LCOV - code coverage report
Current view: top level - src - rpa_gw.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:b8e0b09) Lines: 2301 2450 93.9 %
Date: 2024-08-31 06:31:37 Functions: 50 50 100.0 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2024 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief Routines for GW, continuous development [Jan Wilhelm]
      10             : !> \par History
      11             : !>      03.2019 created [Frederick Stein]
      12             : !>      12.2022 added periodic GW routines [Jan Wilhelm]
      13             : ! **************************************************************************************************
      14             : MODULE rpa_gw
      15             :    USE ai_overlap,                      ONLY: overlap
      16             :    USE atomic_kind_types,               ONLY: atomic_kind_type
      17             :    USE basis_set_types,                 ONLY: gto_basis_set_p_type,&
      18             :                                               gto_basis_set_type
      19             :    USE cell_types,                      ONLY: cell_type,&
      20             :                                               get_cell
      21             :    USE core_ppnl,                       ONLY: build_core_ppnl
      22             :    USE cp_cfm_basic_linalg,             ONLY: cp_cfm_scale,&
      23             :                                               cp_cfm_scale_and_add,&
      24             :                                               cp_cfm_scale_and_add_fm,&
      25             :                                               cp_cfm_transpose
      26             :    USE cp_cfm_diag,                     ONLY: cp_cfm_geeig_canon
      27             :    USE cp_cfm_types,                    ONLY: cp_cfm_create,&
      28             :                                               cp_cfm_get_info,&
      29             :                                               cp_cfm_release,&
      30             :                                               cp_cfm_set_all,&
      31             :                                               cp_cfm_to_fm,&
      32             :                                               cp_cfm_type,&
      33             :                                               cp_fm_to_cfm
      34             :    USE cp_control_types,                ONLY: dft_control_type
      35             :    USE cp_dbcsr_api,                    ONLY: &
      36             :         dbcsr_add_on_diag, dbcsr_copy, dbcsr_create, dbcsr_desymmetrize, dbcsr_filter, &
      37             :         dbcsr_get_info, dbcsr_init_p, dbcsr_iterator_blocks_left, dbcsr_iterator_next_block, &
      38             :         dbcsr_iterator_start, dbcsr_iterator_stop, dbcsr_iterator_type, dbcsr_multiply, &
      39             :         dbcsr_p_type, dbcsr_release, dbcsr_release_p, dbcsr_scale, dbcsr_set, dbcsr_type, &
      40             :         dbcsr_type_antisymmetric, dbcsr_type_no_symmetry
      41             :    USE cp_dbcsr_cp2k_link,              ONLY: cp_dbcsr_alloc_block_from_nbl
      42             :    USE cp_dbcsr_operations,             ONLY: copy_dbcsr_to_fm,&
      43             :                                               copy_fm_to_dbcsr,&
      44             :                                               dbcsr_allocate_matrix_set,&
      45             :                                               dbcsr_deallocate_matrix_set
      46             :    USE cp_files,                        ONLY: close_file,&
      47             :                                               open_file
      48             :    USE cp_fm_basic_linalg,              ONLY: cp_fm_scale_and_add,&
      49             :                                               cp_fm_upper_to_full
      50             :    USE cp_fm_cholesky,                  ONLY: cp_fm_cholesky_decompose,&
      51             :                                               cp_fm_cholesky_invert
      52             :    USE cp_fm_diag,                      ONLY: cp_fm_syevd
      53             :    USE cp_fm_struct,                    ONLY: cp_fm_struct_create,&
      54             :                                               cp_fm_struct_release,&
      55             :                                               cp_fm_struct_type
      56             :    USE cp_fm_types,                     ONLY: &
      57             :         cp_fm_copy_general, cp_fm_create, cp_fm_get_diag, cp_fm_get_info, cp_fm_release, &
      58             :         cp_fm_set_all, cp_fm_to_fm, cp_fm_to_fm_submat, cp_fm_type
      59             :    USE cp_log_handling,                 ONLY: cp_get_default_logger,&
      60             :                                               cp_logger_get_default_unit_nr,&
      61             :                                               cp_logger_type
      62             :    USE cp_output_handling,              ONLY: cp_print_key_finished_output,&
      63             :                                               cp_print_key_unit_nr
      64             :    USE cp_realspace_grid_cube,          ONLY: cp_pw_to_cube
      65             :    USE dbt_api,                         ONLY: &
      66             :         dbt_batched_contract_finalize, dbt_batched_contract_init, dbt_clear, dbt_contract, &
      67             :         dbt_copy, dbt_copy_matrix_to_tensor, dbt_copy_tensor_to_matrix, dbt_create, dbt_destroy, &
      68             :         dbt_get_block, dbt_get_info, dbt_iterator_blocks_left, dbt_iterator_next_block, &
      69             :         dbt_iterator_start, dbt_iterator_stop, dbt_iterator_type, dbt_nblks_total, &
      70             :         dbt_pgrid_create, dbt_pgrid_destroy, dbt_pgrid_type, dbt_type
      71             :    USE hfx_types,                       ONLY: block_ind_type,&
      72             :                                               dealloc_containers,&
      73             :                                               hfx_compression_type
      74             :    USE input_constants,                 ONLY: gw_pade_approx,&
      75             :                                               gw_two_pole_model,&
      76             :                                               ri_rpa_g0w0_crossing_bisection,&
      77             :                                               ri_rpa_g0w0_crossing_newton,&
      78             :                                               ri_rpa_g0w0_crossing_z_shot,&
      79             :                                               soc_none
      80             :    USE input_section_types,             ONLY: section_vals_get_subs_vals,&
      81             :                                               section_vals_type
      82             :    USE kinds,                           ONLY: default_path_length,&
      83             :                                               dp
      84             :    USE kpoint_methods,                  ONLY: kpoint_density_matrices,&
      85             :                                               kpoint_density_transform,&
      86             :                                               kpoint_init_cell_index
      87             :    USE kpoint_types,                    ONLY: get_kpoint_info,&
      88             :                                               kpoint_create,&
      89             :                                               kpoint_release,&
      90             :                                               kpoint_sym_create,&
      91             :                                               kpoint_type
      92             :    USE machine,                         ONLY: m_walltime
      93             :    USE mathconstants,                   ONLY: fourpi,&
      94             :                                               gaussi,&
      95             :                                               pi,&
      96             :                                               twopi,&
      97             :                                               z_one,&
      98             :                                               z_zero
      99             :    USE message_passing,                 ONLY: mp_para_env_type
     100             :    USE mp2_types,                       ONLY: mp2_type,&
     101             :                                               one_dim_real_array,&
     102             :                                               two_dim_int_array
     103             :    USE parallel_gemm_api,               ONLY: parallel_gemm
     104             :    USE particle_list_types,             ONLY: particle_list_type
     105             :    USE particle_types,                  ONLY: particle_type
     106             :    USE physcon,                         ONLY: evolt
     107             :    USE pw_env_types,                    ONLY: pw_env_get,&
     108             :                                               pw_env_type
     109             :    USE pw_methods,                      ONLY: pw_axpy,&
     110             :                                               pw_copy,&
     111             :                                               pw_scale,&
     112             :                                               pw_zero
     113             :    USE pw_pool_types,                   ONLY: pw_pool_type
     114             :    USE pw_types,                        ONLY: pw_c1d_gs_type,&
     115             :                                               pw_r3d_rs_type
     116             :    USE qs_band_structure,               ONLY: calculate_kp_orbitals
     117             :    USE qs_collocate_density,            ONLY: calculate_rho_elec
     118             :    USE qs_environment_types,            ONLY: get_qs_env,&
     119             :                                               qs_env_release,&
     120             :                                               qs_environment_type
     121             :    USE qs_force_types,                  ONLY: qs_force_type
     122             :    USE qs_gamma2kp,                     ONLY: create_kp_from_gamma
     123             :    USE qs_integral_utils,               ONLY: basis_set_list_setup
     124             :    USE qs_kind_types,                   ONLY: get_qs_kind,&
     125             :                                               qs_kind_type
     126             :    USE qs_ks_types,                     ONLY: qs_ks_env_type
     127             :    USE qs_mo_types,                     ONLY: get_mo_set
     128             :    USE qs_moments,                      ONLY: build_berry_moment_matrix
     129             :    USE qs_neighbor_list_types,          ONLY: neighbor_list_set_p_type,&
     130             :                                               release_neighbor_list_sets
     131             :    USE qs_neighbor_lists,               ONLY: setup_neighbor_list
     132             :    USE qs_overlap,                      ONLY: build_overlap_matrix_simple
     133             :    USE qs_scf_types,                    ONLY: qs_scf_env_type
     134             :    USE qs_subsys_types,                 ONLY: qs_subsys_get,&
     135             :                                               qs_subsys_type
     136             :    USE qs_tensors,                      ONLY: decompress_tensor
     137             :    USE qs_tensors_types,                ONLY: create_2c_tensor
     138             :    USE rpa_gw_ic,                       ONLY: apply_ic_corr
     139             :    USE rpa_gw_im_time_util,             ONLY: get_tensor_3c_overl_int_gw
     140             :    USE rpa_gw_kpoints_util,             ONLY: get_mat_cell_T_from_mat_gamma,&
     141             :                                               mat_kp_from_mat_gamma,&
     142             :                                               real_space_to_kpoint_transform_rpa
     143             :    USE rpa_im_time,                     ONLY: compute_periodic_dm
     144             :    USE scf_control_types,               ONLY: scf_control_type
     145             :    USE util,                            ONLY: sort
     146             :    USE virial_types,                    ONLY: virial_type
     147             : #include "./base/base_uses.f90"
     148             : 
     149             :    IMPLICIT NONE
     150             : 
     151             :    PRIVATE
     152             : 
     153             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'rpa_gw'
     154             : 
     155             :    PUBLIC :: allocate_matrices_gw_im_time, allocate_matrices_gw, compute_GW_self_energy, compute_QP_energies, &
     156             :              deallocate_matrices_gw_im_time, deallocate_matrices_gw, compute_minus_vxc_kpoints, trafo_to_mo_and_kpoints, &
     157             :              get_fermi_level_offset, compute_W_cubic_GW, continuation_pade
     158             : 
     159             : CONTAINS
     160             : 
     161             : ! **************************************************************************************************
     162             : !> \brief ...
     163             : !> \param gw_corr_lev_occ ...
     164             : !> \param gw_corr_lev_virt ...
     165             : !> \param homo ...
     166             : !> \param nmo ...
     167             : !> \param num_integ_points ...
     168             : !> \param unit_nr ...
     169             : !> \param RI_blk_sizes ...
     170             : !> \param do_ic_model ...
     171             : !> \param para_env ...
     172             : !> \param fm_mat_W ...
     173             : !> \param fm_mat_Q ...
     174             : !> \param mo_coeff ...
     175             : !> \param t_3c_overl_int_ao_mo ...
     176             : !> \param t_3c_O_mo_compressed ...
     177             : !> \param t_3c_O_mo_ind ...
     178             : !> \param t_3c_overl_int_gw_RI ...
     179             : !> \param t_3c_overl_int_gw_AO ...
     180             : !> \param starts_array_mc ...
     181             : !> \param ends_array_mc ...
     182             : !> \param t_3c_overl_nnP_ic ...
     183             : !> \param t_3c_overl_nnP_ic_reflected ...
     184             : !> \param matrix_s ...
     185             : !> \param mat_W ...
     186             : !> \param t_3c_overl_int ...
     187             : !> \param t_3c_O_compressed ...
     188             : !> \param t_3c_O_ind ...
     189             : !> \param qs_env ...
     190             : ! **************************************************************************************************
     191          92 :    SUBROUTINE allocate_matrices_gw_im_time(gw_corr_lev_occ, gw_corr_lev_virt, homo, nmo, &
     192             :                                            num_integ_points, unit_nr, &
     193             :                                            RI_blk_sizes, do_ic_model, &
     194             :                                            para_env, fm_mat_W, fm_mat_Q, &
     195          46 :                                            mo_coeff, &
     196             :                                            t_3c_overl_int_ao_mo, t_3c_O_mo_compressed, t_3c_O_mo_ind, &
     197             :                                            t_3c_overl_int_gw_RI, t_3c_overl_int_gw_AO, &
     198          46 :                                            starts_array_mc, ends_array_mc, &
     199             :                                            t_3c_overl_nnP_ic, t_3c_overl_nnP_ic_reflected, &
     200          46 :                                            matrix_s, mat_W, t_3c_overl_int, &
     201          46 :                                            t_3c_O_compressed, t_3c_O_ind, &
     202             :                                            qs_env)
     203             : 
     204             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: gw_corr_lev_occ, gw_corr_lev_virt, homo
     205             :       INTEGER, INTENT(IN)                                :: nmo, num_integ_points, unit_nr
     206             :       INTEGER, DIMENSION(:), POINTER                     :: RI_blk_sizes
     207             :       LOGICAL, INTENT(IN)                                :: do_ic_model
     208             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     209             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:), &
     210             :          INTENT(OUT)                                     :: fm_mat_W
     211             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mat_Q
     212             :       TYPE(cp_fm_type), DIMENSION(:), INTENT(IN)         :: mo_coeff
     213             :       TYPE(dbt_type)                                     :: t_3c_overl_int_ao_mo
     214             :       TYPE(hfx_compression_type), ALLOCATABLE, &
     215             :          DIMENSION(:)                                    :: t_3c_O_mo_compressed
     216             :       TYPE(two_dim_int_array), ALLOCATABLE, &
     217             :          DIMENSION(:), INTENT(OUT)                       :: t_3c_O_mo_ind
     218             :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:), &
     219             :          INTENT(INOUT)                                   :: t_3c_overl_int_gw_RI, &
     220             :                                                             t_3c_overl_int_gw_AO
     221             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: starts_array_mc, ends_array_mc
     222             :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:), &
     223             :          INTENT(INOUT)                                   :: t_3c_overl_nnP_ic, &
     224             :                                                             t_3c_overl_nnP_ic_reflected
     225             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_s
     226             :       TYPE(dbcsr_type), POINTER                          :: mat_W
     227             :       TYPE(dbt_type), DIMENSION(:, :)                    :: t_3c_overl_int
     228             :       TYPE(hfx_compression_type), DIMENSION(:, :, :)     :: t_3c_O_compressed
     229             :       TYPE(block_ind_type), DIMENSION(:, :, :)           :: t_3c_O_ind
     230             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     231             : 
     232             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'allocate_matrices_gw_im_time'
     233             : 
     234             :       INTEGER                                            :: handle, jquad, nspins
     235             :       LOGICAL                                            :: my_open_shell
     236         414 :       TYPE(dbt_type)                                     :: t_3c_overl_int_ao_mo_beta
     237             : 
     238          46 :       CALL timeset(routineN, handle)
     239             : 
     240          46 :       nspins = SIZE(homo)
     241          46 :       my_open_shell = (nspins == 2)
     242             : 
     243           0 :       ALLOCATE (t_3c_O_mo_ind(nspins), t_3c_overl_int_gw_AO(nspins), t_3c_overl_int_gw_RI(nspins), &
     244       99604 :                 t_3c_overl_nnP_ic(nspins), t_3c_overl_nnP_ic_reflected(nspins), t_3c_O_mo_compressed(nspins))
     245             :       CALL get_tensor_3c_overl_int_gw(t_3c_overl_int, &
     246             :                                       t_3c_O_compressed, t_3c_O_ind, &
     247             :                                       t_3c_overl_int_ao_mo, t_3c_O_mo_compressed(1), t_3c_O_mo_ind(1)%array, &
     248             :                                       t_3c_overl_int_gw_RI(1), t_3c_overl_int_gw_AO(1), &
     249             :                                       starts_array_mc, ends_array_mc, &
     250             :                                       mo_coeff(1), matrix_s, &
     251             :                                       gw_corr_lev_occ(1), gw_corr_lev_virt(1), homo(1), nmo, &
     252             :                                       para_env, &
     253             :                                       do_ic_model, &
     254             :                                       t_3c_overl_nnP_ic(1), t_3c_overl_nnP_ic_reflected(1), &
     255          46 :                                       qs_env, unit_nr, do_alpha=.TRUE.)
     256             : 
     257          46 :       IF (my_open_shell) THEN
     258             : 
     259             :          CALL get_tensor_3c_overl_int_gw(t_3c_overl_int, &
     260             :                                          t_3c_O_compressed, t_3c_O_ind, &
     261             :                                          t_3c_overl_int_ao_mo_beta, t_3c_O_mo_compressed(2), t_3c_O_mo_ind(2)%array, &
     262             :                                          t_3c_overl_int_gw_RI(2), t_3c_overl_int_gw_AO(2), &
     263             :                                          starts_array_mc, ends_array_mc, &
     264             :                                          mo_coeff(2), matrix_s, &
     265             :                                          gw_corr_lev_occ(2), gw_corr_lev_virt(2), homo(2), nmo, &
     266             :                                          para_env, &
     267             :                                          do_ic_model, &
     268             :                                          t_3c_overl_nnP_ic(2), t_3c_overl_nnP_ic_reflected(2), &
     269          10 :                                          qs_env, unit_nr, do_alpha=.FALSE.)
     270             : 
     271          10 :          IF (.NOT. qs_env%mp2_env%ri_g0w0%do_kpoints_Sigma) THEN
     272           6 :             CALL dbt_destroy(t_3c_overl_int_ao_mo_beta)
     273             :          END IF
     274             : 
     275             :       END IF
     276             : 
     277         616 :       ALLOCATE (fm_mat_W(num_integ_points))
     278             : 
     279         524 :       DO jquad = 1, num_integ_points
     280             : 
     281         478 :          CALL cp_fm_create(fm_mat_W(jquad), fm_mat_Q%matrix_struct)
     282         478 :          CALL cp_fm_to_fm(fm_mat_Q, fm_mat_W(jquad))
     283         524 :          CALL cp_fm_set_all(fm_mat_W(jquad), 0.0_dp)
     284             : 
     285             :       END DO
     286             : 
     287          46 :       NULLIFY (mat_W)
     288          46 :       CALL dbcsr_init_p(mat_W)
     289             :       CALL dbcsr_create(matrix=mat_W, &
     290             :                         template=matrix_s(1)%matrix, &
     291             :                         matrix_type=dbcsr_type_no_symmetry, &
     292             :                         row_blk_size=RI_blk_sizes, &
     293          46 :                         col_blk_size=RI_blk_sizes)
     294             : 
     295          46 :       CALL timestop(handle)
     296             : 
     297          92 :    END SUBROUTINE allocate_matrices_gw_im_time
     298             : 
     299             : ! **************************************************************************************************
     300             : !> \brief ...
     301             : !> \param vec_Sigma_c_gw ...
     302             : !> \param color_rpa_group ...
     303             : !> \param dimen_nm_gw ...
     304             : !> \param gw_corr_lev_occ ...
     305             : !> \param gw_corr_lev_virt ...
     306             : !> \param homo ...
     307             : !> \param nmo ...
     308             : !> \param num_integ_group ...
     309             : !> \param num_integ_points ...
     310             : !> \param unit_nr ...
     311             : !> \param gw_corr_lev_tot ...
     312             : !> \param num_fit_points ...
     313             : !> \param omega_max_fit ...
     314             : !> \param do_minimax_quad ...
     315             : !> \param do_periodic ...
     316             : !> \param do_ri_Sigma_x ...
     317             : !> \param my_do_gw ...
     318             : !> \param first_cycle_periodic_correction ...
     319             : !> \param a_scaling ...
     320             : !> \param Eigenval ...
     321             : !> \param tj ...
     322             : !> \param vec_omega_fit_gw ...
     323             : !> \param vec_Sigma_x_gw ...
     324             : !> \param delta_corr ...
     325             : !> \param Eigenval_last ...
     326             : !> \param Eigenval_scf ...
     327             : !> \param vec_W_gw ...
     328             : !> \param fm_mat_S_gw ...
     329             : !> \param fm_mat_S_gw_work ...
     330             : !> \param para_env ...
     331             : !> \param mp2_env ...
     332             : !> \param kpoints ...
     333             : !> \param nkp ...
     334             : !> \param nkp_self_energy ...
     335             : !> \param do_kpoints_cubic_RPA ...
     336             : !> \param do_kpoints_from_Gamma ...
     337             : ! **************************************************************************************************
     338          92 :    SUBROUTINE allocate_matrices_gw(vec_Sigma_c_gw, color_rpa_group, dimen_nm_gw, &
     339          92 :                                    gw_corr_lev_occ, gw_corr_lev_virt, homo, &
     340             :                                    nmo, num_integ_group, num_integ_points, unit_nr, &
     341             :                                    gw_corr_lev_tot, num_fit_points, omega_max_fit, &
     342             :                                    do_minimax_quad, do_periodic, do_ri_Sigma_x, my_do_gw, &
     343             :                                    first_cycle_periodic_correction, &
     344             :                                    a_scaling, Eigenval, tj, vec_omega_fit_gw, vec_Sigma_x_gw, &
     345             :                                    delta_corr, Eigenval_last, Eigenval_scf, vec_W_gw, &
     346          92 :                                    fm_mat_S_gw, fm_mat_S_gw_work, &
     347             :                                    para_env, mp2_env, kpoints, nkp, nkp_self_energy, &
     348             :                                    do_kpoints_cubic_RPA, do_kpoints_from_Gamma)
     349             : 
     350             :       COMPLEX(KIND=dp), ALLOCATABLE, &
     351             :          DIMENSION(:, :, :, :), INTENT(OUT)              :: vec_Sigma_c_gw
     352             :       INTEGER, INTENT(IN)                                :: color_rpa_group, dimen_nm_gw
     353             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: gw_corr_lev_occ, gw_corr_lev_virt, homo
     354             :       INTEGER, INTENT(IN)                                :: nmo, num_integ_group, num_integ_points, &
     355             :                                                             unit_nr
     356             :       INTEGER, INTENT(INOUT)                             :: gw_corr_lev_tot, num_fit_points
     357             :       REAL(KIND=dp)                                      :: omega_max_fit
     358             :       LOGICAL, INTENT(IN)                                :: do_minimax_quad, do_periodic, &
     359             :                                                             do_ri_Sigma_x, my_do_gw
     360             :       LOGICAL, INTENT(OUT) :: first_cycle_periodic_correction
     361             :       REAL(KIND=dp), INTENT(IN)                          :: a_scaling
     362             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :), &
     363             :          INTENT(INOUT)                                   :: Eigenval
     364             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
     365             :          INTENT(IN)                                      :: tj
     366             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
     367             :          INTENT(OUT)                                     :: vec_omega_fit_gw
     368             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :), &
     369             :          INTENT(OUT)                                     :: vec_Sigma_x_gw
     370             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
     371             :          INTENT(INOUT)                                   :: delta_corr
     372             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :), &
     373             :          INTENT(OUT)                                     :: Eigenval_last, Eigenval_scf
     374             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :), &
     375             :          INTENT(OUT)                                     :: vec_W_gw
     376             :       TYPE(cp_fm_type), DIMENSION(:), INTENT(IN)         :: fm_mat_S_gw
     377             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:), &
     378             :          INTENT(INOUT)                                   :: fm_mat_S_gw_work
     379             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     380             :       TYPE(mp2_type)                                     :: mp2_env
     381             :       TYPE(kpoint_type), POINTER                         :: kpoints
     382             :       INTEGER, INTENT(OUT)                               :: nkp, nkp_self_energy
     383             :       LOGICAL, INTENT(IN)                                :: do_kpoints_cubic_RPA, &
     384             :                                                             do_kpoints_from_Gamma
     385             : 
     386             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'allocate_matrices_gw'
     387             : 
     388             :       INTEGER                                            :: handle, iquad, ispin, jquad, nspins
     389             :       LOGICAL                                            :: my_open_shell
     390             :       REAL(KIND=dp)                                      :: omega
     391          92 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: vec_omega_gw
     392             : 
     393          92 :       CALL timeset(routineN, handle)
     394             : 
     395          92 :       nspins = SIZE(Eigenval, 3)
     396          92 :       my_open_shell = (nspins == 2)
     397             : 
     398          92 :       gw_corr_lev_tot = gw_corr_lev_occ(1) + gw_corr_lev_virt(1)
     399             : 
     400             :       ! fill the omega_frequency vector
     401         276 :       ALLOCATE (vec_omega_gw(num_integ_points))
     402        2710 :       vec_omega_gw = 0.0_dp
     403             : 
     404        2710 :       DO jquad = 1, num_integ_points
     405        2618 :          IF (do_minimax_quad) THEN
     406         478 :             omega = tj(jquad)
     407             :          ELSE
     408        2140 :             omega = a_scaling/TAN(tj(jquad))
     409             :          END IF
     410        2710 :          vec_omega_gw(jquad) = omega
     411             :       END DO
     412             : 
     413             :       ! determine number of fit points in the interval [0,w_max] for virt, or [-w_max,0] for occ
     414          92 :       num_fit_points = 0
     415             : 
     416        2710 :       DO jquad = 1, num_integ_points
     417        2710 :          IF (vec_omega_gw(jquad) < omega_max_fit) THEN
     418        2060 :             num_fit_points = num_fit_points + 1
     419             :          END IF
     420             :       END DO
     421             : 
     422          92 :       IF (mp2_env%ri_g0w0%analytic_continuation == gw_pade_approx) THEN
     423          58 :          IF (mp2_env%ri_g0w0%nparam_pade > num_fit_points) THEN
     424          36 :             IF (unit_nr > 0) WRITE (UNIT=unit_nr, FMT="(T3,A)") &
     425          18 :                "Pade approximation: more parameters than data points. Reset # of parameters."
     426          36 :             mp2_env%ri_g0w0%nparam_pade = num_fit_points
     427          36 :             IF (unit_nr > 0) WRITE (UNIT=unit_nr, FMT="(T3,A,T74,I7)") &
     428          18 :                "Number of pade parameters:", mp2_env%ri_g0w0%nparam_pade
     429             :          END IF
     430             :       END IF
     431             : 
     432             :       ! create new arrays containing omega values at which we calculate vec_Sigma_c_gw
     433         276 :       ALLOCATE (vec_omega_fit_gw(num_fit_points))
     434             : 
     435             :       ! fill the omega vector with frequencies, where we calculate the self-energy
     436          92 :       iquad = 0
     437        2710 :       DO jquad = 1, num_integ_points
     438        2710 :          IF (vec_omega_gw(jquad) < omega_max_fit) THEN
     439        2060 :             iquad = iquad + 1
     440        2060 :             vec_omega_fit_gw(iquad) = vec_omega_gw(jquad)
     441             :          END IF
     442             :       END DO
     443             : 
     444          92 :       DEALLOCATE (vec_omega_gw)
     445             : 
     446          92 :       IF (do_kpoints_cubic_RPA) THEN
     447           0 :          CALL get_kpoint_info(kpoints, nkp=nkp)
     448           0 :          IF (mp2_env%ri_g0w0%do_gamma_only_sigma) THEN
     449           0 :             nkp_self_energy = 1
     450             :          ELSE
     451           0 :             nkp_self_energy = nkp
     452             :          END IF
     453          92 :       ELSE IF (do_kpoints_from_Gamma) THEN
     454          18 :          CALL get_kpoint_info(kpoints, nkp=nkp)
     455          18 :          IF (mp2_env%ri_g0w0%do_kpoints_Sigma) THEN
     456          18 :             nkp_self_energy = mp2_env%ri_g0w0%nkp_self_energy
     457             :          ELSE
     458           0 :             nkp_self_energy = 1
     459             :          END IF
     460             :       ELSE
     461          74 :          nkp = 1
     462          74 :          nkp_self_energy = 1
     463             :       END IF
     464         552 :       ALLOCATE (vec_Sigma_c_gw(gw_corr_lev_tot, num_fit_points, nkp_self_energy, nspins))
     465       36406 :       vec_Sigma_c_gw = z_zero
     466             : 
     467         460 :       ALLOCATE (Eigenval_scf(nmo, nkp_self_energy, nspins))
     468        5782 :       Eigenval_scf(:, :, :) = Eigenval(:, :, :)
     469             : 
     470         368 :       ALLOCATE (Eigenval_last(nmo, nkp_self_energy, nspins))
     471        5782 :       Eigenval_last(:, :, :) = Eigenval(:, :, :)
     472             : 
     473          92 :       IF (do_periodic) THEN
     474             : 
     475          12 :          ALLOCATE (delta_corr(1 + homo(1) - gw_corr_lev_occ(1):homo(1) + gw_corr_lev_virt(1)))
     476          48 :          delta_corr(:) = 0.0_dp
     477             : 
     478           4 :          first_cycle_periodic_correction = .TRUE.
     479             : 
     480             :       END IF
     481             : 
     482         368 :       ALLOCATE (vec_Sigma_x_gw(nmo, nkp_self_energy, nspins))
     483        5782 :       vec_Sigma_x_gw = 0.0_dp
     484             : 
     485          92 :       IF (my_do_gw) THEN
     486             : 
     487             :          ! minimax grids not implemented for O(N^4) GW
     488          46 :          CPASSERT(.NOT. do_minimax_quad)
     489             : 
     490             :          ! create temporary matrix to store B*([1+Q(iw')]^-1-1), has the same size as B
     491         188 :          ALLOCATE (fm_mat_S_gw_work(nspins))
     492          96 :          DO ispin = 1, nspins
     493          50 :             CALL cp_fm_create(fm_mat_S_gw_work(ispin), fm_mat_S_gw(ispin)%matrix_struct)
     494          96 :             CALL cp_fm_set_all(matrix=fm_mat_S_gw_work(ispin), alpha=0.0_dp)
     495             :          END DO
     496             : 
     497         184 :          ALLOCATE (vec_W_gw(dimen_nm_gw, nspins))
     498       16968 :          vec_W_gw = 0.0_dp
     499             : 
     500             :          ! in case we do RI for Sigma_x, we calculate Sigma_x right here
     501          46 :          IF (do_ri_Sigma_x) THEN
     502             : 
     503             :             CALL get_vec_sigma_x(vec_Sigma_x_gw(:, :, 1), nmo, fm_mat_S_gw(1), para_env, num_integ_group, color_rpa_group, &
     504          28 :                                  homo(1), gw_corr_lev_occ(1), mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 1, 1))
     505             : 
     506          28 :             IF (my_open_shell) THEN
     507             :                CALL get_vec_sigma_x(vec_Sigma_x_gw(:, :, 2), nmo, fm_mat_S_gw(2), para_env, num_integ_group, &
     508             :                                     color_rpa_group, homo(2), gw_corr_lev_occ(2), &
     509           0 :                                     mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 2, 1))
     510             :             END IF
     511             : 
     512             :          END IF
     513             : 
     514             :       END IF
     515             : 
     516          92 :       CALL timestop(handle)
     517             : 
     518          92 :    END SUBROUTINE allocate_matrices_gw
     519             : 
     520             : ! **************************************************************************************************
     521             : !> \brief ...
     522             : !> \param vec_Sigma_x_gw ...
     523             : !> \param nmo ...
     524             : !> \param fm_mat_S_gw ...
     525             : !> \param para_env ...
     526             : !> \param num_integ_group ...
     527             : !> \param color_rpa_group ...
     528             : !> \param homo ...
     529             : !> \param gw_corr_lev_occ ...
     530             : !> \param vec_Sigma_x_minus_vxc_gw11 ...
     531             : ! **************************************************************************************************
     532          28 :    SUBROUTINE get_vec_sigma_x(vec_Sigma_x_gw, nmo, fm_mat_S_gw, para_env, num_integ_group, color_rpa_group, homo, &
     533          28 :                               gw_corr_lev_occ, vec_Sigma_x_minus_vxc_gw11)
     534             : 
     535             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(INOUT)      :: vec_Sigma_x_gw
     536             :       INTEGER, INTENT(IN)                                :: nmo
     537             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mat_S_gw
     538             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     539             :       INTEGER, INTENT(IN)                                :: num_integ_group, color_rpa_group, homo, &
     540             :                                                             gw_corr_lev_occ
     541             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: vec_Sigma_x_minus_vxc_gw11
     542             : 
     543             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'get_vec_sigma_x'
     544             : 
     545             :       INTEGER                                            :: handle, iiB, m_global, n_global, &
     546             :                                                             ncol_local, nm_global, nrow_local
     547          28 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices
     548             : 
     549          28 :       CALL timeset(routineN, handle)
     550             : 
     551             :       CALL cp_fm_get_info(matrix=fm_mat_S_gw, &
     552             :                           nrow_local=nrow_local, &
     553             :                           ncol_local=ncol_local, &
     554          28 :                           col_indices=col_indices)
     555             : 
     556          28 :       CALL para_env%sync()
     557             : 
     558             :       ! loop over (nm) index
     559        9872 :       DO iiB = 1, ncol_local
     560             : 
     561             :          ! this is needed for correct values within parallelization
     562        9844 :          IF (MODULO(1, num_integ_group) /= color_rpa_group) CYCLE
     563             : 
     564        8234 :          nm_global = col_indices(iiB)
     565             : 
     566             :          ! transform the index nm to n and m, formulae copied from Mauro's code
     567        8234 :          n_global = MAX(1, nm_global - 1)/nmo + 1
     568        8234 :          m_global = nm_global - (n_global - 1)*nmo
     569        8234 :          n_global = n_global + homo - gw_corr_lev_occ
     570             : 
     571        8262 :          IF (m_global <= homo) THEN
     572             : 
     573             :             ! Sigma_x_n = -sum_m^occ sum_P (B_(nm)^P)^2
     574             :             vec_Sigma_x_gw(n_global, 1) = &
     575             :                vec_Sigma_x_gw(n_global, 1) - &
     576       72480 :                DOT_PRODUCT(fm_mat_S_gw%local_data(:, iiB), fm_mat_S_gw%local_data(:, iiB))
     577             : 
     578             :          END IF
     579             : 
     580             :       END DO
     581             : 
     582          28 :       CALL para_env%sync()
     583             : 
     584        1372 :       CALL para_env%sum(vec_Sigma_x_gw)
     585             : 
     586             :       vec_Sigma_x_minus_vxc_gw11(:) = &
     587             :          vec_Sigma_x_minus_vxc_gw11(:) + &
     588         672 :          vec_Sigma_x_gw(:, 1)
     589             : 
     590          28 :       CALL timestop(handle)
     591             : 
     592          28 :    END SUBROUTINE get_vec_sigma_x
     593             : 
     594             : ! **************************************************************************************************
     595             : !> \brief ...
     596             : !> \param fm_mat_S_gw_work ...
     597             : !> \param vec_W_gw ...
     598             : !> \param vec_Sigma_c_gw ...
     599             : !> \param vec_omega_fit_gw ...
     600             : !> \param vec_Sigma_x_minus_vxc_gw ...
     601             : !> \param Eigenval_last ...
     602             : !> \param Eigenval_scf ...
     603             : !> \param do_periodic ...
     604             : !> \param matrix_berry_re_mo_mo ...
     605             : !> \param matrix_berry_im_mo_mo ...
     606             : !> \param kpoints ...
     607             : !> \param vec_Sigma_x_gw ...
     608             : !> \param my_do_gw ...
     609             : ! **************************************************************************************************
     610          92 :    SUBROUTINE deallocate_matrices_gw(fm_mat_S_gw_work, vec_W_gw, vec_Sigma_c_gw, vec_omega_fit_gw, &
     611             :                                      vec_Sigma_x_minus_vxc_gw, Eigenval_last, &
     612             :                                      Eigenval_scf, do_periodic, matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, kpoints, &
     613             :                                      vec_Sigma_x_gw, my_do_gw)
     614             : 
     615             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:), &
     616             :          INTENT(INOUT)                                   :: fm_mat_S_gw_work
     617             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :), &
     618             :          INTENT(INOUT)                                   :: vec_W_gw
     619             :       COMPLEX(KIND=dp), ALLOCATABLE, &
     620             :          DIMENSION(:, :, :, :), INTENT(INOUT)            :: vec_Sigma_c_gw
     621             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
     622             :          INTENT(INOUT)                                   :: vec_omega_fit_gw
     623             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :), &
     624             :          INTENT(INOUT)                                   :: vec_Sigma_x_minus_vxc_gw, Eigenval_last, &
     625             :                                                             Eigenval_scf
     626             :       LOGICAL, INTENT(IN)                                :: do_periodic
     627             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_berry_re_mo_mo, &
     628             :                                                             matrix_berry_im_mo_mo
     629             :       TYPE(kpoint_type), POINTER                         :: kpoints
     630             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :), &
     631             :          INTENT(INOUT)                                   :: vec_Sigma_x_gw
     632             :       LOGICAL, INTENT(IN)                                :: my_do_gw
     633             : 
     634             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'deallocate_matrices_gw'
     635             : 
     636             :       INTEGER                                            :: handle, nspins
     637             :       LOGICAL                                            :: my_open_shell
     638             : 
     639          92 :       CALL timeset(routineN, handle)
     640             : 
     641          92 :       nspins = SIZE(Eigenval_last, 3)
     642          92 :       my_open_shell = (nspins == 2)
     643             : 
     644          92 :       IF (my_do_gw) THEN
     645          46 :          CALL cp_fm_release(fm_mat_S_gw_work)
     646          46 :          DEALLOCATE (vec_Sigma_x_minus_vxc_gw)
     647          46 :          DEALLOCATE (vec_W_gw)
     648             :       END IF
     649             : 
     650          92 :       DEALLOCATE (vec_Sigma_c_gw)
     651          92 :       DEALLOCATE (vec_Sigma_x_gw)
     652          92 :       DEALLOCATE (vec_omega_fit_gw)
     653          92 :       DEALLOCATE (Eigenval_last)
     654          92 :       DEALLOCATE (Eigenval_scf)
     655             : 
     656          92 :       IF (do_periodic) THEN
     657           4 :          CALL dbcsr_deallocate_matrix_set(matrix_berry_re_mo_mo)
     658           4 :          CALL dbcsr_deallocate_matrix_set(matrix_berry_im_mo_mo)
     659           4 :          CALL kpoint_release(kpoints)
     660             :       END IF
     661             : 
     662          92 :       CALL timestop(handle)
     663             : 
     664          92 :    END SUBROUTINE deallocate_matrices_gw
     665             : 
     666             : ! **************************************************************************************************
     667             : !> \brief ...
     668             : !> \param weights_cos_tf_w_to_t ...
     669             : !> \param weights_sin_tf_t_to_w ...
     670             : !> \param do_ic_model ...
     671             : !> \param do_kpoints_cubic_RPA ...
     672             : !> \param fm_mat_W ...
     673             : !> \param t_3c_overl_int_ao_mo ...
     674             : !> \param t_3c_O_mo_compressed ...
     675             : !> \param t_3c_O_mo_ind ...
     676             : !> \param t_3c_overl_int_gw_RI ...
     677             : !> \param t_3c_overl_int_gw_AO ...
     678             : !> \param t_3c_overl_nnP_ic ...
     679             : !> \param t_3c_overl_nnP_ic_reflected ...
     680             : !> \param mat_W ...
     681             : !> \param qs_env ...
     682             : ! **************************************************************************************************
     683          46 :    SUBROUTINE deallocate_matrices_gw_im_time(weights_cos_tf_w_to_t, weights_sin_tf_t_to_w, do_ic_model, do_kpoints_cubic_RPA, &
     684             :                                              fm_mat_W, &
     685             :                                              t_3c_overl_int_ao_mo, t_3c_O_mo_compressed, t_3c_O_mo_ind, &
     686             :                                              t_3c_overl_int_gw_RI, t_3c_overl_int_gw_AO, &
     687             :                                              t_3c_overl_nnP_ic, t_3c_overl_nnP_ic_reflected, mat_W, &
     688             :                                              qs_env)
     689             : 
     690             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :), &
     691             :          INTENT(INOUT)                                   :: weights_cos_tf_w_to_t, &
     692             :                                                             weights_sin_tf_t_to_w
     693             :       LOGICAL, INTENT(IN)                                :: do_ic_model, do_kpoints_cubic_RPA
     694             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:), &
     695             :          INTENT(INOUT)                                   :: fm_mat_W
     696             :       TYPE(dbt_type), INTENT(INOUT)                      :: t_3c_overl_int_ao_mo
     697             :       TYPE(hfx_compression_type), ALLOCATABLE, &
     698             :          DIMENSION(:)                                    :: t_3c_O_mo_compressed
     699             :       TYPE(two_dim_int_array), ALLOCATABLE, DIMENSION(:) :: t_3c_O_mo_ind
     700             :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:), &
     701             :          INTENT(INOUT)                                   :: t_3c_overl_int_gw_RI, &
     702             :                                                             t_3c_overl_int_gw_AO, &
     703             :                                                             t_3c_overl_nnP_ic, &
     704             :                                                             t_3c_overl_nnP_ic_reflected
     705             :       TYPE(dbcsr_type), POINTER                          :: mat_W
     706             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     707             : 
     708             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'deallocate_matrices_gw_im_time'
     709             : 
     710             :       INTEGER                                            :: handle, ispin, nspins, unused
     711             :       LOGICAL                                            :: my_open_shell
     712             : 
     713          46 :       CALL timeset(routineN, handle)
     714             : 
     715          46 :       nspins = SIZE(t_3c_overl_int_gw_RI)
     716          46 :       my_open_shell = (nspins == 2)
     717             : 
     718          46 :       IF (ALLOCATED(weights_cos_tf_w_to_t)) DEALLOCATE (weights_cos_tf_w_to_t)
     719          46 :       IF (ALLOCATED(weights_sin_tf_t_to_w)) DEALLOCATE (weights_sin_tf_t_to_w)
     720             : 
     721          46 :       IF (.NOT. do_kpoints_cubic_RPA) THEN
     722          46 :          CALL cp_fm_release(fm_mat_W)
     723          46 :          CALL dbcsr_release_P(mat_W)
     724             :       END IF
     725             : 
     726         102 :       DO ispin = 1, nspins
     727          56 :          CALL dbt_destroy(t_3c_overl_int_gw_RI(ispin))
     728         102 :          CALL dbt_destroy(t_3c_overl_int_gw_AO(ispin))
     729             :       END DO
     730         158 :       DEALLOCATE (t_3c_overl_int_gw_AO, t_3c_overl_int_gw_RI)
     731          46 :       IF (do_ic_model) THEN
     732           4 :          DO ispin = 1, nspins
     733           2 :             CALL dbt_destroy(t_3c_overl_nnP_ic(ispin))
     734           4 :             CALL dbt_destroy(t_3c_overl_nnP_ic_reflected(ispin))
     735             :          END DO
     736           6 :          DEALLOCATE (t_3c_overl_nnP_ic, t_3c_overl_nnP_ic_reflected)
     737             :       END IF
     738             : 
     739          46 :       IF (.NOT. qs_env%mp2_env%ri_g0w0%do_kpoints_Sigma) THEN
     740          62 :          DO ispin = 1, nspins
     741          34 :             DEALLOCATE (t_3c_O_mo_ind(ispin)%array)
     742          62 :             CALL dealloc_containers(t_3c_O_mo_compressed(ispin), unused)
     743             :          END DO
     744          62 :          DEALLOCATE (t_3c_O_mo_ind, t_3c_O_mo_compressed)
     745             : 
     746          28 :          CALL dbt_destroy(t_3c_overl_int_ao_mo)
     747             :       END IF
     748             : 
     749          46 :       IF (qs_env%mp2_env%ri_g0w0%do_kpoints_Sigma) THEN
     750          40 :          DO ispin = 1, nspins
     751          22 :             CALL dbcsr_release(qs_env%mp2_env%ri_g0w0%matrix_sigma_x_minus_vxc(ispin)%matrix)
     752          22 :             DEALLOCATE (qs_env%mp2_env%ri_g0w0%matrix_sigma_x_minus_vxc(ispin)%matrix)
     753             : 
     754          22 :             CALL dbcsr_release(qs_env%mp2_env%ri_g0w0%matrix_ks(ispin)%matrix)
     755          40 :             DEALLOCATE (qs_env%mp2_env%ri_g0w0%matrix_ks(ispin)%matrix)
     756             :          END DO
     757          18 :          DEALLOCATE (qs_env%mp2_env%ri_g0w0%matrix_sigma_x_minus_vxc)
     758          18 :          DEALLOCATE (qs_env%mp2_env%ri_g0w0%matrix_ks)
     759             :       END IF
     760             : 
     761          46 :       CALL timestop(handle)
     762             : 
     763          46 :    END SUBROUTINE deallocate_matrices_gw_im_time
     764             : 
     765             : ! **************************************************************************************************
     766             : !> \brief ...
     767             : !> \param vec_Sigma_c_gw ...
     768             : !> \param dimen_nm_gw ...
     769             : !> \param dimen_RI ...
     770             : !> \param gw_corr_lev_occ ...
     771             : !> \param gw_corr_lev_virt ...
     772             : !> \param homo ...
     773             : !> \param jquad ...
     774             : !> \param nmo ...
     775             : !> \param num_fit_points ...
     776             : !> \param do_im_time ...
     777             : !> \param do_periodic ...
     778             : !> \param first_cycle_periodic_correction ...
     779             : !> \param fermi_level_offset ...
     780             : !> \param omega ...
     781             : !> \param Eigenval ...
     782             : !> \param delta_corr ...
     783             : !> \param vec_omega_fit_gw ...
     784             : !> \param vec_W_gw ...
     785             : !> \param wj ...
     786             : !> \param fm_mat_Q ...
     787             : !> \param fm_mat_R_gw ...
     788             : !> \param fm_mat_S_gw ...
     789             : !> \param fm_mat_S_gw_work ...
     790             : !> \param mo_coeff ...
     791             : !> \param para_env ...
     792             : !> \param para_env_RPA ...
     793             : !> \param matrix_berry_im_mo_mo ...
     794             : !> \param matrix_berry_re_mo_mo ...
     795             : !> \param kpoints ...
     796             : !> \param qs_env ...
     797             : !> \param mp2_env ...
