nspins, &
    2336          18 :                                      hf_fraction=x_data(1, 1)%general_parameter%fraction)
    2337             :             ELSE
    2338         372 :                DO ispin = 1, mspin
    2339             :                   eh1 = 0.0
    2340             :                   CALL integrate_four_center(qs_env, x_data, mhz, eh1, mpz, hfx_section, &
    2341             :                                              para_env, s_mstruct_changed, 1, distribute_fock_matrix, &
    2342         372 :                                              ispin=ispin)
    2343             :                END DO
    2344             :             END IF
    2345         204 :             DEALLOCATE (mhz, mpz)
    2346             :          END IF
    2347             : 
    2348             :          ! -----------------------------------------
    2349             :          !  HFX FORCES
    2350             :          ! -----------------------------------------
    2351             : 
    2352         436 :          resp_only = .TRUE.
    2353         490 :          IF (debug_forces) fodeb(1:3) = force(1)%fock_4c(1:3, 1)
    2354         436 :          IF (dft_control%do_admm) THEN
    2355             :             ! -----------------------------------------
    2356             :             !  HFX-ADMM FORCES
    2357             :             ! -----------------------------------------
    2358         232 :             CALL qs_rho_get(rho_aux_fit, rho_ao_kp=matrix_p)
    2359         232 :             NULLIFY (matrix_pza)
    2360         232 :             CALL dbcsr_allocate_matrix_set(matrix_pza, nspins)
    2361         484 :             DO ispin = 1, nspins
    2362         252 :                ALLOCATE (matrix_pza(ispin)%matrix)
    2363         484 :                IF (do_ex) THEN
    2364         148 :                   CALL dbcsr_create(matrix_pza(ispin)%matrix, template=p_env%p1_admm(ispin)%matrix)
    2365         148 :                   CALL dbcsr_copy(matrix_pza(ispin)%matrix, p_env%p1_admm(ispin)%matrix)
    2366             :                   CALL dbcsr_add(matrix_pza(ispin)%matrix, ex_env%matrix_pe_admm(ispin)%matrix, &
    2367         148 :                                  1.0_dp, 1.0_dp)
    2368             :                ELSE
    2369         104 :                   CALL dbcsr_create(matrix_pza(ispin)%matrix, template=matrix_pz_admm(ispin)%matrix)
    2370         104 :                   CALL dbcsr_copy(matrix_pza(ispin)%matrix, matrix_pz_admm(ispin)%matrix)
    2371             :                END IF
    2372             :             END DO
    2373         232 :             IF (x_data(1, 1)%do_hfx_ri) THEN
    2374             : 
    2375             :                CALL hfx_ri_update_forces(qs_env, x_data(1, 1)%ri_data, nspins, &
    2376             :                                          x_data(1, 1)%general_parameter%fraction, &
    2377             :                                          rho_ao=matrix_p, rho_ao_resp=matrix_pza, &
    2378           6 :                                          use_virial=use_virial, resp_only=resp_only)
    2379             :             ELSE
    2380             :                CALL derivatives_four_center(qs_env, matrix_p, matrix_pza, hfx_section, para_env, &
    2381         226 :                                             1, use_virial, resp_only=resp_only)
    2382             :             END IF
    2383         232 :             CALL dbcsr_deallocate_matrix_set(matrix_pza)
    2384             :          ELSE
    2385             :             ! -----------------------------------------
    2386             :             !  conventional HFX FORCES
    2387             :             ! -----------------------------------------
    2388         204 :             CALL qs_rho_get(rho, rho_ao_kp=matrix_p)
    2389         204 :             IF (x_data(1, 1)%do_hfx_ri) THEN
    2390             : 
    2391             :                CALL hfx_ri_update_forces(qs_env, x_data(1, 1)%ri_data, nspins, &
    2392             :                                          x_data(1, 1)%general_parameter%fraction, &
    2393             :                                          rho_ao=matrix_p, rho_ao_resp=mpa, &
    2394          18 :                                          use_virial=use_virial, resp_only=resp_only)
    2395             :             ELSE
    2396             :                CALL derivatives_four_center(qs_env, matrix_p, mpa, hfx_section, para_env, &
    2397         186 :                                             1, use_virial, resp_only=resp_only)
    2398             :             END IF
    2399             :          END IF ! do_admm
    2400             : 
    2401         436 :          IF (use_virial) THEN
    2402         884 :             virial%pv_exx = virial%pv_exx - virial%pv_fock_4c
    2403         884 :             virial%pv_virial = virial%pv_virial - virial%pv_fock_4c
    2404          68 :             virial%pv_calculate = .FALSE.