     798             : ! **************************************************************************************************
     799       36050 :    SUBROUTINE compute_GW_self_energy(vec_Sigma_c_gw, dimen_nm_gw, dimen_RI, gw_corr_lev_occ, &
     800        7210 :                                      gw_corr_lev_virt, homo, jquad, nmo, num_fit_points, &
     801             :                                      do_im_time, do_periodic, &
     802             :                                      first_cycle_periodic_correction, fermi_level_offset, &
     803        7210 :                                      omega, Eigenval, delta_corr, vec_omega_fit_gw, vec_W_gw, wj, &
     804        7210 :                                      fm_mat_Q, fm_mat_R_gw, fm_mat_S_gw, &
     805        7210 :                                      fm_mat_S_gw_work, mo_coeff, para_env, &
     806             :                                      para_env_RPA, matrix_berry_im_mo_mo, matrix_berry_re_mo_mo, &
     807             :                                      kpoints, qs_env, mp2_env)
     808             : 
     809             :       COMPLEX(KIND=dp), ALLOCATABLE, &
     810             :          DIMENSION(:, :, :, :), INTENT(INOUT)            :: vec_Sigma_c_gw
     811             :       INTEGER, INTENT(IN)                                :: dimen_nm_gw, dimen_RI
     812             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: gw_corr_lev_occ, gw_corr_lev_virt, homo
     813             :       INTEGER, INTENT(IN)                                :: jquad, nmo, num_fit_points
     814             :       LOGICAL, INTENT(IN)                                :: do_im_time, do_periodic
     815             :       LOGICAL, INTENT(INOUT) :: first_cycle_periodic_correction
     816             :       REAL(KIND=dp), INTENT(INOUT)                       :: fermi_level_offset, omega
     817             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(INOUT)      :: Eigenval
     818             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
     819             :          INTENT(INOUT)                                   :: delta_corr
     820             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
     821             :          INTENT(IN)                                      :: vec_omega_fit_gw
     822             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :), &
     823             :          INTENT(INOUT)                                   :: vec_W_gw
     824             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
     825             :          INTENT(IN)                                      :: wj
     826             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mat_Q, fm_mat_R_gw
     827             :       TYPE(cp_fm_type), DIMENSION(:), INTENT(IN)         :: fm_mat_S_gw, fm_mat_S_gw_work
     828             :       TYPE(cp_fm_type), INTENT(IN)                       :: mo_coeff
     829             :       TYPE(mp_para_env_type), POINTER                    :: para_env, para_env_RPA
     830             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_berry_im_mo_mo, &
     831             :                                                             matrix_berry_re_mo_mo
     832             :       TYPE(kpoint_type), POINTER                         :: kpoints
     833             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     834             :       TYPE(mp2_type)                                     :: mp2_env
     835             : 
     836             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_GW_self_energy'
     837             : 
     838             :       INTEGER                                            :: handle, i_global, iiB, ispin, j_global, &
     839             :                                                             jjB, ncol_local, nrow_local, nspins
     840        7210 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices, row_indices
     841             : 
     842        7210 :       CALL timeset(routineN, handle)
     843             : 
     844        7210 :       nspins = SIZE(fm_mat_S_gw)
     845             : 
     846             :       CALL cp_fm_get_info(matrix=fm_mat_Q, &
     847             :                           nrow_local=nrow_local, &
     848             :                           ncol_local=ncol_local, &
     849             :                           row_indices=row_indices, &
     850        7210 :                           col_indices=col_indices)
     851             : 
     852        7210 :       IF (.NOT. do_im_time) THEN
     853             :          ! calculate [1+Q(iw')]^-1
     854        7210 :          CALL cp_fm_cholesky_invert(fm_mat_Q)
     855             :          ! symmetrize the result, fm_mat_R_gw is only temporary work matrix
     856        7210 :          CALL cp_fm_upper_to_full(fm_mat_Q, fm_mat_R_gw)
     857             : 
     858             :          ! periodic correction for GW (paper Phys. Rev. B 95, 235123 (2017))
     859        7210 :          IF (do_periodic) THEN
     860             :             CALL calc_periodic_correction(delta_corr, qs_env, para_env, para_env_RPA, &
     861             :                                           mp2_env%ri_g0w0%kp_grid, homo(1), nmo, gw_corr_lev_occ(1), &
     862             :                                           gw_corr_lev_virt(1), omega, mo_coeff, Eigenval(:, 1), &
     863             :                                           matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, &
     864             :                                           first_cycle_periodic_correction, kpoints, &
     865             :                                           mp2_env%ri_g0w0%do_mo_coeff_gamma, &
     866             :                                           mp2_env%ri_g0w0%num_kp_grids, mp2_env%ri_g0w0%eps_kpoint, &
     867             :                                           mp2_env%ri_g0w0%do_extra_kpoints, &
     868         240 :                                           mp2_env%ri_g0w0%do_aux_bas_gw, mp2_env%ri_g0w0%frac_aux_mos)
     869             :          END IF
     870             : 
     871        7210 :          CALL para_env%sync()
     872             : 
     873             :          ! subtract 1 from the diagonal to get rid of exchange self-energy
     874             : !$OMP           PARALLEL DO DEFAULT(NONE) PRIVATE(jjB,iiB,i_global,j_global) &
     875        7210 : !$OMP                       SHARED(ncol_local,nrow_local,col_indices,row_indices,fm_mat_Q,dimen_RI)
     876             :          DO jjB = 1, ncol_local
     877             :             j_global = col_indices(jjB)
     878             :             DO iiB = 1, nrow_local
     879             :                i_global = row_indices(iiB)
     880             :                IF (j_global == i_global .AND. i_global <= dimen_RI) THEN
     881             :                   fm_mat_Q%local_data(iiB, jjB) = fm_mat_Q%local_data(iiB, jjB) - 1.0_dp
     882             :                END IF
     883             :             END DO
     884             :          END DO
     885             : 
     886        7210 :          CALL para_env%sync()
     887             : 
     888       14480 :          DO ispin = 1, nspins
     889             :             CALL compute_GW_self_energy_deep(vec_Sigma_c_gw(:, :, :, ispin), dimen_nm_gw, dimen_RI, &
     890             :                                              gw_corr_lev_occ(ispin), gw_corr_lev_virt(ispin), &
     891             :                                              homo(ispin), jquad, nmo, &
     892             :                                              num_fit_points, do_periodic, fermi_level_offset, omega, &
     893             :                                              Eigenval(:, ispin), delta_corr, &
     894             :                                              vec_omega_fit_gw, vec_W_gw(:, ispin), wj, fm_mat_Q, &
     895       14480 :                                              fm_mat_S_gw(ispin), fm_mat_S_gw_work(ispin))
     896             :          END DO
     897             : 
     898             :       END IF ! GW
     899             : 
     900        7210 :       CALL timestop(handle)
     901             : 
     902        7210 :    END SUBROUTINE compute_GW_self_energy
     903             : 
     904             : ! **************************************************************************************************
     905             : !> \brief ...
     906             : !> \param fermi_level_offset ...
     907             : !> \param fermi_level_offset_input ...
     908             : !> \param Eigenval ...
     909             : !> \param homo ...
     910             : ! **************************************************************************************************
     911        7788 :    SUBROUTINE get_fermi_level_offset(fermi_level_offset, fermi_level_offset_input, Eigenval, homo)
     912             : 
     913             :       REAL(KIND=dp), INTENT(INOUT)                       :: fermi_level_offset
     914             :       REAL(KIND=dp), INTENT(IN)                          :: fermi_level_offset_input
     915             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(INOUT)      :: Eigenval
     916             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: homo
     917             : 
     918             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'get_fermi_level_offset'
     919             : 
     920             :       INTEGER                                            :: handle, ispin, nspins
     921             : 
     922        7788 :       CALL timeset(routineN, handle)
     923             : 
     924        7788 :       nspins = SIZE(Eigenval, 2)
     925             : 
     926             :       ! Fermi level offset should have a maximum such that the Fermi level of occupied orbitals
     927             :       ! is always closer to occupied orbitals than to virtual orbitals and vice versa
     928             :       ! that means, the Fermi level offset is at most as big as half the bandgap
     929        7788 :       fermi_level_offset = fermi_level_offset_input
     930       15780 :       DO ispin = 1, nspins
     931       15780 :          fermi_level_offset = MIN(fermi_level_offset, (Eigenval(homo(ispin) + 1, ispin) - Eigenval(homo(ispin), ispin))*0.5_dp)
     932             :       END DO
     933             : 
     934        7788 :       CALL timestop(handle)
     935             : 
     936        7788 :    END SUBROUTINE get_fermi_level_offset
     937             : 
     938             : ! **************************************************************************************************
     939             : !> \brief ...
     940             : !> \param fm_mat_W ...
     941             : !> \param fm_mat_Q ...
     942             : !> \param fm_mat_work ...
     943             : !> \param dimen_RI ...
     944             : !> \param fm_mat_L ...
     945             : !> \param num_integ_points ...
     946             : !> \param tj ...
     947             : !> \param tau_tj ...
     948             : !> \param weights_cos_tf_w_to_t ...
     949             : !> \param jquad ...
     950             : !> \param omega ...
     951             : ! **************************************************************************************************
     952         470 :    SUBROUTINE compute_W_cubic_GW(fm_mat_W, fm_mat_Q, fm_mat_work, dimen_RI, fm_mat_L, num_integ_points, &
     953             :                                  tj, tau_tj, weights_cos_tf_w_to_t, jquad, omega)
     954             :       TYPE(cp_fm_type), DIMENSION(:), INTENT(IN)         :: fm_mat_W
     955             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mat_Q, fm_mat_work
     956             :       INTEGER, INTENT(IN)                                :: dimen_RI
     957             :       TYPE(cp_fm_type), DIMENSION(:, :), INTENT(IN)      :: fm_mat_L
     958             :       INTEGER, INTENT(IN)                                :: num_integ_points
     959             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
     960             :          INTENT(IN)                                      :: tj, tau_tj
     961             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :), &
     962             :          INTENT(IN)                                      :: weights_cos_tf_w_to_t
     963             :       INTEGER, INTENT(IN)                                :: jquad
     964             :       REAL(KIND=dp), INTENT(INOUT)                       :: omega
     965             : 
     966             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_W_cubic_GW'
     967             : 
     968             :       INTEGER                                            :: handle, i_global, iiB, iquad, j_global, &
     969             :                                                             jjB, ncol_local, nrow_local
     970         470 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices, row_indices
     971             :       REAL(KIND=dp)                                      :: tau, weight
     972             : 
     973         470 :       CALL timeset(routineN, handle)
     974             : 
     975             :       CALL cp_fm_get_info(matrix=fm_mat_Q, &
     976             :                           nrow_local=nrow_local, &
     977             :                           ncol_local=ncol_local, &
     978             :                           row_indices=row_indices, &
     979         470 :                           col_indices=col_indices)
     980             :       ! calculate [1+Q(iw')]^-1
     981         470 :       CALL cp_fm_cholesky_invert(fm_mat_Q)
     982             : 
     983             :       ! symmetrize the result
     984         470 :       CALL cp_fm_upper_to_full(fm_mat_Q, fm_mat_work)
     985             : 
     986             :       ! subtract 1 from the diagonal to get rid of exchange self-energy
     987             : !$OMP           PARALLEL DO DEFAULT(NONE) PRIVATE(jjB,iiB,i_global,j_global) &
     988         470 : !$OMP                       SHARED(ncol_local,nrow_local,col_indices,row_indices,fm_mat_Q,dimen_RI)
     989             :       DO jjB = 1, ncol_local
     990             :          j_global = col_indices(jjB)
     991             :          DO iiB = 1, nrow_local
     992             :             i_global = row_indices(iiB)
     993             :             IF (j_global == i_global .AND. i_global <= dimen_RI) THEN
     994             :                fm_mat_Q%local_data(iiB, jjB) = fm_mat_Q%local_data(iiB, jjB) - 1.0_dp
     995             :             END IF
     996             :          END DO
     997             :       END DO
     998             : 
     999             :       ! multiply with L from the left and the right to get the screened Coulomb interaction
    1000             :       CALL parallel_gemm('T', 'N', dimen_RI, dimen_RI, dimen_RI, 1.0_dp, fm_mat_L(1, 1), fm_mat_Q, &
    1001         470 :                          0.0_dp, fm_mat_work)
    1002             : 
    1003             :       CALL parallel_gemm('N', 'N', dimen_RI, dimen_RI, dimen_RI, 1.0_dp, fm_mat_work, fm_mat_L(1, 1), &
    1004         470 :                          0.0_dp, fm_mat_Q)
    1005             : 
    1006             :       ! Fourier transform from w to t
    1007        8420 :       DO iquad = 1, num_integ_points
    1008             : 
    1009        7950 :          omega = tj(jquad)
    1010        7950 :          tau = tau_tj(iquad)
    1011        7950 :          weight = weights_cos_tf_w_to_t(iquad, jquad)*COS(tau*omega)
    1012             : 
    1013        7950 :          IF (jquad == 1) THEN
    1014             : 
    1015         470 :             CALL cp_fm_set_all(matrix=fm_mat_W(iquad), alpha=0.0_dp)
    1016             : 
    1017             :          END IF
    1018             : 
    1019        8420 :          CALL cp_fm_scale_and_add(alpha=1.0_dp, matrix_a=fm_mat_W(iquad), beta=weight, matrix_b=fm_mat_Q)
    1020             : 
    1021             :       END DO
    1022             : 
    1023         470 :       CALL timestop(handle)
    1024         470 :    END SUBROUTINE compute_W_cubic_GW
    1025             : 
    1026             : ! **************************************************************************************************
    1027             : !> \brief ...
    1028             : !> \param vec_Sigma_c_gw ...
    1029             : !> \param dimen_nm_gw ...
    1030             : !> \param dimen_RI ...
    1031             : !> \param gw_corr_lev_occ ...
    1032             : !> \param gw_corr_lev_virt ...
    1033             : !> \param homo ...
    1034             : !> \param jquad ...
    1035             : !> \param nmo ...
    1036             : !> \param num_fit_points ...
    1037             : !> \param do_periodic ...
    1038             : !> \param fermi_level_offset ...
    1039             : !> \param omega ...
    1040             : !> \param Eigenval ...
    1041             : !> \param delta_corr ...
    1042             : !> \param vec_omega_fit_gw ...
    1043             : !> \param vec_W_gw ...
    1044             : !> \param wj ...
    1045             : !> \param fm_mat_Q ...
    1046             : !> \param fm_mat_S_gw ...
    1047             : !> \param fm_mat_S_gw_work ...
    1048             : ! **************************************************************************************************
    1049       36350 :    SUBROUTINE compute_GW_self_energy_deep(vec_Sigma_c_gw, dimen_nm_gw, dimen_RI, &
    1050             :                                           gw_corr_lev_occ, gw_corr_lev_virt, &
    1051             :                                           homo, jquad, nmo, num_fit_points, &
    1052       14540 :                                           do_periodic, fermi_level_offset, omega, Eigenval, &
    1053        7270 :                                           delta_corr, vec_omega_fit_gw, vec_W_gw, &
    1054        7270 :                                           wj, fm_mat_Q, fm_mat_S_gw, fm_mat_S_gw_work)
    1055             : 
    1056             :       COMPLEX(KIND=dp), DIMENSION(:, :, :), &
    1057             :          INTENT(INOUT)                                   :: vec_Sigma_c_gw
    1058             :       INTEGER, INTENT(IN)                                :: dimen_nm_gw, dimen_RI, gw_corr_lev_occ, &
    1059             :                                                             gw_corr_lev_virt, homo, jquad, nmo, &
    1060             :                                                             num_fit_points
    1061             :       LOGICAL, INTENT(IN)                                :: do_periodic
    1062             :       REAL(KIND=dp), INTENT(IN)                          :: fermi_level_offset
    1063             :       REAL(KIND=dp), INTENT(INOUT)                       :: omega
    1064             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: Eigenval
    1065             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: delta_corr, vec_omega_fit_gw
    1066             :       REAL(KIND=dp), DIMENSION(:), INTENT(OUT)           :: vec_W_gw
    1067             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: wj
    1068             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mat_Q, fm_mat_S_gw, fm_mat_S_gw_work
    1069             : 
    1070             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_GW_self_energy_deep'
    1071             : 
    1072             :       INTEGER                                            :: handle, iiB, iquad, m_global, n_global, &
    1073             :                                                             ncol_local, nm_global
    1074        7270 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices, row_indices
    1075             :       REAL(KIND=dp)                                      :: delta_corr_nn, e_fermi, omega_i, &
    1076             :                                                             sign_occ_virt
    1077             : 
    1078        7270 :       CALL timeset(routineN, handle)
    1079             : 
    1080             :       ! S_work_(nm)Q = B_(nm)P * ([1+Q]^-1-1)_PQ
    1081             :       CALL parallel_gemm(transa="N", transb="N", m=dimen_RI, n=dimen_nm_gw, k=dimen_RI, alpha=1.0_dp, &
    1082             :                          matrix_a=fm_mat_Q, matrix_b=fm_mat_S_gw, beta=0.0_dp, &
    1083        7270 :                          matrix_c=fm_mat_S_gw_work)
    1084             : 
    1085             :       CALL cp_fm_get_info(matrix=fm_mat_S_gw, &
    1086             :                           ncol_local=ncol_local, &
    1087             :                           row_indices=row_indices, &
    1088        7270 :                           col_indices=col_indices)
    1089             : 
    1090             :       ! vector W_(nm) = S_work_(nm)Q * [B_(nm)Q]^T
    1091             : 
    1092     2703890 :       vec_W_gw = 0.0_dp
    1093             : 
    1094     2703890 :       DO iiB = 1, ncol_local
    1095     2696620 :          nm_global = col_indices(iiB)
    1096             :          vec_W_gw(nm_global) = vec_W_gw(nm_global) + &
    1097   119580480 :                                DOT_PRODUCT(fm_mat_S_gw_work%local_data(:, iiB), fm_mat_S_gw%local_data(:, iiB))
    1098             : 
    1099             :          ! transform the index nm of vec_W_gw back to n and m, formulae copied from Mauro's code
    1100     2696620 :          n_global = MAX(1, nm_global - 1)/nmo + 1
    1101     2696620 :          m_global = nm_global - (n_global - 1)*nmo
    1102     2696620 :          n_global = n_global + homo - gw_corr_lev_occ
    1103             : 
    1104             :          ! compute self-energy for imaginary frequencies
    1105   212577470 :          DO iquad = 1, num_fit_points
    1106             : 
    1107             :             ! for occ orbitals, we compute the self-energy for negative frequencies
    1108   209873580 :             IF (n_global <= homo) THEN
    1109             :                sign_occ_virt = -1.0_dp
    1110             :             ELSE
    1111   157205820 :                sign_occ_virt = 1.0_dp
    1112             :             END IF
    1113             : 
    1114   209873580 :             omega_i = vec_omega_fit_gw(iquad)*sign_occ_virt
    1115             : 
    1116             :             ! set the Fermi energy for occ orbitals slightly above the HOMO and
    1117             :             ! for virt orbitals slightly below the LUMO
    1118   209873580 :             IF (n_global <= homo) THEN
    1119   315977400 :                e_fermi = MAXVAL(Eigenval(homo - gw_corr_lev_occ + 1:homo)) + fermi_level_offset
    1120             :             ELSE
    1121  2192605560 :                e_fermi = MINVAL(Eigenval(homo + 1:homo + gw_corr_lev_virt)) - fermi_level_offset
    1122             :             END IF
    1123             : 
    1124             :             ! add here the periodic correction
    1125   209873580 :             IF (do_periodic .AND. row_indices(1) == 1 .AND. n_global == m_global) THEN
    1126       57120 :                delta_corr_nn = delta_corr(n_global)
    1127             :             ELSE
    1128             :                delta_corr_nn = 0.0_dp
    1129             :             END IF
    1130             : 
    1131             :             ! update the self-energy (use that vec_W_gw(iw) is symmetric), divide the integration
    1132             :             ! weight by 2, because the integration is from -infty to +infty and not just 0 to +infty
    1133             :             ! as for RPA, also we need for virtual orbitals a complex conjugate
    1134             :             vec_Sigma_c_gw(n_global - homo + gw_corr_lev_occ, iquad, 1) = &
    1135             :                vec_Sigma_c_gw(n_global - homo + gw_corr_lev_occ, iquad, 1) - &
    1136             :                0.5_dp/pi*wj(jquad)/2.0_dp*(vec_W_gw(nm_global) + delta_corr_nn)* &
    1137             :                (1.0_dp/(gaussi*(omega + omega_i) + e_fermi - Eigenval(m_global)) + &
    1138   212570200 :                 1.0_dp/(gaussi*(-omega + omega_i) + e_fermi - Eigenval(m_global)))
    1139             :          END DO
    1140             : 
    1141             :       END DO
    1142             : 
    1143        7270 :       CALL timestop(handle)
    1144             : 
    1145        7270 :    END SUBROUTINE compute_GW_self_energy_deep
    1146             : 
    1147             : ! **************************************************************************************************
    1148             : !> \brief ...
    1149             : !> \param vec_Sigma_c_gw ...
    1150             : !> \param count_ev_sc_GW ...
    1151             : !> \param gw_corr_lev_occ ...
    1152             : !> \param gw_corr_lev_tot ...
    1153             : !> \param gw_corr_lev_virt ...
    1154             : !> \param homo ...
    1155             : !> \param nmo ...
    1156             : !> \param num_fit_points ...
    1157             : !> \param num_integ_points ...
    1158             : !> \param unit_nr ...
    1159             : !> \param do_apply_ic_corr_to_gw ...
    1160             : !> \param do_im_time ...
    1161             : !> \param do_periodic ...
    1162             : !> \param do_ri_Sigma_x ...
    1163             : !> \param first_cycle_periodic_correction ...
    1164             : !> \param e_fermi ...
    1165             : !> \param eps_filter ...
    1166             : !> \param fermi_level_offset ...
    1167             : !> \param delta_corr ...
    1168             : !> \param Eigenval ...
    1169             : !> \param Eigenval_last ...
    1170             : !> \param Eigenval_scf ...
    1171             : !> \param iter_sc_GW0 ...
    1172             : !> \param exit_ev_gw ...
    1173             : !> \param tau_tj ...
    1174             : !> \param tj ...
    1175             : !> \param vec_omega_fit_gw ...
    1176             : !> \param vec_Sigma_x_gw ...
    1177             : !> \param ic_corr_list ...
    1178             : !> \param weights_cos_tf_t_to_w ...
    1179             : !> \param weights_sin_tf_t_to_w ...
    1180             : !> \param fm_mo_coeff_occ_scaled ...
    1181             : !> \param fm_mo_coeff_virt_scaled ...
    1182             : !> \param fm_mo_coeff_occ ...
    1183             : !> \param fm_mo_coeff_virt ...
    1184             : !> \param fm_scaled_dm_occ_tau ...
    1185             : !> \param fm_scaled_dm_virt_tau ...
    1186             : !> \param mo_coeff ...
    1187             : !> \param fm_mat_W ...
    1188             : !> \param para_env ...
    1189             : !> \param para_env_RPA ...
    1190             : !> \param mat_dm ...
    1191             : !> \param mat_MinvVMinv ...
    1192             : !> \param t_3c_O ...
    1193             : !> \param t_3c_M ...
    1194             : !> \param t_3c_overl_int_ao_mo ...
    1195             : !> \param t_3c_O_compressed ...
    1196             : !> \param t_3c_O_mo_compressed ...
    1197             : !> \param t_3c_O_ind ...
    1198             : !> \param t_3c_O_mo_ind ...
    1199             : !> \param t_3c_overl_int_gw_RI ...
    1200             : !> \param t_3c_overl_int_gw_AO ...
    1201             : !> \param matrix_berry_im_mo_mo ...
    1202             : !> \param matrix_berry_re_mo_mo ...
    1203             : !> \param mat_W ...
    1204             : !> \param matrix_s ...
    1205             : !> \param kpoints ...
    1206             : !> \param mp2_env ...
    1207             : !> \param qs_env ...
    1208             : !> \param nkp_self_energy ...
    1209             : !> \param do_kpoints_cubic_RPA ...
    1210             : !> \param starts_array_mc ...
    1211             : !> \param ends_array_mc ...
    1212             : ! **************************************************************************************************
    1213        1020 :    SUBROUTINE compute_QP_energies(vec_Sigma_c_gw, count_ev_sc_GW, gw_corr_lev_occ, &
    1214         408 :                                   gw_corr_lev_tot, gw_corr_lev_virt, homo, &
    1215             :                                   nmo, num_fit_points, num_integ_points, &
    1216             :                                   unit_nr, do_apply_ic_corr_to_gw, do_im_time, &
    1217             :                                   do_periodic, do_ri_Sigma_x, &
    1218         204 :                                   first_cycle_periodic_correction, e_fermi, eps_filter, &
    1219         204 :                                   fermi_level_offset, delta_corr, Eigenval, &
    1220             :                                   Eigenval_last, Eigenval_scf, iter_sc_GW0, exit_ev_gw, tau_tj, tj, &
    1221             :                                   vec_omega_fit_gw, vec_Sigma_x_gw, ic_corr_list, &
    1222             :                                   weights_cos_tf_t_to_w, weights_sin_tf_t_to_w, &
    1223         204 :                                   fm_mo_coeff_occ_scaled, fm_mo_coeff_virt_scaled, fm_mo_coeff_occ, &
    1224         278 :                                   fm_mo_coeff_virt, fm_scaled_dm_occ_tau, fm_scaled_dm_virt_tau, &
    1225             :                                   mo_coeff, fm_mat_W, para_env, para_env_RPA, mat_dm, mat_MinvVMinv, &
    1226             :                                   t_3c_O, t_3c_M, t_3c_overl_int_ao_mo, &
    1227         204 :                                   t_3c_O_compressed, t_3c_O_mo_compressed, &
    1228         204 :                                   t_3c_O_ind, t_3c_O_mo_ind, &
    1229         284 :                                   t_3c_overl_int_gw_RI, t_3c_overl_int_gw_AO, matrix_berry_im_mo_mo, &
    1230             :                                   matrix_berry_re_mo_mo, mat_W, matrix_s, &
    1231             :                                   kpoints, mp2_env, qs_env, nkp_self_energy, do_kpoints_cubic_RPA, &
    1232         206 :                                   starts_array_mc, ends_array_mc)
    1233             : 
    1234             :       COMPLEX(KIND=dp), DIMENSION(:, :, :, :), &
    1235             :          INTENT(OUT)                                     :: vec_Sigma_c_gw
    1236             :       INTEGER, INTENT(IN)                                :: count_ev_sc_GW
    1237             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: gw_corr_lev_occ
    1238             :       INTEGER, INTENT(IN)                                :: gw_corr_lev_tot
    1239             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: gw_corr_lev_virt, homo
    1240             :       INTEGER, INTENT(IN)                                :: nmo, num_fit_points, num_integ_points, &
    1241             :                                                             unit_nr
    1242             :       LOGICAL, INTENT(IN)                                :: do_apply_ic_corr_to_gw, do_im_time, &
    1243             :                                                             do_periodic, do_ri_Sigma_x
    1244             :       LOGICAL, INTENT(INOUT) :: first_cycle_periodic_correction
    1245             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: e_fermi
    1246             :       REAL(KIND=dp), INTENT(IN)                          :: eps_filter, fermi_level_offset
    1247             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    1248             :          INTENT(INOUT)                                   :: delta_corr
    1249             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(INOUT)   :: Eigenval
    1250             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :), &
    1251             :          INTENT(INOUT)                                   :: Eigenval_last, Eigenval_scf
    1252             :       INTEGER, INTENT(IN)                                :: iter_sc_GW0
    1253             :       LOGICAL, INTENT(INOUT)                             :: exit_ev_gw
    1254             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    1255             :          INTENT(INOUT)                                   :: tau_tj, tj, vec_omega_fit_gw
    1256             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :), &
    1257             :          INTENT(INOUT)                                   :: vec_Sigma_x_gw
    1258             :       TYPE(one_dim_real_array), DIMENSION(2), INTENT(IN) :: ic_corr_list
    1259             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :), &
    1260             :          INTENT(IN)                                      :: weights_cos_tf_t_to_w, &
    1261             :                                                             weights_sin_tf_t_to_w
    1262             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mo_coeff_occ_scaled, &
    1263             :                                                             fm_mo_coeff_virt_scaled
    1264             :       TYPE(cp_fm_type), DIMENSION(:), INTENT(IN)         :: fm_mo_coeff_occ, fm_mo_coeff_virt
    1265             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_scaled_dm_occ_tau, &
    1266             :                                                             fm_scaled_dm_virt_tau, mo_coeff
    1267             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:), &
    1268             :          INTENT(IN)                                      :: fm_mat_W
    1269             :       TYPE(mp_para_env_type), POINTER                    :: para_env, para_env_RPA
    1270             :       TYPE(dbcsr_p_type), INTENT(IN)                     :: mat_dm, mat_MinvVMinv
    1271             :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:, :)       :: t_3c_O
    1272             :       TYPE(dbt_type)                                     :: t_3c_M, t_3c_overl_int_ao_mo
    1273             :       TYPE(hfx_compression_type), ALLOCATABLE, &
    1274             :          DIMENSION(:, :, :), INTENT(INOUT)               :: t_3c_O_compressed
    1275             :       TYPE(hfx_compression_type), DIMENSION(:)           :: t_3c_O_mo_compressed
    1276             :       TYPE(block_ind_type), ALLOCATABLE, &
    1277             :          DIMENSION(:, :, :), INTENT(INOUT)               :: t_3c_O_ind
    1278             :       TYPE(two_dim_int_array), DIMENSION(:)              :: t_3c_O_mo_ind
    1279             :       TYPE(dbt_type), DIMENSION(:)                       :: t_3c_overl_int_gw_RI, &
    1280             :                                                             t_3c_overl_int_gw_AO
    1281             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_berry_im_mo_mo, &
    1282             :                                                             matrix_berry_re_mo_mo
    1283             :       TYPE(dbcsr_type), POINTER                          :: mat_W
    1284             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_s
    1285             :       TYPE(kpoint_type), POINTER                         :: kpoints
    1286             :       TYPE(mp2_type)                                     :: mp2_env
    1287             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1288             :       INTEGER, INTENT(IN)                                :: nkp_self_energy
    1289             :       LOGICAL, INTENT(IN)                                :: do_kpoints_cubic_RPA
    1290             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: starts_array_mc, ends_array_mc
    1291             : 
    1292             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_QP_energies'
    1293             : 
    1294             :       INTEGER :: count_ev_sc_GW_print, count_sc_GW0, count_sc_GW0_print, crossing_search, handle, &
    1295             :          idos, ikp, ispin, iunit, n_level_gw, ndos, nspins, num_points_corr, num_poles
    1296             :       LOGICAL                                            :: do_kpoints_Sigma, my_open_shell
    1297             :       REAL(KIND=dp) :: dos_lower_bound, dos_precision, dos_upper_bound, E_CBM_GW, E_CBM_GW_beta, &
    1298             :          E_CBM_SCF, E_CBM_SCF_beta, E_VBM_GW, E_VBM_GW_beta, E_VBM_SCF, E_VBM_SCF_beta, stop_crit
    1299         204 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: vec_gw_dos
    1300         204 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :)     :: m_value, vec_gw_energ, z_value
    1301             :       TYPE(kpoint_type), POINTER                         :: kpoints_Sigma
    1302             : 
    1303         204 :       CALL timeset(routineN, handle)
    1304             : 
    1305         204 :       nspins = SIZE(homo)
    1306         204 :       my_open_shell = (nspins == 2)
    1307             : 
    1308         204 :       do_kpoints_Sigma = mp2_env%ri_g0w0%do_kpoints_Sigma
    1309             : 
    1310         272 :       DO count_sc_GW0 = 1, iter_sc_GW0
    1311             : 
    1312             :          ! postprocessing for cubic scaling GW calculation
    1313         218 :          IF (do_im_time .AND. .NOT. do_kpoints_cubic_RPA .AND. .NOT. do_kpoints_Sigma) THEN
    1314          54 :             num_points_corr = mp2_env%ri_g0w0%num_omega_points
    1315             : 
    1316         114 :             DO ispin = 1, nspins
    1317             :                CALL compute_self_energy_cubic_gw(num_integ_points, nmo, tau_tj, tj, &
    1318             :                                                  matrix_s, fm_mo_coeff_occ(ispin), &
    1319             :                                                  fm_mo_coeff_virt(ispin), fm_mo_coeff_occ_scaled, &
    1320             :                                                  fm_mo_coeff_virt_scaled, fm_scaled_dm_occ_tau, &
    1321             :                                                  fm_scaled_dm_virt_tau, Eigenval(:, 1, ispin), eps_filter, &
    1322             :                                                  e_fermi(ispin), fm_mat_W, &
    1323             :                                                  gw_corr_lev_tot, gw_corr_lev_occ(ispin), gw_corr_lev_virt(ispin), homo(ispin), &
    1324             :                                                  count_ev_sc_GW, count_sc_GW0, &
    1325             :                                                  t_3c_overl_int_ao_mo, t_3c_O_mo_compressed(ispin), &
    1326             :                                                  t_3c_O_mo_ind(ispin)%array, &
    1327             :                                                  t_3c_overl_int_gw_RI(ispin), t_3c_overl_int_gw_AO(ispin), &
    1328             :                                                  mat_W, mat_MinvVMinv, mat_dm, &
    1329             :                                                  weights_cos_tf_t_to_w, weights_sin_tf_t_to_w, vec_Sigma_c_gw(:, :, :, ispin), &
    1330             :                                                  do_periodic, num_points_corr, delta_corr, qs_env, para_env, para_env_RPA, &
    1331             :                                                  mp2_env, matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, &
    1332             :                                                  first_cycle_periodic_correction, kpoints, num_fit_points, mo_coeff, &
    1333         114 :                                                  do_ri_Sigma_x, vec_Sigma_x_gw(:, :, ispin), unit_nr, ispin)
    1334             :             END DO
    1335             : 
    1336             :          END IF
    1337             : 
    1338         200 :          IF (do_kpoints_Sigma) THEN
    1339             :             CALL compute_self_energy_cubic_gw_kpoints(num_integ_points, tau_tj, tj, &
    1340             :                                                       matrix_s, Eigenval(:, :, :), e_fermi, fm_mat_W, &
    1341             :                                                       gw_corr_lev_tot, gw_corr_lev_occ, gw_corr_lev_virt, homo, &
    1342             :                                                       count_ev_sc_GW, count_sc_GW0, &
    1343             :                                                       t_3c_O, t_3c_M, t_3c_O_compressed, t_3c_O_ind, &
    1344             :                                                       mat_W, mat_MinvVMinv, &
    1345             :                                                       weights_cos_tf_t_to_w, weights_sin_tf_t_to_w, vec_Sigma_c_gw(:, :, :, :), &
    1346             :                                                       qs_env, para_env, &
    1347             :                                                       mp2_env, num_fit_points, mo_coeff, &
    1348             :                                                       do_ri_Sigma_x, vec_Sigma_x_gw(:, :, :), unit_nr, nspins, &
    1349          18 :                                                       starts_array_mc, ends_array_mc, eps_filter)
    1350             : 
    1351             :          END IF
    1352             : 
    1353         218 :          IF (do_periodic .AND. mp2_env%ri_g0w0%do_average_deg_levels) THEN
    1354             : 
    1355          16 :             DO ispin = 1, nspins
    1356             :                CALL average_degenerate_levels(vec_Sigma_c_gw(:, :, :, ispin), &
    1357             :                                               Eigenval(1 + homo(ispin) - gw_corr_lev_occ(ispin): &
    1358             :                                                        homo(ispin) + gw_corr_lev_virt(ispin), 1, ispin), &
    1359          16 :                                               mp2_env%ri_g0w0%eps_eigenval)
    1360             :             END DO
    1361             :          END IF
    1362             : 
    1363         218 :          IF (.NOT. do_im_time) THEN
    1364      218614 :             CALL para_env%sum(vec_Sigma_c_gw)
    1365             :          END IF
    1366             : 
    1367         218 :          CALL para_env%sync()
    1368             : 
    1369         218 :          stop_crit = 1.0e-7
    1370         218 :          num_poles = mp2_env%ri_g0w0%num_poles
    1371         218 :          crossing_search = mp2_env%ri_g0w0%crossing_search
    1372             : 
    1373             :          ! arrays storing the correlation self-energy, stat. error and z-shot value
    1374        1090 :          ALLOCATE (vec_gw_energ(gw_corr_lev_tot, nkp_self_energy, nspins))
    1375        4016 :          vec_gw_energ = 0.0_dp
    1376        1090 :          ALLOCATE (z_value(gw_corr_lev_tot, nkp_self_energy, nspins))
    1377        4016 :          z_value = 0.0_dp
    1378        1090 :          ALLOCATE (m_value(gw_corr_lev_tot, nkp_self_energy, nspins))
    1379        4016 :          m_value = 0.0_dp
    1380         218 :          E_VBM_GW = -1.0E3
    1381         218 :          E_CBM_GW = 1.0E3
    1382         218 :          E_VBM_SCF = -1.0E3
    1383         218 :          E_CBM_SCF = 1.0E3
    1384         218 :          E_VBM_GW_beta = -1.0E3
    1385         218 :          E_CBM_GW_beta = 1.0E3
    1386         218 :          E_VBM_SCF_beta = -1.0E3
    1387         218 :          E_CBM_SCF_beta = 1.0E3
    1388             : 
    1389         218 :          ndos = 0
    1390         218 :          dos_precision = mp2_env%ri_g0w0%dos_prec
    1391         218 :          dos_upper_bound = mp2_env%ri_g0w0%dos_upper
    1392         218 :          dos_lower_bound = mp2_env%ri_g0w0%dos_lower
    1393             : 
    1394         218 :          IF (dos_lower_bound >= dos_upper_bound) THEN
    1395           0 :             CALL cp_abort(__LOCATION__, "Invalid settings for GW_DOS calculation!")
    1396             :          END IF
    1397             : 
    1398         218 :          IF (dos_precision /= 0) THEN
    1399           0 :             ndos = INT((dos_upper_bound - dos_lower_bound)/dos_precision)
    1400           0 :             ALLOCATE (vec_gw_dos(ndos))
    1401           0 :             vec_gw_dos = 0.0_dp
    1402             :          END IF
    1403             : 
    1404             :          ! for the normal code for molecules or Gamma only: nkp = 1
    1405         554 :          DO ikp = 1, nkp_self_energy
    1406             : 
    1407         336 :             kpoints_Sigma => qs_env%mp2_env%ri_rpa_im_time%kpoints_Sigma
    1408             : 
    1409             :             ! fit the self-energy on imaginary frequency axis and evaluate the fit on the MO energy of the SCF
    1410        3192 :             DO n_level_gw = 1, gw_corr_lev_tot
    1411             :                ! processes perform different fits
    1412        2856 :                IF (MODULO(n_level_gw, para_env%num_pe) /= para_env%mepos) CYCLE
    1413             : 
    1414        1860 :                SELECT CASE (mp2_env%ri_g0w0%analytic_continuation)
    1415             :                CASE (gw_two_pole_model)
    1416             :                   CALL fit_and_continuation_2pole(vec_gw_energ(:, ikp, 1), vec_omega_fit_gw, &
    1417             :                                                   z_value(:, ikp, 1), m_value(:, ikp, 1), vec_Sigma_c_gw(:, :, ikp, 1), &
    1418             :                                                   mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 1, ikp), &
    1419             :                                                   Eigenval(:, ikp, 1), Eigenval_scf(:, ikp, 1), n_level_gw, &
    1420             :                                                   gw_corr_lev_occ(1), gw_corr_lev_virt(1), num_poles, &
    1421             :                                                   num_fit_points, crossing_search, homo(1), stop_crit, &
    1422         432 :                                                   fermi_level_offset, do_im_time)
    1423             : 
    1424             :                CASE (gw_pade_approx)
    1425             :                   CALL continuation_pade(vec_gw_energ(:, ikp, 1), vec_omega_fit_gw, &
    1426             :                                          z_value(:, ikp, 1), m_value(:, ikp, 1), vec_Sigma_c_gw(:, :, ikp, 1), &
    1427             :                                          mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 1, ikp), &
    1428             :                                          Eigenval(:, ikp, 1), Eigenval_scf(:, ikp, 1), &
    1429             :                                          mp2_env%ri_g0w0%do_hedin_shift, n_level_gw, &
    1430             :                                          gw_corr_lev_occ(1), gw_corr_lev_virt(1), mp2_env%ri_g0w0%nparam_pade, &
    1431             :                                          num_fit_points, crossing_search, homo(1), fermi_level_offset, &
    1432             :                                          do_im_time, mp2_env%ri_g0w0%print_self_energy, count_ev_sc_GW, &
    1433             :                                          vec_gw_dos, dos_lower_bound, dos_precision, ndos, &
    1434             :                                          mp2_env%ri_g0w0%min_level_self_energy, &
    1435             :                                          mp2_env%ri_g0w0%max_level_self_energy, mp2_env%ri_g0w0%dos_eta, &
    1436         996 :                                          mp2_env%ri_g0w0%dos_min, mp2_env%ri_g0w0%dos_max)
    1437             :                CASE DEFAULT
    1438        1428 :                   CPABORT("Only two-model and Pade approximation are implemented.")
    1439             :                END SELECT
    1440             : 
    1441        1764 :                IF (my_open_shell) THEN
    1442         284 :                   SELECT CASE (mp2_env%ri_g0w0%analytic_continuation)
    1443             :                   CASE (gw_two_pole_model)
    1444             :                      CALL fit_and_continuation_2pole( &
    1445             :                         vec_gw_energ(:, ikp, 2), vec_omega_fit_gw, &
    1446             :                         z_value(:, ikp, 2), m_value(:, ikp, 2), vec_Sigma_c_gw(:, :, ikp, 2), &
    1447             :                         mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 2, ikp), &
    1448             :                         Eigenval(:, ikp, 2), Eigenval_scf(:, ikp, 2), n_level_gw, &
    1449             :                         gw_corr_lev_occ(2), gw_corr_lev_virt(2), num_poles, &
    1450             :                         num_fit_points, crossing_search, homo(2), stop_crit, &
    1451         126 :                         fermi_level_offset, do_im_time)
    1452             :                   CASE (gw_pade_approx)
    1453             :                      CALL continuation_pade(vec_gw_energ(:, ikp, 2), vec_omega_fit_gw, &
    1454             :                                             z_value(:, ikp, 2), m_value(:, ikp, 2), vec_Sigma_c_gw(:, :, ikp, 2), &
    1455             :                                             mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 2, ikp), &
    1456             :                                             Eigenval(:, ikp, 2), Eigenval_scf(:, ikp, 2), &
    1457             :                                             mp2_env%ri_g0w0%do_hedin_shift, n_level_gw, &
    1458             :                                             gw_corr_lev_occ(2), gw_corr_lev_virt(2), mp2_env%ri_g0w0%nparam_pade, &
    1459             :                                             num_fit_points, crossing_search, homo(2), &
    1460             :                                             fermi_level_offset, do_im_time, &
    1461             :                                             mp2_env%ri_g0w0%print_self_energy, count_ev_sc_GW, &
    1462             :                                             vec_gw_dos, dos_lower_bound, dos_precision, ndos, &
    1463             :                                             mp2_env%ri_g0w0%min_level_self_energy, &
    1464             :                                             mp2_env%ri_g0w0%max_level_self_energy, mp2_env%ri_g0w0%dos_eta, &
    1465          32 :                                             mp2_env%ri_g0w0%dos_min, mp2_env%ri_g0w0%dos_max)
    1466             :                   CASE DEFAULT
    1467         158 :                      CPABORT("Only two-pole model and Pade approximation are implemented.")
    1468             :                   END SELECT
    1469             : 
    1470             :                END IF
    1471             : 
    1472             :             END DO ! n_level_gw
    1473             : 
    1474         336 :             CALL para_env%sum(vec_gw_energ)
    1475         336 :             CALL para_env%sum(z_value)
    1476         336 :             CALL para_env%sum(m_value)
    1477             : 
    1478         336 :             IF (dos_precision /= 0.0_dp) THEN
    1479           0 :                CALL para_env%sum(vec_gw_dos)
    1480             :             END IF
    1481             : 
    1482         336 :             CALL check_NaN(vec_gw_energ, 0.0_dp)
    1483         336 :             CALL check_NaN(z_value, 1.0_dp)
    1484         336 :             CALL check_NaN(m_value, 0.0_dp)
    1485             : 
    1486         336 :             IF (do_im_time .OR. mp2_env%ri_g0w0%iter_sc_GW0 == 1) THEN
    1487         292 :                count_ev_sc_GW_print = count_ev_sc_GW
    1488         292 :                count_sc_GW0_print = count_sc_GW0
    1489             :             ELSE
    1490          44 :                count_ev_sc_GW_print = count_sc_GW0
    1491          44 :                count_sc_GW0_print = count_ev_sc_GW
    1492             :             END IF
    1493             : 
    1494             :             ! print the quasiparticle energies and update Eigenval in case you do eigenvalue self-consistent GW
    1495         554 :             IF (my_open_shell) THEN
    1496             : 
    1497             :                CALL print_and_update_for_ev_sc( &
    1498             :                   vec_gw_energ(:, ikp, 1), &
    1499             :                   z_value(:, ikp, 1), m_value(:, ikp, 1), mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 1, ikp), &
    1500             :                   Eigenval(:, ikp, 1), Eigenval_last(:, ikp, 1), Eigenval_scf(:, ikp, 1), &
    1501             :                   gw_corr_lev_occ(1), gw_corr_lev_virt(1), gw_corr_lev_tot, &
    1502             :                   crossing_search, homo(1), unit_nr, count_ev_sc_GW_print, count_sc_GW0_print, &
    1503          50 :                   ikp, nkp_self_energy, kpoints_Sigma, 1, E_VBM_GW, E_CBM_GW, E_VBM_SCF, E_CBM_SCF)
    1504             : 
    1505             :                CALL print_and_update_for_ev_sc( &
    1506             :                   vec_gw_energ(:, ikp, 2), &
    1507             :                   z_value(:, ikp, 2), m_value(:, ikp, 2), mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 2, ikp), &
    1508             :                   Eigenval(:, ikp, 2), Eigenval_last(:, ikp, 2), Eigenval_scf(:, ikp, 2), &
    1509             :                   gw_corr_lev_occ(2), gw_corr_lev_virt(2), gw_corr_lev_tot, &
    1510             :                   crossing_search, homo(2), unit_nr, count_ev_sc_GW_print, count_sc_GW0_print, &
    1511          50 :                   ikp, nkp_self_energy, kpoints_Sigma, 2, E_VBM_GW_beta, E_CBM_GW_beta, E_VBM_SCF_beta, E_CBM_SCF_beta)
    1512             : 
    1513          50 :                IF (do_apply_ic_corr_to_gw .AND. count_ev_sc_GW == 1) THEN
    1514             : 
    1515             :                   CALL apply_ic_corr(Eigenval(:, ikp, 1), Eigenval_scf(:, ikp, 1), ic_corr_list(1)%array, &
    1516             :                                      gw_corr_lev_occ(1), gw_corr_lev_virt(1), gw_corr_lev_tot, &
    1517           0 :                                      homo(1), nmo, unit_nr, do_alpha=.TRUE.)
    1518             : 
    1519             :                   CALL apply_ic_corr(Eigenval(:, ikp, 2), Eigenval_scf(:, ikp, 2), ic_corr_list(2)%array, &
    1520             :                                      gw_corr_lev_occ(2), gw_corr_lev_virt(2), gw_corr_lev_tot, &
    1521           0 :                                      homo(2), nmo, unit_nr, do_beta=.TRUE.)
    1522             : 
    1523             :                END IF
    1524             : 
    1525             :             ELSE
    1526             : 
    1527             :                CALL print_and_update_for_ev_sc( &
    1528             :                   vec_gw_energ(:, ikp, 1), &
    1529             :                   z_value(:, ikp, 1), m_value(:, ikp, 1), mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 1, ikp), &
    1530             :                   Eigenval(:, ikp, 1), Eigenval_last(:, ikp, 1), Eigenval_scf(:, ikp, 1), &
    1531             :                   gw_corr_lev_occ(1), gw_corr_lev_virt(1), gw_corr_lev_tot, &
    1532             :                   crossing_search, homo(1), unit_nr, count_ev_sc_GW_print, count_sc_GW0_print, &
    1533         286 :                   ikp, nkp_self_energy, kpoints_Sigma, 0, E_VBM_GW, E_CBM_GW, E_VBM_SCF, E_CBM_SCF)
    1534             : 
    1535         286 :                IF (do_apply_ic_corr_to_gw .AND. count_ev_sc_GW == 1) THEN
    1536             : 
    1537             :                   CALL apply_ic_corr(Eigenval(:, ikp, 1), Eigenval_scf(:, ikp, 1), ic_corr_list(1)%array, &
    1538             :                                      gw_corr_lev_occ(1), gw_corr_lev_virt(1), gw_corr_lev_tot, &
    1539           0 :                                      homo(1), nmo, unit_nr)
    1540             : 
    1541             :                END IF
    1542             : 
    1543             :             END IF
    1544             : 
    1545             :          END DO ! ikp
    1546             : 
    1547         218 :          IF (nkp_self_energy > 1 .AND. unit_nr > 0) THEN
    1548             : 
    1549             :             CALL print_gaps(E_VBM_SCF, E_CBM_SCF, E_VBM_SCF_beta, E_CBM_SCF_beta, &
    1550           9 :                             E_VBM_GW, E_CBM_GW, E_VBM_GW_beta, E_CBM_GW_beta, my_open_shell, unit_nr)
    1551             : 
    1552             :          END IF
    1553             : 
    1554             :          ! Decide whether to add spin-orbit splitting of bands, spin-orbit coupling strength comes from
    1555             :          ! Hartwigsen parametrization (1999) of GTH pseudopotentials
    1556         218 :          IF (mp2_env%ri_g0w0%soc_type /= soc_none) THEN
    1557             :             CALL calculate_and_print_soc(qs_env, Eigenval_scf, Eigenval_scf, gw_corr_lev_occ, gw_corr_lev_virt, &
    1558           2 :                                          homo, unit_nr, do_soc_gw=.FALSE., do_soc_scf=.TRUE.)
    1559             :             CALL calculate_and_print_soc(qs_env, Eigenval, Eigenval_scf, gw_corr_lev_occ, gw_corr_lev_virt, &
    1560           2 :                                          homo, unit_nr, do_soc_gw=.TRUE., do_soc_scf=.FALSE.)
    1561             :          END IF
    1562             : 
    1563         218 :          iunit = cp_logger_get_default_unit_nr()
    1564             : 
    1565         218 :          IF (dos_precision /= 0.0_dp) THEN
    1566           0 :             IF (iunit > 0) THEN
    1567           0 :                CALL open_file('spectral.dat', unit_number=iunit, file_status="UNKNOWN", file_action="WRITE")
    1568           0 :                DO idos = 1, ndos
    1569             :                   ! 1/pi
    1570             :                   ! [1/Hartree] -> [1/evolt]
    1571           0 :                   WRITE (iunit, '(E17.10, E17.10)') (dos_lower_bound + REAL(idos - 1, KIND=dp)*dos_precision)*evolt, &
    1572           0 :                      vec_gw_dos(idos)/evolt/pi
    1573             :                END DO
    1574           0 :                CALL close_file(iunit)
    1575             :             END IF
    1576           0 :             DEALLOCATE (vec_gw_dos)
    1577             :          END IF
    1578             : 
    1579         218 :          DEALLOCATE (z_value)
    1580         218 :          DEALLOCATE (m_value)
    1581         218 :          DEALLOCATE (vec_gw_energ)
    1582             : 
    1583         218 :          exit_ev_gw = .FALSE.
    1584             : 
    1585             :          ! if HOMO-LUMO gap differs by less than mp2_env%ri_g0w0%eps_sc_iter, exit ev sc GW loop
    1586         218 :          IF (ABS(Eigenval(homo(1), 1, 1) - Eigenval_last(homo(1), 1, 1) - &
    1587             :                  Eigenval(homo(1) + 1, 1, 1) + Eigenval_last(homo(1) + 1, 1, 1)) &
    1588             :              < mp2_env%ri_g0w0%eps_iter) THEN
    1589          18 :             IF (count_sc_GW0 == 1) exit_ev_gw = .TRUE.
    1590             :             EXIT
    1591             :          END IF
    1592             : 
    1593         422 :          DO ispin = 1, nspins
    1594             :             CALL shift_unshifted_levels(Eigenval(:, 1, ispin), Eigenval_last(:, 1, ispin), gw_corr_lev_occ(ispin), &
    1595         422 :                                         gw_corr_lev_virt(ispin), homo(ispin), nmo)
    1596             :          END DO
    1597             : 
    1598         200 :          IF (do_im_time .AND. do_kpoints_Sigma .AND. mp2_env%ri_g0w0%print_local_bandgap) THEN
    1599           2 :             CALL print_local_bandgap(qs_env, Eigenval, gw_corr_lev_occ(1), gw_corr_lev_virt(1), homo(1), "GW")
    1600           2 :             CALL print_local_bandgap(qs_env, Eigenval_scf, gw_corr_lev_occ(1), gw_corr_lev_virt(1), homo(1), "DFT")
    1601             :          END IF
    1602             : 
    1603             :          ! in case of N^4 scaling GW, the scGW0 cycle is the eigenvalue sc cycle
    1604         254 :          IF (.NOT. do_im_time) EXIT
    1605             : 
    1606             :       END DO ! scGW0
    1607             : 
    1608         204 :       CALL timestop(handle)
    1609             : 
    1610         204 :    END SUBROUTINE compute_QP_energies
    1611             : 
    1612             : ! **************************************************************************************************
    1613             : !> \brief ...
    1614             : !> \param qs_env ...
    1615             : !> \param Eigenval ...
    1616             : !> \param Eigenval_scf ...
    1617             : !> \param gw_corr_lev_occ ...
    1618             : !> \param gw_corr_lev_virt ...
    1619             : !> \param homo ...
    1620             : !> \param unit_nr ...
    1621             : !> \param do_soc_gw ...
    1622             : !> \param do_soc_scf ...
    1623             : ! **************************************************************************************************
    1624           4 :    SUBROUTINE calculate_and_print_soc(qs_env, Eigenval, Eigenval_scf, gw_corr_lev_occ, gw_corr_lev_virt, &
    1625           4 :                                       homo, unit_nr, do_soc_gw, do_soc_scf)
    1626             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1627             :       REAL(KIND=dp), DIMENSION(:, :, :)                  :: Eigenval, Eigenval_scf
    1628             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: gw_corr_lev_occ, gw_corr_lev_virt, homo
    1629             :       INTEGER                                            :: unit_nr
    1630             :       LOGICAL                                            :: do_soc_gw, do_soc_scf
    1631             : 
    1632             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'calculate_and_print_soc'
    1633             : 
    1634             :       INTEGER :: handle, i_dim, i_glob, i_row, ikp, j_col, j_glob, n_level_gw, nao, ncol_local, &
    1635             :          nder, nkind, nkp_self_energy, nrow_local, periodic(3), size_real_space
    1636           4 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: index0
    1637           4 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices, row_indices
    1638             :       LOGICAL                                            :: calculate_forces, use_virial
    1639             :       REAL(KIND=dp) :: avg_occ_QP_shift, avg_virt_QP_shift, E_CBM_GW_SOC, E_GAP_GW_SOC, E_HOMO, &
    1640             :          E_HOMO_GW_SOC, E_i, E_j, E_LUMO, E_LUMO_GW_SOC, E_VBM_GW_SOC, E_window, eps_ppnl
    1641           4 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: eigenvalues_without_soc_sorted
    1642           4 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: eigenvalues
    1643           4 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
    1644             :       TYPE(cell_type), POINTER                           :: cell
    1645             :       TYPE(cp_cfm_type)                                  :: cfm_mat_h_double, cfm_mat_h_ks, &
    1646             :                                                             cfm_mat_s_double, cfm_mat_work_double, &
    1647             :                                                             cfm_mo_coeff, cfm_mo_coeff_double
    1648             :       TYPE(cp_fm_type), POINTER                          :: imos, rmos
    1649           4 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_s, matrix_s_desymm
    1650           4 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: mat_VSOC_l_nosymm, mat_VSOC_lx_kp, &
    1651           4 :                                                             mat_VSOC_ly_kp, mat_VSOC_lz_kp, &
    1652           4 :                                                             matrix_dummy, matrix_l, &
    1653           4 :                                                             matrix_pot_dummy
    1654             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1655             :       TYPE(kpoint_type), POINTER                         :: kpoints_Sigma
    1656             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    1657             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    1658           4 :          POINTER                                         :: sab_orb, sap_ppnl
    1659           4 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    1660           4 :       TYPE(qs_force_type), DIMENSION(:), POINTER         :: force
    1661           4 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    1662             :       TYPE(scf_control_type), POINTER                    :: scf_control
    1663             :       TYPE(virial_type), POINTER                         :: virial
    1664             : 
    1665           4 :       CALL timeset(routineN, handle)
    1666             : 
    1667           4 :       CPASSERT(do_soc_gw .NEQV. do_soc_scf)
    1668             : 
    1669             :       CALL get_qs_env(qs_env=qs_env, &
    1670             :                       matrix_s=matrix_s, &
    1671             :                       para_env=para_env, &
    1672             :                       qs_kind_set=qs_kind_set, &
    1673             :                       sab_orb=sab_orb, &
    1674             :                       atomic_kind_set=atomic_kind_set, &
    1675             :                       particle_set=particle_set, &
    1676             :                       sap_ppnl=sap_ppnl, &
    1677             :                       dft_control=dft_control, &
    1678             :                       cell=cell, &
    1679             :                       nkind=nkind, &
    1680           4 :                       scf_control=scf_control)
    1681             : 
    1682           4 :       calculate_forces = .FALSE.
    1683           4 :       use_virial = .FALSE.
    1684           4 :       nder = 0
    1685           4 :       eps_ppnl = dft_control%qs_control%eps_ppnl
    1686             : 
    1687           4 :       CALL get_cell(cell=cell, periodic=periodic)
    1688             : 
    1689           4 :       size_real_space = 3**(periodic(1) + periodic(2) + periodic(3))
    1690             : 
    1691           4 :       NULLIFY (matrix_l)
    1692           4 :       CALL dbcsr_allocate_matrix_set(matrix_l, 3, 1)
    1693          16 :       DO i_dim = 1, 3
    1694          12 :          ALLOCATE (matrix_l(i_dim, 1)%matrix)
    1695             :          CALL dbcsr_create(matrix_l(i_dim, 1)%matrix, template=matrix_s(1)%matrix, &
    1696          12 :                            matrix_type=dbcsr_type_antisymmetric)
    1697          12 :          CALL cp_dbcsr_alloc_block_from_nbl(matrix_l(i_dim, 1)%matrix, sab_orb)
    1698          16 :          CALL dbcsr_set(matrix_l(i_dim, 1)%matrix, 0.0_dp)
    1699             :       END DO
    1700             : 
    1701           4 :       NULLIFY (matrix_pot_dummy)
    1702           4 :       CALL dbcsr_allocate_matrix_set(matrix_pot_dummy, 1, 1)
    1703           4 :       ALLOCATE (matrix_pot_dummy(1, 1)%matrix)
    1704           4 :       CALL dbcsr_create(matrix_pot_dummy(1, 1)%matrix, template=matrix_s(1)%matrix)
    1705           4 :       CALL cp_dbcsr_alloc_block_from_nbl(matrix_pot_dummy(1, 1)%matrix, sab_orb)
    1706           4 :       CALL dbcsr_set(matrix_pot_dummy(1, 1)%matrix, 0.0_dp)
    1707             : 
    1708             :       CALL build_core_ppnl(matrix_pot_dummy, matrix_dummy, force, virial, calculate_forces, use_virial, nder, &
    1709             :                            qs_kind_set, atomic_kind_set, particle_set, sab_orb, sap_ppnl, eps_ppnl, &
    1710           4 :                            nimages=1, basis_type="ORB", matrix_l=matrix_l)
    1711             : 
    1712           4 :       CALL alloc_mat_set_2d(mat_VSOC_l_nosymm, 3, size_real_space, matrix_s(1)%matrix, explicitly_no_symmetry=.TRUE.)
    1713          16 :       DO i_dim = 1, 3
    1714          16 :          CALL dbcsr_desymmetrize(matrix_l(i_dim, 1)%matrix, mat_VSOC_l_nosymm(i_dim, 1)%matrix)
    1715             :       END DO
    1716             : 
    1717           4 :       kpoints_Sigma => qs_env%mp2_env%ri_rpa_im_time%kpoints_Sigma
    1718             : 
    1719           4 :       CALL mat_kp_from_mat_gamma(qs_env, mat_VSOC_lx_kp, mat_VSOC_l_nosymm(1, 1)%matrix, kpoints_Sigma, 1, .FALSE.)
    1720           4 :       CALL mat_kp_from_mat_gamma(qs_env, mat_VSOC_ly_kp, mat_VSOC_l_nosymm(2, 1)%matrix, kpoints_Sigma, 1, .FALSE.)
    1721           4 :       CALL mat_kp_from_mat_gamma(qs_env, mat_VSOC_lz_kp, mat_VSOC_l_nosymm(3, 1)%matrix, kpoints_Sigma, 1, .FALSE.)
    1722             : 
    1723           4 :       nkp_self_energy = kpoints_Sigma%nkp
    1724             : 
    1725           4 :       CALL get_mo_set(kpoints_Sigma%kp_env(1)%kpoint_env%mos(1, 1), mo_coeff=rmos)
    1726             : 
    1727           4 :       CALL create_cfm_double_row_col_size(rmos, cfm_mat_h_double)
    1728           4 :       CALL create_cfm_double_row_col_size(rmos, cfm_mat_s_double)
    1729           4 :       CALL create_cfm_double_row_col_size(rmos, cfm_mo_coeff_double)
    1730           4 :       CALL create_cfm_double_row_col_size(rmos, cfm_mat_work_double)
    1731             : 
    1732           4 :       CALL cp_cfm_set_all(cfm_mo_coeff_double, z_zero)
    1733             : 
    1734           4 :       CALL cp_cfm_create(cfm_mo_coeff, rmos%matrix_struct)
    1735           4 :       CALL cp_cfm_create(cfm_mat_h_ks, rmos%matrix_struct)
    1736             : 
    1737           4 :       CALL cp_fm_get_info(matrix=rmos, nrow_global=nao)
    1738             : 
    1739           4 :       NULLIFY (matrix_s_desymm)
    1740           4 :       CALL dbcsr_allocate_matrix_set(matrix_s_desymm, 1)
    1741           4 :       ALLOCATE (matrix_s_desymm(1)%matrix)
    1742             :       CALL dbcsr_create(matrix=matrix_s_desymm(1)%matrix, template=matrix_s(1)%matrix, &
    1743           4 :                         matrix_type=dbcsr_type_no_symmetry)
    1744           4 :       CALL dbcsr_desymmetrize(matrix_s(1)%matrix, matrix_s_desymm(1)%matrix)
    1745             : 
    1746          12 :       ALLOCATE (eigenvalues(2*nao))
    1747          76 :       eigenvalues = 0.0_dp
    1748           8 :       ALLOCATE (eigenvalues_without_soc_sorted(2*nao))
    1749             : 
    1750           4 :       E_window = qs_env%mp2_env%ri_g0w0%soc_energy_window
    1751           4 :       IF (unit_nr > 0) THEN
    1752           2 :          WRITE (unit_nr, '(T3,A)') ' '
    1753           2 :          WRITE (unit_nr, '(T3,A)') '------------------------------------------------------------------------------'
    1754           2 :          WRITE (unit_nr, '(T3,A)') ' '
    1755           2 :          WRITE (unit_nr, '(T3,A,F42.1)') 'GW_SOC_INFO | SOC energy window (eV)', E_window*evolt
    1756             :       END IF
    1757             : 
    1758           4 :       E_VBM_GW_SOC = -1000.0_dp
    1759           4 :       E_CBM_GW_SOC = 1000.0_dp
    1760             : 
    1761          20 :       DO ikp = 1, nkp_self_energy
    1762             : 
    1763          16 :          CALL get_mo_set(kpoints_Sigma%kp_env(ikp)%kpoint_env%mos(1, 1), mo_coeff=rmos)
    1764          16 :          CALL get_mo_set(kpoints_Sigma%kp_env(ikp)%kpoint_env%mos(2, 1), mo_coeff=imos)
    1765          16 :          CALL cp_fm_to_cfm(rmos, imos, cfm_mo_coeff)
    1766             : 
    1767             :          ! ispin = 1
    1768             :          avg_occ_QP_shift = SUM(Eigenval(homo(1) - gw_corr_lev_occ(1) + 1:homo(1), ikp, 1) - &
    1769          32 :                                 Eigenval_scf(homo(1) - gw_corr_lev_occ(1) + 1:homo(1), ikp, 1))/gw_corr_lev_occ(1)
    1770             :          avg_virt_QP_shift = SUM(Eigenval(homo(1):homo(1) + gw_corr_lev_virt(1), ikp, 1) - &
    1771          48 :                                  Eigenval_scf(homo(1):homo(1) + gw_corr_lev_virt(1), ikp, 1))/gw_corr_lev_virt(1)
    1772             : 
    1773          16 :          IF (gw_corr_lev_occ(1) < homo(1)) THEN
    1774             :             Eigenval(1:homo(1) - gw_corr_lev_occ(1), ikp, 1) = Eigenval_scf(1:homo(1) - gw_corr_lev_occ(1), ikp, 1) &
    1775          64 :                                                                + avg_occ_QP_shift
    1776             :          END IF
    1777          16 :          IF (gw_corr_lev_virt(1) < nao - homo(1) + 1) THEN
    1778             :             Eigenval(homo(1) + gw_corr_lev_virt(1) + 1:nao, ikp, 1) = Eigenval_scf(homo(1) + gw_corr_lev_virt(1) + 1:nao, ikp, 1) &
    1779          80 :                                                                       + avg_virt_QP_shift
    1780             :          END IF
    1781             : 
    1782          16 :          CALL cp_cfm_set_all(cfm_mat_h_double, z_zero)
    1783          16 :          CALL add_dbcsr_submatrix(cfm_mat_h_double, mat_VSOC_lx_kp(ikp, 1:2), cfm_mat_h_ks, nao + 1, 1, z_one, .TRUE.)
    1784          16 :          CALL add_dbcsr_submatrix(cfm_mat_h_double, mat_VSOC_ly_kp(ikp, 1:2), cfm_mat_h_ks, nao + 1, 1, gaussi, .TRUE.)
    1785          16 :          CALL add_dbcsr_submatrix(cfm_mat_h_double, mat_VSOC_lz_kp(ikp, 1:2), cfm_mat_h_ks, 1, 1, z_one, .FALSE.)
    1786          16 :          CALL add_dbcsr_submatrix(cfm_mat_h_double, mat_VSOC_lz_kp(ikp, 1:2), cfm_mat_h_ks, nao + 1, nao + 1, -z_one, .FALSE.)
    1787             : 
    1788             :          ! trafo to MO basis
    1789        2896 :          cfm_mo_coeff_double%local_data = z_zero
    1790          16 :          CALL add_cfm_submatrix(cfm_mo_coeff_double, cfm_mo_coeff, 1, 1)
    1791          16 :          CALL add_cfm_submatrix(cfm_mo_coeff_double, cfm_mo_coeff, nao + 1, nao + 1)
    1792             : 
    1793             :          CALL cp_cfm_get_info(matrix=cfm_mat_h_double, &
    1794             :                               nrow_local=nrow_local, &
    1795             :                               ncol_local=ncol_local, &
    1796             :                               row_indices=row_indices, &
    1797          16 :                               col_indices=col_indices)
    1798             : 
    1799             :          CALL parallel_gemm(transa="N", transb="N", m=2*nao, n=2*nao, k=2*nao, alpha=z_one, &
    1800             :                             matrix_a=cfm_mat_h_double, matrix_b=cfm_mo_coeff_double, beta=z_zero, &
    1801          16 :                             matrix_c=cfm_mat_work_double)
    1802             : 
    1803             :          CALL parallel_gemm(transa="C", transb="N", m=2*nao, n=2*nao, k=2*nao, alpha=z_one, &
    1804             :                             matrix_a=cfm_mo_coeff_double, matrix_b=cfm_mat_work_double, beta=z_zero, &
    1805          16 :                             matrix_c=cfm_mat_h_double)
    1806             : 
    1807             :          CALL cp_cfm_get_info(matrix=cfm_mat_h_double, &
    1808             :                               nrow_local=nrow_local, &
    1809             :                               ncol_local=ncol_local, &
    1810             :                               row_indices=row_indices, &
    1811          16 :                               col_indices=col_indices)
    1812             : 
    1813          16 :          CALL cp_cfm_set_all(cfm_mat_s_double, z_zero)
    1814             : 
    1815          16 :          E_HOMO = Eigenval(homo(1), ikp, 1)
    1816          16 :          E_LUMO = Eigenval(homo(1) + 1, ikp, 1)
    1817             : 
    1818          16 :          CALL para_env%sync()
    1819             : 
    1820         160 :          DO i_row = 1, nrow_local
    1821        2752 :          DO j_col = 1, ncol_local
    1822        2592 :             i_glob = row_indices(i_row)
    1823        2592 :             j_glob = col_indices(j_col)
    1824        2592 :             IF (i_glob .LE. nao) THEN
    1825        1296 :                E_i = Eigenval(i_glob, ikp, 1)
    1826             :             ELSE
    1827        1296 :                E_i = Eigenval(i_glob - nao, ikp, 1)
    1828             :             END IF
    1829        2592 :             IF (j_glob .LE. nao) THEN
    1830        1296 :                E_j = Eigenval(j_glob, ikp, 1)
    1831             :             ELSE
    1832        1296 :                E_j = Eigenval(j_glob - nao, ikp, 1)
    1833             :             END IF
    1834             : 
    1835             :             ! add eigenvalues to diagonal entries
    1836        2736 :             IF (i_glob == j_glob) THEN
    1837         144 :                cfm_mat_h_double%local_data(i_row, j_col) = cfm_mat_h_double%local_data(i_row, j_col) + E_i*z_one
    1838         144 :                cfm_mat_s_double%local_data(i_row, j_col) = z_one
    1839             :             ELSE
    1840             :                IF (E_i < E_HOMO - 0.5_dp*E_window .OR. E_i > E_LUMO + 0.5_dp*E_window .OR. &
    1841        2448 :                    E_j < E_HOMO - 0.5_dp*E_window .OR. E_j > E_LUMO + 0.5_dp*E_window) THEN
    1842        2000 :                   cfm_mat_h_double%local_data(i_row, j_col) = z_zero
    1843             :                END IF
    1844             :             END IF
    1845             : 
    1846             :          END DO
    1847             :          END DO
    1848             : 
    1849          16 :          CALL para_env%sync()
    1850             : 
    1851         304 :          eigenvalues = 0.0_dp
    1852             :          CALL cp_cfm_geeig_canon(cfm_mat_h_double, cfm_mat_s_double, cfm_mo_coeff_double, eigenvalues, &
    1853          16 :                                  cfm_mat_work_double, scf_control%eps_eigval)
    1854             : 
    1855         160 :          eigenvalues_without_soc_sorted(1:nao) = Eigenval(:, ikp, 1)
    1856         160 :          eigenvalues_without_soc_sorted(nao + 1:2*nao) = Eigenval(:, ikp, 1)
    1857          48 :          ALLOCATE (index0(2*nao))
    1858          16 :          CALL sort(eigenvalues_without_soc_sorted, 2*nao, index0)
    1859          16 :          DEALLOCATE (index0)
    1860             : 
    1861          64 :          E_HOMO_GW_SOC = MAXVAL(eigenvalues(2*homo(1) - 2*gw_corr_lev_occ(1) + 1:2*homo(1)))
    1862          64 :          E_LUMO_GW_SOC = MINVAL(eigenvalues(2*homo(1) + 1:2*homo(1) + 2*gw_corr_lev_virt(1)))
    1863          16 :          E_GAP_GW_SOC = E_LUMO_GW_SOC - E_HOMO_GW_SOC
    1864          16 :          IF (E_HOMO_GW_SOC > E_VBM_GW_SOC) E_VBM_GW_SOC = E_HOMO_GW_SOC
    1865          16 :          IF (E_LUMO_GW_SOC < E_CBM_GW_SOC) E_CBM_GW_SOC = E_LUMO_GW_SOC
    1866             : 
    1867          52 :          IF (unit_nr > 0) THEN
    1868           8 :             WRITE (unit_nr, '(T3,A)') ' '
    1869           8 :             WRITE (unit_nr, '(T3,A7,I3,A3,I3,A8,3F7.3,A12,3F7.3)') 'Kpoint ', ikp, '  /', nkp_self_energy, &
    1870           8 :                '   xkp =', kpoints_Sigma%xkp(1, ikp), kpoints_Sigma%xkp(2, ikp), kpoints_Sigma%xkp(3, ikp), &
    1871          16 :                '  and  xkp =', -kpoints_Sigma%xkp(1, ikp), -kpoints_Sigma%xkp(2, ikp), -kpoints_Sigma%xkp(3, ikp)
    1872           8 :             WRITE (unit_nr, '(T3,A)') ' '
    1873           8 :             IF (do_soc_gw) THEN
    1874           4 :                WRITE (unit_nr, '(T3,A)') ' '
    1875           4 :                WRITE (unit_nr, '(T3,A,F13.4)') 'GW_SOC_INFO | Average GW shift of occupied levels compared to SCF', &
    1876           8 :                   avg_occ_QP_shift*evolt
    1877           4 :                WRITE (unit_nr, '(T3,A,F11.4)') 'GW_SOC_INFO | Average GW shift of unoccupied levels compared to SCF', &
    1878           8 :                   avg_virt_QP_shift*evolt
    1879           4 :                WRITE (unit_nr, '(T3,A)') ' '
    1880           4 :                WRITE (unit_nr, '(T3,2A)') 'Molecular orbital   E_GW with SOC (eV)   E_GW without SOC (eV)  SOC shift (eV)'
    1881             :             ELSE
    1882           4 :                WRITE (unit_nr, '(T3,2A)') 'Molecular orbital  E_SCF with SOC (eV)  E_SCF without SOC (eV)  SOC shift (eV)'
    1883             :             END IF
    1884             : 
    1885          24 :             DO n_level_gw = 2*(homo(1) - gw_corr_lev_occ(1)) + 1, 2*homo(1)
    1886          16 :                WRITE (unit_nr, '(T3,I4,A,3F21.4)') n_level_gw, ' ( occ )   ', eigenvalues(n_level_gw)*evolt, &
    1887          16 :                   eigenvalues_without_soc_sorted(n_level_gw)*evolt, &
    1888          40 :                   (eigenvalues(n_level_gw) - eigenvalues_without_soc_sorted(n_level_gw))*evolt
    1889             :             END DO
    1890          24 :             DO n_level_gw = 2*homo(1) + 1, 2*(homo(1) + gw_corr_lev_virt(1))
    1891          16 :                WRITE (unit_nr, '(T3,I4,A,3F21.4)') n_level_gw, ' ( vir )   ', eigenvalues(n_level_gw)*evolt, &
    1892          16 :                   eigenvalues_without_soc_sorted(n_level_gw)*evolt, &
    1893          40 :                   (eigenvalues(n_level_gw) - eigenvalues_without_soc_sorted(n_level_gw))*evolt
    1894             :             END DO
    1895           8 :             WRITE (unit_nr, '(T3,A)') ' '
    1896           8 :             IF (do_soc_gw) THEN
    1897           4 :                WRITE (unit_nr, '(T3,A,F38.4)') 'GW+SOC direct gap at current kpoint (eV)', E_GAP_GW_SOC*evolt
    1898             :             ELSE
    1899           4 :                WRITE (unit_nr, '(T3,A,F37.4)') 'SCF+SOC direct gap at current kpoint (eV)', E_GAP_GW_SOC*evolt
    1900             :             END IF
    1901           8 :             WRITE (unit_nr, '(T3,A)') ' '
    1902           8 :             WRITE (unit_nr, '(T3,A)') '------------------------------------------------------------------------------'
    1903             :          END IF
    1904             : 
    1905             :       END DO
    1906             : 
    1907           4 :       IF (unit_nr > 0) THEN
    1908           2 :          WRITE (unit_nr, '(T3,A)') ' '
    1909           2 :          IF (do_soc_gw) THEN
    1910           1 :             WRITE (unit_nr, '(T3,A,F46.4)') 'GW+SOC valence band maximum (eV)', E_VBM_GW_SOC*evolt
    1911           1 :             WRITE (unit_nr, '(T3,A,F43.4)') 'GW+SOC conduction band minimum (eV)', E_CBM_GW_SOC*evolt
    1912           1 :             WRITE (unit_nr, '(T3,A,F59.4)') 'GW+SOC bandgap (eV)', (E_CBM_GW_SOC - E_VBM_GW_SOC)*evolt
    1913             :          ELSE
    1914           1 :             WRITE (unit_nr, '(T3,A,F45.4)') 'SCF+SOC valence band maximum (eV)', E_VBM_GW_SOC*evolt
    1915           1 :             WRITE (unit_nr, '(T3,A,F42.4)') 'SCF+SOC conduction band minimum (eV)', E_CBM_GW_SOC*evolt
    1916           1 :             WRITE (unit_nr, '(T3,A,F58.4)') 'SCF+SOC bandgap (eV)', (E_CBM_GW_SOC - E_VBM_GW_SOC)*evolt
    1917             :          END IF
    1918             :       END IF
    1919             : 
    1920           4 :       CALL dbcsr_deallocate_matrix_set(matrix_l)
    1921           4 :       CALL dbcsr_deallocate_matrix_set(mat_VSOC_l_nosymm)
    1922           4 :       CALL dbcsr_deallocate_matrix_set(matrix_pot_dummy)
    1923           4 :       CALL dbcsr_deallocate_matrix_set(mat_VSOC_lx_kp)
    1924           4 :       CALL dbcsr_deallocate_matrix_set(mat_VSOC_ly_kp)
    1925           4 :       CALL dbcsr_deallocate_matrix_set(mat_VSOC_lz_kp)
    1926           4 :       CALL dbcsr_deallocate_matrix_set(matrix_s_desymm)
    1927             : 
    1928           4 :       CALL cp_cfm_release(cfm_mat_h_double)
    1929           4 :       CALL cp_cfm_release(cfm_mat_s_double)
    1930           4 :       CALL cp_cfm_release(cfm_mo_coeff_double)
    1931           4 :       CALL cp_cfm_release(cfm_mo_coeff)
    1932           4 :       CALL cp_cfm_release(cfm_mat_h_ks)
    1933           4 :       CALL cp_cfm_release(cfm_mat_work_double)
    1934           4 :       DEALLOCATE (eigenvalues)
    1935             : 
    1936           4 :       CALL timestop(handle)
    1937             : 
    1938          12 :    END SUBROUTINE calculate_and_print_soc
    1939             : 
    1940             : ! **************************************************************************************************
    1941             : !> \brief ...
    1942             : !> \param cfm_mat_target ...
    1943             : !> \param mat_source ...
    1944             : !> \param cfm_source_template ...
    1945             : !> \param nstart_row ...
    1946             : !> \param nstart_col ...
    1947             : !> \param factor ...
    1948             : !> \param add_also_herm_conj ...
    1949             : ! **************************************************************************************************
    1950          64 :    SUBROUTINE add_dbcsr_submatrix(cfm_mat_target, mat_source, cfm_source_template, &
    1951             :                                   nstart_row, nstart_col, factor, add_also_herm_conj)
    1952             :       TYPE(cp_cfm_type)                                  :: cfm_mat_target
    1953             :       TYPE(dbcsr_p_type), DIMENSION(:)                   :: mat_source
    1954             :       TYPE(cp_cfm_type)                                  :: cfm_source_template
    1955             :       INTEGER                                            :: nstart_row, nstart_col
    1956             :       COMPLEX(KIND=dp)                                   :: factor
    1957             :       LOGICAL                                            :: add_also_herm_conj
    1958             : 
    1959             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'add_dbcsr_submatrix'
    1960             : 
    1961             :       INTEGER                                            :: handle, nao
    1962             :       TYPE(cp_cfm_type)                                  :: cfm_mat_work_double, &
    1963             :                                                             cfm_mat_work_double_2
    1964             :       TYPE(cp_fm_type)                                   :: fm_mat_work_double_im, &
    1965             :                                                             fm_mat_work_double_re, fm_mat_work_im, &
    1966             :                                                             fm_mat_work_re
    1967             : 
    1968          64 :       CALL timeset(routineN, handle)
    1969             : 
    1970          64 :       CALL cp_fm_create(fm_mat_work_double_re, cfm_mat_target%matrix_struct)
    1971          64 :       CALL cp_fm_create(fm_mat_work_double_im, cfm_mat_target%matrix_struct)
    1972          64 :       CALL cp_fm_set_all(fm_mat_work_double_re, 0.0_dp)
    1973          64 :       CALL cp_fm_set_all(fm_mat_work_double_im, 0.0_dp)
    1974             : 
    1975          64 :       CALL cp_cfm_create(cfm_mat_work_double, cfm_mat_target%matrix_struct)
    1976          64 :       CALL cp_cfm_create(cfm_mat_work_double_2, cfm_mat_target%matrix_struct)
    1977          64 :       CALL cp_cfm_set_all(cfm_mat_work_double, z_zero)
    1978          64 :       CALL cp_cfm_set_all(cfm_mat_work_double_2, z_zero)
    1979             : 
    1980          64 :       CALL cp_fm_create(fm_mat_work_re, cfm_source_template%matrix_struct)
    1981          64 :       CALL cp_fm_create(fm_mat_work_im, cfm_source_template%matrix_struct)
    1982             : 
    1983          64 :       CALL copy_dbcsr_to_fm(mat_source(1)%matrix, fm_mat_work_re)
    1984          64 :       CALL copy_dbcsr_to_fm(mat_source(2)%matrix, fm_mat_work_im)
    1985             : 
    1986          64 :       CALL cp_cfm_get_info(cfm_source_template, nrow_global=nao)
    1987             : 
    1988             :       CALL cp_fm_to_fm_submat(msource=fm_mat_work_re, mtarget=fm_mat_work_double_re, &
    1989             :                               nrow=nao, ncol=nao, &
    1990             :                               s_firstrow=1, s_firstcol=1, &
    1991          64 :                               t_firstrow=nstart_row, t_firstcol=nstart_col)
    1992             : 
    1993             :       CALL cp_fm_to_fm_submat(msource=fm_mat_work_im, mtarget=fm_mat_work_double_im, &
    1994             :                               nrow=nao, ncol=nao, &
    1995             :                               s_firstrow=1, s_firstcol=1, &
    1996          64 :                               t_firstrow=nstart_row, t_firstcol=nstart_col)
    1997             : 
    1998          64 :       CALL cp_cfm_scale_and_add_fm(z_one, cfm_mat_work_double, z_one, fm_mat_work_double_re)
    1999          64 :       CALL cp_cfm_scale_and_add_fm(z_one, cfm_mat_work_double, gaussi, fm_mat_work_double_im)
    2000             : 
    2001          64 :       CALL cp_cfm_scale(factor, cfm_mat_work_double)
    2002             : 
    2003          64 :       CALL cp_cfm_scale_and_add(z_one, cfm_mat_target, z_one, cfm_mat_work_double)
    2004             : 
    2005          64 :       IF (add_also_herm_conj) THEN
    2006          32 :          CALL cp_cfm_transpose(cfm_mat_work_double, 'C', cfm_mat_work_double_2)
    2007          32 :          CALL cp_cfm_scale_and_add(z_one, cfm_mat_target, z_one, cfm_mat_work_double_2)
    2008             :       END IF
    2009             : 
    2010          64 :       CALL cp_fm_release(fm_mat_work_double_re)
    2011          64 :       CALL cp_fm_release(fm_mat_work_double_im)
    2012          64 :       CALL cp_cfm_release(cfm_mat_work_double)
    2013          64 :       CALL cp_cfm_release(cfm_mat_work_double_2)
    2014          64 :       CALL cp_fm_release(fm_mat_work_re)
    2015          64 :       CALL cp_fm_release(fm_mat_work_im)
    2016             : 
    2017          64 :       CALL timestop(handle)
    2018             : 
    2019          64 :    END SUBROUTINE
    2020             : 
    2021             : ! **************************************************************************************************
    2022             : !> \brief ...
    2023             : !> \param cfm_mat_target ...
    2024             : !> \param cfm_mat_source ...
    2025             : !> \param nstart_row ...
    2026             : !> \param nstart_col ...
    2027             : ! **************************************************************************************************
    2028         192 :    SUBROUTINE add_cfm_submatrix(cfm_mat_target, cfm_mat_source, nstart_row, nstart_col)
    2029             : 
    2030             :       TYPE(cp_cfm_type)                                  :: cfm_mat_target, cfm_mat_source
    2031             :       INTEGER                                            :: nstart_row, nstart_col
    2032             : 
    2033             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'add_cfm_submatrix'
    2034             : 
    2035             :       INTEGER                                            :: handle, nao
    2036             :       TYPE(cp_fm_type)                                   :: fm_mat_work_double_im, &
    2037             :                                                             fm_mat_work_double_re, fm_mat_work_im, &
    2038             :                                                             fm_mat_work_re
    2039             : 
    2040          32 :       CALL timeset(routineN, handle)
    2041             : 
    2042          32 :       CALL cp_fm_create(fm_mat_work_double_re, cfm_mat_target%matrix_struct)
    2043          32 :       CALL cp_fm_create(fm_mat_work_double_im, cfm_mat_target%matrix_struct)
    2044          32 :       CALL cp_fm_set_all(fm_mat_work_double_re, 0.0_dp)
    2045          32 :       CALL cp_fm_set_all(fm_mat_work_double_im, 0.0_dp)
    2046             : 
    2047          32 :       CALL cp_fm_create(fm_mat_work_re, cfm_mat_source%matrix_struct)
    2048          32 :       CALL cp_fm_create(fm_mat_work_im, cfm_mat_source%matrix_struct)
    2049          32 :       CALL cp_cfm_to_fm(cfm_mat_source, fm_mat_work_re, fm_mat_work_im)
    2050             : 
    2051          32 :       CALL cp_cfm_get_info(cfm_mat_source, nrow_global=nao)
    2052             : 
    2053             :       CALL cp_fm_to_fm_submat(msource=fm_mat_work_re, mtarget=fm_mat_work_double_re, &
    2054             :                               nrow=nao, ncol=nao, &
    2055             :                               s_firstrow=1, s_firstcol=1, &
    2056          32 :                               t_firstrow=nstart_row, t_firstcol=nstart_col)
    2057             : 
    2058             :       CALL cp_fm_to_fm_submat(msource=fm_mat_work_im, mtarget=fm_mat_work_double_im, &
    2059             :                               nrow=nao, ncol=nao, &
    2060             :                               s_firstrow=1, s_firstcol=1, &
    2061          32 :                               t_firstrow=nstart_row, t_firstcol=nstart_col)
    2062             : 
    2063          32 :       CALL cp_cfm_scale_and_add_fm(z_one, cfm_mat_target, z_one, fm_mat_work_double_re)
    2064          32 :       CALL cp_cfm_scale_and_add_fm(z_one, cfm_mat_target, gaussi, fm_mat_work_double_im)
    2065             : 
    2066          32 :       CALL cp_fm_release(fm_mat_work_double_re)
    2067          32 :       CALL cp_fm_release(fm_mat_work_double_im)
    2068          32 :       CALL cp_fm_release(fm_mat_work_re)
    2069          32 :       CALL cp_fm_release(fm_mat_work_im)
    2070             : 
    2071          32 :       CALL timestop(handle)
    2072             : 
    2073          32 :    END SUBROUTINE add_cfm_submatrix
    2074             : 
    2075             : ! **************************************************************************************************
    2076             : !> \brief ...
    2077             : !> \param fm_orig ...
    2078             : !> \param cfm_double ...
    2079             : ! **************************************************************************************************
    2080          48 :    SUBROUTINE create_cfm_double_row_col_size(fm_orig, cfm_double)
    2081             :       TYPE(cp_fm_type)                                   :: fm_orig
    2082             :       TYPE(cp_cfm_type)                                  :: cfm_double
    2083             : 
    2084             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'create_cfm_double_row_col_size'
    2085             : 
    2086             :       INTEGER                                            :: handle, ncol_global_orig, &
    2087             :                                                             nrow_global_orig
    2088             :       TYPE(cp_fm_struct_type), POINTER                   :: fm_struct_double
    2089             : 
    2090          16 :       CALL timeset(routineN, handle)
    2091             : 
    2092          16 :       CALL cp_fm_get_info(matrix=fm_orig, nrow_global=nrow_global_orig, ncol_global=ncol_global_orig)
    2093             : 
    2094             :       CALL cp_fm_struct_create(fm_struct_double, &
    2095             :                                nrow_global=2*nrow_global_orig, &
    2096             :                                ncol_global=2*ncol_global_orig, &
    2097          16 :                                template_fmstruct=fm_orig%matrix_struct)
    2098             : 
    2099          16 :       CALL cp_cfm_create(cfm_double, fm_struct_double)
    2100             : 
    2101          16 :       CALL cp_fm_struct_release(fm_struct_double)
    2102             : 
    2103          16 :       CALL timestop(handle)
    2104             : 
    2105          16 :    END SUBROUTINE
    2106             : 
    2107             : ! **************************************************************************************************
    2108             : !> \brief ...
    2109             : !> \param E_VBM_SCF ...
    2110             : !> \param E_CBM_SCF ...
    2111             : !> \param E_VBM_SCF_beta ...
    2112             : !> \param E_CBM_SCF_beta ...
    2113             : !> \param E_VBM_GW ...
    2114             : !> \param E_CBM_GW ...
    2115             : !> \param E_VBM_GW_beta ...
    2116             : !> \param E_CBM_GW_beta ...
    2117             : !> \param my_open_shell ...
    2118             : !> \param unit_nr ...
    2119             : ! **************************************************************************************************
    2120           9 :    SUBROUTINE print_gaps(E_VBM_SCF, E_CBM_SCF, E_VBM_SCF_beta, E_CBM_SCF_beta, &
    2121             :                          E_VBM_GW, E_CBM_GW, E_VBM_GW_beta, E_CBM_GW_beta, my_open_shell, unit_nr)
    2122             : 
    2123             :       REAL(KIND=dp)                                      :: E_VBM_SCF, E_CBM_SCF, E_VBM_SCF_beta, &
    2124             :                                                             E_CBM_SCF_beta, E_VBM_GW, E_CBM_GW, &
    2125             :                                                             E_VBM_GW_beta, E_CBM_GW_beta
    2126             :       LOGICAL                                            :: my_open_shell
    2127             :       INTEGER                                            :: unit_nr
    2128             : 
    2129           9 :       IF (my_open_shell) THEN
    2130           2 :          WRITE (unit_nr, '(T3,A)') ' '
    2131           2 :          WRITE (unit_nr, '(T3,A,F43.4)') 'Alpha SCF valence band maximum (eV)', E_VBM_SCF*evolt
    2132           2 :          WRITE (unit_nr, '(T3,A,F40.4)') 'Alpha SCF conduction band minimum (eV)', E_CBM_SCF*evolt
    2133           2 :          WRITE (unit_nr, '(T3,A,F56.4)') 'Alpha SCF bandgap (eV)', (E_CBM_SCF - E_VBM_SCF)*evolt
    2134           2 :          WRITE (unit_nr, '(T3,A)') ' '
    2135           2 :          WRITE (unit_nr, '(T3,A,F44.4)') 'Beta SCF valence band maximum (eV)', E_VBM_SCF_beta*evolt
    2136           2 :          WRITE (unit_nr, '(T3,A,F41.4)') 'Beta SCF conduction band minimum (eV)', E_CBM_SCF_beta*evolt
    2137           2 :          WRITE (unit_nr, '(T3,A,F57.4)') 'Beta SCF bandgap (eV)', (E_CBM_SCF_beta - E_VBM_SCF_beta)*evolt
    2138           2 :          WRITE (unit_nr, '(T3,A)') ' '
    2139           2 :          WRITE (unit_nr, '(T3,A,F44.4)') 'Alpha GW valence band maximum (eV)', E_VBM_GW*evolt
    2140           2 :          WRITE (unit_nr, '(T3,A,F41.4)') 'Alpha GW conduction band minimum (eV)', E_CBM_GW*evolt
    2141           2 :          WRITE (unit_nr, '(T3,A,F57.4)') 'Alpha GW bandgap (eV)', (E_CBM_GW - E_VBM_GW)*evolt
    2142           2 :          WRITE (unit_nr, '(T3,A)') ' '
    2143           2 :          WRITE (unit_nr, '(T3,A,F45.4)') 'Beta GW valence band maximum (eV)', E_VBM_GW_beta*evolt
    2144           2 :          WRITE (unit_nr, '(T3,A,F42.4)') 'Beta GW conduction band minimum (eV)', E_CBM_GW_beta*evolt
    2145           2 :          WRITE (unit_nr, '(T3,A,F58.4)') 'Beta GW bandgap (eV)', (E_CBM_GW_beta - E_VBM_GW_beta)*evolt
    2146             :       ELSE
    2147           7 :          WRITE (unit_nr, '(T3,A)') ' '
    2148           7 :          WRITE (unit_nr, '(T3,A,F49.4)') 'SCF valence band maximum (eV)', E_VBM_SCF*evolt
    2149           7 :          WRITE (unit_nr, '(T3,A,F46.4)') 'SCF conduction band minimum (eV)', E_CBM_SCF*evolt
    2150           7 :          WRITE (unit_nr, '(T3,A,F62.4)') 'SCF bandgap (eV)', (E_CBM_SCF - E_VBM_SCF)*evolt
    2151           7 :          WRITE (unit_nr, '(T3,A)') ' '
    2152           7 :          WRITE (unit_nr, '(T3,A,F50.4)') 'GW valence band maximum (eV)', E_VBM_GW*evolt
    2153           7 :          WRITE (unit_nr, '(T3,A,F47.4)') 'GW conduction band minimum (eV)', E_CBM_GW*evolt
    2154           7 :          WRITE (unit_nr, '(T3,A,F63.4)') 'GW bandgap (eV)', (E_CBM_GW - E_VBM_GW)*evolt
    2155             :       END IF
    2156             : 
    2157           9 :    END SUBROUTINE print_gaps
    2158             : 
    2159             : ! **************************************************************************************************
    2160             : !> \brief ...
    2161             : !> \param array ...
    2162             : !> \param real_value ...
    2163             : ! **************************************************************************************************
    2164        1008 :    SUBROUTINE check_NaN(array, real_value)
    2165             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :), &
    2166             :          INTENT(INOUT)                                   :: array
    2167             :       REAL(KIND=dp), INTENT(IN)                          :: real_value
    2168             : 
    2169             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'check_NaN'
    2170             : 
    2171             :       INTEGER                                            :: handle, i, j, k
    2172             : 
    2173        1008 :       CALL timeset(routineN, handle)
    2174             : 
    2175        9576 :       DO i = 1, SIZE(array, 1)
    2176       23664 :       DO j = 1, SIZE(array, 2)
    2177       39036 :       DO k = 1, SIZE(array, 3)
    2178             : 
    2179             :          ! check for NaN
    2180       30468 :          IF (array(i, j, k) .NE. array(i, j, k)) array(i, j, k) = real_value
    2181             : 
    2182             :       END DO
    2183             :       END DO
    2184             :       END DO
    2185             : 
    2186        1008 :       CALL timestop(handle)
    2187             : 
    2188        1008 :    END SUBROUTINE
    2189             : 
    2190             : ! **************************************************************************************************
    2191             : !> \brief ...
    2192             : !> \param qs_env ...
    2193             : !> \param Eigenval ...
    2194             : !> \param gw_corr_lev_occ ...
    2195             : !> \param gw_corr_lev_virt ...
    2196             : !> \param homo ...
    2197             : !> \param dft_gw_char ...
    2198             : ! **************************************************************************************************
    2199           4 :    SUBROUTINE print_local_bandgap(qs_env, Eigenval, gw_corr_lev_occ, gw_corr_lev_virt, homo, dft_gw_char)
    2200             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2201             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(IN)      :: Eigenval
    2202             :       INTEGER                                            :: gw_corr_lev_occ, gw_corr_lev_virt, homo
    2203             :       CHARACTER(len=*)                                   :: dft_gw_char
    2204             : 
    2205             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'print_local_bandgap'
    2206             : 
    2207             :       INTEGER                                            :: handle, i_E
    2208             :       TYPE(pw_c1d_gs_type)                               :: rho_g_dummy
    2209             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
    2210             :       TYPE(pw_r3d_rs_type)                               :: E_CBM_rspace, E_gap_rspace, E_VBM_rspace
    2211           4 :       TYPE(pw_r3d_rs_type), ALLOCATABLE, DIMENSION(:)    :: LDOS
    2212             : 
    2213           4 :       CALL timeset(routineN, handle)
    2214             : 
    2215           4 :       CALL create_real_space_grids(E_gap_rspace, E_VBM_rspace, E_CBM_rspace, rho_g_dummy, LDOS, auxbas_pw_pool, qs_env)
    2216             : 
    2217             :       CALL calculate_E_gap_rspace(E_gap_rspace, E_VBM_rspace, E_CBM_rspace, rho_g_dummy, &
    2218           4 :                                   LDOS, qs_env, Eigenval, gw_corr_lev_occ, gw_corr_lev_virt, homo, dft_gw_char)
    2219             : 
    2220           4 :       CALL auxbas_pw_pool%give_back_pw(E_gap_rspace)
    2221           4 :       CALL auxbas_pw_pool%give_back_pw(E_VBM_rspace)
    2222           4 :       CALL auxbas_pw_pool%give_back_pw(E_CBM_rspace)
    2223           4 :       CALL auxbas_pw_pool%give_back_pw(rho_g_dummy)
    2224          20 :       DO i_E = 1, SIZE(LDOS)
    2225          20 :          CALL auxbas_pw_pool%give_back_pw(LDOS(i_E))
    2226             :       END DO
    2227           4 :       DEALLOCATE (LDOS)
    2228             : 
    2229           4 :       CALL timestop(handle)
    2230             : 
    2231           4 :    END SUBROUTINE print_local_bandgap
    2232             : 
    2233             : ! **************************************************************************************************
    2234             : !> \brief ...
    2235             : !> \param E_gap_rspace ...
    2236             : !> \param E_VBM_rspace ...
    2237             : !> \param E_CBM_rspace ...
    2238             : !> \param rho_g_dummy ...
    2239             : !> \param LDOS ...
    2240             : !> \param qs_env ...
    2241             : !> \param Eigenval ...
    2242             : !> \param gw_corr_lev_occ ...
    2243             : !> \param gw_corr_lev_virt ...
    2244             : !> \param homo ...
    2245             : !> \param dft_gw_char ...