    2405             :          END IF
    2406             : 
    2407         436 :          IF (debug_forces) THEN
    2408          72 :             fodeb(1:3) = force(1)%fock_4c(1:3, 1) - fodeb(1:3)
    2409          18 :             CALL para_env%sum(fodeb)
    2410          18 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*hfx ", fodeb
    2411             :          END IF
    2412         436 :          IF (debug_stress .AND. use_virial) THEN
    2413           0 :             stdeb = -1.0_dp*fconv*virial%pv_fock_4c
    2414           0 :             CALL para_env%sum(stdeb)
    2415           0 :             IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    2416           0 :                'STRESS| Pz*hfx  ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    2417             :          END IF
    2418             :       END IF ! do_hfx
    2419             : 
    2420             :       ! Stress-tensor volume contributions
    2421             :       ! These need to be applied at the end of qs_force
    2422         982 :       IF (use_virial) THEN
    2423             :          ! Adding mixed Hartree energy twice, due to symmetry
    2424         168 :          zehartree = zehartree + 2.0_dp*ehartree
    2425         168 :          zexc = zexc + exc
    2426             :          ! ADMM contribution handled differently in qs_force
    2427         168 :          IF (dft_control%do_admm) THEN
    2428          38 :             zexc_aux_fit = zexc_aux_fit + exc_aux_fit
    2429             :          END IF
    2430             :       END IF
    2431             : 
    2432             :       ! Overlap matrix
    2433             :       ! H(drho+dz) + Wz
    2434             :       ! If ground-state density matrix solved by diagonalization, then use this
    2435         982 :       IF (dft_control%qs_control%do_ls_scf) THEN
    2436             :          ! Ground-state density has been calculated by LS
    2437          10 :          eps_filter = dft_control%qs_control%eps_filter_matrix
    2438          10 :          CALL calculate_whz_ao_matrix(qs_env, matrix_hz, matrix_wz, eps_filter)
    2439             :       ELSE
    2440         972 :          IF (do_ex) THEN
    2441         550 :             matrix_wz => p_env%w1
    2442             :          END IF
    2443         972 :          focc = 1.0_dp
    2444         972 :          IF (nspins == 1) focc = 2.0_dp
    2445         972 :          CALL get_qs_env(qs_env, mos=mos)
    2446        2040 :          DO ispin = 1, nspins
    2447        1068 :             CALL get_mo_set(mo_set=mos(ispin), homo=nocc)
    2448             :             CALL calculate_whz_matrix(mos(ispin)%mo_coeff, matrix_hz(ispin)%matrix, &
    2449        2040 :                                       matrix_wz(ispin)%matrix, focc, nocc)
    2450             :          END DO
    2451             :       END IF
    2452         982 :       IF (nspins == 2) THEN
    2453             :          CALL dbcsr_add(matrix_wz(1)%matrix, matrix_wz(2)%matrix, &
    2454          96 :                         alpha_scalar=1.0_dp, beta_scalar=1.0_dp)
    2455             :       END IF
    2456             : 
    2457        1150 :       IF (debug_forces) fodeb(1:3) = force(1)%overlap(1:3, 1)
    2458         982 :       IF (debug_stress .AND. use_virial) stdeb = virial%pv_overlap
    2459         982 :       NULLIFY (scrm)
    2460             :       CALL build_overlap_matrix(ks_env, matrix_s=scrm, &
    2461             :                                 matrix_name="OVERLAP MATRIX", &
    2462             :                                 basis_type_a="ORB", basis_type_b="ORB", &
    2463             :                                 sab_nl=sab_orb, calculate_forces=.TRUE., &
    2464         982 :                                 matrix_p=matrix_wz(1)%matrix)
    2465             : 
    2466         982 :       IF (SIZE(matrix_wz, 1) == 2) THEN
    2467             :          CALL dbcsr_add(matrix_wz(1)%matrix, matrix_wz(2)%matrix, &
    2468          96 :                         alpha_scalar=1.0_dp, beta_scalar=-1.0_dp)
    2469             :       END IF
    2470             : 
    2471         982 :       IF (debug_forces) THEN
    2472         224 :          fodeb(1:3) = force(1)%overlap(1:3, 1) - fodeb(1:3)
    2473          56 :          CALL para_env%sum(fodeb)
    2474          56 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Wz*dS ", fodeb
    2475             :       END IF
    2476         982 :       IF (debug_stress .AND. use_virial) THEN
    2477           0 :          stdeb = fconv*(virial%pv_overlap - stdeb)
    2478           0 :          CALL para_env%sum(stdeb)
    2479           0 :          IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    2480           0 :             'STRESS| WHz   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    2481             :       END IF
    2482         982 :       CALL dbcsr_deallocate_matrix_set(scrm)
    2483             : 