    2246             : ! **************************************************************************************************
    2247           4 :    SUBROUTINE calculate_E_gap_rspace(E_gap_rspace, E_VBM_rspace, E_CBM_rspace, rho_g_dummy, &
    2248           4 :                                      LDOS, qs_env, Eigenval, gw_corr_lev_occ, gw_corr_lev_virt, homo, dft_gw_char)
    2249             :       TYPE(pw_r3d_rs_type)                               :: E_gap_rspace, E_VBM_rspace, E_CBM_rspace
    2250             :       TYPE(pw_c1d_gs_type)                               :: rho_g_dummy
    2251             :       TYPE(pw_r3d_rs_type), ALLOCATABLE, DIMENSION(:)    :: LDOS
    2252             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2253             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(IN)      :: Eigenval
    2254             :       INTEGER                                            :: gw_corr_lev_occ, gw_corr_lev_virt, homo
    2255             :       CHARACTER(len=*)                                   :: dft_gw_char
    2256             : 
    2257             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'calculate_E_gap_rspace'
    2258             : 
    2259             :       INTEGER :: handle, i_E, i_img, i_spin, i_x, i_y, i_z, ikp, imo, n_E, n_E_occ, n_x_end, &
    2260             :          n_x_start, n_y_end, n_y_start, n_z_end, n_z_start, nimg, nkp, nkp_self_energy
    2261             :       REAL(KIND=dp)                                      :: avg_LDOS_occ, avg_LDOS_virt, d_E, E_CBM, &
    2262             :                                                             E_CBM_at_k, E_diff, E_VBM, E_VBM_at_k
    2263           4 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: E_array
    2264           4 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: occupation
    2265             :       TYPE(cp_fm_struct_type), POINTER                   :: matrix_struct
    2266           4 :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: fm_work
    2267           4 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_s, rho_ao
    2268           4 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: rho_ao_weighted
    2269             :       TYPE(dft_control_type), POINTER                    :: dft_control
    2270             :       TYPE(kpoint_type), POINTER                         :: kpoints_Sigma
    2271             :       TYPE(mp2_type), POINTER                            :: mp2_env
    2272             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    2273             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    2274           4 :          POINTER                                         :: sab_orb
    2275             :       TYPE(particle_list_type), POINTER                  :: particles
    2276             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
    2277             :       TYPE(qs_scf_env_type), POINTER                     :: scf_env
    2278             :       TYPE(qs_subsys_type), POINTER                      :: subsys
    2279             :       TYPE(section_vals_type), POINTER                   :: gw_section
    2280             : 
    2281           4 :       CALL timeset(routineN, handle)
    2282             : 
    2283             :       CALL get_qs_env(qs_env=qs_env, para_env=para_env, mp2_env=mp2_env, ks_env=ks_env, matrix_s=matrix_s, &
    2284           4 :                       scf_env=scf_env, sab_orb=sab_orb, dft_control=dft_control, subsys=subsys)
    2285             : 
    2286             :       ! compute valence band maximum (VBM) and conduction band minimum (CBM)
    2287           4 :       nkp = SIZE(Eigenval, 2)
    2288           4 :       E_VBM = -1.0E3_dp
    2289           4 :       E_CBM = 1.0E3_dp
    2290             : 
    2291          36 :       DO ikp = 1, nkp
    2292             : 
    2293          96 :          E_VBM_at_k = MAXVAL(Eigenval(homo - gw_corr_lev_occ + 1:homo, ikp, 1))
    2294          32 :          IF (E_VBM_at_k > E_VBM) E_VBM = E_VBM_at_k
    2295             : 
    2296          96 :          E_CBM_at_k = MINVAL(Eigenval(homo + 1:homo + gw_corr_lev_virt, ikp, 1))
    2297          36 :          IF (E_CBM_at_k < E_CBM) E_CBM = E_CBM_at_k
    2298             : 
    2299             :       END DO
    2300             : 
    2301           4 :       d_E = mp2_env%ri_g0w0%energy_spacing_print_loc_bandgap
    2302             : 
    2303           4 :       n_E = INT(mp2_env%ri_g0w0%energy_window_print_loc_bandgap/d_E)
    2304             : 
    2305           4 :       n_E_occ = n_E/2
    2306          12 :       ALLOCATE (E_array(n_E))
    2307          12 :       DO i_E = 1, n_E_occ
    2308          12 :          E_array(i_E) = E_VBM - REAL(n_E_occ - i_E, KIND=dp)*d_E
    2309             :       END DO
    2310          12 :       DO i_E = n_E_occ + 1, n_E
    2311          12 :          E_array(i_E) = E_CBM + REAL(i_E - n_E_occ - 1, KIND=dp)*d_E
    2312             :       END DO
    2313             : 
    2314           4 :       kpoints_Sigma => qs_env%mp2_env%ri_rpa_im_time%kpoints_Sigma
    2315             : 
    2316           4 :       nkp_self_energy = kpoints_Sigma%nkp
    2317           4 :       CPASSERT(nkp == nkp_self_energy)
    2318             : 
    2319           4 :       kpoints_Sigma%sab_nl => sab_orb
    2320             : 
    2321           4 :       DEALLOCATE (kpoints_Sigma%cell_to_index)
    2322             :       NULLIFY (kpoints_Sigma%cell_to_index)
    2323           4 :       CALL kpoint_init_cell_index(kpoints_Sigma, sab_orb, para_env, dft_control)
    2324             : 
    2325         424 :       nimg = MAXVAL(kpoints_Sigma%cell_to_index)
    2326             : 
    2327           4 :       NULLIFY (rho_ao_weighted)
    2328           4 :       CALL dbcsr_allocate_matrix_set(rho_ao_weighted, 2, nimg)
    2329             : 
    2330          12 :       DO i_spin = 1, 2
    2331         236 :          DO i_img = 1, nimg
    2332         224 :             ALLOCATE (rho_ao_weighted(i_spin, i_img)%matrix)
    2333         224 :             CALL dbcsr_create(matrix=rho_ao_weighted(i_spin, i_img)%matrix, template=matrix_s(1)%matrix)
    2334         224 :             CALL cp_dbcsr_alloc_block_from_nbl(rho_ao_weighted(i_spin, i_img)%matrix, sab_orb)
    2335         232 :             CALL dbcsr_set(rho_ao_weighted(i_spin, i_img)%matrix, 0.0_dp)
    2336             :          END DO
    2337             :       END DO
    2338             : 
    2339         124 :       ALLOCATE (fm_work(nimg))
    2340           4 :       matrix_struct => kpoints_Sigma%kp_env(1)%kpoint_env%mos(1, 1)%mo_coeff%matrix_struct
    2341         116 :       DO i_img = 1, nimg
    2342         116 :          CALL cp_fm_create(fm_work(i_img), matrix_struct)
    2343             :       END DO
    2344             : 
    2345          20 :       DO i_E = 1, n_E
    2346             : 
    2347             :          ! occupation = weight factor for computing LDOS
    2348         144 :          DO ikp = 1, nkp
    2349             :             CALL get_mo_set(kpoints_Sigma%kp_env(ikp)%kpoint_env%mos(1, 1), &
    2350         128 :                             occupation_numbers=occupation)
    2351             : 
    2352        3072 :             occupation(:) = 0.0_dp
    2353         400 :             DO imo = homo - gw_corr_lev_occ + 1, homo + gw_corr_lev_virt
    2354         256 :                E_diff = E_array(i_E) - Eigenval(imo, ikp, 1)
    2355         384 :                occupation(imo) = EXP(-(E_diff/d_E)**2)
    2356             :             END DO
    2357             : 
    2358             :          END DO
    2359             : 
    2360             :          CALL get_mo_set(kpoints_Sigma%kp_env(1)%kpoint_env%mos(1, 1), &
    2361          16 :                          occupation_numbers=occupation)
    2362             : 
    2363             :          ! density matrices
    2364          16 :          CALL kpoint_density_matrices(kpoints_Sigma)
    2365             : 
    2366             :          ! density matrices in real space
    2367             :          CALL kpoint_density_transform(kpoints_Sigma, rho_ao_weighted, .FALSE., &
    2368          16 :                                        matrix_s(1)%matrix, sab_orb, fm_work)
    2369             : 
    2370          16 :          rho_ao => rho_ao_weighted(1, :)
    2371             : 
    2372             :          CALL calculate_rho_elec(matrix_p_kp=rho_ao, &
    2373             :                                  rho=LDOS(i_E), &
    2374             :                                  rho_gspace=rho_g_dummy, &
    2375          16 :                                  ks_env=ks_env)
    2376             : 
    2377          52 :          DO i_spin = 1, 2
    2378         944 :             DO i_img = 1, nimg
    2379         928 :                CALL dbcsr_set(rho_ao_weighted(i_spin, i_img)%matrix, 0.0_dp)
    2380             :             END DO
    2381             :          END DO
    2382             : 
    2383             :       END DO
    2384             : 
    2385           4 :       n_x_start = LBOUND(LDOS(1)%array, 1)
    2386           4 :       n_x_end = UBOUND(LDOS(1)%array, 1)
    2387           4 :       n_y_start = LBOUND(LDOS(1)%array, 2)
    2388           4 :       n_y_end = UBOUND(LDOS(1)%array, 2)
    2389           4 :       n_z_start = LBOUND(LDOS(1)%array, 3)
    2390           4 :       n_z_end = UBOUND(LDOS(1)%array, 3)
    2391             : 
    2392           4 :       CALL pw_zero(E_VBM_rspace)
    2393           4 :       CALL pw_zero(E_CBM_rspace)
    2394             : 
    2395          68 :       DO i_x = n_x_start, n_x_end
    2396        2116 :          DO i_y = n_y_start, n_y_end
    2397       94272 :             DO i_z = n_z_start, n_z_end
    2398             :                ! compute average occ and virt LDOS
    2399             :                avg_LDOS_occ = 0.0_dp
    2400      276480 :                DO i_E = 1, n_E_occ
    2401      276480 :                   avg_LDOS_occ = avg_LDOS_occ + LDOS(i_E)%array(i_x, i_y, i_z)
    2402             :                END DO
    2403       92160 :                avg_LDOS_occ = avg_LDOS_occ/REAL(n_E_occ, KIND=dp)
    2404             : 
    2405       92160 :                avg_LDOS_virt = 0.0_dp
    2406      276480 :                DO i_E = n_E_occ + 1, n_E
    2407      276480 :                   avg_LDOS_virt = avg_LDOS_virt + LDOS(i_E)%array(i_x, i_y, i_z)
    2408             :                END DO
    2409       92160 :                avg_LDOS_virt = avg_LDOS_virt/REAL(n_E - n_E_occ, KIND=dp)
    2410             : 
    2411             :                ! compute local valence band maximum (VBM)
    2412      117630 :                DO i_E = n_E_occ, 1, -1
    2413      117630 :                   IF (LDOS(i_E)%array(i_x, i_y, i_z) > mp2_env%ri_g0w0%ldos_thresh_print_loc_bandgap*avg_LDOS_occ) THEN
    2414       79632 :                      E_VBM_rspace%array(i_x, i_y, i_z) = E_array(i_E)
    2415       79632 :                      EXIT
    2416             :                   END IF
    2417             :                END DO
    2418             : 
    2419             :                ! compute local valence band maximum (VBM)
    2420       94304 :                DO i_E = n_E_occ + 1, n_E
    2421       92256 :                   IF (LDOS(i_E)%array(i_x, i_y, i_z) > mp2_env%ri_g0w0%ldos_thresh_print_loc_bandgap*avg_LDOS_virt) THEN
    2422       92112 :                      E_CBM_rspace%array(i_x, i_y, i_z) = E_array(i_E)
    2423       92112 :                      EXIT
    2424             :                   END IF
    2425             :                END DO
    2426             : 
    2427             :             END DO
    2428             :          END DO
    2429             :       END DO
    2430             : 
    2431           4 :       CALL pw_scale(E_VBM_rspace, evolt)
    2432           4 :       CALL pw_scale(E_CBM_rspace, evolt)
    2433             : 
    2434           4 :       CALL pw_copy(E_CBM_rspace, E_gap_rspace)
    2435           4 :       CALL pw_axpy(E_VBM_rspace, E_gap_rspace, -1.0_dp)
    2436             : 
    2437           4 :       gw_section => section_vals_get_subs_vals(qs_env%input, "DFT%XC%WF_CORRELATION%RI_RPA%GW")
    2438           4 :       CALL qs_subsys_get(subsys, particles=particles)
    2439             : 
    2440           4 :       CALL print_file(E_gap_rspace, dft_gw_char//"_Gap_in_eV", gw_section, particles, mp2_env)
    2441           4 :       CALL print_file(E_VBM_rspace, dft_gw_char//"_VBM_in_eV", gw_section, particles, mp2_env)
    2442           4 :       CALL print_file(E_CBM_rspace, dft_gw_char//"_CBM_in_eV", gw_section, particles, mp2_env)
    2443           4 :       CALL print_file(LDOS(n_E_occ), dft_gw_char//"_LDOS_VBM_in_eV", gw_section, particles, mp2_env)
    2444           4 :       CALL print_file(LDOS(n_E_occ + 1), dft_gw_char//"_LDOS_CBM_in_eV", gw_section, particles, mp2_env)
    2445             : 
    2446           4 :       CALL dbcsr_deallocate_matrix_set(rho_ao_weighted)
    2447             : 
    2448           4 :       CALL cp_fm_release(fm_work)
    2449             : 
    2450           4 :       DEALLOCATE (E_array)
    2451             : 
    2452           4 :       NULLIFY (kpoints_Sigma%sab_nl)
    2453             : 
    2454           4 :       CALL timestop(handle)
    2455             : 
    2456           8 :    END SUBROUTINE calculate_E_gap_rspace
    2457             : 
    2458             : ! **************************************************************************************************
    2459             : !> \brief ...
    2460             : !> \param pw_print ...
    2461             : !> \param middle_name ...
    2462             : !> \param gw_section ...
    2463             : !> \param particles ...
    2464             : !> \param mp2_env ...
    2465             : ! **************************************************************************************************
    2466          20 :    SUBROUTINE print_file(pw_print, middle_name, gw_section, particles, mp2_env)
    2467             :       TYPE(pw_r3d_rs_type)                               :: pw_print
    2468             :       CHARACTER(len=*)                                   :: middle_name
    2469             :       TYPE(section_vals_type), POINTER                   :: gw_section
    2470             :       TYPE(particle_list_type), POINTER                  :: particles
    2471             :       TYPE(mp2_type), POINTER                            :: mp2_env
    2472             : 
    2473             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'print_file'
    2474             : 
    2475             :       INTEGER                                            :: handle, unit_nr_cube
    2476             :       LOGICAL                                            :: mpi_io
    2477             :       TYPE(cp_logger_type), POINTER                      :: logger
    2478             : 
    2479          20 :       CALL timeset(routineN, handle)
    2480             : 
    2481          20 :       NULLIFY (logger)
    2482          20 :       logger => cp_get_default_logger()
    2483          20 :       mpi_io = .TRUE.
    2484             :       unit_nr_cube = cp_print_key_unit_nr(logger, gw_section, "PRINT%LOCAL_BANDGAP", extension=".cube", &
    2485          20 :                                           middle_name=middle_name, file_form="FORMATTED", mpi_io=mpi_io)
    2486             :       CALL cp_pw_to_cube(pw_print, unit_nr_cube, middle_name, particles=particles, &
    2487          20 :                          stride=mp2_env%ri_g0w0%stride_loc_bandgap, mpi_io=mpi_io)
    2488             :       CALL cp_print_key_finished_output(unit_nr_cube, logger, gw_section, &
    2489          20 :                                         "PRINT%LOCAL_BANDGAP", mpi_io=mpi_io)
    2490             : 
    2491          20 :       CALL timestop(handle)
    2492             : 
    2493          20 :    END SUBROUTINE print_file
    2494             : 
    2495             : ! **************************************************************************************************
    2496             : !> \brief ...
    2497             : !> \param E_gap_rspace ...
    2498             : !> \param E_VBM_rspace ...
    2499             : !> \param E_CBM_rspace ...
    2500             : !> \param rho_g_dummy ...
    2501             : !> \param LDOS ...
    2502             : !> \param auxbas_pw_pool ...
    2503             : !> \param qs_env ...
    2504             : ! **************************************************************************************************
    2505           4 :    SUBROUTINE create_real_space_grids(E_gap_rspace, E_VBM_rspace, E_CBM_rspace, rho_g_dummy, LDOS, auxbas_pw_pool, qs_env)
    2506             :       TYPE(pw_r3d_rs_type)                               :: E_gap_rspace, E_VBM_rspace, E_CBM_rspace
    2507             :       TYPE(pw_c1d_gs_type)                               :: rho_g_dummy
    2508             :       TYPE(pw_r3d_rs_type), ALLOCATABLE, DIMENSION(:)    :: LDOS
    2509             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
    2510             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2511             : 
    2512             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'create_real_space_grids'
    2513             : 
    2514             :       INTEGER                                            :: handle, i_E, n_E
    2515             :       TYPE(mp2_type), POINTER                            :: mp2_env
    2516             :       TYPE(pw_env_type), POINTER                         :: pw_env
    2517             : 
    2518           4 :       CALL timeset(routineN, handle)
    2519             : 
    2520           4 :       CALL get_qs_env(qs_env=qs_env, mp2_env=mp2_env, pw_env=pw_env)
    2521             : 
    2522           4 :       CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool)
    2523             : 
    2524           4 :       CALL auxbas_pw_pool%create_pw(E_gap_rspace)
    2525           4 :       CALL auxbas_pw_pool%create_pw(E_VBM_rspace)
    2526           4 :       CALL auxbas_pw_pool%create_pw(E_CBM_rspace)
    2527           4 :       CALL auxbas_pw_pool%create_pw(rho_g_dummy)
    2528             : 
    2529             :       n_E = INT(mp2_env%ri_g0w0%energy_window_print_loc_bandgap/ &
    2530           4 :                 mp2_env%ri_g0w0%energy_spacing_print_loc_bandgap)
    2531             : 
    2532          28 :       ALLOCATE (LDOS(n_E))
    2533             : 
    2534          20 :       DO i_E = 1, n_E
    2535          20 :          CALL auxbas_pw_pool%create_pw(LDOS(i_E))
    2536             :       END DO
    2537             : 
    2538           4 :       CALL timestop(handle)
    2539             : 
    2540           4 :    END SUBROUTINE create_real_space_grids
    2541             : 
    2542             : ! **************************************************************************************************
    2543             : !> \brief ...
    2544             : !> \param delta_corr ...
    2545             : !> \param qs_env ...
    2546             : !> \param para_env ...
    2547             : !> \param para_env_RPA ...
    2548             : !> \param kp_grid ...
    2549             : !> \param homo ...
    2550             : !> \param nmo ...
    2551             : !> \param gw_corr_lev_occ ...
    2552             : !> \param gw_corr_lev_virt ...
    2553             : !> \param omega ...
    2554             : !> \param fm_mo_coeff ...
    2555             : !> \param Eigenval ...
    2556             : !> \param matrix_berry_re_mo_mo ...
    2557             : !> \param matrix_berry_im_mo_mo ...
    2558             : !> \param first_cycle_periodic_correction ...
    2559             : !> \param kpoints ...
    2560             : !> \param do_mo_coeff_Gamma_only ...
    2561             : !> \param num_kp_grids ...
    2562             : !> \param eps_kpoint ...
    2563             : !> \param do_extra_kpoints ...
    2564             : !> \param do_aux_bas ...
    2565             : !> \param frac_aux_mos ...
    2566             : ! **************************************************************************************************
    2567         250 :    SUBROUTINE calc_periodic_correction(delta_corr, qs_env, para_env, para_env_RPA, kp_grid, homo, nmo, &
    2568         250 :                                        gw_corr_lev_occ, gw_corr_lev_virt, omega, fm_mo_coeff, Eigenval, &
    2569             :                                        matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, &
    2570             :                                        first_cycle_periodic_correction, kpoints, do_mo_coeff_Gamma_only, &
    2571             :                                        num_kp_grids, eps_kpoint, do_extra_kpoints, do_aux_bas, frac_aux_mos)
    2572             : 
    2573             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    2574             :          INTENT(INOUT)                                   :: delta_corr
    2575             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2576             :       TYPE(mp_para_env_type), POINTER                    :: para_env, para_env_RPA
    2577             :       INTEGER, DIMENSION(:), POINTER                     :: kp_grid
    2578             :       INTEGER, INTENT(IN)                                :: homo, nmo, gw_corr_lev_occ, &
    2579             :                                                             gw_corr_lev_virt
    2580             :       REAL(KIND=dp), INTENT(IN)                          :: omega
    2581             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mo_coeff
    2582             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: Eigenval
    2583             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_berry_re_mo_mo, &
    2584             :                                                             matrix_berry_im_mo_mo
    2585             :       LOGICAL, INTENT(INOUT) :: first_cycle_periodic_correction
    2586             :       TYPE(kpoint_type), POINTER                         :: kpoints
    2587             :       LOGICAL, INTENT(IN)                                :: do_mo_coeff_Gamma_only
    2588             :       INTEGER, INTENT(IN)                                :: num_kp_grids
    2589             :       REAL(KIND=dp), INTENT(IN)                          :: eps_kpoint
    2590             :       LOGICAL, INTENT(IN)                                :: do_extra_kpoints, do_aux_bas
    2591             :       REAL(KIND=dp), INTENT(IN)                          :: frac_aux_mos
    2592             : 
    2593             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'calc_periodic_correction'
    2594             : 
    2595             :       INTEGER                                            :: handle
    2596         250 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: eps_head, eps_inv_head
    2597             :       REAL(KIND=dp), DIMENSION(3, 3)                     :: h_inv
    2598             : 
    2599         250 :       CALL timeset(routineN, handle)
    2600             : 
    2601         250 :       IF (first_cycle_periodic_correction) THEN
    2602             : 
    2603             :          CALL get_kpoints(qs_env, kpoints, kp_grid, num_kp_grids, para_env, h_inv, nmo, do_mo_coeff_Gamma_only, &
    2604           4 :                           do_extra_kpoints)
    2605             : 
    2606             :          CALL get_berry_phase(qs_env, kpoints, matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, fm_mo_coeff, &
    2607             :                               para_env, do_mo_coeff_Gamma_only, homo, nmo, gw_corr_lev_virt, eps_kpoint, do_aux_bas, &
    2608           4 :                               frac_aux_mos)
    2609             : 
    2610             :       END IF
    2611             : 
    2612             :       CALL compute_eps_head_Berry(eps_head, kpoints, matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, para_env_RPA, &
    2613         250 :                                   qs_env, homo, Eigenval, omega)
    2614             : 
    2615             :       CALL compute_eps_inv_head(eps_inv_head, eps_head, kpoints)
    2616             : 
    2617             :       CALL kpoint_sum_for_eps_inv_head_Berry(delta_corr, eps_inv_head, kpoints, qs_env, &
    2618             :                                              matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, &
    2619             :                                              homo, gw_corr_lev_occ, gw_corr_lev_virt, para_env_RPA, &
    2620         250 :                                              do_extra_kpoints)
    2621             : 
    2622         250 :       DEALLOCATE (eps_head, eps_inv_head)
    2623             : 
    2624         250 :       first_cycle_periodic_correction = .FALSE.
    2625             : 
    2626         250 :       CALL timestop(handle)
    2627             : 
    2628         250 :    END SUBROUTINE calc_periodic_correction
    2629             : 
    2630             : ! **************************************************************************************************
    2631             : !> \brief ...
    2632             : !> \param eps_head ...
    2633             : !> \param kpoints ...
    2634             : !> \param matrix_berry_re_mo_mo ...
    2635             : !> \param matrix_berry_im_mo_mo ...
    2636             : !> \param para_env_RPA ...
    2637             : !> \param qs_env ...
    2638             : !> \param homo ...
    2639             : !> \param Eigenval ...
    2640             : !> \param omega ...
    2641             : ! **************************************************************************************************
    2642         250 :    SUBROUTINE compute_eps_head_Berry(eps_head, kpoints, matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, para_env_RPA, &
    2643         250 :                                      qs_env, homo, Eigenval, omega)
    2644             : 
    2645             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    2646             :          INTENT(OUT)                                     :: eps_head
    2647             :       TYPE(kpoint_type), POINTER                         :: kpoints
    2648             :       TYPE(dbcsr_p_type), DIMENSION(:), INTENT(IN)       :: matrix_berry_re_mo_mo, &
    2649             :                                                             matrix_berry_im_mo_mo
    2650             :       TYPE(mp_para_env_type), INTENT(IN)                 :: para_env_RPA
    2651             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2652             :       INTEGER, INTENT(IN)                                :: homo
    2653             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: Eigenval
    2654             :       REAL(KIND=dp), INTENT(IN)                          :: omega
    2655             : 
    2656             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_eps_head_Berry'
    2657             : 
    2658             :       INTEGER :: col, col_end_in_block, col_offset, col_size, handle, i_col, i_row, ikp, nkp, row, &
    2659             :          row_offset, row_size, row_start_in_block
    2660             :       REAL(KIND=dp)                                      :: abs_k_square, cell_volume, &
    2661             :                                                             correct_kpoint(3), cos_square, &
    2662             :                                                             eigen_diff, relative_kpoint(3), &
    2663             :                                                             sin_square
    2664             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: P_head
    2665         250 :       REAL(KIND=dp), DIMENSION(:, :), POINTER            :: data_block
    2666             :       TYPE(cell_type), POINTER                           :: cell
    2667             :       TYPE(dbcsr_iterator_type)                          :: iter
    2668             : 
    2669         250 :       CALL timeset(routineN, handle)
    2670             : 
    2671         250 :       CALL get_qs_env(qs_env=qs_env, cell=cell)
    2672         250 :       CALL get_cell(cell=cell, deth=cell_volume)
    2673             : 
    2674         250 :       NULLIFY (data_block)
    2675             : 
    2676         250 :       nkp = kpoints%nkp
    2677             : 
    2678         750 :       ALLOCATE (P_head(nkp))
    2679      256570 :       P_head(:) = 0.0_dp
    2680             : 
    2681         500 :       ALLOCATE (eps_head(nkp))
    2682      256570 :       eps_head(:) = 0.0_dp
    2683             : 
    2684      256570 :       DO ikp = 1, nkp
    2685             : 
    2686     3332160 :          relative_kpoint(1:3) = MATMUL(cell%hmat, kpoints%xkp(1:3, ikp))
    2687             : 
    2688     1025280 :          correct_kpoint(1:3) = twopi*kpoints%xkp(1:3, ikp)
    2689             : 
    2690      256320 :          abs_k_square = (correct_kpoint(1))**2 + (correct_kpoint(2))**2 + (correct_kpoint(3))**2
    2691             : 
    2692             :          ! real part of the Berry phase
    2693      256320 :          CALL dbcsr_iterator_start(iter, matrix_berry_re_mo_mo(ikp)%matrix)
    2694      407520 :          DO WHILE (dbcsr_iterator_blocks_left(iter))
    2695             : 
    2696             :             CALL dbcsr_iterator_next_block(iter, row, col, data_block, &
    2697             :                                            row_size=row_size, col_size=col_size, &
    2698      151200 :                                            row_offset=row_offset, col_offset=col_offset)
    2699             : 
    2700      151200 :             IF (row_offset + row_size <= homo .OR. col_offset > homo) CYCLE
    2701             : 
    2702      151200 :             IF (row_offset <= homo) THEN
    2703      128160 :                row_start_in_block = homo - row_offset + 2
    2704             :             ELSE
    2705             :                row_start_in_block = 1
    2706             :             END IF
    2707             : 
    2708      151200 :             IF (col_offset + col_size - 1 > homo) THEN
    2709      151200 :                col_end_in_block = homo - col_offset + 1
    2710             :             ELSE
    2711             :                col_end_in_block = col_size
    2712             :             END IF
    2713             : 
    2714     1676160 :             DO i_row = row_start_in_block, row_size
    2715             : 
    2716     6494400 :                DO i_col = 1, col_end_in_block
    2717             : 
    2718     5074560 :                   eigen_diff = Eigenval(i_col + col_offset - 1) - Eigenval(i_row + row_offset - 1)
    2719             : 
    2720     5074560 :                   cos_square = (data_block(i_row, i_col))**2
    2721             : 
    2722     6343200 :                   P_head(ikp) = P_head(ikp) + 2.0_dp*eigen_diff/(omega**2 + eigen_diff**2)*cos_square/abs_k_square
    2723             : 
    2724             :                END DO
    2725             : 
    2726             :             END DO
    2727             : 
    2728             :          END DO
    2729             : 
    2730      256320 :          CALL dbcsr_iterator_stop(iter)
    2731             : 
    2732             :          ! imaginary part of the Berry phase
    2733      256320 :          CALL dbcsr_iterator_start(iter, matrix_berry_im_mo_mo(ikp)%matrix)
    2734      407520 :          DO WHILE (dbcsr_iterator_blocks_left(iter))
    2735             : 
    2736             :             CALL dbcsr_iterator_next_block(iter, row, col, data_block, &
    2737             :                                            row_size=row_size, col_size=col_size, &
    2738      151200 :                                            row_offset=row_offset, col_offset=col_offset)
    2739             : 
    2740      151200 :             IF (row_offset + row_size <= homo .OR. col_offset > homo) CYCLE
    2741             : 
    2742      151200 :             IF (row_offset <= homo) THEN
    2743      128160 :                row_start_in_block = homo - row_offset + 2
    2744             :             ELSE
    2745             :                row_start_in_block = 1
    2746             :             END IF
    2747             : 
    2748      151200 :             IF (col_offset + col_size - 1 > homo) THEN
    2749      151200 :                col_end_in_block = homo - col_offset + 1
    2750             :             ELSE
    2751             :                col_end_in_block = col_size
    2752             :             END IF
    2753             : 
    2754     1676160 :             DO i_row = row_start_in_block, row_size
    2755             : 
    2756     6494400 :                DO i_col = 1, col_end_in_block
    2757             : 
    2758     5074560 :                   eigen_diff = Eigenval(i_col + col_offset - 1) - Eigenval(i_row + row_offset - 1)
    2759             : 
    2760     5074560 :                   sin_square = (data_block(i_row, i_col))**2
    2761             : 
    2762     6343200 :                   P_head(ikp) = P_head(ikp) + 2.0_dp*eigen_diff/(omega**2 + eigen_diff**2)*sin_square/abs_k_square
    2763             : 
    2764             :                END DO
    2765             : 
    2766             :             END DO
    2767             : 
    2768             :          END DO
    2769             : 
    2770      769210 :          CALL dbcsr_iterator_stop(iter)
    2771             : 
    2772             :       END DO
    2773             : 
    2774         250 :       CALL para_env_RPA%sum(P_head)
    2775             : 
    2776             :       ! normalize eps_head
    2777             :       ! 2.0_dp due to closed shell
    2778      256570 :       eps_head(:) = 1.0_dp - 2.0_dp*P_head(:)/cell_volume*fourpi
    2779             : 
    2780         250 :       DEALLOCATE (P_head)
    2781             : 
    2782         250 :       CALL timestop(handle)
    2783             : 
    2784         500 :    END SUBROUTINE compute_eps_head_Berry
    2785             : 
    2786             : ! **************************************************************************************************
    2787             : !> \brief ...
    2788             : !> \param qs_env ...
    2789             : !> \param kpoints ...
    2790             : !> \param matrix_berry_re_mo_mo ...
    2791             : !> \param matrix_berry_im_mo_mo ...
    2792             : !> \param fm_mo_coeff ...
    2793             : !> \param para_env ...
    2794             : !> \param do_mo_coeff_Gamma_only ...
    2795             : !> \param homo ...
    2796             : !> \param nmo ...
    2797             : !> \param gw_corr_lev_virt ...
    2798             : !> \param eps_kpoint ...
    2799             : !> \param do_aux_bas ...
    2800             : !> \param frac_aux_mos ...
    2801             : ! **************************************************************************************************
    2802           4 :    SUBROUTINE get_berry_phase(qs_env, kpoints, matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, fm_mo_coeff, para_env, &
    2803             :                               do_mo_coeff_Gamma_only, homo, nmo, gw_corr_lev_virt, eps_kpoint, do_aux_bas, &
    2804             :                               frac_aux_mos)
    2805             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2806             :       TYPE(kpoint_type), POINTER                         :: kpoints
    2807             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_berry_re_mo_mo, &
    2808             :                                                             matrix_berry_im_mo_mo
    2809             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mo_coeff
    2810             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    2811             :       LOGICAL, INTENT(IN)                                :: do_mo_coeff_Gamma_only
    2812             :       INTEGER, INTENT(IN)                                :: homo, nmo, gw_corr_lev_virt
    2813             :       REAL(KIND=dp), INTENT(IN)                          :: eps_kpoint
    2814             :       LOGICAL, INTENT(IN)                                :: do_aux_bas
    2815             :       REAL(KIND=dp), INTENT(IN)                          :: frac_aux_mos
    2816             : 
    2817             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'get_berry_phase'
    2818             : 
    2819             :       INTEGER                                            :: col_index, handle, i_col_local, ikind, &
    2820             :                                                             ikp, nao_aux, ncol_local, nkind, nkp, &
    2821             :                                                             nmo_for_aux_bas
    2822           4 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices
    2823             :       REAL(dp)                                           :: abs_kpoint, correct_kpoint(3), &
    2824             :                                                             scale_kpoint
    2825           4 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: evals_P, evals_P_sqrt_inv
    2826             :       TYPE(cell_type), POINTER                           :: cell
    2827             :       TYPE(cp_fm_struct_type), POINTER                   :: fm_struct_aux_aux
    2828             :       TYPE(cp_fm_type) :: fm_mat_eigv_P, fm_mat_P, fm_mat_P_sqrt_inv, fm_mat_s_aux_aux_inv, &
    2829             :          fm_mat_scaled_eigv_P, fm_mat_work_aux_aux
    2830           4 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_s, matrix_s_aux_aux, &
    2831           4 :                                                             matrix_s_aux_orb
    2832             :       TYPE(dbcsr_type), POINTER :: cosmat, cosmat_desymm, mat_mo_coeff_aux, mat_mo_coeff_aux_2, &
    2833             :          mat_mo_coeff_Gamma_all, mat_mo_coeff_Gamma_occ_and_GW, mat_mo_coeff_im, mat_mo_coeff_re, &
    2834             :          mat_work_aux_orb, mat_work_aux_orb_2, matrix_P, matrix_P_sqrt, matrix_P_sqrt_inv, &
    2835             :          matrix_s_inv_aux_aux, sinmat, sinmat_desymm, tmp
    2836           4 :       TYPE(gto_basis_set_p_type), DIMENSION(:), POINTER  :: gw_aux_basis_set_list, orb_basis_set_list
    2837             :       TYPE(gto_basis_set_type), POINTER                  :: basis_set_gw_aux
    2838             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    2839           4 :          POINTER                                         :: sab_orb, sab_orb_mic, sgwgw_list, &
    2840           4 :                                                             sgworb_list
    2841           4 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    2842             :       TYPE(qs_kind_type), POINTER                        :: qs_kind
    2843             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
    2844             : 
    2845           4 :       CALL timeset(routineN, handle)
    2846             : 
    2847           4 :       nkp = kpoints%nkp
    2848             : 
    2849           4 :       NULLIFY (matrix_berry_re_mo_mo, matrix_s, cell, matrix_berry_im_mo_mo, sinmat, cosmat, tmp, &
    2850           4 :                cosmat_desymm, sinmat_desymm, qs_kind_set, orb_basis_set_list, sab_orb_mic)
    2851             : 
    2852             :       CALL get_qs_env(qs_env=qs_env, &
    2853             :                       cell=cell, &
    2854             :                       matrix_s=matrix_s, &
    2855             :                       qs_kind_set=qs_kind_set, &
    2856             :                       nkind=nkind, &
    2857             :                       ks_env=ks_env, &
    2858           4 :                       sab_orb=sab_orb)
    2859             : 
    2860          20 :       ALLOCATE (orb_basis_set_list(nkind))
    2861           4 :       CALL basis_set_list_setup(orb_basis_set_list, "ORB", qs_kind_set)
    2862             : 
    2863           4 :       CALL setup_neighbor_list(sab_orb_mic, orb_basis_set_list, qs_env=qs_env, mic=.FALSE.)
    2864             : 
    2865             :       ! create dbcsr matrix of mo_coeff for multiplcation
    2866           4 :       NULLIFY (mat_mo_coeff_re)
    2867           4 :       CALL dbcsr_init_p(mat_mo_coeff_re)
    2868             :       CALL dbcsr_create(matrix=mat_mo_coeff_re, &
    2869             :                         template=matrix_s(1)%matrix, &
    2870           4 :                         matrix_type=dbcsr_type_no_symmetry)
    2871             : 
    2872           4 :       NULLIFY (mat_mo_coeff_im)
    2873           4 :       CALL dbcsr_init_p(mat_mo_coeff_im)
    2874             :       CALL dbcsr_create(matrix=mat_mo_coeff_im, &
    2875             :                         template=matrix_s(1)%matrix, &
    2876           4 :                         matrix_type=dbcsr_type_no_symmetry)
    2877             : 
    2878           4 :       NULLIFY (mat_mo_coeff_Gamma_all)
    2879           4 :       CALL dbcsr_init_p(mat_mo_coeff_Gamma_all)
    2880             :       CALL dbcsr_create(matrix=mat_mo_coeff_Gamma_all, &
    2881             :                         template=matrix_s(1)%matrix, &
    2882           4 :                         matrix_type=dbcsr_type_no_symmetry)
    2883             : 
    2884           4 :       CALL copy_fm_to_dbcsr(fm_mo_coeff, mat_mo_coeff_Gamma_all, keep_sparsity=.FALSE.)
    2885             : 
    2886           4 :       NULLIFY (mat_mo_coeff_Gamma_occ_and_GW)
    2887           4 :       CALL dbcsr_init_p(mat_mo_coeff_Gamma_occ_and_GW)
    2888             :       CALL dbcsr_create(matrix=mat_mo_coeff_Gamma_occ_and_GW, &
    2889             :                         template=matrix_s(1)%matrix, &
    2890           4 :                         matrix_type=dbcsr_type_no_symmetry)
    2891             : 
    2892           4 :       CALL copy_fm_to_dbcsr(fm_mo_coeff, mat_mo_coeff_Gamma_occ_and_GW, keep_sparsity=.FALSE.)
    2893             : 
    2894           4 :       IF (.NOT. do_aux_bas) THEN
    2895             : 
    2896             :          ! allocate intermediate matrices
    2897           2 :          CALL dbcsr_init_p(cosmat)
    2898           2 :          CALL dbcsr_init_p(sinmat)
    2899           2 :          CALL dbcsr_init_p(tmp)
    2900           2 :          CALL dbcsr_init_p(cosmat_desymm)
    2901           2 :          CALL dbcsr_init_p(sinmat_desymm)
    2902           2 :          CALL dbcsr_create(matrix=cosmat, template=matrix_s(1)%matrix)
    2903           2 :          CALL dbcsr_create(matrix=sinmat, template=matrix_s(1)%matrix)
    2904             :          CALL dbcsr_create(matrix=tmp, &
    2905             :                            template=matrix_s(1)%matrix, &
    2906           2 :                            matrix_type=dbcsr_type_no_symmetry)
    2907             :          CALL dbcsr_create(matrix=cosmat_desymm, &
    2908             :                            template=matrix_s(1)%matrix, &
    2909           2 :                            matrix_type=dbcsr_type_no_symmetry)
    2910             :          CALL dbcsr_create(matrix=sinmat_desymm, &
    2911             :                            template=matrix_s(1)%matrix, &
    2912           2 :                            matrix_type=dbcsr_type_no_symmetry)
    2913           2 :          CALL dbcsr_copy(cosmat, matrix_s(1)%matrix)
    2914           2 :          CALL dbcsr_copy(sinmat, matrix_s(1)%matrix)
    2915           2 :          CALL dbcsr_set(cosmat, 0.0_dp)
    2916           2 :          CALL dbcsr_set(sinmat, 0.0_dp)
    2917             : 
    2918           2 :          CALL dbcsr_allocate_matrix_set(matrix_berry_re_mo_mo, nkp)
    2919           2 :          CALL dbcsr_allocate_matrix_set(matrix_berry_im_mo_mo, nkp)
    2920             : 
    2921             :       ELSE
    2922             : 
    2923           2 :          NULLIFY (gw_aux_basis_set_list)
    2924          10 :          ALLOCATE (gw_aux_basis_set_list(nkind))
    2925             : 
    2926           6 :          DO ikind = 1, nkind
    2927             : 
    2928           4 :             NULLIFY (gw_aux_basis_set_list(ikind)%gto_basis_set)
    2929             : 
    2930           4 :             NULLIFY (basis_set_gw_aux)
    2931             : 
    2932           4 :             qs_kind => qs_kind_set(ikind)
    2933           4 :             CALL get_qs_kind(qs_kind=qs_kind, basis_set=basis_set_gw_aux, basis_type="AUX_GW")
    2934           4 :             CPASSERT(ASSOCIATED(basis_set_gw_aux))
    2935             : 
    2936           4 :             basis_set_gw_aux%kind_radius = orb_basis_set_list(ikind)%gto_basis_set%kind_radius
    2937             : 
    2938           6 :             gw_aux_basis_set_list(ikind)%gto_basis_set => basis_set_gw_aux
    2939             : 
    2940             :          END DO
    2941             : 
    2942             :          ! neighbor lists
    2943           2 :          NULLIFY (sgwgw_list, sgworb_list)
    2944           2 :          CALL setup_neighbor_list(sgwgw_list, gw_aux_basis_set_list, qs_env=qs_env)
    2945           2 :          CALL setup_neighbor_list(sgworb_list, gw_aux_basis_set_list, orb_basis_set_list, qs_env=qs_env)
    2946             : 
    2947           2 :          NULLIFY (matrix_s_aux_aux, matrix_s_aux_orb)
    2948             : 
    2949             :          ! build overlap matrix in gw aux basis and the mixed gw aux basis-orb basis
    2950             :          CALL build_overlap_matrix_simple(ks_env, matrix_s_aux_aux, &
    2951           2 :                                           gw_aux_basis_set_list, gw_aux_basis_set_list, sgwgw_list)
    2952             : 
    2953             :          CALL build_overlap_matrix_simple(ks_env, matrix_s_aux_orb, &
    2954           2 :                                           gw_aux_basis_set_list, orb_basis_set_list, sgworb_list)
    2955             : 
    2956           2 :          CALL dbcsr_get_info(matrix_s_aux_aux(1)%matrix, nfullrows_total=nao_aux)
    2957             : 
    2958           2 :          nmo_for_aux_bas = FLOOR(frac_aux_mos*REAL(nao_aux, KIND=dp))
    2959             : 
    2960             :          CALL cp_fm_struct_create(fm_struct_aux_aux, &
    2961             :                                   context=fm_mo_coeff%matrix_struct%context, &
    2962             :                                   nrow_global=nao_aux, &
    2963             :                                   ncol_global=nao_aux, &
    2964           2 :                                   para_env=para_env)
    2965             : 
    2966           2 :          NULLIFY (mat_work_aux_orb)
    2967           2 :          CALL dbcsr_init_p(mat_work_aux_orb)
    2968             :          CALL dbcsr_create(matrix=mat_work_aux_orb, &
    2969             :                            template=matrix_s_aux_orb(1)%matrix, &
    2970           2 :                            matrix_type=dbcsr_type_no_symmetry)
    2971             : 
    2972           2 :          NULLIFY (mat_work_aux_orb_2)
    2973           2 :          CALL dbcsr_init_p(mat_work_aux_orb_2)
    2974             :          CALL dbcsr_create(matrix=mat_work_aux_orb_2, &
    2975             :                            template=matrix_s_aux_orb(1)%matrix, &
    2976           2 :                            matrix_type=dbcsr_type_no_symmetry)
    2977             : 
    2978           2 :          NULLIFY (mat_mo_coeff_aux)
    2979           2 :          CALL dbcsr_init_p(mat_mo_coeff_aux)
    2980             :          CALL dbcsr_create(matrix=mat_mo_coeff_aux, &
    2981             :                            template=matrix_s_aux_orb(1)%matrix, &
    2982           2 :                            matrix_type=dbcsr_type_no_symmetry)
    2983             : 
    2984           2 :          NULLIFY (mat_mo_coeff_aux_2)
    2985           2 :          CALL dbcsr_init_p(mat_mo_coeff_aux_2)
    2986             :          CALL dbcsr_create(matrix=mat_mo_coeff_aux_2, &
    2987             :                            template=matrix_s_aux_orb(1)%matrix, &
    2988           2 :                            matrix_type=dbcsr_type_no_symmetry)
    2989             : 
    2990           2 :          NULLIFY (matrix_s_inv_aux_aux)
    2991           2 :          CALL dbcsr_init_p(matrix_s_inv_aux_aux)
    2992             :          CALL dbcsr_create(matrix=matrix_s_inv_aux_aux, &
    2993             :                            template=matrix_s_aux_aux(1)%matrix, &
    2994           2 :                            matrix_type=dbcsr_type_no_symmetry)
    2995             : 
    2996           2 :          NULLIFY (matrix_P)
    2997           2 :          CALL dbcsr_init_p(matrix_P)
    2998             :          CALL dbcsr_create(matrix=matrix_P, &
    2999             :                            template=matrix_s(1)%matrix, &
    3000           2 :                            matrix_type=dbcsr_type_no_symmetry)
    3001             : 
    3002           2 :          NULLIFY (matrix_P_sqrt)
    3003           2 :          CALL dbcsr_init_p(matrix_P_sqrt)
    3004             :          CALL dbcsr_create(matrix=matrix_P_sqrt, &
    3005             :                            template=matrix_s(1)%matrix, &
    3006           2 :                            matrix_type=dbcsr_type_no_symmetry)
    3007             : 
    3008           2 :          NULLIFY (matrix_P_sqrt_inv)
    3009           2 :          CALL dbcsr_init_p(matrix_P_sqrt_inv)
    3010             :          CALL dbcsr_create(matrix=matrix_P_sqrt_inv, &
    3011             :                            template=matrix_s(1)%matrix, &
    3012           2 :                            matrix_type=dbcsr_type_no_symmetry)
    3013             : 
    3014           2 :          CALL cp_fm_create(fm_mat_s_aux_aux_inv, fm_struct_aux_aux, name="inverse overlap mat")
    3015           2 :          CALL cp_fm_create(fm_mat_work_aux_aux, fm_struct_aux_aux, name="work mat")
    3016           2 :          CALL cp_fm_create(fm_mat_P, fm_mo_coeff%matrix_struct)
    3017           2 :          CALL cp_fm_create(fm_mat_eigv_P, fm_mo_coeff%matrix_struct)
    3018           2 :          CALL cp_fm_create(fm_mat_scaled_eigv_P, fm_mo_coeff%matrix_struct)
    3019           2 :          CALL cp_fm_create(fm_mat_P_sqrt_inv, fm_mo_coeff%matrix_struct)
    3020             : 
    3021             :          NULLIFY (evals_P)
    3022           6 :          ALLOCATE (evals_P(nmo))
    3023             : 
    3024           2 :          NULLIFY (evals_P_sqrt_inv)
    3025           4 :          ALLOCATE (evals_P_sqrt_inv(nmo))
    3026             : 
    3027           2 :          CALL copy_dbcsr_to_fm(matrix_s_aux_aux(1)%matrix, fm_mat_s_aux_aux_inv)
    3028             :          ! Calculate S_inverse
    3029           2 :          CALL cp_fm_cholesky_decompose(fm_mat_s_aux_aux_inv)
    3030           2 :          CALL cp_fm_cholesky_invert(fm_mat_s_aux_aux_inv)
    3031             :          ! Symmetrize the guy
    3032           2 :          CALL cp_fm_upper_to_full(fm_mat_s_aux_aux_inv, fm_mat_work_aux_aux)
    3033             : 
    3034           2 :          CALL copy_fm_to_dbcsr(fm_mat_s_aux_aux_inv, matrix_s_inv_aux_aux, keep_sparsity=.FALSE.)
    3035             : 
    3036             :          CALL dbcsr_multiply('N', 'N', 1.0_dp, matrix_s_inv_aux_aux, matrix_s_aux_orb(1)%matrix, 0.0_dp, mat_work_aux_orb, &
    3037           2 :                              filter_eps=1.0E-15_dp)
    3038             : 
    3039             :          CALL dbcsr_multiply('N', 'N', 1.0_dp, mat_work_aux_orb, mat_mo_coeff_Gamma_all, 0.0_dp, mat_mo_coeff_aux_2, &
    3040           2 :                              last_column=nmo_for_aux_bas, filter_eps=1.0E-15_dp)
    3041             : 
    3042             :          CALL dbcsr_multiply('N', 'N', 1.0_dp, matrix_s_aux_aux(1)%matrix, mat_mo_coeff_aux_2, 0.0_dp, mat_work_aux_orb, &
    3043           2 :                              filter_eps=1.0E-15_dp)
    3044             : 
    3045             :          CALL dbcsr_multiply('T', 'N', 1.0_dp, mat_mo_coeff_aux_2, mat_work_aux_orb, 0.0_dp, matrix_P, &
    3046           2 :                              filter_eps=1.0E-15_dp)
    3047             : 
    3048           2 :          CALL copy_dbcsr_to_fm(matrix_P, fm_mat_P)
    3049             : 
    3050           2 :          CALL cp_fm_syevd(fm_mat_P, fm_mat_eigv_P, evals_P)
    3051             : 
    3052             :          ! only invert the eigenvalues which correspond to the MOs used in the aux. basis
    3053          62 :          evals_P_sqrt_inv(1:nmo - nmo_for_aux_bas) = 0.0_dp
    3054          46 :          evals_P_sqrt_inv(nmo - nmo_for_aux_bas + 1:nmo) = 1.0_dp/SQRT(evals_P(nmo - nmo_for_aux_bas + 1:nmo))
    3055             : 
    3056           2 :          CALL cp_fm_to_fm(fm_mat_eigv_P, fm_mat_scaled_eigv_P)
    3057             : 
    3058             :          CALL cp_fm_get_info(matrix=fm_mat_scaled_eigv_P, &
    3059             :                              ncol_local=ncol_local, &
    3060           2 :                              col_indices=col_indices)
    3061             : 
    3062           2 :          CALL para_env%sync()
    3063             : 
    3064             :          ! multiply eigenvectors with inverse sqrt of eigenvalues
    3065          84 :          DO i_col_local = 1, ncol_local
    3066             : 
    3067          82 :             col_index = col_indices(i_col_local)
    3068             : 
    3069             :             fm_mat_scaled_eigv_P%local_data(:, i_col_local) = &
    3070        1765 :                fm_mat_scaled_eigv_P%local_data(:, i_col_local)*evals_P_sqrt_inv(col_index)
    3071             : 
    3072             :          END DO
    3073             : 
    3074           2 :          CALL para_env%sync()
    3075             : 
    3076             :          CALL parallel_gemm(transa="N", transb="T", m=nmo, n=nmo, k=nmo, alpha=1.0_dp, &
    3077             :                             matrix_a=fm_mat_eigv_P, matrix_b=fm_mat_scaled_eigv_P, beta=0.0_dp, &
    3078           2 :                             matrix_c=fm_mat_P_sqrt_inv)
    3079             : 
    3080           2 :          CALL copy_fm_to_dbcsr(fm_mat_P_sqrt_inv, matrix_P_sqrt_inv, keep_sparsity=.FALSE.)
    3081             : 
    3082             :          CALL dbcsr_multiply('N', 'N', 1.0_dp, mat_mo_coeff_aux_2, matrix_P_sqrt_inv, 0.0_dp, mat_mo_coeff_aux, &
    3083           2 :                              filter_eps=1.0E-15_dp)
    3084             : 
    3085             :          ! allocate intermediate matrices
    3086           2 :          CALL dbcsr_init_p(cosmat)
    3087           2 :          CALL dbcsr_init_p(sinmat)
    3088           2 :          CALL dbcsr_init_p(tmp)
    3089           2 :          CALL dbcsr_init_p(cosmat_desymm)
    3090           2 :          CALL dbcsr_init_p(sinmat_desymm)
    3091           2 :          CALL dbcsr_create(matrix=cosmat, template=matrix_s_aux_aux(1)%matrix)
    3092           2 :          CALL dbcsr_create(matrix=sinmat, template=matrix_s_aux_aux(1)%matrix)
    3093             :          CALL dbcsr_create(matrix=tmp, &
    3094             :                            template=matrix_s_aux_orb(1)%matrix, &
    3095           2 :                            matrix_type=dbcsr_type_no_symmetry)
    3096             :          CALL dbcsr_create(matrix=cosmat_desymm, &
    3097             :                            template=matrix_s_aux_aux(1)%matrix, &
    3098           2 :                            matrix_type=dbcsr_type_no_symmetry)
    3099             :          CALL dbcsr_create(matrix=sinmat_desymm, &
    3100             :                            template=matrix_s_aux_aux(1)%matrix, &
    3101           2 :                            matrix_type=dbcsr_type_no_symmetry)
    3102           2 :          CALL dbcsr_copy(cosmat, matrix_s_aux_aux(1)%matrix)
    3103           2 :          CALL dbcsr_copy(sinmat, matrix_s_aux_aux(1)%matrix)
    3104           2 :          CALL dbcsr_set(cosmat, 0.0_dp)
    3105           2 :          CALL dbcsr_set(sinmat, 0.0_dp)
    3106             : 
    3107           2 :          CALL dbcsr_allocate_matrix_set(matrix_berry_re_mo_mo, nkp)
    3108           2 :          CALL dbcsr_allocate_matrix_set(matrix_berry_im_mo_mo, nkp)
    3109             : 
    3110             :          ! allocate the new MO coefficients in the aux basis
    3111           2 :          CALL dbcsr_release_p(mat_mo_coeff_Gamma_all)
    3112           2 :          CALL dbcsr_release_p(mat_mo_coeff_Gamma_occ_and_GW)
    3113             : 
    3114           2 :          NULLIFY (mat_mo_coeff_Gamma_all)
    3115           2 :          CALL dbcsr_init_p(mat_mo_coeff_Gamma_all)
    3116             :          CALL dbcsr_create(matrix=mat_mo_coeff_Gamma_all, &
    3117             :                            template=matrix_s_aux_orb(1)%matrix, &
    3118           2 :                            matrix_type=dbcsr_type_no_symmetry)
    3119             : 
    3120           2 :          CALL dbcsr_copy(mat_mo_coeff_Gamma_all, mat_mo_coeff_aux)
    3121             : 
    3122           2 :          NULLIFY (mat_mo_coeff_Gamma_occ_and_GW)
    3123           2 :          CALL dbcsr_init_p(mat_mo_coeff_Gamma_occ_and_GW)
    3124             :          CALL dbcsr_create(matrix=mat_mo_coeff_Gamma_occ_and_GW, &
    3125             :                            template=matrix_s_aux_orb(1)%matrix, &
    3126           2 :                            matrix_type=dbcsr_type_no_symmetry)
    3127             : 
    3128           2 :          CALL dbcsr_copy(mat_mo_coeff_Gamma_occ_and_GW, mat_mo_coeff_aux)
    3129             : 
    3130           8 :          DEALLOCATE (evals_P, evals_P_sqrt_inv)
    3131             : 
    3132             :       END IF
    3133             : 
    3134           4 :       CALL remove_unnecessary_blocks(mat_mo_coeff_Gamma_occ_and_GW, homo, gw_corr_lev_virt)
    3135             : 
    3136        6556 :       DO ikp = 1, nkp
    3137             : 
    3138        6552 :          ALLOCATE (matrix_berry_re_mo_mo(ikp)%matrix)
    3139        6552 :          CALL dbcsr_init_p(matrix_berry_re_mo_mo(ikp)%matrix)
    3140             :          CALL dbcsr_create(matrix_berry_re_mo_mo(ikp)%matrix, &
    3141             :                            template=matrix_s(1)%matrix, &
    3142        6552 :                            matrix_type=dbcsr_type_no_symmetry)
    3143        6552 :          CALL dbcsr_desymmetrize(matrix_s(1)%matrix, matrix_berry_re_mo_mo(ikp)%matrix)
    3144        6552 :          CALL dbcsr_set(matrix_berry_re_mo_mo(ikp)%matrix, 0.0_dp)
    3145             : 
    3146        6552 :          ALLOCATE (matrix_berry_im_mo_mo(ikp)%matrix)
    3147        6552 :          CALL dbcsr_init_p(matrix_berry_im_mo_mo(ikp)%matrix)
    3148             :          CALL dbcsr_create(matrix_berry_im_mo_mo(ikp)%matrix, &
    3149             :                            template=matrix_s(1)%matrix, &
    3150        6552 :                            matrix_type=dbcsr_type_no_symmetry)
    3151        6552 :          CALL dbcsr_desymmetrize(matrix_s(1)%matrix, matrix_berry_im_mo_mo(ikp)%matrix)
    3152        6552 :          CALL dbcsr_set(matrix_berry_im_mo_mo(ikp)%matrix, 0.0_dp)
    3153             : 
    3154       26208 :          correct_kpoint(1:3) = -twopi*kpoints%xkp(1:3, ikp)
    3155             : 
    3156        6552 :          abs_kpoint = SQRT(correct_kpoint(1)**2 + correct_kpoint(2)**2 + correct_kpoint(3)**2)
    3157             : 
    3158        6552 :          IF (abs_kpoint < eps_kpoint) THEN
    3159             : 
    3160           0 :             scale_kpoint = eps_kpoint/abs_kpoint
    3161           0 :             correct_kpoint(:) = correct_kpoint(:)*scale_kpoint
    3162             : 
    3163             :          END IF
    3164             : 
    3165             :          ! get the Berry phase
    3166        6552 :          IF (do_aux_bas) THEN
    3167             :             CALL build_berry_moment_matrix(qs_env, cosmat, sinmat, correct_kpoint, sab_orb_external=sab_orb_mic, &
    3168        1944 :                                            basis_type="AUX_GW")
    3169             :          ELSE
    3170             :             CALL build_berry_moment_matrix(qs_env, cosmat, sinmat, correct_kpoint, sab_orb_external=sab_orb_mic, &
    3171        4608 :                                            basis_type="ORB")
    3172             :          END IF
    3173             : 
    3174        6552 :          IF (do_mo_coeff_Gamma_only) THEN
    3175             : 
    3176        6552 :             CALL dbcsr_desymmetrize(cosmat, cosmat_desymm)
    3177             : 
    3178             :             CALL dbcsr_multiply('N', 'N', 1.0_dp, cosmat_desymm, mat_mo_coeff_Gamma_occ_and_GW, 0.0_dp, tmp, &
    3179        6552 :                                 filter_eps=1.0E-15_dp)
    3180             : 
    3181             :             CALL dbcsr_multiply('T', 'N', 1.0_dp, mat_mo_coeff_Gamma_all, tmp, 0.0_dp, &
    3182        6552 :                                 matrix_berry_re_mo_mo(ikp)%matrix, filter_eps=1.0E-15_dp)
    3183             : 
    3184        6552 :             CALL dbcsr_desymmetrize(sinmat, sinmat_desymm)
    3185             : 
    3186             :             CALL dbcsr_multiply('N', 'N', 1.0_dp, sinmat_desymm, mat_mo_coeff_Gamma_occ_and_GW, 0.0_dp, tmp, &
    3187        6552 :                                 filter_eps=1.0E-15_dp)
    3188             : 
    3189             :             CALL dbcsr_multiply('T', 'N', 1.0_dp, mat_mo_coeff_Gamma_all, tmp, 0.0_dp, &
    3190        6552 :                                 matrix_berry_im_mo_mo(ikp)%matrix, filter_eps=1.0E-15_dp)
    3191             : 
    3192             :          ELSE
    3193             : 
    3194             :             ! get mo coeff at the ikp
    3195             :             CALL copy_fm_to_dbcsr(kpoints%kp_env(ikp)%kpoint_env%mos(1, 1)%mo_coeff, &
    3196           0 :                                   mat_mo_coeff_re, keep_sparsity=.FALSE.)
    3197             : 
    3198             :             CALL copy_fm_to_dbcsr(kpoints%kp_env(ikp)%kpoint_env%mos(2, 1)%mo_coeff, &
    3199           0 :                                   mat_mo_coeff_im, keep_sparsity=.FALSE.)
    3200             : 
    3201           0 :             CALL dbcsr_desymmetrize(cosmat, cosmat_desymm)
    3202             : 
    3203           0 :             CALL dbcsr_desymmetrize(sinmat, sinmat_desymm)
    3204             : 
    3205             :             ! I.
    3206           0 :             CALL dbcsr_multiply('N', 'N', 1.0_dp, cosmat_desymm, mat_mo_coeff_re, 0.0_dp, tmp)
    3207             : 
    3208             :             ! I.1
    3209             :             CALL dbcsr_multiply('T', 'N', 1.0_dp, mat_mo_coeff_Gamma_all, tmp, 0.0_dp, &
    3210           0 :                                 matrix_berry_re_mo_mo(ikp)%matrix)
    3211             : 
    3212             :             ! II.
    3213           0 :             CALL dbcsr_multiply('N', 'N', 1.0_dp, sinmat_desymm, mat_mo_coeff_re, 0.0_dp, tmp)
    3214             : 
    3215             :             ! II.5
    3216             :             CALL dbcsr_multiply('T', 'N', 1.0_dp, mat_mo_coeff_Gamma_all, tmp, 0.0_dp, &
    3217           0 :                                 matrix_berry_im_mo_mo(ikp)%matrix)
    3218             : 
    3219             :             ! III.
    3220           0 :             CALL dbcsr_multiply('N', 'N', 1.0_dp, cosmat_desymm, mat_mo_coeff_im, 0.0_dp, tmp)
    3221             : 
    3222             :             ! III.7
    3223             :             CALL dbcsr_multiply('T', 'N', 1.0_dp, mat_mo_coeff_Gamma_all, tmp, 1.0_dp, &
    3224           0 :                                 matrix_berry_im_mo_mo(ikp)%matrix)
    3225             : 
    3226             :             ! IV.
    3227           0 :             CALL dbcsr_multiply('N', 'N', 1.0_dp, sinmat_desymm, mat_mo_coeff_im, 0.0_dp, tmp)
    3228             : 
    3229             :             ! IV.3
    3230             :             CALL dbcsr_multiply('T', 'N', -1.0_dp, mat_mo_coeff_Gamma_all, tmp, 1.0_dp, &
    3231           0 :                                 matrix_berry_re_mo_mo(ikp)%matrix)
    3232             : 
    3233             :          END IF
    3234             : 
    3235        6556 :          IF (abs_kpoint < eps_kpoint) THEN
    3236             : 
    3237           0 :             CALL dbcsr_scale(matrix_berry_im_mo_mo(ikp)%matrix, 1.0_dp/scale_kpoint)
    3238           0 :             CALL dbcsr_set(matrix_berry_re_mo_mo(ikp)%matrix, 0.0_dp)
    3239           0 :             CALL dbcsr_add_on_diag(matrix_berry_re_mo_mo(ikp)%matrix, 1.0_dp)
    3240             : 
    3241             :          END IF
    3242             : 
    3243             :       END DO
    3244             : 
    3245           4 :       CALL dbcsr_release_p(cosmat)
    3246           4 :       CALL dbcsr_release_p(sinmat)
    3247           4 :       CALL dbcsr_release_p(mat_mo_coeff_re)
    3248           4 :       CALL dbcsr_release_p(mat_mo_coeff_im)
    3249           4 :       CALL dbcsr_release_p(mat_mo_coeff_Gamma_all)
    3250           4 :       CALL dbcsr_release_p(mat_mo_coeff_Gamma_occ_and_GW)
    3251           4 :       CALL dbcsr_release_p(tmp)
    3252           4 :       CALL dbcsr_release_p(cosmat_desymm)
    3253           4 :       CALL dbcsr_release_p(sinmat_desymm)
    3254           4 :       DEALLOCATE (orb_basis_set_list)
    3255             : 
    3256           4 :       CALL release_neighbor_list_sets(sab_orb_mic)
    3257             : 
    3258           4 :       IF (do_aux_bas) THEN
    3259             : 
    3260           2 :          DEALLOCATE (gw_aux_basis_set_list)
    3261           2 :          CALL dbcsr_deallocate_matrix_set(matrix_s_aux_aux)
    3262           2 :          CALL dbcsr_deallocate_matrix_set(matrix_s_aux_orb)
    3263           2 :          CALL dbcsr_release_p(mat_work_aux_orb)
    3264           2 :          CALL dbcsr_release_p(mat_work_aux_orb_2)
    3265           2 :          CALL dbcsr_release_p(mat_mo_coeff_aux)
    3266           2 :          CALL dbcsr_release_p(mat_mo_coeff_aux_2)
    3267           2 :          CALL dbcsr_release_p(matrix_s_inv_aux_aux)
    3268           2 :          CALL dbcsr_release_p(matrix_P)
    3269           2 :          CALL dbcsr_release_p(matrix_P_sqrt)
    3270           2 :          CALL dbcsr_release_p(matrix_P_sqrt_inv)
    3271             : 
    3272           2 :          CALL cp_fm_struct_release(fm_struct_aux_aux)
    3273             : 
    3274           2 :          CALL cp_fm_release(fm_mat_s_aux_aux_inv)
    3275           2 :          CALL cp_fm_release(fm_mat_work_aux_aux)
    3276           2 :          CALL cp_fm_release(fm_mat_P)
    3277           2 :          CALL cp_fm_release(fm_mat_eigv_P)
    3278           2 :          CALL cp_fm_release(fm_mat_scaled_eigv_P)
    3279           2 :          CALL cp_fm_release(fm_mat_P_sqrt_inv)
    3280             : 
    3281             :          ! Deallocate the neighbor list structure
    3282           2 :          CALL release_neighbor_list_sets(sgwgw_list)
    3283           2 :          CALL release_neighbor_list_sets(sgworb_list)
    3284             : 
    3285             :       END IF
    3286             : 
    3287           4 :       CALL timestop(handle)
    3288             : 
    3289           4 :    END SUBROUTINE get_berry_phase
    3290             : 
    3291             : ! **************************************************************************************************
    3292             : !> \brief ...
    3293             : !> \param mat_mo_coeff_Gamma_occ_and_GW ...
    3294             : !> \param homo ...
    3295             : !> \param gw_corr_lev_virt ...
    3296             : ! **************************************************************************************************
    3297           4 :    SUBROUTINE remove_unnecessary_blocks(mat_mo_coeff_Gamma_occ_and_GW, homo, gw_corr_lev_virt)
    3298             : 
    3299             :       TYPE(dbcsr_type), POINTER                          :: mat_mo_coeff_Gamma_occ_and_GW
    3300             :       INTEGER, INTENT(IN)                                :: homo, gw_corr_lev_virt
    3301             : 
    3302             :       INTEGER                                            :: col, col_offset, row
    3303           4 :       REAL(KIND=dp), DIMENSION(:, :), POINTER            :: data_block
    3304             :       TYPE(dbcsr_iterator_type)                          :: iter
    3305             : 
    3306           4 :       CALL dbcsr_iterator_start(iter, mat_mo_coeff_Gamma_occ_and_GW)
    3307             : 
    3308          16 :       DO WHILE (dbcsr_iterator_blocks_left(iter))
    3309             : 
    3310             :          CALL dbcsr_iterator_next_block(iter, row, col, data_block, &
    3311          12 :                                         col_offset=col_offset)
    3312             : 
    3313          16 :          IF (col_offset > homo + gw_corr_lev_virt) THEN
    3314             : 
    3315         266 :             data_block = 0.0_dp
    3316             : 
    3317             :          END IF
    3318             : 
    3319             :       END DO
    3320             : 
    3321           4 :       CALL dbcsr_iterator_stop(iter)
    3322             : 
    3323           4 :       CALL dbcsr_filter(mat_mo_coeff_Gamma_occ_and_GW, 1.0E-15_dp)
    3324             : 
    3325           4 :    END SUBROUTINE remove_unnecessary_blocks
    3326             : 
    3327             : ! **************************************************************************************************
    3328             : !> \brief ...
    3329             : !> \param delta_corr ...
    3330             : !> \param eps_inv_head ...
    3331             : !> \param kpoints ...
    3332             : !> \param qs_env ...
    3333             : !> \param matrix_berry_re_mo_mo ...
    3334             : !> \param matrix_berry_im_mo_mo ...
    3335             : !> \param homo ...
    3336             : !> \param gw_corr_lev_occ ...
    3337             : !> \param gw_corr_lev_virt ...
    3338             : !> \param para_env_RPA ...
    3339             : !> \param do_extra_kpoints ...
    3340             : ! **************************************************************************************************
    3341         250 :    SUBROUTINE kpoint_sum_for_eps_inv_head_Berry(delta_corr, eps_inv_head, kpoints, qs_env, matrix_berry_re_mo_mo, &
    3342         250 :                                                 matrix_berry_im_mo_mo, homo, gw_corr_lev_occ, gw_corr_lev_virt, &
    3343             :                                                 para_env_RPA, do_extra_kpoints)
    3344             : 
    3345             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    3346             :          INTENT(INOUT)                                   :: delta_corr
    3347             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: eps_inv_head
    3348             :       TYPE(kpoint_type), POINTER                         :: kpoints
    3349             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    3350             :       TYPE(dbcsr_p_type), DIMENSION(:), INTENT(IN)       :: matrix_berry_re_mo_mo, &
    3351             :                                                             matrix_berry_im_mo_mo
    3352             :       INTEGER, INTENT(IN)                                :: homo, gw_corr_lev_occ, gw_corr_lev_virt
    3353             :       TYPE(mp_para_env_type), INTENT(IN), OPTIONAL       :: para_env_RPA
    3354             :       LOGICAL, INTENT(IN)                                :: do_extra_kpoints
    3355             : 
    3356             :       INTEGER                                            :: col, col_offset, col_size, i_col, i_row, &
    3357             :                                                             ikp, m_level, n_level_gw, nkp, row, &
    3358             :                                                             row_offset, row_size
    3359             :       REAL(KIND=dp)                                      :: abs_k_square, cell_volume, &
    3360             :                                                             check_int_one_over_ksq, contribution, &
    3361             :                                                             weight
    3362             :       REAL(KIND=dp), DIMENSION(3)                        :: correct_kpoint
    3363         250 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: delta_corr_extra
    3364         250 :       REAL(KIND=dp), DIMENSION(:, :), POINTER            :: data_block
    3365             :       TYPE(cell_type), POINTER                           :: cell
    3366             :       TYPE(dbcsr_iterator_type)                          :: iter, iter_new
    3367             : 
    3368         250 :       CALL get_qs_env(qs_env=qs_env, cell=cell)
    3369             : 
    3370         250 :       CALL get_cell(cell=cell, deth=cell_volume)
    3371             : 
    3372         250 :       nkp = kpoints%nkp
    3373             : 
    3374        3690 :       delta_corr = 0.0_dp
    3375             : 
    3376         250 :       IF (do_extra_kpoints) THEN
    3377         250 :          NULLIFY (delta_corr_extra)
    3378         750 :          ALLOCATE (delta_corr_extra(1 + homo - gw_corr_lev_occ:homo + gw_corr_lev_virt))
    3379        3690 :          delta_corr_extra = 0.0_dp
    3380             :       END IF
    3381             : 
    3382         250 :       check_int_one_over_ksq = 0.0_dp
    3383             : 
    3384      256570 :       DO ikp = 1, nkp
    3385             : 
    3386      256320 :          weight = kpoints%wkp(ikp)
    3387             : 
    3388     1025280 :          correct_kpoint(1:3) = twopi*kpoints%xkp(1:3, ikp)
    3389             : 
    3390      256320 :          abs_k_square = (correct_kpoint(1))**2 + (correct_kpoint(2))**2 + (correct_kpoint(3))**2
    3391             : 
    3392             :          ! cos part of the Berry phase
    3393      256320 :          CALL dbcsr_iterator_start(iter, matrix_berry_re_mo_mo(ikp)%matrix)
    3394      407520 :          DO WHILE (dbcsr_iterator_blocks_left(iter))
    3395             : 
    3396             :             CALL dbcsr_iterator_next_block(iter, row, col, data_block, &
    3397             :                                            row_size=row_size, col_size=col_size, &
    3398      151200 :                                            row_offset=row_offset, col_offset=col_offset)
    3399             : 
    3400     2373120 :             DO i_col = 1, col_size
    3401             : 
    3402    26939520 :                DO n_level_gw = 1 + homo - gw_corr_lev_occ, homo + gw_corr_lev_virt
    3403             : 
    3404    26788320 :                   IF (n_level_gw == i_col + col_offset - 1) THEN
    3405             : 
    3406    23624640 :                      DO i_row = 1, row_size
    3407             : 
    3408    21831840 :                         contribution = weight*(eps_inv_head(ikp) - 1.0_dp)/abs_k_square*(data_block(i_row, i_col))**2
    3409             : 
    3410    21831840 :                         m_level = i_row + row_offset - 1
    3411             : 
    3412             :                         ! we only compute the correction for n=m
    3413    21831840 :                         IF (m_level .NE. n_level_gw) CYCLE
    3414             : 
    3415     3401280 :                         IF (.NOT. do_extra_kpoints) THEN
    3416             : 
    3417           0 :                            delta_corr(n_level_gw) = delta_corr(n_level_gw) + contribution
    3418             : 
    3419             :                         ELSE
    3420             : 
    3421     1608480 :                            IF (ikp <= nkp*8/9) THEN
    3422             : 
    3423     1429760 :                               delta_corr(n_level_gw) = delta_corr(n_level_gw) + contribution
    3424             : 
    3425             :                            ELSE
    3426             : 
    3427      178720 :                               delta_corr_extra(n_level_gw) = delta_corr_extra(n_level_gw) + contribution
    3428             : 
    3429             :                            END IF
    3430             : 
    3431             :                         END IF
    3432             : 
    3433             :                      END DO
    3434             : 
    3435             :                   END IF
    3436             : 
    3437             :                END DO
    3438             : 
    3439             :             END DO
    3440             : 
    3441             :          END DO
    3442             : 
    3443      256320 :          CALL dbcsr_iterator_stop(iter)
    3444             : 
    3445             :          ! the same for the im. part of the Berry phase
    3446      256320 :          CALL dbcsr_iterator_start(iter_new, matrix_berry_im_mo_mo(ikp)%matrix)
    3447      407520 :          DO WHILE (dbcsr_iterator_blocks_left(iter_new))
    3448             : 
    3449             :             CALL dbcsr_iterator_next_block(iter_new, row, col, data_block, &
    3450             :                                            row_size=row_size, col_size=col_size, &
    3451      151200 :                                            row_offset=row_offset, col_offset=col_offset)
    3452             : 
    3453     2373120 :             DO i_col = 1, col_size
    3454             : 
    3455    26939520 :                DO n_level_gw = 1 + homo - gw_corr_lev_occ, homo + gw_corr_lev_virt
    3456             : 
    3457    26788320 :                   IF (n_level_gw == i_col + col_offset - 1) THEN
    3458             : 
    3459    23624640 :                      DO i_row = 1, row_size
    3460             : 
    3461    21831840 :                         m_level = i_row + row_offset - 1
    3462             : 
    3463    21831840 :                         contribution = weight*(eps_inv_head(ikp) - 1.0_dp)/abs_k_square*(data_block(i_row, i_col))**2
    3464             : 
    3465             :                         ! we only compute the correction for n=m
    3466    21831840 :                         IF (m_level .NE. n_level_gw) CYCLE
    3467             : 
    3468     3401280 :                         IF (.NOT. do_extra_kpoints) THEN
    3469             : 
    3470           0 :                            delta_corr(n_level_gw) = delta_corr(n_level_gw) + contribution
    3471             : 
    3472             :                         ELSE
    3473             : 
    3474     1608480 :                            IF (ikp <= nkp*8/9) THEN
    3475             : 
    3476     1429760 :                               delta_corr(n_level_gw) = delta_corr(n_level_gw) + contribution
    3477             : 
    3478             :                            ELSE
    3479             : 
    3480      178720 :                               delta_corr_extra(n_level_gw) = delta_corr_extra(n_level_gw) + contribution
    3481             : 
    3482             :                            END IF
    3483             : 
    3484             :                         END IF
    3485             : 
    3486             :                      END DO
    3487             : 
    3488             :                   END IF
    3489             : 
    3490             :                END DO
    3491             : 
    3492             :             END DO
    3493             : 
    3494             :          END DO
    3495             : 
    3496      256320 :          CALL dbcsr_iterator_stop(iter_new)
    3497             : 
    3498      769210 :          check_int_one_over_ksq = check_int_one_over_ksq + weight/abs_k_square
    3499             : 
    3500             :       END DO
    3501             : 
    3502             :       ! normalize by the cell volume
    3503        3690 :       delta_corr = delta_corr/cell_volume*fourpi
    3504             : 
    3505         250 :       check_int_one_over_ksq = check_int_one_over_ksq/cell_volume
    3506             : 
    3507         250 :       CALL para_env_RPA%sum(delta_corr)
    3508             : 
    3509         250 :       IF (do_extra_kpoints) THEN
    3510             : 
    3511        3690 :          delta_corr_extra = delta_corr_extra/cell_volume*fourpi
    3512             : 
    3513        7130 :          CALL para_env_RPA%sum(delta_corr_extra)
    3514             : 
    3515        3690 :          delta_corr(:) = delta_corr(:) + (delta_corr(:) - delta_corr_extra(:))
    3516             : 
    3517         250 :          DEALLOCATE (delta_corr_extra)
    3518             : 
    3519             :       END IF
    3520             : 
    3521         250 :    END SUBROUTINE kpoint_sum_for_eps_inv_head_Berry
    3522             : 
    3523             : ! **************************************************************************************************
    3524             : !> \brief ...
    3525             : !> \param eps_inv_head ...
    3526             : !> \param eps_head ...
    3527             : !> \param kpoints ...
    3528             : ! **************************************************************************************************
    3529         250 :    SUBROUTINE compute_eps_inv_head(eps_inv_head, eps_head, kpoints)
    3530             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    3531             :          INTENT(OUT)                                     :: eps_inv_head
    3532             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: eps_head
    3533             :       TYPE(kpoint_type), POINTER                         :: kpoints
    3534             : 
    3535             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_eps_inv_head'
    3536             : 
    3537             :       INTEGER                                            :: handle, ikp, nkp
    3538             : 
    3539         250 :       CALL timeset(routineN, handle)
    3540             : 
    3541         250 :       nkp = kpoints%nkp
    3542             : 
    3543         750 :       ALLOCATE (eps_inv_head(nkp))
    3544             : 
    3545      256570 :       DO ikp = 1, nkp
    3546             : 
    3547      256570 :          eps_inv_head(ikp) = 1.0_dp/eps_head(ikp)
    3548             : 
    3549             :       END DO
    3550             : 
    3551         250 :       CALL timestop(handle)
    3552             : 
    3553         250 :    END SUBROUTINE compute_eps_inv_head
    3554             : 
    3555             : ! **************************************************************************************************
    3556             : !> \brief ...
    3557             : !> \param qs_env ...
    3558             : !> \param kpoints ...
    3559             : !> \param kp_grid ...
    3560             : !> \param num_kp_grids ...
    3561             : !> \param para_env ...
    3562             : !> \param h_inv ...
    3563             : !> \param nmo ...
    3564             : !> \param do_mo_coeff_Gamma_only ...
    3565             : !> \param do_extra_kpoints ...
    3566             : ! **************************************************************************************************
    3567           4 :    SUBROUTINE get_kpoints(qs_env, kpoints, kp_grid, num_kp_grids, para_env, h_inv, nmo, &
    3568             :                           do_mo_coeff_Gamma_only, do_extra_kpoints)
    3569             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    3570             :       TYPE(kpoint_type), POINTER                         :: kpoints
    3571             :       INTEGER, DIMENSION(:), POINTER                     :: kp_grid
    3572             :       INTEGER, INTENT(IN)                                :: num_kp_grids
    3573             :       TYPE(mp_para_env_type), INTENT(IN)                 :: para_env
    3574             :       REAL(KIND=dp), DIMENSION(3, 3), INTENT(INOUT)      :: h_inv
    3575             :       INTEGER, INTENT(IN)                                :: nmo
    3576             :       LOGICAL, INTENT(IN)                                :: do_mo_coeff_Gamma_only, do_extra_kpoints
    3577             : 
    3578             :       INTEGER                                            :: end_kp, i, i_grid_level, ix, iy, iz, &
    3579             :                                                             nkp_inner_grid, nkp_outer_grid, &
    3580             :                                                             npoints, start_kp
    3581             :       INTEGER, DIMENSION(3)                              :: outer_kp_grid
    3582             :       REAL(KIND=dp)                                      :: kpoint_weight_left, single_weight
    3583             :       REAL(KIND=dp), DIMENSION(3)                        :: kpt_latt, reducing_factor
    3584             :       TYPE(cell_type), POINTER                           :: cell
    3585           4 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    3586             : 
    3587           4 :       NULLIFY (kpoints, cell, particle_set)
    3588             : 
    3589             :       ! check whether kp_grid includes the Gamma point. If so, abort.
    3590           4 :       CPASSERT(MOD(kp_grid(1)*kp_grid(2)*kp_grid(3), 2) == 0)
    3591           4 :       IF (do_extra_kpoints) THEN
    3592           4 :          CPASSERT(do_mo_coeff_Gamma_only)
    3593             :       END IF
    3594             : 
    3595           4 :       IF (do_mo_coeff_Gamma_only) THEN
    3596             : 
    3597           4 :          outer_kp_grid(1) = kp_grid(1) - 1
    3598           4 :          outer_kp_grid(2) = kp_grid(2) - 1
    3599           4 :          outer_kp_grid(3) = kp_grid(3) - 1
    3600             : 
    3601           4 :          CALL get_qs_env(qs_env=qs_env, cell=cell, particle_set=particle_set)
    3602             : 
    3603           4 :          CALL get_cell(cell, h_inv=h_inv)
    3604             : 
    3605           4 :          CALL kpoint_create(kpoints)
    3606             : 
    3607           4 :          kpoints%kp_scheme = "GENERAL"
    3608           4 :          kpoints%symmetry = .FALSE.
    3609           4 :          kpoints%verbose = .FALSE.
    3610           4 :          kpoints%full_grid = .FALSE.
    3611           4 :          kpoints%use_real_wfn = .FALSE.
    3612           4 :          kpoints%eps_geo = 1.e-6_dp
    3613             :          npoints = kp_grid(1)*kp_grid(2)*kp_grid(3)/2 + &
    3614           4 :                    (num_kp_grids - 1)*((outer_kp_grid(1) + 1)/2*outer_kp_grid(2)*outer_kp_grid(3) - 1)
    3615             : 
    3616           4 :          IF (do_extra_kpoints) THEN
    3617             : 
    3618           4 :             CPASSERT(num_kp_grids == 1)
    3619           4 :             CPASSERT(MOD(kp_grid(1), 4) == 0)
    3620           4 :             CPASSERT(MOD(kp_grid(2), 4) == 0)
    3621           4 :             CPASSERT(MOD(kp_grid(3), 4) == 0)
    3622             : 
    3623             :          END IF
    3624             : 
    3625           4 :          IF (do_extra_kpoints) THEN
    3626             : 
    3627           4 :             npoints = kp_grid(1)*kp_grid(2)*kp_grid(3)/2 + kp_grid(1)*kp_grid(2)*kp_grid(3)/2/8
    3628             : 
    3629             :          END IF
    3630             : 
    3631           4 :          kpoints%full_grid = .TRUE.
    3632           4 :          kpoints%nkp = npoints
    3633          20 :          ALLOCATE (kpoints%xkp(3, npoints), kpoints%wkp(npoints))
    3634       26212 :          kpoints%xkp = 0.0_dp
    3635        6556 :          kpoints%wkp = 0.0_dp
    3636             : 
    3637           4 :          nkp_outer_grid = outer_kp_grid(1)*outer_kp_grid(2)*outer_kp_grid(3)
    3638           4 :          nkp_inner_grid = kp_grid(1)*kp_grid(2)*kp_grid(3)
    3639             : 
    3640           4 :          i = 0
    3641          16 :          reducing_factor(:) = 1.0_dp
    3642             :          kpoint_weight_left = 1.0_dp
    3643             : 
    3644             :          ! the outer grids
    3645           4 :          DO i_grid_level = 1, num_kp_grids - 1
    3646             : 
    3647           0 :             single_weight = kpoint_weight_left/REAL(nkp_outer_grid, KIND=dp)
    3648             : 
    3649           0 :             start_kp = i + 1
    3650             : 
    3651           0 :             DO ix = 1, outer_kp_grid(1)
    3652           0 :                DO iy = 1, outer_kp_grid(2)
    3653           0 :                   DO iz = 1, outer_kp_grid(3)
    3654             : 
    3655             :                      ! exclude Gamma
    3656           0 :                      IF (2*ix - outer_kp_grid(1) - 1 == 0 .AND. 2*iy - outer_kp_grid(2) - 1 == 0 .AND. &
    3657             :                          2*iz - outer_kp_grid(3) - 1 == 0) CYCLE
    3658             : 
    3659             :                      ! use time reversal symmetry k<->-k
    3660           0 :                      IF (2*ix - outer_kp_grid(1) - 1 < 0) CYCLE
    3661             : 
    3662           0 :                      i = i + 1
    3663             :                      kpt_latt(1) = REAL(2*ix - outer_kp_grid(1) - 1, KIND=dp)/(2._dp*REAL(outer_kp_grid(1), KIND=dp)) &
    3664           0 :                                    *reducing_factor(1)
    3665             :                      kpt_latt(2) = REAL(2*iy - outer_kp_grid(2) - 1, KIND=dp)/(2._dp*REAL(outer_kp_grid(2), KIND=dp)) &
    3666           0 :                                    *reducing_factor(2)
    3667             :                      kpt_latt(3) = REAL(2*iz - outer_kp_grid(3) - 1, KIND=dp)/(2._dp*REAL(outer_kp_grid(3), KIND=dp)) &
    3668           0 :                                    *reducing_factor(3)
    3669           0 :                      kpoints%xkp(1:3, i) = MATMUL(TRANSPOSE(h_inv), kpt_latt(:))
    3670             : 
    3671           0 :                      IF (2*ix - outer_kp_grid(1) - 1 == 0) THEN
    3672           0 :                         kpoints%wkp(i) = single_weight
    3673             :                      ELSE
    3674           0 :                         kpoints%wkp(i) = 2._dp*single_weight
    3675             :                      END IF
    3676             : 
    3677             :                   END DO
    3678             :                END DO
    3679             :             END DO
    3680             : 
    3681           0 :             end_kp = i
    3682             : 
    3683           0 :             kpoint_weight_left = kpoint_weight_left - SUM(kpoints%wkp(start_kp:end_kp))
    3684             : 
    3685           0 :             reducing_factor(1) = reducing_factor(1)/REAL(outer_kp_grid(1), KIND=dp)
    3686           0 :             reducing_factor(2) = reducing_factor(2)/REAL(outer_kp_grid(2), KIND=dp)
    3687           4 :             reducing_factor(3) = reducing_factor(3)/REAL(outer_kp_grid(3), KIND=dp)
    3688             : 
    3689             :          END DO
    3690             : 
    3691           4 :          single_weight = kpoint_weight_left/REAL(nkp_inner_grid, KIND=dp)
    3692             : 
    3693             :          ! the inner grid
    3694          60 :          DO ix = 1, kp_grid(1)
    3695         860 :             DO iy = 1, kp_grid(2)
    3696       12504 :                DO iz = 1, kp_grid(3)
    3697             : 
    3698             :                   ! use time reversal symmetry k<->-k
    3699       11648 :                   IF (2*ix - kp_grid(1) - 1 < 0) CYCLE
    3700             : 
    3701        5824 :                   i = i + 1
    3702        5824 :                   kpt_latt(1) = REAL(2*ix - kp_grid(1) - 1, KIND=dp)/(2._dp*REAL(kp_grid(1), KIND=dp))*reducing_factor(1)
    3703        5824 :                   kpt_latt(2) = REAL(2*iy - kp_grid(2) - 1, KIND=dp)/(2._dp*REAL(kp_grid(2), KIND=dp))*reducing_factor(2)
    3704        5824 :                   kpt_latt(3) = REAL(2*iz - kp_grid(3) - 1, KIND=dp)/(2._dp*REAL(kp_grid(3), KIND=dp))*reducing_factor(3)
    3705             : 
    3706       23296 :                   kpoints%xkp(1:3, i) = MATMUL(TRANSPOSE(h_inv), kpt_latt(:))
    3707             : 
    3708       12448 :                   kpoints%wkp(i) = 2._dp*single_weight
    3709             : 
    3710             :                END DO
    3711             :             END DO
    3712             :          END DO
    3713             : 
    3714           4 :          IF (do_extra_kpoints) THEN
    3715             : 
    3716           4 :             single_weight = kpoint_weight_left/REAL(kp_grid(1)*kp_grid(2)*kp_grid(3)/8, KIND=dp)
    3717             : 
    3718          32 :             DO ix = 1, kp_grid(1)/2
    3719         232 :                DO iy = 1, kp_grid(2)/2
    3720        1684 :                   DO iz = 1, kp_grid(3)/2
    3721             : 
    3722             :                      ! use time reversal symmetry k<->-k
    3723        1456 :                      IF (2*ix - kp_grid(1)/2 - 1 < 0) CYCLE
    3724             : 
    3725         728 :                      i = i + 1
    3726         728 :                      kpt_latt(1) = REAL(2*ix - kp_grid(1)/2 - 1, KIND=dp)/(REAL(kp_grid(1), KIND=dp))
    3727         728 :                      kpt_latt(2) = REAL(2*iy - kp_grid(2)/2 - 1, KIND=dp)/(REAL(kp_grid(2), KIND=dp))
    3728         728 :                      kpt_latt(3) = REAL(2*iz - kp_grid(3)/2 - 1, KIND=dp)/(REAL(kp_grid(3), KIND=dp))
    3729             : 
    3730        2912 :                      kpoints%xkp(1:3, i) = MATMUL(TRANSPOSE(h_inv), kpt_latt(:))
    3731             : 
    3732        1656 :                      kpoints%wkp(i) = 2._dp*single_weight
    3733             : 
    3734             :                   END DO
    3735             :                END DO
    3736             :             END DO
    3737             : 
    3738             :          END IF
    3739             : 
    3740             :          ! default: no symmetry settings
    3741        6564 :          ALLOCATE (kpoints%kp_sym(kpoints%nkp))
    3742        6556 :          DO i = 1, kpoints%nkp
    3743        6552 :             NULLIFY (kpoints%kp_sym(i)%kpoint_sym)
    3744        6556 :             CALL kpoint_sym_create(kpoints%kp_sym(i)%kpoint_sym)
    3745             :          END DO
    3746             : 
    3747             :       ELSE
    3748             : 
    3749             :          BLOCK
    3750             :             TYPE(qs_environment_type), POINTER :: qs_env_kp_Gamma_only
    3751           0 :             CALL create_kp_from_gamma(qs_env, qs_env_kp_Gamma_only)
    3752             : 
    3753           0 :             CALL get_qs_env(qs_env=qs_env, cell=cell, particle_set=particle_set)
    3754             : 
    3755             :             CALL calculate_kp_orbitals(qs_env_kp_Gamma_only, kpoints, "MONKHORST-PACK", nadd=nmo, mp_grid=kp_grid(1:3), &
    3756           0 :                                        group_size_ext=para_env%num_pe)
    3757             : 
    3758           0 :             CALL qs_env_release(qs_env_kp_Gamma_only)
    3759           0 :             DEALLOCATE (qs_env_kp_Gamma_only)
    3760             :          END BLOCK
    3761             : 
    3762             :       END IF
    3763             : 
    3764           4 :    END SUBROUTINE get_kpoints
    3765             : 
    3766             : ! **************************************************************************************************
    3767             : !> \brief ...
    3768             : !> \param vec_Sigma_c_gw ...
    3769             : !> \param Eigenval_DFT ...
    3770             : !> \param eps_eigenval ...
    3771             : ! **************************************************************************************************
    3772           8 :    PURE SUBROUTINE average_degenerate_levels(vec_Sigma_c_gw, Eigenval_DFT, eps_eigenval)
    3773             :       COMPLEX(KIND=dp), DIMENSION(:, :, :), &
    3774             :          INTENT(INOUT)                                   :: vec_Sigma_c_gw
    3775             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: Eigenval_DFT
    3776             :       REAL(KIND=dp), INTENT(IN)                          :: eps_eigenval
    3777             : 
    3778           8 :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:)        :: avg_self_energy
    3779             :       INTEGER :: degeneracy, first_degenerate_level, i_deg_level, i_level_gw, j_deg_level, jquad, &
    3780             :          num_deg_levels, num_integ_points, num_levels_gw
    3781           8 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: list_degenerate_levels
    3782             : 
    3783           8 :       num_levels_gw = SIZE(vec_Sigma_c_gw, 1)
    3784             : 
    3785          24 :       ALLOCATE (list_degenerate_levels(num_levels_gw))
    3786         108 :       list_degenerate_levels = 1
    3787             : 
    3788           8 :       num_integ_points = SIZE(vec_Sigma_c_gw, 2)
    3789             : 
    3790          24 :       ALLOCATE (avg_self_energy(num_integ_points))
    3791             : 
    3792         100 :       DO i_level_gw = 2, num_levels_gw
    3793             : 
    3794         100 :          IF (ABS(Eigenval_DFT(i_level_gw) - Eigenval_DFT(i_level_gw - 1)) < eps_eigenval) THEN
    3795             : 
    3796           0 :             list_degenerate_levels(i_level_gw) = list_degenerate_levels(i_level_gw - 1)
    3797             : 
    3798             :          ELSE
    3799             : 
    3800          92 :             list_degenerate_levels(i_level_gw) = list_degenerate_levels(i_level_gw - 1) + 1
    3801             : 
    3802             :          END IF
    3803             : 
    3804             :       END DO
    3805             : 
    3806           8 :       num_deg_levels = list_degenerate_levels(num_levels_gw)
    3807             : 
    3808         108 :       DO i_deg_level = 1, num_deg_levels
    3809             : 
    3810             :          degeneracy = 0
    3811             : 
    3812        1404 :          DO i_level_gw = 1, num_levels_gw
    3813             : 
    3814        1304 :             IF (degeneracy == 0 .AND. i_deg_level == list_degenerate_levels(i_level_gw)) THEN
    3815             : 
    3816         100 :                first_degenerate_level = i_level_gw
    3817             : 
    3818             :             END IF
    3819             : 
    3820        1404 :             IF (i_deg_level == list_degenerate_levels(i_level_gw)) THEN
    3821             : 
    3822         100 :                degeneracy = degeneracy + 1
    3823             : 
    3824             :             END IF
    3825             : 
    3826             :          END DO
    3827             : 
    3828        3020 :          DO jquad = 1, num_integ_points
    3829             : 
    3830             :             avg_self_energy(jquad) = SUM(vec_Sigma_c_gw(first_degenerate_level:first_degenerate_level + degeneracy - 1, jquad, 1)) &
    3831        5940 :                                      /REAL(degeneracy, KIND=dp)
    3832             : 
    3833             :          END DO
    3834             : 
    3835         208 :          DO j_deg_level = 0, degeneracy - 1
    3836             : 
    3837        3120 :             vec_Sigma_c_gw(first_degenerate_level + j_deg_level, :, 1) = avg_self_energy(:)
    3838             : 
    3839             :          END DO
    3840             : 
    3841             :       END DO
    3842             : 
    3843           8 :    END SUBROUTINE average_degenerate_levels
    3844             : 
    3845             : ! **************************************************************************************************
    3846             : !> \brief ...
    3847             : !> \param vec_gw_energ ...
    3848             : !> \param vec_omega_fit_gw ...
    3849             : !> \param z_value ...
    3850             : !> \param m_value ...
    3851             : !> \param vec_Sigma_c_gw ...
    3852             : !> \param vec_Sigma_x_minus_vxc_gw ...
    3853             : !> \param Eigenval ...
    3854             : !> \param Eigenval_scf ...
    3855             : !> \param n_level_gw ...
    3856             : !> \param gw_corr_lev_occ ...
    3857             : !> \param gw_corr_lev_vir ...
    3858             : !> \param num_poles ...
    3859             : !> \param num_fit_points ...
    3860             : !> \param crossing_search ...
    3861             : !> \param homo ...
    3862             : !> \param stop_crit ...
    3863             : !> \param fermi_level_offset ...
    3864             : !> \param do_gw_im_time ...