    2484         982 :       IF (debug_forces) THEN
    2485          56 :          CALL total_qs_force(ftot2, force, atomic_kind_set)
    2486         224 :          fodeb(1:3) = ftot2(1:3, 1) - ftot1(1:3, 1)
    2487          56 :          CALL para_env%sum(fodeb)
    2488          56 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Response Force", fodeb
    2489         224 :          fodeb(1:3) = ftot2(1:3, 1)
    2490          56 :          CALL para_env%sum(fodeb)
    2491          56 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Total Force ", fodeb
    2492          56 :          DEALLOCATE (ftot1, ftot2, ftot3)
    2493             :       END IF
    2494             : 
    2495         982 :       IF (do_ex) THEN
    2496         550 :          CALL dbcsr_deallocate_matrix_set(mpa)
    2497         550 :          CALL dbcsr_deallocate_matrix_set(matrix_hz)
    2498             :       END IF
    2499             : 
    2500         982 :       CALL timestop(handle)
    2501             : 
    2502        3928 :    END SUBROUTINE response_force
    2503             : 
    2504             : ! **************************************************************************************************
    2505             : !> \brief ...
    2506             : !> \param qs_env ...
    2507             : !> \param p_env ...
    2508             : !> \param matrix_hz ...
    2509             : !> \param ex_env ...
    2510             : !> \param debug ...
    2511             : ! **************************************************************************************************
    2512          16 :    SUBROUTINE response_force_xtb(qs_env, p_env, matrix_hz, ex_env, debug)
    2513             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2514             :       TYPE(qs_p_env_type)                                :: p_env
    2515             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_hz
    2516             :       TYPE(excited_energy_type), OPTIONAL, POINTER       :: ex_env
    2517             :       LOGICAL, INTENT(IN), OPTIONAL                      :: debug
    2518             : 
    2519             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'response_force_xtb'
    2520             : 
    2521             :       INTEGER                                            :: atom_a, handle, iatom, ikind, iounit, &
    2522             :                                                             is, ispin, na, natom, natorb, nimages, &
    2523             :                                                             nkind, nocc, ns, nsgf, nspins
    2524             :       INTEGER, DIMENSION(25)                             :: lao
    2525             :       INTEGER, DIMENSION(5)                              :: occ
    2526             :       LOGICAL                                            :: debug_forces, do_ex, use_virial
    2527             :       REAL(KIND=dp)                                      :: focc
    2528          16 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: mcharge, mcharge1
    2529          16 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :)        :: aocg, aocg1, charges, charges1, ftot1, &
    2530          16 :                                                             ftot2
    2531             :       REAL(KIND=dp), DIMENSION(3)                        :: fodeb
    2532          16 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
    2533             :       TYPE(cp_logger_type), POINTER                      :: logger
    2534          16 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_pz, matrix_wz, mpa, p_matrix, scrm
    2535          16 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: matrix_p, matrix_s
    2536             :       TYPE(dbcsr_type), POINTER                          :: s_matrix
    2537             :       TYPE(dft_control_type), POINTER                    :: dft_control
    2538          16 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
    2539             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    2540             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    2541          16 :          POINTER                                         :: sab_orb
    2542          16 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    2543          16 :       TYPE(qs_force_type), DIMENSION(:), POINTER         :: force
    2544          16 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    2545             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
    2546             :       TYPE(qs_rho_type), POINTER                         :: rho
    2547             :       TYPE(xtb_atom_type), POINTER                       :: xtb_kind
    2548             : 
    2549          16 :       CALL timeset(routineN, handle)
    2550             : 
    2551          16 :       IF (PRESENT(debug)) THEN
    2552          16 :          debug_forces = debug
    2553             :       ELSE
    2554           0 :          debug_forces = .FALSE.
    2555             :       END IF
    2556             : 
    2557          16 :       logger => cp_get_default_logger()
    2558          16 :       IF (logger%para_env%is_source()) THEN
    2559           8 :          iounit = cp_logger_get_default_unit_nr(logger, local=.TRUE.)
    2560             :       ELSE
    2561             :          iounit = -1
    2562             :       END IF
    2563             : 
    2564          16 :       do_ex = .FALSE.
    2565          16 :       IF (PRESENT(ex_env)) do_ex = .TRUE.
    2566             : 
    2567          16 :       NULLIFY (ks_env, sab_orb)
    2568             :       CALL get_qs_env(qs_env=qs_env, ks_env=ks_env, dft_control=dft_control, &
    2569          16 :                       sab_orb=sab_orb)
    2570          16 :       CALL get_qs_env(qs_env=qs_env, para_env=para_env, force=force)
    2571          16 :       nspins = dft_control%nspins
    2572             : 
    2573          16 :       IF (debug_forces) THEN
    2574           0 :          CALL get_qs_env(qs_env, natom=natom, atomic_kind_set=atomic_kind_set)
    2575           0 :          ALLOCATE (ftot1(3, natom))
    2576           0 :          ALLOCATE (ftot2(3, natom))
    2577           0 :          CALL total_qs_force(ftot1, force, atomic_kind_set)
    2578             :       END IF
    2579             : 
    2580          16 :       matrix_pz => p_env%p1
    2581          16 :       NULLIFY (mpa)
    2582          16 :       IF (do_ex) THEN
    2583          16 :          CALL dbcsr_allocate_matrix_set(mpa, nspins)
    2584          32 :          DO ispin = 1, nspins
    2585          16 :             ALLOCATE (mpa(ispin)%matrix)
    2586          16 :             CALL dbcsr_create(mpa(ispin)%matrix, template=matrix_pz(ispin)%matrix)
    2587          16 :             CALL dbcsr_copy(mpa(ispin)%matrix, matrix_pz(ispin)%matrix)
    2588          16 :             CALL dbcsr_add(mpa(ispin)%matrix, ex_env%matrix_pe(ispin)%matrix, 1.0_dp, 1.0_dp)
    2589          32 :             CALL dbcsr_set(matrix_hz(ispin)%matrix, 0.0_dp)
    2590             :          END DO
    2591             :       ELSE
    2592           0 :          mpa => p_env%p1
    2593             :       END IF
    2594             :       !
    2595             :       ! START OF Tr(P+Z)Hcore
    2596             :       !
    2597          16 :       IF (nspins == 2) THEN
    2598           0 :          CALL dbcsr_add(mpa(1)%matrix, mpa(2)%matrix, 1.0_dp, 1.0_dp)
    2599             :       END IF
    2600             :       ! Hcore  matrix
    2601          16 :       IF (debug_forces) fodeb(1:3) = force(1)%all_potential(1:3, 1)
    2602          16 :       CALL xtb_hab_force(qs_env, mpa(1)%matrix)
    2603          16 :       IF (debug_forces) THEN
    2604           0 :          fodeb(1:3) = force(1)%all_potential(1:3, 1) - fodeb(1:3)
    2605           0 :          CALL para_env%sum(fodeb)
    2606           0 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*dHcore  ", fodeb
    2607             :       END IF
    2608          16 :       IF (nspins == 2) THEN
    2609           0 :          CALL dbcsr_add(mpa(1)%matrix, mpa(2)%matrix, 1.0_dp, -1.0_dp)
    2610             :       END IF
    2611             :       !