    3865             : ! **************************************************************************************************
    3866         558 :    SUBROUTINE fit_and_continuation_2pole(vec_gw_energ, vec_omega_fit_gw, &
    3867        1116 :                                          z_value, m_value, vec_Sigma_c_gw, vec_Sigma_x_minus_vxc_gw, &
    3868        1116 :                                          Eigenval, Eigenval_scf, n_level_gw, &
    3869             :                                          gw_corr_lev_occ, gw_corr_lev_vir, num_poles, &
    3870             :                                          num_fit_points, crossing_search, homo, stop_crit, &
    3871             :                                          fermi_level_offset, do_gw_im_time)
    3872             : 
    3873             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: vec_gw_energ, vec_omega_fit_gw, z_value, &
    3874             :                                                             m_value
    3875             :       COMPLEX(KIND=dp), DIMENSION(:, :), INTENT(IN)      :: vec_Sigma_c_gw
    3876             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: vec_Sigma_x_minus_vxc_gw, Eigenval, &
    3877             :                                                             Eigenval_scf
    3878             :       INTEGER, INTENT(IN)                                :: n_level_gw, gw_corr_lev_occ, &
    3879             :                                                             gw_corr_lev_vir, num_poles, &
    3880             :                                                             num_fit_points, crossing_search, homo
    3881             :       REAL(KIND=dp), INTENT(IN)                          :: stop_crit, fermi_level_offset
    3882             :       LOGICAL, INTENT(IN)                                :: do_gw_im_time
    3883             : 
    3884             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'fit_and_continuation_2pole'
    3885             : 
    3886             :       COMPLEX(KIND=dp)                                   :: func_val, rho1
    3887         558 :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:)        :: dLambda, dLambda_2, Lambda, &
    3888         558 :                                                             Lambda_without_offset, vec_b_gw, &
    3889         558 :                                                             vec_b_gw_copy
    3890         558 :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:, :)     :: mat_A_gw, mat_B_gw
    3891             :       INTEGER                                            :: handle4, ierr, iii, iiter, info, &
    3892             :                                                             integ_range, jjj, jquad, kkk, &
    3893             :                                                             max_iter_fit, n_level_gw_ref, num_var, &
    3894             :                                                             xpos
    3895         558 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: ipiv
    3896             :       LOGICAL                                            :: could_exit
    3897             :       REAL(KIND=dp) :: chi2, chi2_old, delta, deriv_val_real, e_fermi, gw_energ, Ldown, &
    3898             :          level_energ_GW, Lup, range_step, ScalParam, sign_occ_virt, stat_error
    3899         558 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: Lambda_Im, Lambda_Re, stat_errors, &
    3900         558 :                                                             vec_N_gw, vec_omega_fit_gw_sign
    3901         558 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :)        :: mat_N_gw
    3902             : 
    3903         558 :       max_iter_fit = 10000
    3904             : 
    3905         558 :       num_var = 2*num_poles + 1
    3906        1674 :       ALLOCATE (Lambda(num_var))
    3907        3348 :       Lambda = z_zero
    3908        1116 :       ALLOCATE (Lambda_without_offset(num_var))
    3909        3348 :       Lambda_without_offset = z_zero
    3910        1674 :       ALLOCATE (Lambda_Re(num_var))
    3911        3348 :       Lambda_Re = 0.0_dp
    3912        1116 :       ALLOCATE (Lambda_Im(num_var))
    3913        3348 :       Lambda_Im = 0.0_dp
    3914             : 
    3915        1674 :       ALLOCATE (vec_omega_fit_gw_sign(num_fit_points))
    3916             : 
    3917         558 :       IF (n_level_gw <= gw_corr_lev_occ) THEN
    3918             :          sign_occ_virt = -1.0_dp
    3919             :       ELSE
    3920         399 :          sign_occ_virt = 1.0_dp
    3921             :       END IF
    3922             : 
    3923         558 :       n_level_gw_ref = n_level_gw + homo - gw_corr_lev_occ
    3924             : 
    3925        6580 :       DO jquad = 1, num_fit_points
    3926        6580 :          vec_omega_fit_gw_sign(jquad) = ABS(vec_omega_fit_gw(jquad))*sign_occ_virt
    3927             :       END DO
    3928             : 
    3929             :       ! initial guess
    3930         558 :       range_step = (vec_omega_fit_gw_sign(num_fit_points) - vec_omega_fit_gw_sign(1))/(num_poles - 1)
    3931        1674 :       DO iii = 1, num_poles
    3932        1674 :          Lambda_Im(2*iii + 1) = vec_omega_fit_gw_sign(1) + (iii - 1)*range_step
    3933             :       END DO
    3934         558 :       range_step = (vec_omega_fit_gw_sign(num_fit_points) - vec_omega_fit_gw_sign(1))/num_poles
    3935        1674 :       DO iii = 1, num_poles
    3936        1674 :          Lambda_Re(2*iii + 1) = ABS(vec_omega_fit_gw_sign(1) + (iii - 0.5_dp)*range_step)
    3937             :       END DO
    3938             : 
    3939        3348 :       DO iii = 1, num_var
    3940        3348 :          Lambda(iii) = Lambda_Re(iii) + gaussi*Lambda_Im(iii)
    3941             :       END DO
    3942             : 
    3943             :       CALL calc_chi2(chi2_old, Lambda, vec_Sigma_c_gw, vec_omega_fit_gw_sign, num_poles, &
    3944         558 :                      num_fit_points, n_level_gw)
    3945             : 
    3946        2232 :       ALLOCATE (mat_A_gw(num_poles + 1, num_poles + 1))
    3947        1674 :       ALLOCATE (vec_b_gw(num_poles + 1))
    3948        1674 :       ALLOCATE (ipiv(num_poles + 1))
    3949        7254 :       mat_A_gw = z_zero
    3950        2232 :       vec_b_gw = 0.0_dp
    3951             : 
    3952        2232 :       mat_A_gw(1:num_poles + 1, 1) = z_one
    3953         558 :       integ_range = num_fit_points/num_poles
    3954        2232 :       DO kkk = 1, num_poles + 1
    3955        1674 :          xpos = (kkk - 1)*integ_range + 1
    3956        1674 :          xpos = MIN(xpos, num_fit_points)
    3957             :          ! calculate coefficient at this point
    3958        5022 :          DO iii = 1, num_poles
    3959        3348 :             jjj = iii*2
    3960             :             func_val = z_one/(gaussi*vec_omega_fit_gw_sign(xpos) - &
    3961        3348 :                               CMPLX(Lambda_Re(jjj + 1), Lambda_Im(jjj + 1), KIND=dp))
    3962        5022 :             mat_A_gw(kkk, iii + 1) = func_val
    3963             :          END DO
    3964        2232 :          vec_b_gw(kkk) = vec_Sigma_c_gw(n_level_gw, xpos)
    3965             :       END DO
    3966             : 
    3967             :       ! Solve system of linear equations
    3968         558 :       CALL ZGETRF(num_poles + 1, num_poles + 1, mat_A_gw, num_poles + 1, ipiv, info)
    3969             : 
    3970         558 :       CALL ZGETRS('N', num_poles + 1, 1, mat_A_gw, num_poles + 1, ipiv, vec_b_gw, num_poles + 1, info)
    3971             : 
    3972         558 :       Lambda_Re(1) = REAL(vec_b_gw(1))
    3973         558 :       Lambda_Im(1) = AIMAG(vec_b_gw(1))
    3974        1674 :       DO iii = 1, num_poles
    3975        1116 :          jjj = iii*2
    3976        1116 :          Lambda_Re(jjj) = REAL(vec_b_gw(iii + 1))
    3977        1674 :          Lambda_Im(jjj) = AIMAG(vec_b_gw(iii + 1))
    3978             :       END DO
    3979             : 
    3980         558 :       DEALLOCATE (mat_A_gw)
    3981         558 :       DEALLOCATE (vec_b_gw)
    3982         558 :       DEALLOCATE (ipiv)
    3983             : 
    3984        2232 :       ALLOCATE (mat_A_gw(num_var*2, num_var*2))
    3985        2232 :       ALLOCATE (mat_B_gw(num_fit_points, num_var*2))
    3986        1674 :       ALLOCATE (dLambda(num_fit_points))
    3987        1116 :       ALLOCATE (dLambda_2(num_fit_points))
    3988        1674 :       ALLOCATE (vec_b_gw(num_var*2))
    3989        1116 :       ALLOCATE (vec_b_gw_copy(num_var*2))
    3990        1674 :       ALLOCATE (ipiv(num_var*2))
    3991             : 
    3992             :       ScalParam = 0.01_dp
    3993             :       Ldown = 1.5_dp
    3994             :       Lup = 10.0_dp
    3995             :       could_exit = .FALSE.
    3996             : 
    3997             :       ! iteration loop for fitting
    3998     1070696 :       DO iiter = 1, max_iter_fit
    3999             : 
    4000     1070669 :          CALL timeset(routineN//"_fit_loop_1", handle4)
    4001             : 
    4002             :          ! calc delta lambda
    4003     6424014 :          DO iii = 1, num_var
    4004     6424014 :             Lambda(iii) = Lambda_Re(iii) + gaussi*Lambda_Im(iii)
    4005             :          END DO
    4006    12243322 :          dLambda = z_zero
    4007             : 
    4008    12243322 :          DO kkk = 1, num_fit_points
    4009    11172653 :             func_val = Lambda(1)
    4010    33517959 :             DO iii = 1, num_poles
    4011    22345306 :                jjj = iii*2
    4012    33517959 :                func_val = func_val + Lambda(jjj)/(vec_omega_fit_gw_sign(kkk)*gaussi - Lambda(jjj + 1))
    4013             :             END DO
    4014    12243322 :             dLambda(kkk) = vec_Sigma_c_gw(n_level_gw, kkk) - func_val
    4015             :          END DO
    4016    12243322 :          rho1 = SUM(dLambda*dLambda)
    4017             : 
    4018             :          ! fill matrix
    4019   123503889 :          mat_B_gw = z_zero
    4020    12243322 :          DO iii = 1, num_fit_points
    4021    11172653 :             mat_B_gw(iii, 1) = 1.0_dp
    4022    12243322 :             mat_B_gw(iii, num_var + 1) = gaussi
    4023             :          END DO
    4024     3212007 :          DO iii = 1, num_poles
    4025     2141338 :             jjj = iii*2
    4026    25557313 :             DO kkk = 1, num_fit_points
    4027    22345306 :                mat_B_gw(kkk, jjj) = 1.0_dp/(gaussi*vec_omega_fit_gw_sign(kkk) - Lambda(jjj + 1))
    4028    22345306 :                mat_B_gw(kkk, jjj + num_var) = gaussi/(gaussi*vec_omega_fit_gw_sign(kkk) - Lambda(jjj + 1))
    4029    22345306 :                mat_B_gw(kkk, jjj + 1) = Lambda(jjj)/(gaussi*vec_omega_fit_gw_sign(kkk) - Lambda(jjj + 1))**2
    4030             :                mat_B_gw(kkk, jjj + 1 + num_var) = (-Lambda_Im(jjj) + gaussi*Lambda_Re(jjj))/ &
    4031    24486644 :                                                   (gaussi*vec_omega_fit_gw_sign(kkk) - Lambda(jjj + 1))**2
    4032             :             END DO
    4033             :          END DO
    4034             : 
    4035     1070669 :          CALL timestop(handle4)
    4036             : 
    4037     1070669 :          CALL timeset(routineN//"_fit_matmul_1", handle4)
    4038             : 
    4039             :          CALL zgemm('C', 'N', num_var*2, num_var*2, num_fit_points, z_one, mat_B_gw, num_fit_points, mat_B_gw, num_fit_points, &
    4040     1070669 :                     z_zero, mat_A_gw, num_var*2)
    4041     1070669 :          CALL timestop(handle4)
    4042             : 
    4043     1070669 :          CALL timeset(routineN//"_fit_zgemv_1", handle4)
    4044             :          CALL zgemv('C', num_fit_points, num_var*2, z_one, mat_B_gw, num_fit_points, dLambda, 1, &
    4045     1070669 :                     z_zero, vec_b_gw, 1)
    4046             : 
    4047     1070669 :          CALL timestop(handle4)
    4048             : 
    4049             :          ! scale diagonal elements of a_mat
    4050    11777359 :          DO iii = 1, num_var*2
    4051    11777359 :             mat_A_gw(iii, iii) = mat_A_gw(iii, iii) + ScalParam*mat_A_gw(iii, iii)
    4052             :          END DO
    4053             : 
    4054             :          ! solve linear system
    4055             :          ierr = 0
    4056    11777359 :          ipiv = 0
    4057             : 
    4058     1070669 :          CALL timeset(routineN//"_fit_lin_eq_2", handle4)
    4059             : 
    4060     1070669 :          CALL ZGETRF(2*num_var, 2*num_var, mat_A_gw, 2*num_var, ipiv, info)
    4061             : 
    4062     1070669 :          CALL ZGETRS('N', 2*num_var, 1, mat_A_gw, 2*num_var, ipiv, vec_b_gw, 2*num_var, info)
    4063             : 
    4064     1070669 :          CALL timestop(handle4)
    4065             : 
    4066     6424014 :          DO iii = 1, num_var
    4067     6424014 :             Lambda(iii) = Lambda_Re(iii) + gaussi*Lambda_Im(iii) + vec_b_gw(iii) + vec_b_gw(iii + num_var)
    4068             :          END DO
    4069             : 
    4070             :          ! calculate chi2
    4071             :          CALL calc_chi2(chi2, Lambda, vec_Sigma_c_gw, vec_omega_fit_gw_sign, num_poles, &
    4072     1070669 :                         num_fit_points, n_level_gw)
    4073             : 
    4074             :          ! if the fit is already super accurate, exit. otherwise maybe issues when dividing by 0
    4075     1070669 :          IF (chi2 < 1.0E-30_dp) EXIT
    4076             : 
    4077     1070615 :          IF (chi2 < chi2_old) THEN
    4078      909006 :             ScalParam = MAX(ScalParam/Ldown, 1E-12_dp)
    4079     5454036 :             DO iii = 1, num_var
    4080     4545030 :                Lambda_Re(iii) = Lambda_Re(iii) + REAL(vec_b_gw(iii) + vec_b_gw(iii + num_var))
    4081     5454036 :                Lambda_Im(iii) = Lambda_Im(iii) + AIMAG(vec_b_gw(iii) + vec_b_gw(iii + num_var))
    4082             :             END DO
    4083      909006 :             IF (chi2_old/chi2 - 1.0_dp < stop_crit) could_exit = .TRUE.
    4084      909006 :             chi2_old = chi2
    4085             :          ELSE
    4086      161609 :             ScalParam = ScalParam*Lup
    4087             :          END IF
    4088     1070615 :          IF (ScalParam > 100.0_dp .AND. could_exit) EXIT
    4089             : 
    4090     4283234 :          IF (ScalParam > 1E+10_dp) ScalParam = 1E-4_dp
    4091             : 
    4092             :       END DO
    4093             : 
    4094         558 :       IF (.NOT. do_gw_im_time) THEN
    4095             : 
    4096             :          ! change a_0 [Lambda(1)], so that Sigma(i0) = Fit(i0)
    4097             :          ! do not do this for imaginary time since we do not have many fit points and the fit should be perfect
    4098         420 :          func_val = Lambda(1)
    4099        1260 :          DO iii = 1, num_poles
    4100         840 :             jjj = iii*2
    4101             :             ! calculate value of the fit function
    4102        1260 :             func_val = func_val + Lambda(jjj)/(-Lambda(jjj + 1))
    4103             :          END DO
    4104             : 
    4105         420 :          Lambda_Re(1) = Lambda_Re(1) - REAL(func_val) + REAL(vec_Sigma_c_gw(n_level_gw, num_fit_points))
    4106         420 :          Lambda_Im(1) = Lambda_Im(1) - AIMAG(func_val) + AIMAG(vec_Sigma_c_gw(n_level_gw, num_fit_points))
    4107             : 
    4108             :       END IF
    4109             : 
    4110        3348 :       Lambda_without_offset(:) = Lambda(:)
    4111             : 
    4112        3348 :       DO iii = 1, num_var
    4113        3348 :          Lambda(iii) = CMPLX(Lambda_Re(iii), Lambda_Im(iii), KIND=dp)
    4114             :       END DO
    4115             : 
    4116         558 :       IF (do_gw_im_time) THEN
    4117             :          ! for cubic-scaling GW, we have one Green's function for occ and virt states with the Fermi level
    4118             :          ! in the middle of homo and lumo
    4119         138 :          e_fermi = 0.5_dp*(Eigenval(homo) + Eigenval(homo + 1))
    4120             :       ELSE
    4121             :          ! in case of O(N^4) GW, we have the Fermi level differently for occ and virt states, see
    4122             :          ! Fig. 1 in JCTC 12, 3623-3635 (2016)
    4123         420 :          IF (n_level_gw <= gw_corr_lev_occ) THEN
    4124         666 :             e_fermi = MAXVAL(Eigenval(homo - gw_corr_lev_occ + 1:homo)) + fermi_level_offset
    4125             :          ELSE
    4126        3738 :             e_fermi = MINVAL(Eigenval(homo + 1:homo + gw_corr_lev_vir)) - fermi_level_offset
    4127             :          END IF
    4128             :       END IF
    4129             : 
    4130             :       ! either Z-shot or Newton/bisection crossing search for evaluating Sigma_c
    4131         558 :       IF (crossing_search == ri_rpa_g0w0_crossing_z_shot .OR. &
    4132             :           crossing_search == ri_rpa_g0w0_crossing_newton) THEN
    4133             : 
    4134             :          ! calculate Sigma_c_fit(e_n) and Z
    4135         558 :          func_val = Lambda(1)
    4136         558 :          z_value(n_level_gw) = 1.0_dp
    4137        1674 :          DO iii = 1, num_poles
    4138        1116 :             jjj = iii*2
    4139             :             z_value(n_level_gw) = z_value(n_level_gw) + REAL(Lambda(jjj)/ &
    4140        1116 :                                                              (Eigenval(n_level_gw_ref) - e_fermi - Lambda(jjj + 1))**2)
    4141        1674 :             func_val = func_val + Lambda(jjj)/(Eigenval(n_level_gw_ref) - e_fermi - Lambda(jjj + 1))
    4142             :          END DO
    4143             :          ! m is the slope of the correl self-energy
    4144         558 :          m_value(n_level_gw) = 1.0_dp - z_value(n_level_gw)
    4145         558 :          z_value(n_level_gw) = 1.0_dp/z_value(n_level_gw)
    4146         558 :          gw_energ = REAL(func_val)
    4147         558 :          vec_gw_energ(n_level_gw) = gw_energ
    4148             : 
    4149             :          ! in case one wants to do Newton-Raphson on top of the Z-shot
    4150         558 :          IF (crossing_search == ri_rpa_g0w0_crossing_newton) THEN
    4151             : 
    4152             :             level_energ_GW = (Eigenval_scf(n_level_gw_ref) - &
    4153             :                               m_value(n_level_gw)*Eigenval(n_level_gw_ref) + &
    4154             :                               vec_gw_energ(n_level_gw) + &
    4155             :                               vec_Sigma_x_minus_vxc_gw(n_level_gw_ref))* &
    4156          32 :                              z_value(n_level_gw)
    4157             : 
    4158             :             ! Newton-Raphson iteration
    4159         240 :             DO kkk = 1, 1000
    4160             : 
    4161             :                ! calculate the value of the fit function for level_energ_GW
    4162         240 :                func_val = Lambda(1)
    4163         240 :                z_value(n_level_gw) = 1.0_dp
    4164         720 :                DO iii = 1, num_poles
    4165         480 :                   jjj = iii*2
    4166         720 :                   func_val = func_val + Lambda(jjj)/(level_energ_GW - e_fermi - Lambda(jjj + 1))
    4167             :                END DO
    4168             : 
    4169             :                ! calculate the derivative of the fit function for level_energ_GW
    4170         240 :                deriv_val_real = -1.0_dp
    4171         720 :                DO iii = 1, num_poles
    4172         480 :                   jjj = iii*2
    4173             :                   deriv_val_real = deriv_val_real + REAL(Lambda(jjj))/((ABS(level_energ_GW - e_fermi - Lambda(jjj + 1)))**2) &
    4174             :                                    - (REAL(Lambda(jjj))*(level_energ_GW - e_fermi) - REAL(Lambda(jjj)*CONJG(Lambda(jjj + 1))))* &
    4175             :                                    2.0_dp*(level_energ_GW - e_fermi - REAL(Lambda(jjj + 1)))/ &
    4176         720 :                                    ((ABS(level_energ_GW - e_fermi - Lambda(jjj + 1)))**2)
    4177             : 
    4178             :                END DO
    4179             : 
    4180             :               delta = (Eigenval_scf(n_level_gw_ref) + vec_Sigma_x_minus_vxc_gw(n_level_gw_ref) + REAL(func_val) - level_energ_GW)/ &
    4181         240 :                        deriv_val_real
    4182             : 
    4183         240 :                level_energ_GW = level_energ_GW - delta
    4184             : 
    4185         240 :                IF (ABS(delta) < 1.0E-08) EXIT
    4186             : 
    4187             :             END DO
    4188             : 
    4189             :             ! update the GW-energy by Newton-Raphson and set the Z-value to 1
    4190             : 
    4191          32 :             vec_gw_energ(n_level_gw) = REAL(func_val)
    4192          32 :             z_value(n_level_gw) = 1.0_dp
    4193          32 :             m_value(n_level_gw) = 0.0_dp
    4194             : 
    4195             :          END IF ! Newton-Raphson on top of Z-shot
    4196             : 
    4197             :       ELSE
    4198           0 :          CPABORT("Only NONE, ZSHOT and NEWTON implemented for 2-pole model")
    4199             :       END IF ! decision crossing search none, Z-shot
    4200             : 
    4201             :       !   --------------------------------------------
    4202             :       !  | calculate statistical error due to fitting |
    4203             :       !   --------------------------------------------
    4204             : 
    4205             :       ! estimate the statistical error of the calculated Sigma_c(i*omega)
    4206             :       ! by sqrt(chi2/n), where n is the number of fit points
    4207             : 
    4208             :       CALL calc_chi2(chi2, Lambda_without_offset, vec_Sigma_c_gw, vec_omega_fit_gw_sign, num_poles, &
    4209         558 :                      num_fit_points, n_level_gw)
    4210             : 
    4211             :       ! Estimate the statistical error of every fit point
    4212         558 :       stat_error = SQRT(chi2/num_fit_points)
    4213             : 
    4214             :       ! allocate N array containing the second derivatives of chi^2
    4215        1674 :       ALLOCATE (vec_N_gw(num_var*2))
    4216        6138 :       vec_N_gw = 0.0_dp
    4217             : 
    4218        2232 :       ALLOCATE (mat_N_gw(num_var*2, num_var*2))
    4219       61938 :       mat_N_gw = 0.0_dp
    4220             : 
    4221        6138 :       DO iii = 1, num_var*2
    4222             :          CALL calc_mat_N(vec_N_gw(iii), Lambda_without_offset, vec_Sigma_c_gw, vec_omega_fit_gw_sign, &
    4223        6138 :                          iii, iii, num_poles, num_fit_points, n_level_gw, 0.001_dp)
    4224             :       END DO
    4225             : 
    4226        6138 :       DO iii = 1, num_var*2
    4227       61938 :          DO jjj = 1, num_var*2
    4228             :             CALL calc_mat_N(mat_N_gw(iii, jjj), Lambda_without_offset, vec_Sigma_c_gw, vec_omega_fit_gw_sign, &
    4229       61380 :                             iii, jjj, num_poles, num_fit_points, n_level_gw, 0.001_dp)
    4230             :          END DO
    4231             :       END DO
    4232             : 
    4233         558 :       CALL DGETRF(2*num_var, 2*num_var, mat_N_gw, 2*num_var, ipiv, info)
    4234             : 
    4235             :       ! vec_b_gw is only working array
    4236         558 :       CALL DGETRI(2*num_var, mat_N_gw, 2*num_var, ipiv, vec_b_gw, 2*num_var, info)
    4237             : 
    4238        1116 :       ALLOCATE (stat_errors(2*num_var))
    4239        6138 :       stat_errors = 0.0_dp
    4240             : 
    4241        6138 :       DO iii = 1, 2*num_var
    4242        6138 :          stat_errors(iii) = SQRT(ABS(mat_N_gw(iii, iii)))*stat_error
    4243             :       END DO
    4244             : 
    4245         558 :       DEALLOCATE (mat_N_gw)
    4246         558 :       DEALLOCATE (vec_N_gw)
    4247         558 :       DEALLOCATE (mat_A_gw)
    4248         558 :       DEALLOCATE (mat_B_gw)
    4249         558 :       DEALLOCATE (stat_errors)
    4250         558 :       DEALLOCATE (dLambda)
    4251         558 :       DEALLOCATE (dLambda_2)
    4252         558 :       DEALLOCATE (vec_b_gw)
    4253         558 :       DEALLOCATE (vec_b_gw_copy)
    4254         558 :       DEALLOCATE (ipiv)
    4255         558 :       DEALLOCATE (vec_omega_fit_gw_sign)
    4256         558 :       DEALLOCATE (Lambda)
    4257         558 :       DEALLOCATE (Lambda_without_offset)
    4258         558 :       DEALLOCATE (Lambda_Re)
    4259         558 :       DEALLOCATE (Lambda_Im)
    4260             : 
    4261         558 :    END SUBROUTINE fit_and_continuation_2pole
    4262             : 
    4263             : ! **************************************************************************************************
    4264             : !> \brief perform analytic continuation with pade approximation
    4265             : !> \param vec_gw_energ real Sigma_c
    4266             : !> \param vec_omega_fit_gw frequency points for Sigma_c(iomega)
    4267             : !> \param z_value 1/(1-dev)
    4268             : !> \param m_value derivative of real Sigma_c
    4269             : !> \param vec_Sigma_c_gw complex Sigma_c(iomega)
    4270             : !> \param vec_Sigma_x_minus_vxc_gw ...
    4271             : !> \param Eigenval quasiparticle energy during ev self-consistent GW
    4272             : !> \param Eigenval_scf KS/HF eigenvalue
    4273             : !> \param do_hedin_shift ...
    4274             : !> \param n_level_gw ...
    4275             : !> \param gw_corr_lev_occ ...
    4276             : !> \param gw_corr_lev_vir ...
    4277             : !> \param nparam_pade number of pade parameters
    4278             : !> \param num_fit_points number of fit points for Sigma_c(iomega)
    4279             : !> \param crossing_search type ofr cross search to find quasiparticle energies
    4280             : !> \param homo ...
    4281             : !> \param fermi_level_offset ...
    4282             : !> \param do_gw_im_time ...
    4283             : !> \param print_self_energy ...
    4284             : !> \param count_ev_sc_GW ...
    4285             : !> \param vec_gw_dos ...
    4286             : !> \param dos_lower_bound ...
    4287             : !> \param dos_precision ...
    4288             : !> \param ndos ...
    4289             : !> \param min_level_self_energy ...
    4290             : !> \param max_level_self_energy ...
    4291             : !> \param dos_eta ...
    4292             : !> \param dos_min ...
    4293             : !> \param dos_max ...
    4294             : !> \param e_fermi_ext ...
    4295             : ! **************************************************************************************************
    4296        2352 :    SUBROUTINE continuation_pade(vec_gw_energ, vec_omega_fit_gw, &
    4297        4704 :                                 z_value, m_value, vec_Sigma_c_gw, vec_Sigma_x_minus_vxc_gw, &
    4298        4704 :                                 Eigenval, Eigenval_scf, do_hedin_shift, n_level_gw, &
    4299             :                                 gw_corr_lev_occ, gw_corr_lev_vir, &
    4300             :                                 nparam_pade, num_fit_points, crossing_search, homo, &
    4301             :                                 fermi_level_offset, do_gw_im_time, print_self_energy, count_ev_sc_GW, &
    4302             :                                 vec_gw_dos, dos_lower_bound, dos_precision, ndos, &
    4303             :                                 min_level_self_energy, max_level_self_energy, &
    4304             :                                 dos_eta, dos_min, dos_max, e_fermi_ext)
    4305             : 
    4306             :       ! Optional arguments for spectral function
    4307             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: vec_gw_energ
    4308             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: vec_omega_fit_gw
    4309             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: z_value, m_value
    4310             :       COMPLEX(KIND=dp), DIMENSION(:, :), INTENT(IN)      :: vec_Sigma_c_gw
    4311             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: vec_Sigma_x_minus_vxc_gw, Eigenval, &
    4312             :                                                             Eigenval_scf
    4313             :       LOGICAL, INTENT(IN)                                :: do_hedin_shift
    4314             :       INTEGER, INTENT(IN)                                :: n_level_gw, gw_corr_lev_occ, &
    4315             :                                                             gw_corr_lev_vir, nparam_pade, &
    4316             :                                                             num_fit_points, crossing_search, homo
    4317             :       REAL(KIND=dp), INTENT(IN)                          :: fermi_level_offset
    4318             :       LOGICAL, INTENT(IN)                                :: do_gw_im_time, print_self_energy
    4319             :       INTEGER, INTENT(IN)                                :: count_ev_sc_GW
    4320             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), OPTIONAL :: vec_gw_dos
    4321             :       REAL(KIND=dp), OPTIONAL                            :: dos_lower_bound, dos_precision
    4322             :       INTEGER, INTENT(IN), OPTIONAL                      :: ndos, min_level_self_energy, &
    4323             :                                                             max_level_self_energy
    4324             :       REAL(KIND=dp), OPTIONAL                            :: dos_eta
    4325             :       INTEGER, INTENT(IN), OPTIONAL                      :: dos_min, dos_max
    4326             :       REAL(KIND=dp), OPTIONAL                            :: e_fermi_ext
    4327             : 
    4328             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'continuation_pade'
    4329             : 
    4330             :       CHARACTER(LEN=5)                                   :: string_level
    4331             :       CHARACTER(len=default_path_length)                 :: filename
    4332             :       COMPLEX(KIND=dp)                                   :: sigma_c_pade, sigma_c_pade_im_freq
    4333        2352 :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:)        :: coeff_pade, omega_points_pade, &
    4334        2352 :                                                             Sigma_c_gw_reorder
    4335             :       INTEGER                                            :: handle, i_omega, idos, iunit, jquad, &
    4336             :                                                             n_level_gw_ref, num_omega
    4337             :       REAL(KIND=dp)                                      :: e_fermi, energy_val, hedin_shift, &
    4338             :                                                             level_energ_GW_start, omega, &
    4339             :                                                             omega_dos, omega_dos_pade_eval, &
    4340             :                                                             sign_occ_virt
    4341        2352 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: vec_omega_fit_gw_sign, &
    4342        2352 :                                                             vec_omega_fit_gw_sign_reorder, &
    4343        2352 :                                                             vec_sigma_imag, vec_sigma_real
    4344             : 
    4345        2352 :       CALL timeset(routineN, handle)
    4346             : 
    4347        7056 :       ALLOCATE (vec_omega_fit_gw_sign(num_fit_points))
    4348             : 
    4349        2352 :       IF (n_level_gw <= gw_corr_lev_occ) THEN
    4350             :          sign_occ_virt = -1.0_dp
    4351             :       ELSE
    4352        1522 :          sign_occ_virt = 1.0_dp
    4353             :       END IF
    4354             : 
    4355       56028 :       DO jquad = 1, num_fit_points
    4356       56028 :          vec_omega_fit_gw_sign(jquad) = ABS(vec_omega_fit_gw(jquad))*sign_occ_virt
    4357             :       END DO
    4358             : 
    4359        2352 :       IF (do_gw_im_time) THEN
    4360             :          ! for cubic-scaling GW, we have one Green's function for occ and virt states
    4361             :          ! with the Fermi level in the middle of homo and lumo
    4362        1600 :          e_fermi = 0.5_dp*(Eigenval(homo) + Eigenval(homo + 1))
    4363             :       ELSE
    4364             :          ! in case of O(N^4) GW, we have the Fermi level differently for occ and virt states, see
    4365             :          ! Fig. 1 in JCTC 12, 3623-3635 (2016)
    4366         752 :          IF (n_level_gw <= gw_corr_lev_occ) THEN
    4367        1176 :             e_fermi = MAXVAL(Eigenval(homo - gw_corr_lev_occ + 1:homo)) + fermi_level_offset
    4368             :          ELSE
    4369        7464 :             e_fermi = MINVAL(Eigenval(homo + 1:homo + gw_corr_lev_vir)) - fermi_level_offset
    4370             :          END IF
    4371             :       END IF
    4372             : 
    4373        2352 :       IF (PRESENT(e_fermi_ext)) e_fermi = e_fermi_ext
    4374             : 
    4375        2352 :       n_level_gw_ref = n_level_gw + homo - gw_corr_lev_occ
    4376             : 
    4377             :       !*** reorder, such that omega=i*0 is first entry
    4378        7056 :       ALLOCATE (Sigma_c_gw_reorder(num_fit_points))
    4379        4704 :       ALLOCATE (vec_omega_fit_gw_sign_reorder(num_fit_points))
    4380             :       ! for cubic scaling GW fit points are ordered differently than in N^4 GW
    4381        2352 :       IF (do_gw_im_time) THEN
    4382        8908 :          DO jquad = 1, num_fit_points
    4383        7308 :             Sigma_c_gw_reorder(jquad) = vec_Sigma_c_gw(n_level_gw, jquad)
    4384        8908 :             vec_omega_fit_gw_sign_reorder(jquad) = vec_omega_fit_gw_sign(jquad)
    4385             :          END DO
    4386             :       ELSE
    4387       47120 :          DO jquad = 1, num_fit_points
    4388       46368 :             Sigma_c_gw_reorder(jquad) = vec_Sigma_c_gw(n_level_gw, num_fit_points - jquad + 1)
    4389       47120 :             vec_omega_fit_gw_sign_reorder(jquad) = vec_omega_fit_gw_sign(num_fit_points - jquad + 1)
    4390             :          END DO
    4391             :       END IF
    4392             : 
    4393             :       !*** evaluate parameters for pade approximation
    4394        7056 :       ALLOCATE (coeff_pade(nparam_pade))
    4395        4704 :       ALLOCATE (omega_points_pade(nparam_pade))
    4396       20068 :       coeff_pade = 0.0_dp
    4397             :       CALL get_pade_parameters(Sigma_c_gw_reorder, vec_omega_fit_gw_sign_reorder, &
    4398        2352 :                                num_fit_points, nparam_pade, omega_points_pade, coeff_pade)
    4399             : 
    4400             :       !*** calculate start_value for iterative cross-searching methods
    4401        2352 :       IF ((crossing_search == ri_rpa_g0w0_crossing_bisection) .OR. &
    4402             :           (crossing_search == ri_rpa_g0w0_crossing_newton)) THEN
    4403        2352 :          energy_val = Eigenval(n_level_gw_ref) - e_fermi
    4404             :          CALL evaluate_pade_function(energy_val, nparam_pade, omega_points_pade, &
    4405        2352 :                                      coeff_pade, sigma_c_pade)
    4406             :          CALL get_z_and_m_value_pade(energy_val, nparam_pade, omega_points_pade, &
    4407        2352 :                                      coeff_pade, z_value(n_level_gw), m_value(n_level_gw))
    4408             :          level_energ_GW_start = (Eigenval_scf(n_level_gw_ref) - &
    4409             :                                  m_value(n_level_gw)*Eigenval(n_level_gw_ref) + &
    4410             :                                  REAL(sigma_c_pade) + &
    4411             :                                  vec_Sigma_x_minus_vxc_gw(n_level_gw_ref))* &
    4412        2352 :                                 z_value(n_level_gw)
    4413             : 
    4414             :          ! calculate Hedin shift; the last line is for evGW0 and evGW
    4415        2352 :          hedin_shift = 0.0_dp
    4416        2352 :          IF (do_hedin_shift) hedin_shift = REAL(sigma_c_pade) + &
    4417             :                                            vec_Sigma_x_minus_vxc_gw(n_level_gw_ref) &
    4418          60 :                                            - Eigenval(n_level_gw_ref) + Eigenval_scf(n_level_gw_ref)
    4419             :       END IF
    4420             : 
    4421        2352 :       IF (PRESENT(min_level_self_energy) .AND. PRESENT(max_level_self_energy)) THEN
    4422        1028 :          IF (n_level_gw_ref >= min_level_self_energy .AND. &
    4423             :              n_level_gw_ref <= max_level_self_energy) THEN
    4424           0 :             ALLOCATE (vec_sigma_real(ndos))
    4425           0 :             ALLOCATE (vec_sigma_imag(ndos))
    4426           0 :             WRITE (string_level, "(I4)") n_level_gw_ref
    4427           0 :             string_level = ADJUSTL(string_level)
    4428             :          END IF
    4429             :       END IF
    4430             : 
    4431             :       !*** Calculate spectral function
    4432             :       !***         1   \‾‾                    |Im 𝚺ₘ(ω)|+η
    4433             :       !*** A(ω) = ---   |    ---------------------------------------------------
    4434             :       !***         π   /__   [ω - eₘ^DFT - (Re 𝚺ₘ(ω) - vₘ^xc)]² + (|Im 𝚺ₘ(ω)|+η)²
    4435             : 
    4436        2352 :       IF (PRESENT(ndos)) THEN
    4437        1028 :       IF (ndos /= 0) THEN
    4438             :          ! Hedin shift not implemented
    4439           0 :          CPASSERT(.NOT. do_hedin_shift)
    4440           0 :          iunit = cp_logger_get_default_unit_nr()
    4441           0 :          DO idos = 1, ndos
    4442           0 :             omega_dos = dos_lower_bound + REAL(idos - 1, KIND=dp)*dos_precision
    4443           0 :             omega_dos_pade_eval = omega_dos - e_fermi
    4444             :             CALL evaluate_pade_function(omega_dos_pade_eval, nparam_pade, omega_points_pade, &
    4445           0 :                                         coeff_pade, sigma_c_pade)
    4446             : 
    4447             :             IF (n_level_gw_ref >= min_level_self_energy .AND. &
    4448           0 :                 n_level_gw_ref <= max_level_self_energy .AND. iunit > 0) THEN
    4449             : 
    4450           0 :                vec_sigma_real(idos) = (REAL(sigma_c_pade))
    4451           0 :                vec_sigma_imag(idos) = (AIMAG(sigma_c_pade))
    4452             : 
    4453             :             END IF
    4454             : 
    4455           0 :             IF (n_level_gw_ref >= dos_min .AND. &
    4456           0 :                 (n_level_gw_ref <= dos_max .OR. dos_max == 0)) THEN
    4457             :                vec_gw_dos(idos) = vec_gw_dos(idos) + &
    4458             :                                   (ABS(AIMAG(sigma_c_pade)) + dos_eta) &
    4459             :                                   /( &
    4460             :                                   (omega_dos - Eigenval_scf(n_level_gw_ref) - &
    4461             :                                    (REAL(sigma_c_pade) + vec_Sigma_x_minus_vxc_gw(n_level_gw_ref)) &
    4462             :                                    )**2 &
    4463             :                                   + (ABS(AIMAG(sigma_c_pade)) + dos_eta)**2 &
    4464           0 :                                   )
    4465             :             END IF
    4466             : 
    4467             :          END DO
    4468             :       END IF
    4469             :       END IF
    4470             : 
    4471        2352 :       IF (PRESENT(min_level_self_energy) .AND. PRESENT(max_level_self_energy)) THEN
    4472        1028 :          iunit = cp_logger_get_default_unit_nr()
    4473             :          IF (n_level_gw_ref >= min_level_self_energy .AND. &
    4474        1028 :              n_level_gw_ref <= max_level_self_energy .AND. iunit > 0) THEN
    4475             : 
    4476             :             CALL open_file('self_energy_re_'//TRIM(string_level)//'.dat', unit_number=iunit, &
    4477           0 :                            file_status="UNKNOWN", file_action="WRITE")
    4478           0 :             DO idos = 1, ndos
    4479           0 :                omega_dos = dos_lower_bound + REAL(idos - 1, KIND=dp)*dos_precision
    4480           0 :                WRITE (iunit, '(F17.10, F17.10)') omega_dos*evolt, vec_sigma_real(idos)*evolt
    4481             :             END DO
    4482             : 
    4483           0 :             CALL close_file(iunit)
    4484             : 
    4485             :             CALL open_file('self_energy_im_'//TRIM(string_level)//'.dat', unit_number=iunit, &
    4486           0 :                            file_status="UNKNOWN", file_action="WRITE")
    4487           0 :             DO idos = 1, ndos
    4488           0 :                omega_dos = dos_lower_bound + REAL(idos - 1, KIND=dp)*dos_precision
    4489           0 :                WRITE (iunit, '(F17.10, F17.10)') omega_dos*evolt, vec_sigma_imag(idos)*evolt
    4490             :             END DO
    4491             : 
    4492           0 :             CALL close_file(iunit)
    4493             : 
    4494           0 :             DEALLOCATE (vec_sigma_real)
    4495           0 :             DEALLOCATE (vec_sigma_imag)
    4496             :          END IF
    4497             :       END IF
    4498             : 
    4499             :       !*** perform crossing search
    4500           0 :       SELECT CASE (crossing_search)
    4501             :       CASE (ri_rpa_g0w0_crossing_z_shot)
    4502             :          ! Hedin shift not implemented
    4503           0 :          CPASSERT(.NOT. do_hedin_shift)
    4504           0 :          energy_val = Eigenval(n_level_gw_ref) - e_fermi
    4505             :          CALL evaluate_pade_function(energy_val, nparam_pade, omega_points_pade, &
    4506           0 :                                      coeff_pade, sigma_c_pade)
    4507           0 :          vec_gw_energ(n_level_gw) = REAL(sigma_c_pade)
    4508             : 
    4509             :          CALL get_z_and_m_value_pade(energy_val, nparam_pade, omega_points_pade, &
    4510           0 :                                      coeff_pade, z_value(n_level_gw), m_value(n_level_gw))
    4511             : 
    4512             :       CASE (ri_rpa_g0w0_crossing_bisection)
    4513             :          CALL get_sigma_c_bisection_pade(vec_gw_energ(n_level_gw), Eigenval_scf(n_level_gw_ref), &
    4514             :                                          vec_Sigma_x_minus_vxc_gw(n_level_gw_ref), e_fermi, &
    4515             :                                          nparam_pade, omega_points_pade, coeff_pade, &
    4516           8 :                                          level_energ_GW_start, hedin_shift)
    4517           8 :          z_value(n_level_gw) = 1.0_dp
    4518           8 :          m_value(n_level_gw) = 0.0_dp
    4519             : 
    4520             :       CASE (ri_rpa_g0w0_crossing_newton)
    4521             :          CALL get_sigma_c_newton_pade(vec_gw_energ(n_level_gw), Eigenval_scf(n_level_gw_ref), &
    4522             :                                       vec_Sigma_x_minus_vxc_gw(n_level_gw_ref), e_fermi, &
    4523             :                                       nparam_pade, omega_points_pade, coeff_pade, &
    4524        2344 :                                       level_energ_GW_start, hedin_shift)
    4525        2344 :          z_value(n_level_gw) = 1.0_dp
    4526        2344 :          m_value(n_level_gw) = 0.0_dp
    4527             : 
    4528             :       CASE DEFAULT
    4529        2352 :          CPABORT("Only Z_SHOT, NEWTON, and BISECTION crossing search implemented.")
    4530             :       END SELECT
    4531             : 
    4532        2352 :       IF (print_self_energy) THEN
    4533             : 
    4534           0 :          IF (count_ev_sc_GW == 1) THEN
    4535             : 
    4536           0 :             IF (n_level_gw_ref < 10) THEN
    4537           0 :                WRITE (filename, "(A26,I1)") "G0W0_self_energy_level_000", n_level_gw_ref
    4538           0 :             ELSE IF (n_level_gw_ref < 100) THEN
    4539           0 :                WRITE (filename, "(A25,I2)") "G0W0_self_energy_level_00", n_level_gw_ref
    4540           0 :             ELSE IF (n_level_gw_ref < 1000) THEN
    4541           0 :                WRITE (filename, "(A24,I3)") "G0W0_self_energy_level_0", n_level_gw_ref
    4542             :             ELSE
    4543           0 :                WRITE (filename, "(A23,I4)") "G0W0_self_energy_level_", n_level_gw_ref
    4544             :             END IF
    4545             : 
    4546             :          ELSE
    4547             : 
    4548           0 :             IF (n_level_gw_ref < 10) THEN
    4549           0 :                WRITE (filename, "(A11,I1,A22,I1)") "evGW_cycle_", count_ev_sc_GW, &
    4550           0 :                   "_self_energy_level_000", n_level_gw_ref
    4551           0 :             ELSE IF (n_level_gw_ref < 100) THEN
    4552           0 :                WRITE (filename, "(A11,I1,A21,I2)") "evGW_cycle_", count_ev_sc_GW, &
    4553           0 :                   "_self_energy_level_00", n_level_gw_ref
    4554           0 :             ELSE IF (n_level_gw_ref < 1000) THEN
    4555           0 :                WRITE (filename, "(A11,I1,A20,I3)") "evGW_cycle_", count_ev_sc_GW, &
    4556           0 :                   "_self_energy_level_0", n_level_gw_ref
    4557             :             ELSE
    4558           0 :                WRITE (filename, "(A11,I1,A19,I4)") "evGW_cycle_", count_ev_sc_GW, &
    4559           0 :                   "_self_energy_level_", n_level_gw_ref
    4560             :             END IF
    4561             : 
    4562             :          END IF
    4563             : 
    4564           0 :          iunit = cp_logger_get_default_unit_nr()
    4565           0 :          CALL open_file(TRIM(filename), unit_number=iunit, file_status="UNKNOWN", file_action="WRITE")
    4566             : 
    4567           0 :          num_omega = 10000
    4568             : 
    4569           0 :          WRITE (iunit, "(2A42)") " omega (eV)     Sigma(omega) (eV)  ", &
    4570           0 :             "  omega - e_n^DFT - Sigma_n^x - v_n^xc (eV)"
    4571             : 
    4572           0 :          DO i_omega = 0, num_omega
    4573             : 
    4574           0 :             omega = -50.0_dp/evolt + REAL(i_omega, KIND=dp)/REAL(num_omega, KIND=dp)*100.0_dp/evolt
    4575             : 
    4576             :             CALL evaluate_pade_function(omega - e_fermi, nparam_pade, omega_points_pade, &
    4577           0 :                                         coeff_pade, sigma_c_pade)
    4578             : 
    4579           0 :             WRITE (iunit, "(F12.2,2F17.5)") omega*evolt, REAL(sigma_c_pade)*evolt, &
    4580           0 :                (omega - Eigenval_scf(n_level_gw_ref) - vec_Sigma_x_minus_vxc_gw(n_level_gw_ref))*evolt
    4581             : 
    4582             :          END DO
    4583             : 
    4584           0 :          WRITE (iunit, "(A51,A39)") " w (eV)  Re(Sigma(i*w)) (eV)   Im(Sigma(i*w)) (eV) ", &
    4585           0 :             "  Re(Fit(i*w)) (eV)    Im(Fit(iw)) (eV)"
    4586             : 
    4587           0 :          DO jquad = 1, num_fit_points
    4588             : 
    4589             :             CALL evaluate_pade_function(vec_omega_fit_gw_sign_reorder(jquad), &
    4590             :                                         nparam_pade, omega_points_pade, &
    4591           0 :                                         coeff_pade, sigma_c_pade_im_freq, do_imag_freq=.TRUE.)
    4592             : 
    4593           0 :             WRITE (iunit, "(F12.2,4F17.5)") vec_omega_fit_gw_sign_reorder(jquad)*evolt, &
    4594           0 :                REAL(Sigma_c_gw_reorder(jquad)*evolt), &
    4595           0 :                AIMAG(Sigma_c_gw_reorder(jquad)*evolt), &
    4596           0 :                REAL(sigma_c_pade_im_freq*evolt), &
    4597           0 :                AIMAG(sigma_c_pade_im_freq*evolt)
    4598             : 
    4599             :          END DO
    4600             : 
    4601           0 :          CALL close_file(iunit)
    4602             : 
    4603             :       END IF
    4604             : 
    4605        2352 :       DEALLOCATE (vec_omega_fit_gw_sign)
    4606        2352 :       DEALLOCATE (Sigma_c_gw_reorder)
    4607        2352 :       DEALLOCATE (vec_omega_fit_gw_sign_reorder)
    4608        2352 :       DEALLOCATE (coeff_pade, omega_points_pade)
    4609             : 
    4610        2352 :       CALL timestop(handle)
    4611             : 
    4612        4704 :    END SUBROUTINE continuation_pade
    4613             : 
    4614             : ! **************************************************************************************************
    4615             : !> \brief calculate pade parameter recursively as in  Eq. (A2) in J. Low Temp. Phys., Vol. 29,
    4616             : !>          1977, pp. 179
    4617             : !> \param y f(x), here: Sigma_c(iomega)
    4618             : !> \param x the frequency points omega
    4619             : !> \param num_fit_points ...