    2612             :       ! END OF Tr(P+Z)Hcore
    2613             :       !
    2614          16 :       use_virial = .FALSE.
    2615          16 :       nimages = 1
    2616             :       !
    2617             :       ! Hartree potential of response density
    2618             :       !
    2619          16 :       IF (dft_control%qs_control%xtb_control%coulomb_interaction) THEN
    2620             :          ! Mulliken charges
    2621          14 :          CALL get_qs_env(qs_env, rho=rho, particle_set=particle_set, matrix_s_kp=matrix_s)
    2622          14 :          natom = SIZE(particle_set)
    2623          14 :          CALL qs_rho_get(rho, rho_ao_kp=matrix_p)
    2624          70 :          ALLOCATE (mcharge(natom), charges(natom, 5))
    2625          42 :          ALLOCATE (mcharge1(natom), charges1(natom, 5))
    2626        1254 :          charges = 0.0_dp
    2627        1254 :          charges1 = 0.0_dp
    2628          14 :          CALL get_qs_env(qs_env, atomic_kind_set=atomic_kind_set, qs_kind_set=qs_kind_set)
    2629          14 :          nkind = SIZE(atomic_kind_set)
    2630          14 :          CALL get_qs_kind_set(qs_kind_set, maxsgf=nsgf)
    2631          56 :          ALLOCATE (aocg(nsgf, natom))
    2632        1184 :          aocg = 0.0_dp
    2633          42 :          ALLOCATE (aocg1(nsgf, natom))
    2634        1184 :          aocg1 = 0.0_dp
    2635          14 :          p_matrix => matrix_p(:, 1)
    2636          14 :          s_matrix => matrix_s(1, 1)%matrix
    2637          14 :          CALL ao_charges(p_matrix, s_matrix, aocg, para_env)
    2638          14 :          CALL ao_charges(mpa, s_matrix, aocg1, para_env)
    2639          48 :          DO ikind = 1, nkind
    2640          34 :             CALL get_atomic_kind(atomic_kind_set(ikind), natom=na)
    2641          34 :             CALL get_qs_kind(qs_kind_set(ikind), xtb_parameter=xtb_kind)
    2642          34 :             CALL get_xtb_atom_param(xtb_kind, natorb=natorb, lao=lao, occupation=occ)
    2643         316 :             DO iatom = 1, na
    2644         234 :                atom_a = atomic_kind_set(ikind)%atom_list(iatom)
    2645        1404 :                charges(atom_a, :) = REAL(occ(:), KIND=dp)
    2646         900 :                DO is = 1, natorb
    2647         632 :                   ns = lao(is) + 1
    2648         632 :                   charges(atom_a, ns) = charges(atom_a, ns) - aocg(is, atom_a)
    2649         866 :                   charges1(atom_a, ns) = charges1(atom_a, ns) - aocg1(is, atom_a)
    2650             :                END DO
    2651             :             END DO
    2652             :          END DO
    2653          14 :          DEALLOCATE (aocg, aocg1)
    2654         248 :          DO iatom = 1, natom
    2655        1404 :             mcharge(iatom) = SUM(charges(iatom, :))
    2656        1418 :             mcharge1(iatom) = SUM(charges1(iatom, :))
    2657             :          END DO
    2658             :          ! Coulomb Kernel
    2659          14 :          CALL xtb_coulomb_hessian(qs_env, matrix_hz, charges1, mcharge1, mcharge)
    2660             :          CALL calc_xtb_ehess_force(qs_env, p_matrix, mpa, charges, mcharge, charges1, &
    2661          14 :                                    mcharge1, debug_forces)
    2662             :          !