    4620             : !> \param nparam number of pade parameters
    4621             : !> \param xpoints set of points used in pade approximation, selection of x
    4622             : !> \param coeff pade coefficients
    4623             : ! **************************************************************************************************
    4624        2352 :    PURE SUBROUTINE get_pade_parameters(y, x, num_fit_points, nparam, xpoints, coeff)
    4625             : 
    4626             :       COMPLEX(KIND=dp), DIMENSION(:), INTENT(IN)         :: y
    4627             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: x
    4628             :       INTEGER, INTENT(IN)                                :: num_fit_points, nparam
    4629             :       COMPLEX(KIND=dp), DIMENSION(:), INTENT(INOUT)      :: xpoints, coeff
    4630             : 
    4631        2352 :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:)        :: ypoints
    4632        2352 :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:, :)     :: g_mat
    4633             :       INTEGER                                            :: idat, iparam, nstep
    4634             : 
    4635        2352 :       nstep = INT(num_fit_points/(nparam - 1))
    4636             : 
    4637        7056 :       ALLOCATE (ypoints(nparam))
    4638             :       !omega=i0 is in element x(1)
    4639        2352 :       idat = 1
    4640       17716 :       DO iparam = 1, nparam - 1
    4641       15364 :          xpoints(iparam) = gaussi*x(idat)
    4642       15364 :          ypoints(iparam) = y(idat)
    4643       17716 :          idat = idat + nstep
    4644             :       END DO
    4645        2352 :       xpoints(nparam) = gaussi*x(num_fit_points)
    4646        2352 :       ypoints(nparam) = y(num_fit_points)
    4647             : 
    4648             :       !*** generate parameters recursively
    4649             : 
    4650        9408 :       ALLOCATE (g_mat(nparam, nparam))
    4651       20068 :       g_mat(:, 1) = ypoints(:)
    4652       17716 :       DO iparam = 2, nparam
    4653      105702 :          DO idat = iparam, nparam
    4654             :             g_mat(idat, iparam) = (g_mat(iparam - 1, iparam - 1) - g_mat(idat, iparam - 1))/ &
    4655      103350 :                                   ((xpoints(idat) - xpoints(iparam - 1))*g_mat(idat, iparam - 1))
    4656             :          END DO
    4657             :       END DO
    4658             : 
    4659       20068 :       DO iparam = 1, nparam
    4660       20068 :          coeff(iparam) = g_mat(iparam, iparam)
    4661             :       END DO
    4662             : 
    4663        2352 :       DEALLOCATE (ypoints)
    4664        2352 :       DEALLOCATE (g_mat)
    4665             : 
    4666        2352 :    END SUBROUTINE get_pade_parameters
    4667             : 
    4668             : ! **************************************************************************************************
    4669             : !> \brief evaluate pade function for a real value x_val
    4670             : !> \param x_val real value
    4671             : !> \param nparam number of pade parameters
    4672             : !> \param xpoints selection of points of the original complex function, i.e. here of Sigma_c(iomega)
    4673             : !> \param coeff pade coefficients
    4674             : !> \param func_val function value
    4675             : !> \param do_imag_freq ...
    4676             : ! **************************************************************************************************
    4677        9538 :    PURE SUBROUTINE evaluate_pade_function(x_val, nparam, xpoints, coeff, func_val, do_imag_freq)
    4678             : 
    4679             :       REAL(KIND=dp), INTENT(IN)                          :: x_val
    4680             :       INTEGER, INTENT(IN)                                :: nparam
    4681             :       COMPLEX(KIND=dp), DIMENSION(:), INTENT(IN)         :: xpoints, coeff
    4682             :       COMPLEX(KIND=dp), INTENT(OUT)                      :: func_val
    4683             :       LOGICAL, INTENT(IN), OPTIONAL                      :: do_imag_freq
    4684             : 
    4685             :       INTEGER                                            :: iparam
    4686             :       LOGICAL                                            :: my_do_imag_freq
    4687             : 
    4688        9538 :       my_do_imag_freq = .FALSE.
    4689        9538 :       IF (PRESENT(do_imag_freq)) my_do_imag_freq = do_imag_freq
    4690             : 
    4691        9538 :       func_val = z_one
    4692       62797 :       DO iparam = nparam, 2, -1
    4693       62797 :          IF (my_do_imag_freq) THEN
    4694           0 :             func_val = z_one + coeff(iparam)*(gaussi*x_val - xpoints(iparam - 1))/func_val
    4695             :          ELSE
    4696       53259 :             func_val = z_one + coeff(iparam)*(x_val*z_one - xpoints(iparam - 1))/func_val
    4697             :          END IF
    4698             :       END DO
    4699             : 
    4700        9538 :       func_val = coeff(1)/func_val
    4701             : 
    4702        9538 :    END SUBROUTINE evaluate_pade_function
    4703             : 
    4704             : ! **************************************************************************************************
    4705             : !> \brief get the z-value and the m-value (derivative) of the pade function
    4706             : !> \param x_val real value
    4707             : !> \param nparam number of pade parameters
    4708             : !> \param xpoints selection of points of the original complex function, i.e. here of Sigma_c(iomega)
    4709             : !> \param coeff pade coefficients
    4710             : !> \param z_value 1/(1-dev)
    4711             : !> \param m_value derivative
    4712             : ! **************************************************************************************************
    4713        9430 :    PURE SUBROUTINE get_z_and_m_value_pade(x_val, nparam, xpoints, coeff, z_value, m_value)
    4714             : 
    4715             :       REAL(KIND=dp), INTENT(IN)                          :: x_val
    4716             :       INTEGER, INTENT(IN)                                :: nparam
    4717             :       COMPLEX(KIND=dp), DIMENSION(:), INTENT(IN)         :: xpoints, coeff
    4718             :       REAL(KIND=dp), INTENT(OUT), OPTIONAL               :: z_value, m_value
    4719             : 
    4720             :       COMPLEX(KIND=dp)                                   :: denominator, dev_denominator, &
    4721             :                                                             dev_numerator, dev_val, func_val, &
    4722             :                                                             numerator
    4723             :       INTEGER                                            :: iparam
    4724             : 
    4725        9430 :       func_val = z_one
    4726        9430 :       dev_val = z_zero
    4727       62581 :       DO iparam = nparam, 2, -1
    4728       53151 :          numerator = coeff(iparam)*(x_val*z_one - xpoints(iparam - 1))
    4729       53151 :          dev_numerator = coeff(iparam)*z_one
    4730       53151 :          denominator = func_val
    4731       53151 :          dev_denominator = dev_val
    4732       53151 :          dev_val = dev_numerator/denominator - (numerator*dev_denominator)/(denominator**2)
    4733       62581 :          func_val = z_one + coeff(iparam)*(x_val*z_one - xpoints(iparam - 1))/func_val
    4734             :       END DO
    4735             : 
    4736        9430 :       dev_val = -1.0_dp*coeff(1)/(func_val**2)*dev_val
    4737        9430 :       func_val = coeff(1)/func_val
    4738             : 
    4739        9430 :       IF (PRESENT(z_value)) THEN
    4740        2352 :          z_value = 1.0_dp - REAL(dev_val)
    4741        2352 :          z_value = 1.0_dp/z_value
    4742             :       END IF
    4743        9430 :       IF (PRESENT(m_value)) m_value = REAL(dev_val)
    4744             : 
    4745        9430 :    END SUBROUTINE get_z_and_m_value_pade
    4746             : 
    4747             : ! **************************************************************************************************
    4748             : !> \brief crossing search using the bisection method to find the quasiparticle energy
    4749             : !> \param gw_energ real Sigma_c
    4750             : !> \param Eigenval_scf Eigenvalue from the SCF
    4751             : !> \param Sigma_x_minus_vxc_gw ...
    4752             : !> \param e_fermi fermi level
    4753             : !> \param nparam_pade number of pade parameters
    4754             : !> \param omega_points_pade selection of frequency points of Sigma_c(iomega)
    4755             : !> \param coeff_pade pade coefficients
    4756             : !> \param start_val start value for the quasiparticle iteration
    4757             : !> \param hedin_shift ...
    4758             : ! **************************************************************************************************
    4759          16 :    SUBROUTINE get_sigma_c_bisection_pade(gw_energ, Eigenval_scf, Sigma_x_minus_vxc_gw, e_fermi, &
    4760           8 :                                          nparam_pade, omega_points_pade, coeff_pade, start_val, &
    4761             :                                          hedin_shift)
    4762             : 
    4763             :       REAL(KIND=dp), INTENT(OUT)                         :: gw_energ
    4764             :       REAL(KIND=dp), INTENT(IN)                          :: Eigenval_scf, Sigma_x_minus_vxc_gw, &
    4765             :                                                             e_fermi
    4766             :       INTEGER, INTENT(IN)                                :: nparam_pade
    4767             :       COMPLEX(KIND=dp), DIMENSION(:), INTENT(IN)         :: omega_points_pade, coeff_pade
    4768             :       REAL(KIND=dp), INTENT(IN)                          :: start_val, hedin_shift
    4769             : 
    4770             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'get_sigma_c_bisection_pade'
    4771             : 
    4772             :       COMPLEX(KIND=dp)                                   :: sigma_c
    4773             :       INTEGER                                            :: handle, icount
    4774             :       REAL(KIND=dp)                                      :: delta, energy_val, qp_energy, &
    4775             :                                                             qp_energy_old, threshold
    4776             : 
    4777           8 :       CALL timeset(routineN, handle)
    4778             : 
    4779           8 :       threshold = 1.0E-7_dp
    4780             : 
    4781           8 :       qp_energy = start_val
    4782           8 :       qp_energy_old = start_val
    4783           8 :       delta = 1.0E-3_dp
    4784             : 
    4785           8 :       icount = 0
    4786         116 :       DO WHILE (ABS(delta) > threshold)
    4787         108 :          icount = icount + 1
    4788         108 :          qp_energy = qp_energy_old + 0.5_dp*delta
    4789         108 :          qp_energy_old = qp_energy
    4790         108 :          energy_val = qp_energy - e_fermi - hedin_shift
    4791             :          CALL evaluate_pade_function(energy_val, nparam_pade, omega_points_pade, &
    4792         108 :                                      coeff_pade, sigma_c)
    4793         108 :          qp_energy = Eigenval_scf + REAL(sigma_c) + Sigma_x_minus_vxc_gw
    4794         108 :          delta = qp_energy - qp_energy_old
    4795             :          ! Self-consistent quasi-particle solution has not been found
    4796         116 :          IF (icount > 500) EXIT
    4797             :       END DO
    4798             : 
    4799           8 :       gw_energ = REAL(sigma_c)
    4800             : 
    4801           8 :       CALL timestop(handle)
    4802             : 
    4803           8 :    END SUBROUTINE get_sigma_c_bisection_pade
    4804             : 
    4805             : ! **************************************************************************************************
    4806             : !> \brief crossing search using the Newton method to find the quasiparticle energy
    4807             : !> \param gw_energ real Sigma_c
    4808             : !> \param Eigenval_scf Eigenvalue from the SCF
    4809             : !> \param Sigma_x_minus_vxc_gw ...
    4810             : !> \param e_fermi fermi level
    4811             : !> \param nparam_pade number of pade parameters
    4812             : !> \param omega_points_pade selection of frequency points of Sigma_c(iomega)
    4813             : !> \param coeff_pade pade coefficients
    4814             : !> \param start_val start value for the quasiparticle iteration
    4815             : !> \param hedin_shift ...
    4816             : ! **************************************************************************************************
    4817        4688 :    SUBROUTINE get_sigma_c_newton_pade(gw_energ, Eigenval_scf, Sigma_x_minus_vxc_gw, e_fermi, &
    4818        2344 :                                       nparam_pade, omega_points_pade, coeff_pade, start_val, &
    4819             :                                       hedin_shift)
    4820             : 
    4821             :       REAL(KIND=dp), INTENT(OUT)                         :: gw_energ
    4822             :       REAL(KIND=dp), INTENT(IN)                          :: Eigenval_scf, Sigma_x_minus_vxc_gw, &
    4823             :                                                             e_fermi
    4824             :       INTEGER, INTENT(IN)                                :: nparam_pade
    4825             :       COMPLEX(KIND=dp), DIMENSION(:), INTENT(IN)         :: omega_points_pade, coeff_pade
    4826             :       REAL(KIND=dp), INTENT(IN)                          :: start_val, hedin_shift
    4827             : 
    4828             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'get_sigma_c_newton_pade'
    4829             : 
    4830             :       COMPLEX(KIND=dp)                                   :: sigma_c
    4831             :       INTEGER                                            :: handle, icount
    4832             :       REAL(KIND=dp)                                      :: delta, energy_val, m_value, qp_energy, &
    4833             :                                                             qp_energy_old, threshold
    4834             : 
    4835        2344 :       CALL timeset(routineN, handle)
    4836             : 
    4837        2344 :       threshold = 1.0E-7_dp
    4838             : 
    4839        2344 :       qp_energy = start_val
    4840        2344 :       qp_energy_old = start_val
    4841        2344 :       delta = 1.0E-3_dp
    4842             : 
    4843        2344 :       icount = 0
    4844        9422 :       DO WHILE (ABS(delta) > threshold)
    4845        7078 :          icount = icount + 1
    4846        7078 :          energy_val = qp_energy - e_fermi - hedin_shift
    4847             :          CALL evaluate_pade_function(energy_val, nparam_pade, omega_points_pade, &
    4848        7078 :                                      coeff_pade, sigma_c)
    4849             :          !get m_value --> derivative of function
    4850             :          CALL get_z_and_m_value_pade(energy_val, nparam_pade, omega_points_pade, &
    4851        7078 :                                      coeff_pade, m_value=m_value)
    4852        7078 :          qp_energy_old = qp_energy
    4853             :          qp_energy = qp_energy - (Eigenval_scf + Sigma_x_minus_vxc_gw + REAL(sigma_c) - qp_energy)/ &
    4854        7078 :                      (m_value - 1.0_dp)
    4855        7078 :          delta = qp_energy - qp_energy_old
    4856             :          ! Self-consistent quasi-particle solution has not been found
    4857        9422 :          IF (icount > 500) EXIT
    4858             :       END DO
    4859             : 
    4860        2344 :       gw_energ = REAL(sigma_c)
    4861             : 
    4862        2344 :       CALL timestop(handle)
    4863             : 
    4864        2344 :    END SUBROUTINE get_sigma_c_newton_pade
    4865             : 
    4866             : ! **************************************************************************************************
    4867             : !> \brief Prints the GW stuff to the output and optinally to an external file.
    4868             : !>        Also updates the eigenvalues for eigenvalue-self-consistent GW
    4869             : !> \param vec_gw_energ ...
    4870             : !> \param z_value ...
    4871             : !> \param m_value ...
    4872             : !> \param vec_Sigma_x_minus_vxc_gw ...
    4873             : !> \param Eigenval ...
    4874             : !> \param Eigenval_last ...
    4875             : !> \param Eigenval_scf ...
    4876             : !> \param gw_corr_lev_occ ...
    4877             : !> \param gw_corr_lev_virt ...
    4878             : !> \param gw_corr_lev_tot ...
    4879             : !> \param crossing_search ...
    4880             : !> \param homo ...
    4881             : !> \param unit_nr ...
    4882             : !> \param count_ev_sc_GW ...
    4883             : !> \param count_sc_GW0 ...
    4884             : !> \param ikp ...
    4885             : !> \param nkp_self_energy ...
    4886             : !> \param kpoints ...
    4887             : !> \param ispin requested spin-state (1 for alpha, 2 for beta, else closed-shell)
    4888             : !> \param E_VBM_GW ...
    4889             : !> \param E_CBM_GW ...
    4890             : !> \param E_VBM_SCF ...
    4891             : !> \param E_CBM_SCF ...
    4892             : ! **************************************************************************************************
    4893        1544 :    SUBROUTINE print_and_update_for_ev_sc(vec_gw_energ, &
    4894         386 :                                          z_value, m_value, vec_Sigma_x_minus_vxc_gw, Eigenval, &
    4895         386 :                                          Eigenval_last, Eigenval_scf, &
    4896             :                                          gw_corr_lev_occ, gw_corr_lev_virt, gw_corr_lev_tot, &
    4897             :                                          crossing_search, homo, unit_nr, count_ev_sc_GW, count_sc_GW0, &
    4898             :                                          ikp, nkp_self_energy, kpoints, ispin, E_VBM_GW, E_CBM_GW, &
    4899             :                                          E_VBM_SCF, E_CBM_SCF)
    4900             : 
    4901             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: vec_gw_energ, z_value, m_value
    4902             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: vec_Sigma_x_minus_vxc_gw, Eigenval, &
    4903             :                                                             Eigenval_last, Eigenval_scf
    4904             :       INTEGER, INTENT(IN) :: gw_corr_lev_occ, gw_corr_lev_virt, gw_corr_lev_tot, crossing_search, &
    4905             :          homo, unit_nr, count_ev_sc_GW, count_sc_GW0, ikp, nkp_self_energy
    4906             :       TYPE(kpoint_type), INTENT(IN), POINTER             :: kpoints
    4907             :       INTEGER, INTENT(IN)                                :: ispin
    4908             :       REAL(KIND=dp), INTENT(INOUT), OPTIONAL             :: E_VBM_GW, E_CBM_GW, E_VBM_SCF, E_CBM_SCF
    4909             : 
    4910             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'print_and_update_for_ev_sc'
    4911             : 
    4912             :       CHARACTER(4)                                       :: occ_virt
    4913             :       INTEGER                                            :: handle, n_level_gw, n_level_gw_ref
    4914             :       LOGICAL                                            :: do_alpha, do_beta, do_closed_shell, &
    4915             :                                                             do_kpoints, is_energy_okay
    4916             :       REAL(KIND=dp)                                      :: E_GAP_GW, E_HOMO_GW, E_HOMO_SCF, &
    4917             :                                                             E_LUMO_GW, E_LUMO_SCF, new_energy
    4918             : 
    4919         386 :       CALL timeset(routineN, handle)
    4920             : 
    4921         386 :       do_alpha = (ispin == 1)
    4922         386 :       do_beta = (ispin == 2)
    4923         386 :       do_closed_shell = .NOT. (do_alpha .OR. do_beta)
    4924         386 :       do_kpoints = (nkp_self_energy > 1)
    4925             : 
    4926        8694 :       Eigenval_last(:) = Eigenval(:)
    4927             : 
    4928         386 :       IF (unit_nr > 0) THEN
    4929             : 
    4930         193 :          IF (count_ev_sc_GW == 1 .AND. count_sc_GW0 == 1 .AND. ikp == 1) THEN
    4931             : 
    4932          52 :             WRITE (unit_nr, *) ' '
    4933             : 
    4934          52 :             IF (do_alpha .OR. do_closed_shell) THEN
    4935          45 :                WRITE (unit_nr, *) ' '
    4936          45 :                WRITE (unit_nr, '(T3,A)') '******************************************************************************'
    4937          45 :                WRITE (unit_nr, '(T3,A)') '**                                                                          **'
    4938          45 :                WRITE (unit_nr, '(T3,A)') '**                        GW QUASIPARTICLE ENERGIES                         **'
    4939          45 :                WRITE (unit_nr, '(T3,A)') '**                                                                          **'
    4940          45 :                WRITE (unit_nr, '(T3,A)') '******************************************************************************'
    4941          45 :                WRITE (unit_nr, '(T3,A)') ' '
    4942          45 :                WRITE (unit_nr, '(T3,A)') ' '
    4943          45 :                WRITE (unit_nr, '(T3,A)') 'The GW quasiparticle energies are calculated according to: '
    4944             : 
    4945          45 :                IF (crossing_search == ri_rpa_g0w0_crossing_z_shot) THEN
    4946          15 :                   WRITE (unit_nr, '(T3,A)') 'E_GW = E_SCF + Z * ( Sigc(E_SCF) + Sigx - vxc )'
    4947             :                ELSE
    4948          30 :                   WRITE (unit_nr, '(T3,A)') ' '
    4949          30 :                   WRITE (unit_nr, '(T3,A)') '                    E_GW = E_SCF + Sigc(E_GW) + Sigx - vxc '
    4950          30 :                   WRITE (unit_nr, '(T3,A)') ' '
    4951          30 :                   WRITE (unit_nr, '(T3,A)') 'Upper equation is solved self-consistently for E_GW, see Eq. (12) in J. Phys.'
    4952          30 :                   WRITE (unit_nr, '(T3,A)') 'Chem. Lett. 9, 306 (2018), doi: 10.1021/acs.jpclett.7b02740'
    4953             :                END IF
    4954          45 :                WRITE (unit_nr, *) ' '
    4955          45 :                WRITE (unit_nr, *) ' '
    4956          45 :                WRITE (unit_nr, '(T3,A)') '------------'
    4957          45 :                WRITE (unit_nr, '(T3,A)') 'G0W0 results'
    4958          45 :                WRITE (unit_nr, '(T3,A)') '------------'
    4959             : 
    4960             :             END IF
    4961             : 
    4962          52 :             IF (.NOT. do_kpoints) THEN
    4963          41 :                IF (do_alpha) THEN
    4964           5 :                   WRITE (unit_nr, *) ' '
    4965           5 :                   WRITE (unit_nr, '(T3,A)') '---------------------------------------'
    4966           5 :                   WRITE (unit_nr, '(T3,A)') 'GW quasiparticle energies of alpha spins'
    4967           5 :                   WRITE (unit_nr, '(T3,A)') '----------------------------------------'
    4968          36 :                ELSE IF (do_beta) THEN
    4969           5 :                   WRITE (unit_nr, *) ' '
    4970           5 :                   WRITE (unit_nr, '(T3,A)') '---------------------------------------'
    4971           5 :                   WRITE (unit_nr, '(T3,A)') 'GW quasiparticle energies of beta spins'
    4972           5 :                   WRITE (unit_nr, '(T3,A)') '---------------------------------------'
    4973             :                END IF
    4974             :             END IF
    4975             : 
    4976             :          END IF
    4977             : 
    4978         193 :          IF (count_ev_sc_GW > 1) THEN
    4979          45 :             WRITE (unit_nr, *) ' '
    4980          45 :             WRITE (unit_nr, '(T3,A)') '---------------------------------------'
    4981          45 :             WRITE (unit_nr, '(T3,A,I4)') 'Eigenvalue-selfconsistency cycle: ', count_ev_sc_GW
    4982          45 :             WRITE (unit_nr, '(T3,A)') '---------------------------------------'
    4983             :          END IF
    4984             : 
    4985         193 :          IF (count_sc_GW0 > 1) THEN
    4986          24 :             WRITE (unit_nr, '(T3,A)') '----------------------------------'
    4987          24 :             WRITE (unit_nr, '(T3,A,I4)') 'scGW0 selfconsistency cycle: ', count_sc_GW0
    4988          24 :             WRITE (unit_nr, '(T3,A)') '----------------------------------'
    4989             :          END IF
    4990             : 
    4991         193 :          IF (do_kpoints) THEN
    4992          84 :             WRITE (unit_nr, *) ' '
    4993          84 :             WRITE (unit_nr, '(T3,A7,I3,A3,I3,A8,3F7.3,A12,3F7.3)') 'Kpoint ', ikp, '  /', nkp_self_energy, &
    4994          84 :                '   xkp =', kpoints%xkp(1, ikp), kpoints%xkp(2, ikp), kpoints%xkp(3, ikp), &
    4995         168 :                '  and  xkp =', -kpoints%xkp(1, ikp), -kpoints%xkp(2, ikp), -kpoints%xkp(3, ikp)
    4996          84 :             WRITE (unit_nr, '(T3,A72)') '(Relative Brillouin zone size: [-0.5, 0.5] x [-0.5, 0.5] x [-0.5, 0.5])'
    4997          84 :             WRITE (unit_nr, *) ' '
    4998          84 :             IF (do_alpha) THEN
    4999          16 :                WRITE (unit_nr, '(T3,A)') 'GW quasiparticle energies of alpha spins:'
    5000          68 :             ELSE IF (do_beta) THEN
    5001          16 :                WRITE (unit_nr, '(T3,A)') 'GW quasiparticle energies of beta spins:'
    5002             :             END IF
    5003             :          END IF
    5004             : 
    5005             :       END IF
    5006             : 
    5007        3558 :       DO n_level_gw = 1, gw_corr_lev_tot
    5008             : 
    5009        3172 :          n_level_gw_ref = n_level_gw + homo - gw_corr_lev_occ
    5010             : 
    5011             :          new_energy = (Eigenval_scf(n_level_gw_ref) - &
    5012             :                        m_value(n_level_gw)*Eigenval(n_level_gw_ref) + &
    5013             :                        vec_gw_energ(n_level_gw) + &
    5014             :                        vec_Sigma_x_minus_vxc_gw(n_level_gw_ref))* &
    5015        3172 :                       z_value(n_level_gw)
    5016             : 
    5017        3172 :          is_energy_okay = .TRUE.
    5018             : 
    5019        3172 :          IF (n_level_gw_ref > homo .AND. new_energy < Eigenval(homo)) THEN
    5020             :             is_energy_okay = .FALSE.
    5021             :          END IF
    5022             : 
    5023         386 :          IF (is_energy_okay) THEN
    5024        3172 :             Eigenval(n_level_gw_ref) = new_energy
    5025             :          END IF
    5026             : 
    5027             :       END DO
    5028             : 
    5029         386 :       IF (unit_nr > 0) THEN
    5030         193 :          WRITE (unit_nr, '(T3,A)') ' '
    5031         193 :          IF (crossing_search == ri_rpa_g0w0_crossing_z_shot) THEN
    5032          38 :             WRITE (unit_nr, '(T13,2A)') 'MO    E_SCF (eV)    Sigc (eV)   Sigx-vxc (eV)    Z         E_GW (eV)'
    5033             :          ELSE
    5034         155 :             WRITE (unit_nr, '(T3,2A)') 'Molecular orbital   E_SCF (eV)       Sigc (eV)   Sigx-vxc (eV)       E_GW (eV)'
    5035             :          END IF
    5036             :       END IF
    5037             : 
    5038        3558 :       DO n_level_gw = 1, gw_corr_lev_tot
    5039        3172 :          n_level_gw_ref = n_level_gw + homo - gw_corr_lev_occ
    5040        3172 :          IF (n_level_gw <= gw_corr_lev_occ) THEN
    5041         938 :             occ_virt = 'occ'
    5042             :          ELSE
    5043        2234 :             occ_virt = 'vir'
    5044             :          END IF
    5045             : 
    5046        3558 :          IF (unit_nr > 0) THEN
    5047        1586 :             IF (crossing_search == ri_rpa_g0w0_crossing_z_shot) THEN
    5048             :                WRITE (unit_nr, '(T3,I4,3A,5F13.4)') &
    5049         526 :                   n_level_gw_ref, ' ( ', occ_virt, ') ', &
    5050         526 :                   Eigenval_last(n_level_gw_ref)*evolt, &
    5051         526 :                   vec_gw_energ(n_level_gw)*evolt, &
    5052         526 :                   vec_Sigma_x_minus_vxc_gw(n_level_gw_ref)*evolt, &
    5053         526 :                   z_value(n_level_gw), &
    5054        1052 :                   Eigenval(n_level_gw_ref)*evolt
    5055             :             ELSE
    5056             :                WRITE (unit_nr, '(T3,I4,3A,4F16.4)') &
    5057        1060 :                   n_level_gw_ref, ' ( ', occ_virt, ')  ', &
    5058        1060 :                   Eigenval_last(n_level_gw_ref)*evolt, &
    5059        1060 :                   vec_gw_energ(n_level_gw)*evolt, &
    5060        1060 :                   vec_Sigma_x_minus_vxc_gw(n_level_gw_ref)*evolt, &
    5061        2120 :                   Eigenval(n_level_gw_ref)*evolt
    5062             :             END IF
    5063             :          END IF
    5064             :       END DO
    5065             : 
    5066        1710 :       E_HOMO_SCF = MAXVAL(Eigenval_last(homo - gw_corr_lev_occ + 1:homo))
    5067        3006 :       E_LUMO_SCF = MINVAL(Eigenval_last(homo + 1:homo + gw_corr_lev_virt))
    5068             : 
    5069        1710 :       E_HOMO_GW = MAXVAL(Eigenval(homo - gw_corr_lev_occ + 1:homo))
    5070        3006 :       E_LUMO_GW = MINVAL(Eigenval(homo + 1:homo + gw_corr_lev_virt))
    5071         386 :       E_GAP_GW = E_LUMO_GW - E_HOMO_GW
    5072             : 
    5073             :       IF (PRESENT(E_VBM_SCF) .AND. PRESENT(E_CBM_SCF) .AND. &
    5074         386 :           PRESENT(E_VBM_GW) .AND. PRESENT(E_CBM_GW)) THEN
    5075         386 :          IF (E_HOMO_SCF > E_VBM_SCF) E_VBM_SCF = E_HOMO_SCF
    5076         386 :          IF (E_LUMO_SCF < E_CBM_SCF) E_CBM_SCF = E_LUMO_SCF
    5077         386 :          IF (E_HOMO_GW > E_VBM_GW) E_VBM_GW = E_HOMO_GW
    5078         386 :          IF (E_LUMO_GW < E_CBM_GW) E_CBM_GW = E_LUMO_GW
    5079             :       END IF
    5080             : 
    5081         386 :       IF (unit_nr > 0) THEN
    5082             : 
    5083         193 :          IF (do_kpoints) THEN
    5084          84 :             IF (do_closed_shell) THEN
    5085          52 :                WRITE (unit_nr, '(T3,A)') ' '
    5086          52 :                WRITE (unit_nr, '(T3,A,F42.4)') 'GW direct gap at current kpoint (eV)', E_GAP_GW*evolt
    5087          32 :             ELSE IF (do_alpha) THEN
    5088          16 :                WRITE (unit_nr, '(T3,A)') ' '
    5089          16 :                WRITE (unit_nr, '(T3,A,F36.4)') 'Alpha GW direct gap at current kpoint (eV)', &
    5090          32 :                   E_GAP_GW*evolt
    5091          16 :             ELSE IF (do_beta) THEN
    5092          16 :                WRITE (unit_nr, '(T3,A)') ' '
    5093          16 :                WRITE (unit_nr, '(T3,A,F37.4)') 'Beta GW direct gap at current kpoint (eV)', &
    5094          32 :                   E_GAP_GW*evolt
    5095             :             END IF
    5096             :          ELSE
    5097         109 :             IF (do_closed_shell) THEN
    5098          91 :                WRITE (unit_nr, '(T3,A)') ' '
    5099          91 :                IF (count_ev_sc_GW > 1) THEN
    5100          37 :                   WRITE (unit_nr, '(T3,A,I3,A,F39.4)') 'HOMO-LUMO gap in evGW iteration', &
    5101          74 :                      count_ev_sc_GW, ' (eV)', E_GAP_GW*evolt
    5102          54 :                ELSE IF (count_sc_GW0 > 1) THEN
    5103          23 :                   WRITE (unit_nr, '(T3,A,I3,A,F38.4)') 'HOMO-LUMO gap in evGW0 iteration', &
    5104          46 :                      count_sc_GW0, ' (eV)', E_GAP_GW*evolt
    5105             :                ELSE
    5106          31 :                   WRITE (unit_nr, '(T3,A,F55.4)') 'G0W0 HOMO-LUMO gap (eV)', E_GAP_GW*evolt
    5107             :                END IF
    5108          18 :             ELSE IF (do_alpha) THEN
    5109           9 :                WRITE (unit_nr, '(T3,A)') ' '
    5110           9 :                WRITE (unit_nr, '(T3,A,F51.4)') 'Alpha GW HOMO-LUMO gap (eV)', E_GAP_GW*evolt
    5111           9 :             ELSE IF (do_beta) THEN
    5112           9 :                WRITE (unit_nr, '(T3,A)') ' '
    5113           9 :                WRITE (unit_nr, '(T3,A,F52.4)') 'Beta GW HOMO-LUMO gap (eV)', E_GAP_GW*evolt
    5114             :             END IF
    5115             :          END IF
    5116             :       END IF
    5117             : 
    5118         386 :       IF (unit_nr > 0) THEN
    5119         193 :          WRITE (unit_nr, *) ' '
    5120         193 :          WRITE (unit_nr, '(T3,A)') '------------------------------------------------------------------------------'
    5121             :       END IF
    5122             : 
    5123         386 :       CALL timestop(handle)
    5124             : 
    5125         386 :    END SUBROUTINE print_and_update_for_ev_sc
    5126             : 
    5127             : ! **************************************************************************************************
    5128             : !> \brief ...
    5129             : !> \param Eigenval ...
    5130             : !> \param Eigenval_last ...
    5131             : !> \param gw_corr_lev_occ ...
    5132             : !> \param gw_corr_lev_virt ...
    5133             : !> \param homo ...
    5134             : !> \param nmo ...
    5135             : ! **************************************************************************************************
    5136         222 :    PURE SUBROUTINE shift_unshifted_levels(Eigenval, Eigenval_last, gw_corr_lev_occ, gw_corr_lev_virt, &
    5137             :                                           homo, nmo)
    5138             : 
    5139             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: Eigenval, Eigenval_last
    5140             :       INTEGER, INTENT(IN)                                :: gw_corr_lev_occ, gw_corr_lev_virt, homo, &
    5141             :                                                             nmo
    5142             : 
    5143             :       INTEGER                                            :: n_level_gw, n_level_gw_ref
    5144             :       REAL(KIND=dp)                                      :: eigen_diff
    5145             : 
    5146             :       ! for eigenvalue self-consistent GW, all eigenvalues have to be corrected
    5147             :       ! 1) the occupied; check if there are occupied MOs not being corrected by GW
    5148         222 :       IF (gw_corr_lev_occ < homo .AND. gw_corr_lev_occ > 0) THEN
    5149             : 
    5150             :          ! calculate average GW correction for occupied orbitals
    5151             :          eigen_diff = 0.0_dp
    5152             : 
    5153          88 :          DO n_level_gw = 1, gw_corr_lev_occ
    5154          44 :             n_level_gw_ref = n_level_gw + homo - gw_corr_lev_occ
    5155          88 :             eigen_diff = eigen_diff + Eigenval(n_level_gw_ref) - Eigenval_last(n_level_gw_ref)
    5156             :          END DO
    5157          44 :          eigen_diff = eigen_diff/gw_corr_lev_occ
    5158             : 
    5159             :          ! correct the eigenvalues of the occupied orbitals which have not been corrected by GW
    5160         168 :          DO n_level_gw = 1, homo - gw_corr_lev_occ
    5161         168 :             Eigenval(n_level_gw) = Eigenval(n_level_gw) + eigen_diff
    5162             :          END DO
    5163             : 
    5164             :       END IF
    5165             : 
    5166             :       ! 2) the virtual: check if there are virtual orbitals not being corrected by GW
    5167         222 :       IF (gw_corr_lev_virt < nmo - homo .AND. gw_corr_lev_virt > 0) THEN
    5168             : 
    5169             :          ! calculate average GW correction for virtual orbitals
    5170             :          eigen_diff = 0.0_dp
    5171        2124 :          DO n_level_gw = 1, gw_corr_lev_virt
    5172        1902 :             n_level_gw_ref = n_level_gw + homo
    5173        2124 :             eigen_diff = eigen_diff + Eigenval(n_level_gw_ref) - Eigenval_last(n_level_gw_ref)
    5174             :          END DO
    5175         222 :          eigen_diff = eigen_diff/gw_corr_lev_virt
    5176             : 
    5177             :          ! correct the eigenvalues of the virtual orbitals which have not been corrected by GW
    5178        2538 :          DO n_level_gw = homo + gw_corr_lev_virt + 1, nmo
    5179        2538 :             Eigenval(n_level_gw) = Eigenval(n_level_gw) + eigen_diff
    5180             :          END DO
    5181             : 
    5182             :       END IF
    5183             : 
    5184         222 :    END SUBROUTINE shift_unshifted_levels
    5185             : 
    5186             : ! **************************************************************************************************
    5187             : !> \brief Calculate the matrix mat_N_gw containing the second derivatives
    5188             : !>        with respect to the fitting parameters. The second derivatives are
    5189             : !>        calculated numerically by finite differences.
    5190             : !> \param N_ij matrix element
    5191             : !> \param Lambda fitting parameters
    5192             : !> \param Sigma_c ...
    5193             : !> \param vec_omega_fit_gw ...
    5194             : !> \param i ...
    5195             : !> \param j ...
    5196             : !> \param num_poles ...
    5197             : !> \param num_fit_points ...
    5198             : !> \param n_level_gw ...
    5199             : !> \param h  ...
    5200             : ! **************************************************************************************************
    5201       61380 :    SUBROUTINE calc_mat_N(N_ij, Lambda, Sigma_c, vec_omega_fit_gw, i, j, &
    5202             :                          num_poles, num_fit_points, n_level_gw, h)
    5203             :       REAL(KIND=dp), INTENT(OUT)                         :: N_ij
    5204             :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    5205             :          INTENT(IN)                                      :: Lambda
    5206             :       COMPLEX(KIND=dp), DIMENSION(:, :), INTENT(IN)      :: Sigma_c
    5207             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    5208             :          INTENT(IN)                                      :: vec_omega_fit_gw
    5209             :       INTEGER, INTENT(IN)                                :: i, j, num_poles, num_fit_points, &
    5210             :                                                             n_level_gw
    5211             :       REAL(KIND=dp), INTENT(IN)                          :: h
    5212             : 
    5213             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'calc_mat_N'
    5214             : 
    5215             :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:)        :: Lambda_tmp
    5216             :       INTEGER                                            :: handle, num_var
    5217             :       REAL(KIND=dp)                                      :: chi2, chi2_sum
    5218             : 
    5219       61380 :       CALL timeset(routineN, handle)
    5220             : 
    5221       61380 :       num_var = 2*num_poles + 1
    5222      184140 :       ALLOCATE (Lambda_tmp(num_var))
    5223      368280 :       Lambda_tmp = z_zero
    5224       61380 :       chi2_sum = 0.0_dp
    5225             : 
    5226             :       !test
    5227      368280 :       Lambda_tmp(:) = Lambda(:)
    5228             :       CALL calc_chi2(chi2, Lambda_tmp, Sigma_c, vec_omega_fit_gw, num_poles, &
    5229       61380 :                      num_fit_points, n_level_gw)
    5230             : 
    5231             :       ! Fitting parameters with offset h
    5232      368280 :       Lambda_tmp(:) = Lambda(:)
    5233       61380 :       IF (MODULO(i, 2) == 0) THEN
    5234       30690 :          Lambda_tmp(i/2) = Lambda_tmp(i/2) + h*z_one
    5235             :       ELSE
    5236       30690 :          Lambda_tmp((i + 1)/2) = Lambda_tmp((i + 1)/2) + h*gaussi
    5237             :       END IF
    5238       61380 :       IF (MODULO(j, 2) == 0) THEN
    5239       30690 :          Lambda_tmp(j/2) = Lambda_tmp(j/2) + h*z_one
    5240             :       ELSE
    5241       30690 :          Lambda_tmp((j + 1)/2) = Lambda_tmp((j + 1)/2) + h*gaussi
    5242             :       END IF
    5243             :       CALL calc_chi2(chi2, Lambda_tmp, Sigma_c, vec_omega_fit_gw, num_poles, &
    5244       61380 :                      num_fit_points, n_level_gw)
    5245       61380 :       chi2_sum = chi2_sum + chi2
    5246             : 
    5247       61380 :       IF (MODULO(i, 2) == 0) THEN
    5248       30690 :          Lambda_tmp(i/2) = Lambda_tmp(i/2) - 2.0_dp*h*z_one
    5249             :       ELSE
    5250       30690 :          Lambda_tmp((i + 1)/2) = Lambda_tmp((i + 1)/2) - 2.0_dp*h*gaussi
    5251             :       END IF
    5252             :       CALL calc_chi2(chi2, Lambda_tmp, Sigma_c, vec_omega_fit_gw, num_poles, &
    5253       61380 :                      num_fit_points, n_level_gw)
    5254       61380 :       chi2_sum = chi2_sum - chi2
    5255             : 
    5256       61380 :       IF (MODULO(j, 2) == 0) THEN
    5257       30690 :          Lambda_tmp(j/2) = Lambda_tmp(j/2) - 2.0_dp*h*z_one
    5258             :       ELSE
    5259       30690 :          Lambda_tmp((j + 1)/2) = Lambda_tmp((j + 1)/2) - 2.0_dp*h*gaussi
    5260             :       END IF
    5261             :       CALL calc_chi2(chi2, Lambda_tmp, Sigma_c, vec_omega_fit_gw, num_poles, &
    5262       61380 :                      num_fit_points, n_level_gw)
    5263       61380 :       chi2_sum = chi2_sum + chi2
    5264             : 
    5265       61380 :       IF (MODULO(i, 2) == 0) THEN
    5266       30690 :          Lambda_tmp(i/2) = Lambda_tmp(i/2) + 2.0_dp*h*z_one
    5267             :       ELSE
    5268       30690 :          Lambda_tmp((i + 1)/2) = Lambda_tmp((i + 1)/2) + 2.0_dp*h*gaussi
    5269             :       END IF
    5270             :       CALL calc_chi2(chi2, Lambda_tmp, Sigma_c, vec_omega_fit_gw, num_poles, &
    5271       61380 :                      num_fit_points, n_level_gw)
    5272       61380 :       chi2_sum = chi2_sum - chi2
    5273             : 
    5274             :       ! Second derivative with symmetric difference quotient
    5275       61380 :       N_ij = 1.0_dp/2.0_dp*chi2_sum/(4.0_dp*h*h)
    5276             : 
    5277       61380 :       DEALLOCATE (Lambda_tmp)
    5278             : 
    5279       61380 :       CALL timestop(handle)
    5280             : 
    5281       61380 :    END SUBROUTINE calc_mat_N
    5282             : 
    5283             : ! **************************************************************************************************
    5284             : !> \brief Calculate chi2
    5285             : !> \param chi2 ...
    5286             : !> \param Lambda fitting parameters
    5287             : !> \param Sigma_c ...
    5288             : !> \param vec_omega_fit_gw ...
    5289             : !> \param num_poles ...
    5290             : !> \param num_fit_points ...
    5291             : !> \param n_level_gw ...
    5292             : ! **************************************************************************************************
    5293     1378685 :    PURE SUBROUTINE calc_chi2(chi2, Lambda, Sigma_c, vec_omega_fit_gw, num_poles, &
    5294             :                              num_fit_points, n_level_gw)
    5295             :       REAL(KIND=dp), INTENT(OUT)                         :: chi2
    5296             :       COMPLEX(KIND=dp), DIMENSION(:), INTENT(IN)         :: Lambda
    5297             :       COMPLEX(KIND=dp), DIMENSION(:, :), INTENT(IN)      :: Sigma_c
    5298             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: vec_omega_fit_gw
    5299             :       INTEGER, INTENT(IN)                                :: num_poles, num_fit_points, n_level_gw
    5300             : 
    5301             :       COMPLEX(KIND=dp)                                   :: func_val
    5302             :       INTEGER                                            :: iii, jjj, kkk
    5303             : 
    5304     1378685 :       chi2 = 0.0_dp
    5305    15875482 :       DO kkk = 1, num_fit_points
    5306    14496797 :          func_val = Lambda(1)
    5307    43490391 :          DO iii = 1, num_poles
    5308    28993594 :             jjj = iii*2
    5309             :             ! calculate value of the fit function
    5310    43490391 :             func_val = func_val + Lambda(jjj)/(gaussi*vec_omega_fit_gw(kkk) - Lambda(jjj + 1))
    5311             :          END DO
    5312    15875482 :          chi2 = chi2 + (ABS(Sigma_c(n_level_gw, kkk) - func_val))**2
    5313             :       END DO
    5314             : 
    5315     1378685 :    END SUBROUTINE calc_chi2
    5316             : 
    5317             : ! **************************************************************************************************
    5318             : !> \brief ...
    5319             : !> \param num_integ_points ...
    5320             : !> \param nmo ...
    5321             : !> \param tau_tj ...
    5322             : !> \param tj ...
    5323             : !> \param matrix_s ...
    5324             : !> \param fm_mo_coeff_occ ...
    5325             : !> \param fm_mo_coeff_virt ...
    5326             : !> \param fm_mo_coeff_occ_scaled ...
    5327             : !> \param fm_mo_coeff_virt_scaled ...
    5328             : !> \param fm_scaled_dm_occ_tau ...
    5329             : !> \param fm_scaled_dm_virt_tau ...
    5330             : !> \param Eigenval ...
    5331             : !> \param eps_filter ...
    5332             : !> \param e_fermi ...
    5333             : !> \param fm_mat_W ...
    5334             : !> \param gw_corr_lev_tot ...
    5335             : !> \param gw_corr_lev_occ ...
    5336             : !> \param gw_corr_lev_virt ...
    5337             : !> \param homo ...
    5338             : !> \param count_ev_sc_GW ...
    5339             : !> \param count_sc_GW0 ...
    5340             : !> \param t_3c_overl_int_ao_mo ...
    5341             : !> \param t_3c_O_mo_compressed ...
    5342             : !> \param t_3c_O_mo_ind ...
    5343             : !> \param t_3c_overl_int_gw_RI ...
    5344             : !> \param t_3c_overl_int_gw_AO ...
    5345             : !> \param mat_W ...
    5346             : !> \param mat_MinvVMinv ...
    5347             : !> \param mat_dm ...
    5348             : !> \param weights_cos_tf_t_to_w ...
    5349             : !> \param weights_sin_tf_t_to_w ...
    5350             : !> \param vec_Sigma_c_gw ...
    5351             : !> \param do_periodic ...
    5352             : !> \param num_points_corr ...
    5353             : !> \param delta_corr ...
    5354             : !> \param qs_env ...
    5355             : !> \param para_env ...
    5356             : !> \param para_env_RPA ...
    5357             : !> \param mp2_env ...
    5358             : !> \param matrix_berry_re_mo_mo ...
    5359             : !> \param matrix_berry_im_mo_mo ...
    5360             : !> \param first_cycle_periodic_correction ...
    5361             : !> \param kpoints ...
    5362             : !> \param num_fit_points ...
    5363             : !> \param fm_mo_coeff ...
    5364             : !> \param do_ri_Sigma_x ...
    5365             : !> \param vec_Sigma_x_gw ...
    5366             : !> \param unit_nr ...
    5367             : !> \param ispin ...