    2663          28 :          DEALLOCATE (charges, mcharge, charges1, mcharge1)
    2664             :       END IF
    2665             :       ! Overlap matrix
    2666             :       ! H(drho+dz) + Wz
    2667          16 :       matrix_wz => p_env%w1
    2668          16 :       focc = 0.5_dp
    2669          16 :       IF (nspins == 1) focc = 1.0_dp
    2670          16 :       CALL get_qs_env(qs_env, mos=mos)
    2671          32 :       DO ispin = 1, nspins
    2672          16 :          CALL get_mo_set(mo_set=mos(ispin), homo=nocc)
    2673             :          CALL calculate_whz_matrix(mos(ispin)%mo_coeff, matrix_hz(ispin)%matrix, &
    2674          32 :                                    matrix_wz(ispin)%matrix, focc, nocc)
    2675             :       END DO
    2676          16 :       IF (nspins == 2) THEN
    2677             :          CALL dbcsr_add(matrix_wz(1)%matrix, matrix_wz(2)%matrix, &
    2678           0 :                         alpha_scalar=1.0_dp, beta_scalar=1.0_dp)
    2679             :       END IF
    2680          16 :       IF (debug_forces) fodeb(1:3) = force(1)%overlap(1:3, 1)
    2681          16 :       NULLIFY (scrm)
    2682             :       CALL build_overlap_matrix(ks_env, matrix_s=scrm, &
    2683             :                                 matrix_name="OVERLAP MATRIX", &
    2684             :                                 basis_type_a="ORB", basis_type_b="ORB", &
    2685             :                                 sab_nl=sab_orb, calculate_forces=.TRUE., &
    2686          16 :                                 matrix_p=matrix_wz(1)%matrix)
    2687          16 :       IF (debug_forces) THEN
    2688           0 :          fodeb(1:3) = force(1)%overlap(1:3, 1) - fodeb(1:3)
    2689           0 :          CALL para_env%sum(fodeb)
    2690           0 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Wz*dS ", fodeb
    2691             :       END IF
    2692          16 :       CALL dbcsr_deallocate_matrix_set(scrm)
    2693             : 
    2694          16 :       IF (debug_forces) THEN
    2695           0 :          CALL total_qs_force(ftot2, force, atomic_kind_set)
    2696           0 :          fodeb(1:3) = ftot2(1:3, 1) - ftot1(1:3, 1)
    2697           0 :          CALL para_env%sum(fodeb)
    2698           0 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T30,3F16.8)") "DEBUG:: Response Force", fodeb
    2699           0 :          DEALLOCATE (ftot1, ftot2)
    2700             :       END IF
    2701             : 
    2702          16 :       IF (do_ex) THEN
    2703          16 :          CALL dbcsr_deallocate_matrix_set(mpa)
    2704             :       END IF
    2705             : 
    2706          16 :       CALL timestop(handle)
    2707             : 
    2708          32 :    END SUBROUTINE response_force_xtb
    2709             : 
    2710             : ! **************************************************************************************************
    2711             : !> \brief Win = focc*(P*(H[P_out - P_in] + H[Z] )*P)
    2712             : !>        Langrange multiplier matrix with response and perturbation (Harris) kernel matrices
    2713             : !>
    2714             : !> \param qs_env ...
    2715             : !> \param matrix_hz ...
    2716             : !> \param matrix_whz ...
    2717             : !> \param eps_filter ...
    2718             : !> \param
    2719             : !> \par History
    2720             : !>       2020.2 created [Fabian Belleflamme]
    2721             : !> \author Fabian Belleflamme
    2722             : ! **************************************************************************************************
    2723          10 :    SUBROUTINE calculate_whz_ao_matrix(qs_env, matrix_hz, matrix_whz, eps_filter)
    2724             : 
    2725             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2726             :       TYPE(dbcsr_p_type), DIMENSION(:), INTENT(IN), &
    2727             :          POINTER                                         :: matrix_hz
    2728             :       TYPE(dbcsr_p_type), DIMENSION(:), INTENT(INOUT), &
    2729             :          POINTER                                         :: matrix_whz
    2730             :       REAL(KIND=dp), INTENT(IN)                          :: eps_filter
    2731             : 
    2732             :       CHARACTER(len=*), PARAMETER :: routineN = 'calculate_whz_ao_matrix'
    2733             : 
    2734             :       INTEGER                                            :: handle, ispin, nspins
    2735             :       REAL(KIND=dp)                                      :: scaling
    2736          10 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: rho_ao
    2737             :       TYPE(dbcsr_type)                                   :: matrix_tmp
    2738             :       TYPE(dft_control_type), POINTER                    :: dft_control
    2739             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    2740             :       TYPE(qs_rho_type), POINTER                         :: rho
    2741             : 
    2742          10 :       CALL timeset(routineN, handle)
    2743             : 
    2744          10 :       CPASSERT(ASSOCIATED(qs_env))
    2745          10 :       CPASSERT(ASSOCIATED(matrix_hz))
    2746          10 :       CPASSERT(ASSOCIATED(matrix_whz))
    2747             : 
    2748             :       CALL get_qs_env(qs_env=qs_env, &
    2749             :                       dft_control=dft_control, &
    2750             :                       rho=rho, &
    2751          10 :                       para_env=para_env)
    2752          10 :       nspins = dft_control%nspins
    2753          10 :       CALL qs_rho_get(rho, rho_ao=rho_ao)
    2754             : 
    2755             :       ! init temp matrix
    2756             :       CALL dbcsr_create(matrix_tmp, template=matrix_hz(1)%matrix, &
    2757          10 :                         matrix_type=dbcsr_type_no_symmetry)
    2758             : 
    2759             :       !Spin factors simplify to
    2760          10 :       scaling = 1.0_dp
    2761          10 :       IF (nspins == 1) scaling = 0.5_dp
    2762             : 
    2763             :       ! Operation in MO-solver :
    2764             :       ! Whz = focc*(CC^T*Hz*CC^T)
    2765             :       ! focc = 2.0_dp Closed-shell
    2766             :       ! focc = 1.0_dp Open-shell
    2767             : 
    2768             :       ! Operation in AO-solver :
    2769             :       ! Whz = (scaling*P)*(focc*Hz)*(scaling*P)
    2770             :       ! focc see above
    2771             :       ! scaling = 0.5_dp Closed-shell (P = 2*CC^T), WHz = (0.5*P)*(2*Hz)*(0.5*P)
    2772             :       ! scaling = 1.0_dp Open-shell, WHz = P*Hz*P
    2773             : 
    2774             :       ! Spin factors from Hz and P simplify to
    2775             :       scaling = 1.0_dp
    2776          10 :       IF (nspins == 1) scaling = 0.5_dp
    2777             : 
    2778          20 :       DO ispin = 1, nspins
    2779             : 
    2780             :          ! tmp = H*CC^T
    2781             :          CALL dbcsr_multiply("N", "N", scaling, matrix_hz(ispin)%matrix, rho_ao(ispin)%matrix, &
    2782          10 :                              0.0_dp, matrix_tmp, filter_eps=eps_filter)
    2783             :          ! WHz = CC^T*tmp
    2784             :          ! WHz = Wz + (scaling*P)*(focc*Hz)*(scaling*P)
    2785             :          ! WHz = Wz + scaling*(P*Hz*P)
    2786             :          CALL dbcsr_multiply("N", "N", 1.0_dp, rho_ao(ispin)%matrix, matrix_tmp, &
    2787             :                              1.0_dp, matrix_whz(ispin)%matrix, filter_eps=eps_filter, &
    2788          20 :                              retain_sparsity=.TRUE.)
    2789             : 
    2790             :       END DO
    2791             : 
    2792          10 :       CALL dbcsr_release(matrix_tmp)
    2793             : 
    2794          10 :       CALL timestop(handle)
    2795             : 
    2796          10 :    END SUBROUTINE
    2797             : 
    2798             : ! **************************************************************************************************
    2799             : 
    2800             : END MODULE response_solver

Generated by: LCOV version 1.15