    5368             : ! **************************************************************************************************
    5369          60 :    SUBROUTINE compute_self_energy_cubic_gw(num_integ_points, nmo, tau_tj, tj, &
    5370          60 :                                            matrix_s, fm_mo_coeff_occ, fm_mo_coeff_virt, fm_mo_coeff_occ_scaled, &
    5371             :                                            fm_mo_coeff_virt_scaled, fm_scaled_dm_occ_tau, &
    5372         120 :                                            fm_scaled_dm_virt_tau, Eigenval, eps_filter, &
    5373          60 :                                            e_fermi, fm_mat_W, &
    5374             :                                            gw_corr_lev_tot, gw_corr_lev_occ, gw_corr_lev_virt, homo, &
    5375             :                                            count_ev_sc_GW, count_sc_GW0, &
    5376          60 :                                            t_3c_overl_int_ao_mo, t_3c_O_mo_compressed, t_3c_O_mo_ind, &
    5377             :                                            t_3c_overl_int_gw_RI, t_3c_overl_int_gw_AO, &
    5378             :                                            mat_W, mat_MinvVMinv, mat_dm, &
    5379         120 :                                            weights_cos_tf_t_to_w, weights_sin_tf_t_to_w, vec_Sigma_c_gw, &
    5380             :                                            do_periodic, num_points_corr, delta_corr, qs_env, para_env, para_env_RPA, &
    5381             :                                            mp2_env, matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, &
    5382             :                                            first_cycle_periodic_correction, kpoints, num_fit_points, fm_mo_coeff, &
    5383          60 :                                            do_ri_Sigma_x, vec_Sigma_x_gw, unit_nr, ispin)
    5384             :       INTEGER, INTENT(IN)                                :: num_integ_points, nmo
    5385             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    5386             :          INTENT(IN)                                      :: tau_tj, tj
    5387             :       TYPE(dbcsr_p_type), DIMENSION(:), INTENT(IN)       :: matrix_s
    5388             :       TYPE(cp_fm_type), INTENT(IN) :: fm_mo_coeff_occ, fm_mo_coeff_virt, fm_mo_coeff_occ_scaled, &
    5389             :          fm_mo_coeff_virt_scaled, fm_scaled_dm_occ_tau, fm_scaled_dm_virt_tau
    5390             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: Eigenval
    5391             :       REAL(KIND=dp), INTENT(IN)                          :: eps_filter
    5392             :       REAL(KIND=dp), INTENT(INOUT)                       :: e_fermi
    5393             :       TYPE(cp_fm_type), DIMENSION(:), INTENT(IN)         :: fm_mat_W
    5394             :       INTEGER, INTENT(IN)                                :: gw_corr_lev_tot, gw_corr_lev_occ, &
    5395             :                                                             gw_corr_lev_virt, homo, &
    5396             :                                                             count_ev_sc_GW, count_sc_GW0
    5397             :       TYPE(dbt_type)                                     :: t_3c_overl_int_ao_mo
    5398             :       TYPE(hfx_compression_type)                         :: t_3c_O_mo_compressed
    5399             :       INTEGER, DIMENSION(:, :)                           :: t_3c_O_mo_ind
    5400             :       TYPE(dbt_type)                                     :: t_3c_overl_int_gw_RI, &
    5401             :                                                             t_3c_overl_int_gw_AO
    5402             :       TYPE(dbcsr_type), INTENT(INOUT), TARGET            :: mat_W
    5403             :       TYPE(dbcsr_p_type)                                 :: mat_MinvVMinv, mat_dm
    5404             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(IN)         :: weights_cos_tf_t_to_w, &
    5405             :                                                             weights_sin_tf_t_to_w
    5406             :       COMPLEX(KIND=dp), DIMENSION(:, :, :), INTENT(OUT)  :: vec_Sigma_c_gw
    5407             :       LOGICAL, INTENT(IN)                                :: do_periodic
    5408             :       INTEGER, INTENT(IN)                                :: num_points_corr
    5409             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    5410             :          INTENT(INOUT)                                   :: delta_corr
    5411             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    5412             :       TYPE(mp_para_env_type), POINTER                    :: para_env, para_env_RPA
    5413             :       TYPE(mp2_type), INTENT(INOUT)                      :: mp2_env
    5414             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_berry_re_mo_mo, &
    5415             :                                                             matrix_berry_im_mo_mo
    5416             :       LOGICAL, INTENT(INOUT) :: first_cycle_periodic_correction
    5417             :       TYPE(kpoint_type), POINTER                         :: kpoints
    5418             :       INTEGER, INTENT(IN)                                :: num_fit_points
    5419             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mo_coeff
    5420             :       LOGICAL, INTENT(IN)                                :: do_ri_Sigma_x
    5421             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(INOUT)      :: vec_Sigma_x_gw
    5422             :       INTEGER, INTENT(IN)                                :: unit_nr, ispin
    5423             : 
    5424             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_self_energy_cubic_gw'
    5425             : 
    5426          60 :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:, :)     :: delta_corr_omega
    5427             :       INTEGER :: gw_lev_end, gw_lev_start, handle, handle3, i, iblk_mo, iquad, jquad, mo_end, &
    5428             :          mo_start, n_level_gw, n_level_gw_ref, nblk_mo, unit_nr_prv
    5429          60 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: batch_range_mo, dist1, dist2, mo_bsizes, &
    5430         120 :                                                             mo_offsets, sizes_AO, sizes_RI
    5431             :       INTEGER, DIMENSION(2)                              :: mo_bounds, pdims_2d
    5432             :       LOGICAL                                            :: memory_info
    5433             :       REAL(KIND=dp)                                      :: ext_scaling, omega, omega_i, omega_sign, &
    5434             :                                                             sign_occ_virt, t_i_Clenshaw, tau, &
    5435             :                                                             weight_cos, weight_i, weight_sin
    5436          60 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :) :: vec_Sigma_c_gw_cos_omega, &
    5437          60 :          vec_Sigma_c_gw_cos_tau, vec_Sigma_c_gw_neg_tau, vec_Sigma_c_gw_pos_tau, &
    5438          60 :          vec_Sigma_c_gw_sin_omega, vec_Sigma_c_gw_sin_tau
    5439             :       TYPE(dbcsr_type), TARGET                           :: mat_greens_fct_occ, mat_greens_fct_virt
    5440         180 :       TYPE(dbt_pgrid_type)                               :: pgrid_2d
    5441        1140 :       TYPE(dbt_type)                                     :: t_3c_ctr_AO, t_3c_ctr_RI, t_AO_tmp, &
    5442         780 :                                                             t_dm, t_greens_fct_occ, &
    5443         780 :                                                             t_greens_fct_virt, t_RI_tmp, &
    5444         780 :                                                             t_SinvVSinv, t_W
    5445             : 
    5446          60 :       CALL timeset(routineN, handle)
    5447             : 
    5448             :       CALL decompress_tensor(t_3c_overl_int_ao_mo, t_3c_O_mo_ind, t_3c_O_mo_compressed, &
    5449          60 :                              mp2_env%ri_rpa_im_time%eps_compress)
    5450             : 
    5451          60 :       CALL dbt_copy(t_3c_overl_int_ao_mo, t_3c_overl_int_gw_RI)
    5452          60 :       CALL dbt_copy(t_3c_overl_int_ao_mo, t_3c_overl_int_gw_AO, order=[2, 1, 3], move_data=.TRUE.)
    5453             : 
    5454          60 :       memory_info = mp2_env%ri_rpa_im_time%memory_info
    5455          60 :       IF (memory_info) THEN
    5456           0 :          unit_nr_prv = unit_nr
    5457             :       ELSE
    5458          60 :          unit_nr_prv = 0
    5459             :       END IF
    5460             : 
    5461          60 :       mo_start = homo - gw_corr_lev_occ + 1
    5462          60 :       mo_end = homo + gw_corr_lev_virt
    5463          60 :       CPASSERT(mo_end - mo_start + 1 == gw_corr_lev_tot)
    5464             : 
    5465        4410 :       vec_Sigma_c_gw = z_zero
    5466         240 :       ALLOCATE (vec_Sigma_c_gw_pos_tau(gw_corr_lev_tot, num_integ_points))
    5467        8160 :       vec_Sigma_c_gw_pos_tau = 0.0_dp
    5468         180 :       ALLOCATE (vec_Sigma_c_gw_neg_tau(gw_corr_lev_tot, num_integ_points))
    5469        8160 :       vec_Sigma_c_gw_neg_tau = 0.0_dp
    5470         180 :       ALLOCATE (vec_Sigma_c_gw_cos_tau(gw_corr_lev_tot, num_integ_points))
    5471        8160 :       vec_Sigma_c_gw_cos_tau = 0.0_dp
    5472         180 :       ALLOCATE (vec_Sigma_c_gw_sin_tau(gw_corr_lev_tot, num_integ_points))
    5473        8160 :       vec_Sigma_c_gw_sin_tau = 0.0_dp
    5474             : 
    5475         180 :       ALLOCATE (vec_Sigma_c_gw_cos_omega(gw_corr_lev_tot, num_integ_points))
    5476        8160 :       vec_Sigma_c_gw_cos_omega = 0.0_dp
    5477         180 :       ALLOCATE (vec_Sigma_c_gw_sin_omega(gw_corr_lev_tot, num_integ_points))
    5478        8160 :       vec_Sigma_c_gw_sin_omega = 0.0_dp
    5479             : 
    5480         240 :       ALLOCATE (delta_corr_omega(1 + homo - gw_corr_lev_occ:homo + gw_corr_lev_virt, num_integ_points))
    5481        8160 :       delta_corr_omega(:, :) = z_zero
    5482             : 
    5483             :       CALL dbcsr_create(matrix=mat_greens_fct_occ, &
    5484             :                         template=matrix_s(1)%matrix, &
    5485          60 :                         matrix_type=dbcsr_type_no_symmetry)
    5486             : 
    5487             :       CALL dbcsr_create(matrix=mat_greens_fct_virt, &
    5488             :                         template=matrix_s(1)%matrix, &
    5489          60 :                         matrix_type=dbcsr_type_no_symmetry)
    5490             : 
    5491          60 :       e_fermi = 0.5_dp*(Eigenval(homo) + Eigenval(homo + 1))
    5492             : 
    5493          60 :       nblk_mo = dbt_nblks_total(t_3c_overl_int_gw_AO, 3)
    5494         180 :       ALLOCATE (mo_offsets(nblk_mo))
    5495         120 :       ALLOCATE (mo_bsizes(nblk_mo))
    5496         180 :       ALLOCATE (batch_range_mo(nblk_mo - 1))
    5497          60 :       CALL dbt_get_info(t_3c_overl_int_gw_AO, blk_offset_3=mo_offsets, blk_size_3=mo_bsizes)
    5498             : 
    5499          60 :       pdims_2d = 0
    5500          60 :       CALL dbt_pgrid_create(para_env, pdims_2d, pgrid_2d)
    5501         180 :       ALLOCATE (sizes_RI(dbt_nblks_total(t_3c_overl_int_gw_RI, 1)))
    5502          60 :       CALL dbt_get_info(t_3c_overl_int_gw_RI, blk_size_1=sizes_RI)
    5503             : 
    5504             :       CALL create_2c_tensor(t_W, dist1, dist2, pgrid_2d, sizes_RI, sizes_RI, name="(RI|RI)")
    5505             : 
    5506          60 :       DEALLOCATE (dist1, dist2)
    5507             : 
    5508          60 :       CALL dbt_create(mat_W, t_RI_tmp, name="(RI|RI)")
    5509             : 
    5510          60 :       CALL dbt_create(t_3c_overl_int_gw_RI, t_3c_ctr_RI)
    5511          60 :       CALL dbt_create(t_3c_overl_int_gw_AO, t_3c_ctr_AO)
    5512             : 
    5513         180 :       ALLOCATE (sizes_AO(dbt_nblks_total(t_3c_overl_int_gw_AO, 1)))
    5514          60 :       CALL dbt_get_info(t_3c_overl_int_gw_AO, blk_size_1=sizes_AO)
    5515             :       CALL create_2c_tensor(t_greens_fct_occ, dist1, dist2, pgrid_2d, sizes_AO, sizes_AO, name="(AO|AO)")
    5516          60 :       DEALLOCATE (dist1, dist2)
    5517             :       CALL create_2c_tensor(t_greens_fct_virt, dist1, dist2, pgrid_2d, sizes_AO, sizes_AO, name="(AO|AO)")
    5518          60 :       DEALLOCATE (dist1, dist2)
    5519             : 
    5520         720 :       DO jquad = 1, num_integ_points
    5521             : 
    5522             :          CALL compute_Greens_function_time(mat_greens_fct_occ, mat_greens_fct_virt, &
    5523             :                                            fm_mo_coeff_occ, fm_mo_coeff_virt, &
    5524             :                                            fm_mo_coeff_occ_scaled, fm_mo_coeff_virt_scaled, &
    5525             :                                            fm_scaled_dm_occ_tau, fm_scaled_dm_virt_tau, Eigenval, &
    5526         660 :                                            nmo, eps_filter, e_fermi, tau_tj(jquad), para_env)
    5527             : 
    5528         660 :          CALL dbcsr_set(mat_W, 0.0_dp)
    5529         660 :          CALL copy_fm_to_dbcsr(fm_mat_W(jquad), mat_W, keep_sparsity=.FALSE.)
    5530             : 
    5531         660 :          IF (jquad == 1) CALL dbt_create(mat_greens_fct_occ, t_AO_tmp, name="(AO|AO)")
    5532             : 
    5533         660 :          CALL dbt_copy_matrix_to_tensor(mat_W, t_RI_tmp)
    5534         660 :          CALL dbt_copy(t_RI_tmp, t_W)
    5535         660 :          CALL dbt_copy_matrix_to_tensor(mat_greens_fct_occ, t_AO_tmp)
    5536         660 :          CALL dbt_copy(t_AO_tmp, t_greens_fct_occ)
    5537         660 :          CALL dbt_copy_matrix_to_tensor(mat_greens_fct_virt, t_AO_tmp)
    5538         660 :          CALL dbt_copy(t_AO_tmp, t_greens_fct_virt)
    5539             : 
    5540        3300 :          batch_range_mo(:) = [(i, i=2, nblk_mo)]
    5541         660 :          CALL dbt_batched_contract_init(t_3c_overl_int_gw_AO, batch_range_3=batch_range_mo)
    5542         660 :          CALL dbt_batched_contract_init(t_3c_overl_int_gw_RI, batch_range_3=batch_range_mo)
    5543         660 :          CALL dbt_batched_contract_init(t_3c_ctr_AO, batch_range_3=batch_range_mo)
    5544         660 :          CALL dbt_batched_contract_init(t_3c_ctr_RI, batch_range_3=batch_range_mo)
    5545         660 :          CALL dbt_batched_contract_init(t_W)
    5546         660 :          CALL dbt_batched_contract_init(t_greens_fct_occ)
    5547         660 :          CALL dbt_batched_contract_init(t_greens_fct_virt)
    5548             : 
    5549             :          ! in iteration over MO blocks skip first and last block because they correspond to the MO s
    5550             :          ! outside of the GW range of required MOs
    5551        1320 :          DO iblk_mo = 2, nblk_mo - 1
    5552        1980 :             mo_bounds = [mo_offsets(iblk_mo), mo_offsets(iblk_mo) + mo_bsizes(iblk_mo) - 1]
    5553             :             CALL contract_cubic_gw(t_3c_overl_int_gw_AO, t_3c_overl_int_gw_RI, &
    5554             :                                    t_greens_fct_occ, t_W, [1.0_dp, -1.0_dp], &
    5555             :                                    mo_bounds, unit_nr_prv, &
    5556         660 :                                    t_3c_ctr_RI, t_3c_ctr_AO, calculate_ctr_ri=.TRUE.)
    5557         660 :             CALL trace_sigma_gw(t_3c_ctr_AO, t_3c_ctr_RI, vec_Sigma_c_gw_neg_tau(:, jquad), mo_start, mo_bounds, para_env)
    5558             : 
    5559             :             CALL contract_cubic_gw(t_3c_overl_int_gw_AO, t_3c_overl_int_gw_RI, &
    5560             :                                    t_greens_fct_virt, t_W, [1.0_dp, 1.0_dp], &
    5561             :                                    mo_bounds, unit_nr_prv, &
    5562         660 :                                    t_3c_ctr_RI, t_3c_ctr_AO, calculate_ctr_ri=.FALSE.)
    5563             : 
    5564        1320 :             CALL trace_sigma_gw(t_3c_ctr_AO, t_3c_ctr_RI, vec_Sigma_c_gw_pos_tau(:, jquad), mo_start, mo_bounds, para_env)
    5565             :          END DO
    5566         660 :          CALL dbt_batched_contract_finalize(t_3c_overl_int_gw_AO)
    5567         660 :          CALL dbt_batched_contract_finalize(t_3c_overl_int_gw_RI)
    5568         660 :          CALL dbt_batched_contract_finalize(t_3c_ctr_AO)
    5569         660 :          CALL dbt_batched_contract_finalize(t_3c_ctr_RI)
    5570         660 :          CALL dbt_batched_contract_finalize(t_W)
    5571         660 :          CALL dbt_batched_contract_finalize(t_greens_fct_occ)
    5572         660 :          CALL dbt_batched_contract_finalize(t_greens_fct_virt)
    5573             : 
    5574         660 :          CALL dbt_clear(t_3c_ctr_AO)
    5575         660 :          CALL dbt_clear(t_3c_ctr_RI)
    5576             : 
    5577             :          vec_Sigma_c_gw_cos_tau(:, jquad) = 0.5_dp*(vec_Sigma_c_gw_pos_tau(:, jquad) + &
    5578        8100 :                                                     vec_Sigma_c_gw_neg_tau(:, jquad))
    5579             : 
    5580             :          vec_Sigma_c_gw_sin_tau(:, jquad) = 0.5_dp*(vec_Sigma_c_gw_pos_tau(:, jquad) - &
    5581        8160 :                                                     vec_Sigma_c_gw_neg_tau(:, jquad))
    5582             : 
    5583             :       END DO ! jquad (tau)
    5584          60 :       CALL dbt_destroy(t_W)
    5585             : 
    5586          60 :       CALL dbt_destroy(t_greens_fct_occ)
    5587          60 :       CALL dbt_destroy(t_greens_fct_virt)
    5588             : 
    5589             :       ! Fourier transform from time to frequency
    5590         394 :       DO jquad = 1, num_fit_points
    5591             : 
    5592        6334 :          DO iquad = 1, num_integ_points
    5593             : 
    5594        5940 :             omega = tj(jquad)
    5595        5940 :             tau = tau_tj(iquad)
    5596        5940 :             weight_cos = weights_cos_tf_t_to_w(jquad, iquad)*COS(omega*tau)
    5597        5940 :             weight_sin = weights_sin_tf_t_to_w(jquad, iquad)*SIN(omega*tau)
    5598             : 
    5599             :             vec_Sigma_c_gw_cos_omega(:, jquad) = vec_Sigma_c_gw_cos_omega(:, jquad) + &
    5600       85260 :                                                  weight_cos*vec_Sigma_c_gw_cos_tau(:, iquad)
    5601             : 
    5602             :             vec_Sigma_c_gw_sin_omega(:, jquad) = vec_Sigma_c_gw_sin_omega(:, jquad) + &
    5603       85594 :                                                  weight_sin*vec_Sigma_c_gw_sin_tau(:, iquad)
    5604             : 
    5605             :          END DO
    5606             : 
    5607             :       END DO
    5608             : 
    5609             :       ! for occupied levels, we need the correlation self-energy for negative omega. Therefore, weight_sin
    5610             :       ! should be computed with -omega, which results in an additional minus for vec_Sigma_c_gw_sin_omega:
    5611        2820 :       vec_Sigma_c_gw_sin_omega(1:gw_corr_lev_occ, :) = -vec_Sigma_c_gw_sin_omega(1:gw_corr_lev_occ, :)
    5612             : 
    5613             :       vec_Sigma_c_gw(:, 1:num_fit_points, 1) = vec_Sigma_c_gw_cos_omega(:, 1:num_fit_points) + &
    5614        4350 :                                                gaussi*vec_Sigma_c_gw_sin_omega(:, 1:num_fit_points)
    5615             : 
    5616          60 :       CALL dbcsr_release(mat_greens_fct_occ)
    5617          60 :       CALL dbcsr_release(mat_greens_fct_virt)
    5618             : 
    5619          64 :       IF (do_ri_Sigma_x .AND. count_ev_sc_GW == 1 .AND. count_sc_GW0 == 1) THEN
    5620             : 
    5621           2 :          CALL timeset(routineN//"_RI_HFX_operation_1", handle3)
    5622             : 
    5623             :          ! get density matrix
    5624             :          CALL parallel_gemm(transa="N", transb="T", m=nmo, n=nmo, k=nmo, alpha=1.0_dp, &
    5625             :                             matrix_a=fm_mo_coeff_occ, matrix_b=fm_mo_coeff_occ, beta=0.0_dp, &
    5626           2 :                             matrix_c=fm_scaled_dm_occ_tau)
    5627             : 
    5628           2 :          CALL timestop(handle3)
    5629             : 
    5630           2 :          CALL timeset(routineN//"_RI_HFX_operation_2", handle3)
    5631             : 
    5632             :          CALL copy_fm_to_dbcsr(fm_scaled_dm_occ_tau, &
    5633             :                                mat_dm%matrix, &
    5634           2 :                                keep_sparsity=.FALSE.)
    5635             : 
    5636           2 :          CALL timestop(handle3)
    5637             : 
    5638             :          CALL create_2c_tensor(t_dm, dist1, dist2, pgrid_2d, sizes_AO, sizes_AO, name="(AO|AO)")
    5639           2 :          DEALLOCATE (dist1, dist2)
    5640             : 
    5641           2 :          CALL dbt_copy_matrix_to_tensor(mat_dm%matrix, t_AO_tmp)
    5642           2 :          CALL dbt_copy(t_AO_tmp, t_dm)
    5643             : 
    5644             :          CALL create_2c_tensor(t_SinvVSinv, dist1, dist2, pgrid_2d, sizes_RI, sizes_RI, name="(RI|RI)")
    5645           2 :          DEALLOCATE (dist1, dist2)
    5646             : 
    5647           2 :          CALL dbt_copy_matrix_to_tensor(mat_MinvVMinv%matrix, t_RI_tmp)
    5648           2 :          CALL dbt_copy(t_RI_tmp, t_SinvVSinv)
    5649             : 
    5650           2 :          CALL dbt_batched_contract_init(t_3c_overl_int_gw_AO, batch_range_3=batch_range_mo)
    5651           2 :          CALL dbt_batched_contract_init(t_3c_overl_int_gw_RI, batch_range_3=batch_range_mo)
    5652           2 :          CALL dbt_batched_contract_init(t_3c_ctr_RI, batch_range_3=batch_range_mo)
    5653           2 :          CALL dbt_batched_contract_init(t_3c_ctr_AO, batch_range_3=batch_range_mo)
    5654           2 :          CALL dbt_batched_contract_init(t_dm)
    5655           2 :          CALL dbt_batched_contract_init(t_SinvVSinv)
    5656             : 
    5657           4 :          DO iblk_mo = 2, nblk_mo - 1
    5658           6 :             mo_bounds = [mo_offsets(iblk_mo), mo_offsets(iblk_mo) + mo_bsizes(iblk_mo) - 1]
    5659             : 
    5660             :             CALL contract_cubic_gw(t_3c_overl_int_gw_AO, t_3c_overl_int_gw_RI, &
    5661             :                                    t_dm, t_SinvVSinv, [1.0_dp, -1.0_dp], &
    5662             :                                    mo_bounds, unit_nr_prv, &
    5663           2 :                                    t_3c_ctr_RI, t_3c_ctr_AO, calculate_ctr_ri=.TRUE.)
    5664             : 
    5665           4 :             CALL trace_sigma_gw(t_3c_ctr_AO, t_3c_ctr_RI, vec_Sigma_x_gw(mo_start:mo_end, 1), mo_start, mo_bounds, para_env)
    5666             :          END DO
    5667           2 :          CALL dbt_batched_contract_finalize(t_3c_overl_int_gw_AO)
    5668           2 :          CALL dbt_batched_contract_finalize(t_3c_overl_int_gw_RI)
    5669           2 :          CALL dbt_batched_contract_finalize(t_dm)
    5670           2 :          CALL dbt_batched_contract_finalize(t_SinvVSinv)
    5671           2 :          CALL dbt_batched_contract_finalize(t_3c_ctr_RI)
    5672           2 :          CALL dbt_batched_contract_finalize(t_3c_ctr_AO)
    5673             : 
    5674           2 :          CALL dbt_destroy(t_dm)
    5675           2 :          CALL dbt_destroy(t_SinvVSinv)
    5676             : 
    5677             :          mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, ispin, 1) = &
    5678             :             mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, ispin, 1) + &
    5679          48 :             vec_Sigma_x_gw(:, 1)
    5680             : 
    5681             :       END IF
    5682             : 
    5683          60 :       CALL dbt_pgrid_destroy(pgrid_2d)
    5684             : 
    5685          60 :       CALL dbt_destroy(t_3c_ctr_RI)
    5686          60 :       CALL dbt_destroy(t_3c_ctr_AO)
    5687          60 :       CALL dbt_destroy(t_AO_tmp)
    5688          60 :       CALL dbt_destroy(t_RI_tmp)
    5689             : 
    5690             :       ! compute and add the periodic correction
    5691          60 :       IF (do_periodic) THEN
    5692             : 
    5693           2 :          ext_scaling = 0.2_dp
    5694             : 
    5695             :          ! loop over omega' (integration)
    5696          12 :          DO iquad = 1, num_points_corr
    5697             : 
    5698             :             ! use the Clenshaw-grid
    5699          10 :             t_i_Clenshaw = iquad*pi/(2.0_dp*num_points_corr)
    5700          10 :             omega_i = ext_scaling/TAN(t_i_Clenshaw)
    5701             : 
    5702          10 :             IF (iquad < num_points_corr) THEN
    5703           8 :                weight_i = ext_scaling*pi/(num_points_corr*SIN(t_i_Clenshaw)**2)
    5704             :             ELSE
    5705           2 :                weight_i = ext_scaling*pi/(2.0_dp*num_points_corr*SIN(t_i_Clenshaw)**2)
    5706             :             END IF
    5707             : 
    5708             :             CALL calc_periodic_correction(delta_corr, qs_env, para_env, para_env_RPA, &
    5709             :                                           mp2_env%ri_g0w0%kp_grid, homo, nmo, gw_corr_lev_occ, &
    5710             :                                           gw_corr_lev_virt, omega_i, fm_mo_coeff, Eigenval, &
    5711             :                                           matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, &
    5712             :                                           first_cycle_periodic_correction, kpoints, &
    5713             :                                           mp2_env%ri_g0w0%do_mo_coeff_gamma, &
    5714             :                                           mp2_env%ri_g0w0%num_kp_grids, mp2_env%ri_g0w0%eps_kpoint, &
    5715             :                                           mp2_env%ri_g0w0%do_extra_kpoints, &
    5716          10 :                                           mp2_env%ri_g0w0%do_aux_bas_gw, mp2_env%ri_g0w0%frac_aux_mos)
    5717             : 
    5718          92 :             DO n_level_gw = 1, gw_corr_lev_tot
    5719             : 
    5720          80 :                n_level_gw_ref = n_level_gw + homo - gw_corr_lev_occ
    5721             : 
    5722          80 :                IF (n_level_gw <= gw_corr_lev_occ) THEN
    5723             :                   sign_occ_virt = -1.0_dp
    5724             :                ELSE
    5725          40 :                   sign_occ_virt = 1.0_dp
    5726             :                END IF
    5727             : 
    5728         890 :                DO jquad = 1, num_integ_points
    5729             : 
    5730         800 :                   omega_sign = tj(jquad)*sign_occ_virt
    5731             : 
    5732             :                   delta_corr_omega(n_level_gw_ref, jquad) = &
    5733             :                      delta_corr_omega(n_level_gw_ref, jquad) - &
    5734             :                      0.5_dp/pi*weight_i/2.0_dp*delta_corr(n_level_gw_ref)* &
    5735             :                      (1.0_dp/(gaussi*(omega_i + omega_sign) + e_fermi - Eigenval(n_level_gw_ref)) + &
    5736         880 :                       1.0_dp/(gaussi*(-omega_i + omega_sign) + e_fermi - Eigenval(n_level_gw_ref)))
    5737             : 
    5738             :                END DO
    5739             : 
    5740             :             END DO
    5741             : 
    5742             :          END DO
    5743             : 
    5744           2 :          gw_lev_start = 1 + homo - gw_corr_lev_occ
    5745           2 :          gw_lev_end = homo + gw_corr_lev_virt
    5746             : 
    5747             :          ! add the periodic correction
    5748             :          vec_Sigma_c_gw(1:gw_corr_lev_tot, :, 1) = vec_Sigma_c_gw(1:gw_corr_lev_tot, :, 1) + &
    5749          74 :                                                    delta_corr_omega(gw_lev_start:gw_lev_end, 1:num_fit_points)
    5750             : 
    5751             :       END IF
    5752             : 
    5753          60 :       DEALLOCATE (vec_Sigma_c_gw_pos_tau)
    5754          60 :       DEALLOCATE (vec_Sigma_c_gw_neg_tau)
    5755          60 :       DEALLOCATE (vec_Sigma_c_gw_cos_tau)
    5756          60 :       DEALLOCATE (vec_Sigma_c_gw_sin_tau)
    5757          60 :       DEALLOCATE (vec_Sigma_c_gw_cos_omega)
    5758          60 :       DEALLOCATE (vec_Sigma_c_gw_sin_omega)
    5759          60 :       DEALLOCATE (delta_corr_omega)
    5760             : 
    5761          60 :       CALL timestop(handle)
    5762             : 
    5763         360 :    END SUBROUTINE compute_self_energy_cubic_gw
    5764             : 
    5765             : ! **************************************************************************************************
    5766             : !> \brief ...
    5767             : !> \param num_integ_points ...
    5768             : !> \param tau_tj ...
    5769             : !> \param tj ...
    5770             : !> \param matrix_s ...
    5771             : !> \param Eigenval ...
    5772             : !> \param e_fermi ...
    5773             : !> \param fm_mat_W ...
    5774             : !> \param gw_corr_lev_tot ...
    5775             : !> \param gw_corr_lev_occ ...
    5776             : !> \param gw_corr_lev_virt ...
    5777             : !> \param homo ...
    5778             : !> \param count_ev_sc_GW ...
    5779             : !> \param count_sc_GW0 ...
    5780             : !> \param t_3c_O ...
    5781             : !> \param t_3c_M ...
    5782             : !> \param t_3c_O_compressed ...
    5783             : !> \param t_3c_O_ind ...
    5784             : !> \param mat_W ...
    5785             : !> \param mat_MinvVMinv ...
    5786             : !> \param weights_cos_tf_t_to_w ...
    5787             : !> \param weights_sin_tf_t_to_w ...
    5788             : !> \param vec_Sigma_c_gw ...
    5789             : !> \param qs_env ...
    5790             : !> \param para_env ...
    5791             : !> \param mp2_env ...
    5792             : !> \param num_fit_points ...
    5793             : !> \param fm_mo_coeff ...
    5794             : !> \param do_ri_Sigma_x ...
    5795             : !> \param vec_Sigma_x_gw ...
    5796             : !> \param unit_nr ...
    5797             : !> \param nspins ...
    5798             : !> \param starts_array_mc ...
    5799             : !> \param ends_array_mc ...
    5800             : !> \param eps_filter ...
    5801             : ! **************************************************************************************************
    5802          18 :    SUBROUTINE compute_self_energy_cubic_gw_kpoints(num_integ_points, tau_tj, tj, &
    5803          18 :                                                    matrix_s, Eigenval, e_fermi, fm_mat_W, &
    5804          18 :                                                    gw_corr_lev_tot, gw_corr_lev_occ, gw_corr_lev_virt, homo, &
    5805             :                                                    count_ev_sc_GW, count_sc_GW0, &
    5806             :                                                    t_3c_O, t_3c_M, t_3c_O_compressed, t_3c_O_ind, &
    5807             :                                                    mat_W, mat_MinvVMinv, &
    5808          36 :                                                    weights_cos_tf_t_to_w, weights_sin_tf_t_to_w, vec_Sigma_c_gw, &
    5809             :                                                    qs_env, para_env, &
    5810             :                                                    mp2_env, num_fit_points, fm_mo_coeff, &
    5811          18 :                                                    do_ri_Sigma_x, vec_Sigma_x_gw, unit_nr, nspins, &
    5812          18 :                                                    starts_array_mc, ends_array_mc, eps_filter)
    5813             : 
    5814             :       INTEGER, INTENT(IN)                                :: num_integ_points
    5815             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    5816             :          INTENT(IN)                                      :: tau_tj, tj
    5817             :       TYPE(dbcsr_p_type), DIMENSION(:), INTENT(IN)       :: matrix_s
    5818             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(IN)      :: Eigenval
    5819             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: e_fermi
    5820             :       TYPE(cp_fm_type), DIMENSION(:), INTENT(IN)         :: fm_mat_W
    5821             :       INTEGER, INTENT(IN)                                :: gw_corr_lev_tot
    5822             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: gw_corr_lev_occ, gw_corr_lev_virt, homo
    5823             :       INTEGER, INTENT(IN)                                :: count_ev_sc_GW, count_sc_GW0
    5824             :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:, :)       :: t_3c_O
    5825             :       TYPE(dbt_type)                                     :: t_3c_M
    5826             :       TYPE(hfx_compression_type), ALLOCATABLE, &
    5827             :          DIMENSION(:, :, :)                              :: t_3c_O_compressed
    5828             :       TYPE(block_ind_type), ALLOCATABLE, &
    5829             :          DIMENSION(:, :, :), INTENT(INOUT)               :: t_3c_O_ind
    5830             :       TYPE(dbcsr_type), INTENT(INOUT), TARGET            :: mat_W
    5831             :       TYPE(dbcsr_p_type)                                 :: mat_MinvVMinv
    5832             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(IN)         :: weights_cos_tf_t_to_w, &
    5833             :                                                             weights_sin_tf_t_to_w
    5834             :       COMPLEX(KIND=dp), DIMENSION(:, :, :, :), &
    5835             :          INTENT(OUT)                                     :: vec_Sigma_c_gw
    5836             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    5837             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    5838             :       TYPE(mp2_type), INTENT(INOUT)                      :: mp2_env
    5839             :       INTEGER, INTENT(IN)                                :: num_fit_points
    5840             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mo_coeff
    5841             :       LOGICAL, INTENT(IN)                                :: do_ri_Sigma_x
    5842             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(INOUT)   :: vec_Sigma_x_gw
    5843             :       INTEGER, INTENT(IN)                                :: unit_nr, nspins
    5844             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: starts_array_mc, ends_array_mc
    5845             :       REAL(KIND=dp), INTENT(IN)                          :: eps_filter
    5846             : 
    5847             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_self_energy_cubic_gw_kpoints'
    5848             : 
    5849             :       INTEGER                                            :: cut_memory, handle, handle2, i_mem, &
    5850             :                                                             iquad, ispin, j_mem, jquad, &
    5851             :                                                             nkp_self_energy, num_points, &
    5852             :                                                             unit_nr_prv
    5853          36 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: dist1, dist2, sizes_AO, sizes_RI
    5854             :       INTEGER, DIMENSION(2)                              :: mo_end, mo_start, pdims_2d
    5855             :       INTEGER, DIMENSION(2, 1)                           :: bounds_RI_i
    5856             :       INTEGER, DIMENSION(2, 2)                           :: bounds_ao_ao_j
    5857             :       INTEGER, DIMENSION(3)                              :: dims_3c
    5858             :       LOGICAL                                            :: memory_info
    5859             :       REAL(KIND=dp)                                      :: omega, t1, t2, tau, weight_cos, &
    5860             :                                                             weight_sin
    5861          18 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :, :) :: vec_Sigma_c_gw_cos_omega, &
    5862          18 :          vec_Sigma_c_gw_cos_tau, vec_Sigma_c_gw_neg_tau, vec_Sigma_c_gw_pos_tau, &
    5863          18 :          vec_Sigma_c_gw_sin_omega, vec_Sigma_c_gw_sin_tau
    5864          18 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: mat_p_greens_fct_occ, &
    5865          18 :                                                             mat_p_greens_fct_virt
    5866             :       TYPE(dbcsr_type), TARGET :: mat_greens_fct_occ, mat_greens_fct_virt, mat_mo_coeff, &
    5867             :          mat_self_energy_ao_ao_neg_tau, mat_self_energy_ao_ao_pos_tau
    5868          54 :       TYPE(dbt_pgrid_type)                               :: pgrid_2d
    5869         342 :       TYPE(dbt_type)                                     :: t_3c_M_W_tmp, t_3c_O_all, t_3c_O_W, &
    5870         234 :                                                             t_AO_tmp, t_greens_fct_occ, &
    5871         342 :                                                             t_greens_fct_virt, t_RI_tmp, t_W
    5872             : 
    5873          18 :       CALL timeset(routineN, handle)
    5874             : 
    5875          18 :       memory_info = mp2_env%ri_rpa_im_time%memory_info
    5876          18 :       IF (memory_info) THEN
    5877           0 :          unit_nr_prv = unit_nr
    5878             :       ELSE
    5879          18 :          unit_nr_prv = 0
    5880             :       END IF
    5881             : 
    5882          18 :       cut_memory = mp2_env%ri_rpa_im_time%cut_memory
    5883             : 
    5884          40 :       DO ispin = 1, nspins
    5885          22 :          mo_start(ispin) = homo(ispin) - gw_corr_lev_occ(ispin) + 1
    5886          22 :          mo_end(ispin) = homo(ispin) + gw_corr_lev_virt(ispin)
    5887          40 :          CPASSERT(mo_end(ispin) - mo_start(ispin) + 1 == gw_corr_lev_tot)
    5888             :       END DO
    5889             : 
    5890          18 :       nkp_self_energy = mp2_env%ri_g0w0%nkp_self_energy
    5891             : 
    5892        1672 :       vec_Sigma_c_gw = z_zero
    5893         108 :       ALLOCATE (vec_Sigma_c_gw_pos_tau(gw_corr_lev_tot, num_integ_points, nkp_self_energy, nspins))
    5894        3232 :       vec_Sigma_c_gw_pos_tau = 0.0_dp
    5895          90 :       ALLOCATE (vec_Sigma_c_gw_neg_tau(gw_corr_lev_tot, num_integ_points, nkp_self_energy, nspins))
    5896        3232 :       vec_Sigma_c_gw_neg_tau = 0.0_dp
    5897          90 :       ALLOCATE (vec_Sigma_c_gw_cos_tau(gw_corr_lev_tot, num_integ_points, nkp_self_energy, nspins))
    5898        3232 :       vec_Sigma_c_gw_cos_tau = 0.0_dp
    5899          90 :       ALLOCATE (vec_Sigma_c_gw_sin_tau(gw_corr_lev_tot, num_integ_points, nkp_self_energy, nspins))
    5900        3232 :       vec_Sigma_c_gw_sin_tau = 0.0_dp
    5901             : 
    5902          90 :       ALLOCATE (vec_Sigma_c_gw_cos_omega(gw_corr_lev_tot, num_integ_points, nkp_self_energy, nspins))
    5903        3232 :       vec_Sigma_c_gw_cos_omega = 0.0_dp
    5904          90 :       ALLOCATE (vec_Sigma_c_gw_sin_omega(gw_corr_lev_tot, num_integ_points, nkp_self_energy, nspins))
    5905        3232 :       vec_Sigma_c_gw_sin_omega = 0.0_dp
    5906             : 
    5907             :       CALL dbcsr_create(matrix=mat_greens_fct_occ, &
    5908             :                         template=matrix_s(1)%matrix, &
    5909          18 :                         matrix_type=dbcsr_type_no_symmetry)
    5910             : 
    5911             :       CALL dbcsr_create(matrix=mat_greens_fct_virt, &
    5912             :                         template=matrix_s(1)%matrix, &
    5913          18 :                         matrix_type=dbcsr_type_no_symmetry)
    5914             : 
    5915             :       CALL dbcsr_create(matrix=mat_self_energy_ao_ao_neg_tau, &
    5916             :                         template=matrix_s(1)%matrix, &
    5917          18 :                         matrix_type=dbcsr_type_no_symmetry)
    5918             : 
    5919             :       CALL dbcsr_create(matrix=mat_self_energy_ao_ao_pos_tau, &
    5920             :                         template=matrix_s(1)%matrix, &
    5921          18 :                         matrix_type=dbcsr_type_no_symmetry)
    5922             : 
    5923             :       CALL dbcsr_create(matrix=mat_mo_coeff, &
    5924             :                         template=matrix_s(1)%matrix, &
    5925          18 :                         matrix_type=dbcsr_type_no_symmetry)
    5926             : 
    5927          18 :       CALL copy_fm_to_dbcsr(fm_mo_coeff, mat_mo_coeff, keep_sparsity=.FALSE.)
    5928             : 
    5929          40 :       DO ispin = 1, nspins
    5930         870 :          e_fermi(ispin) = 0.5_dp*(MAXVAL(Eigenval(homo, :, ispin)) + MINVAL(Eigenval(homo + 1, :, ispin)))
    5931             :       END DO
    5932             : 
    5933          18 :       pdims_2d = 0
    5934          18 :       CALL dbt_pgrid_create(para_env, pdims_2d, pgrid_2d)
    5935          54 :       ALLOCATE (sizes_RI(dbt_nblks_total(t_3c_O(1, 1), 1)))
    5936          18 :       CALL dbt_get_info(t_3c_O(1, 1), blk_size_1=sizes_RI)
    5937             : 
    5938          18 :       CALL create_2c_tensor(t_W, dist1, dist2, pgrid_2d, sizes_RI, sizes_RI, name="(RI|RI)")
    5939          18 :       DEALLOCATE (dist1, dist2)
    5940             : 
    5941          18 :       CALL dbt_create(mat_W, t_RI_tmp, name="(RI|RI)")
    5942             : 
    5943          54 :       ALLOCATE (sizes_AO(dbt_nblks_total(t_3c_O(1, 1), 2)))
    5944          18 :       CALL dbt_get_info(t_3c_O(1, 1), blk_size_2=sizes_AO)
    5945             :       CALL create_2c_tensor(t_greens_fct_occ, dist1, dist2, pgrid_2d, sizes_AO, sizes_AO, name="(AO|AO)")
    5946             : 
    5947          18 :       DEALLOCATE (dist1, dist2)
    5948             :       CALL create_2c_tensor(t_greens_fct_virt, dist1, dist2, pgrid_2d, sizes_AO, sizes_AO, name="(AO|AO)")
    5949          18 :       DEALLOCATE (dist1, dist2)
    5950             : 
    5951          18 :       CALL dbt_get_info(t_3c_M, nfull_total=dims_3c)
    5952             : 
    5953          18 :       CALL dbt_create(t_3c_O(1, 1), t_3c_O_all, name="O (RI AO | AO)")
    5954             : 
    5955             :       ! get full 3c tensor
    5956          82 :       DO i_mem = 1, cut_memory
    5957             :          CALL decompress_tensor(t_3c_O(1, 1), &
    5958             :                                 t_3c_O_ind(1, 1, i_mem)%ind, &
    5959             :                                 t_3c_O_compressed(1, 1, i_mem), &
    5960          64 :                                 mp2_env%ri_rpa_im_time%eps_compress)
    5961          82 :          CALL dbt_copy(t_3c_O(1, 1), t_3c_O_all, summation=.TRUE., move_data=.TRUE.)
    5962             :       END DO
    5963             : 
    5964          18 :       CALL dbt_create(t_3c_M, t_3c_M_W_tmp, name="M W (RI | AO AO)")
    5965          18 :       CALL dbt_create(t_3c_O(1, 1), t_3c_O_W, name="M W (RI AO | AO)")
    5966             : 
    5967          18 :       CALL dbt_create(mat_greens_fct_occ, t_AO_tmp, name="(AO|AO)")
    5968             : 
    5969          18 :       IF (count_ev_sc_GW == 1 .AND. count_sc_GW0 == 1 .AND. do_ri_Sigma_x) THEN
    5970          14 :          num_points = num_integ_points + 1
    5971             :       ELSE
    5972           4 :          num_points = num_integ_points
    5973             :       END IF
    5974             : 
    5975         140 :       DO jquad = 1, num_points
    5976             : 
    5977         122 :          t1 = m_walltime()
    5978             : 
    5979         122 :          IF (jquad <= num_integ_points) THEN
    5980         108 :             tau = tau_tj(jquad)
    5981             : 
    5982         108 :             IF (unit_nr > 0) WRITE (unit_nr, '(/T3,A,1X,I3)') &
    5983          54 :                'GW_INFO| Computing self-energy time point', jquad
    5984             :          ELSE
    5985          14 :             tau = 0.0_dp
    5986             : 
    5987          14 :             IF (unit_nr > 0) WRITE (unit_nr, '(/T3,A,1X,I3)') &
    5988           7 :                'GW_INFO| Computing exchange self-energy'
    5989             :          END IF
    5990             : 
    5991         122 :          IF (jquad <= num_integ_points) THEN
    5992         108 :             CALL dbcsr_set(mat_W, 0.0_dp)
    5993         108 :             CALL copy_fm_to_dbcsr(fm_mat_W(jquad), mat_W, keep_sparsity=.FALSE.)
    5994         108 :             CALL dbt_copy_matrix_to_tensor(mat_W, t_RI_tmp)
    5995             :          ELSE
    5996          14 :             CALL dbt_copy_matrix_to_tensor(mat_MinvVMinv%matrix, t_RI_tmp)
    5997             :          END IF
    5998             : 
    5999         122 :          CALL dbt_copy(t_RI_tmp, t_W)
    6000             : 
    6001         272 :          DO ispin = 1, nspins
    6002             : 
    6003             :             CALL compute_periodic_dm(mat_p_greens_fct_occ, qs_env, &
    6004             :                                      ispin, num_points, jquad, e_fermi(ispin), tau, &
    6005             :                                      remove_occ=.FALSE., remove_virt=.TRUE., &
    6006         282 :                                      alloc_dm=(jquad == 1 .AND. ispin == 1))
    6007             : 
    6008             :             CALL compute_periodic_dm(mat_p_greens_fct_virt, qs_env, &
    6009             :                                      ispin, num_points, jquad, e_fermi(ispin), tau, &
    6010             :                                      remove_occ=.TRUE., remove_virt=.FALSE., &
    6011         282 :                                      alloc_dm=(jquad == 1 .AND. ispin == 1))
    6012             : 
    6013         150 :             CALL dbcsr_set(mat_greens_fct_occ, 0.0_dp)
    6014         150 :             CALL dbcsr_copy(mat_greens_fct_occ, mat_p_greens_fct_occ(jquad, 1)%matrix)
    6015             : 
    6016         150 :             CALL dbcsr_set(mat_greens_fct_virt, 0.0_dp)
    6017         150 :             CALL dbcsr_copy(mat_greens_fct_virt, mat_p_greens_fct_virt(jquad, 1)%matrix)
    6018             : 
    6019         150 :             CALL dbt_copy_matrix_to_tensor(mat_greens_fct_occ, t_AO_tmp)
    6020         150 :             CALL dbt_copy(t_AO_tmp, t_greens_fct_occ)
    6021             : 
    6022         150 :             CALL dbt_copy_matrix_to_tensor(mat_greens_fct_virt, t_AO_tmp)
    6023         150 :             CALL dbt_copy(t_AO_tmp, t_greens_fct_virt)
    6024             : 
    6025         150 :             CALL dbcsr_set(mat_self_energy_ao_ao_neg_tau, 0.0_dp)
    6026         150 :             CALL dbcsr_set(mat_self_energy_ao_ao_pos_tau, 0.0_dp)
    6027             : 
    6028         150 :             CALL dbt_copy(t_3c_O_all, t_3c_M)
    6029             : 
    6030         150 :             CALL dbt_batched_contract_init(t_3c_O_W)
    6031             :             !         CALL dbt_batched_contract_init(t_3c_O_G)
    6032             :             !         CALL dbt_batched_contract_init(t_self_energy)
    6033             : 
    6034         666 :             DO i_mem = 1, cut_memory ! memory cut for RI index
    6035             : 
    6036             :                !            CALL dbt_batched_contract_init(t_W)
    6037             :                !            CALL dbt_batched_contract_init(t_3c_M)
    6038             :                !            CALL dbt_batched_contract_init(t_3c_M_W_tmp)
    6039             : 
    6040             :                bounds_RI_i(:, 1) = [qs_env%mp2_env%ri_rpa_im_time%starts_array_mc_RI(i_mem), &
    6041        1548 :                                     qs_env%mp2_env%ri_rpa_im_time%ends_array_mc_RI(i_mem)]
    6042             : 
    6043        2506 :                DO j_mem = 1, cut_memory ! memory cut for ao index
    6044             : 
    6045        5520 :                   bounds_ao_ao_j(:, 1) = [starts_array_mc(j_mem), ends_array_mc(j_mem)]
    6046        5520 :                   bounds_ao_ao_j(:, 2) = [1, dims_3c(3)]
    6047             : 
    6048        1840 :                   CALL timeset("tensor_operation_3c_W", handle2)
    6049             : 
    6050             :                   CALL dbt_contract(1.0_dp, t_W, t_3c_M, 0.0_dp, &
    6051             :                                     t_3c_M_W_tmp, &
    6052             :                                     contract_1=[2], notcontract_1=[1], &
    6053             :                                     contract_2=[1], notcontract_2=[2, 3], &
    6054             :                                     map_1=[1], map_2=[2, 3], &
    6055             :                                     bounds_2=bounds_RI_i, &
    6056             :                                     bounds_3=bounds_ao_ao_j, &
    6057             :                                     filter_eps=eps_filter, &
    6058        1840 :                                     unit_nr=unit_nr_prv)
    6059             : 
    6060        1840 :                   CALL dbt_copy(t_3c_M_W_tmp, t_3c_O_W, order=[1, 2, 3], move_data=.TRUE.)
    6061             : 
    6062        1840 :                   CALL timestop(handle2)
    6063             : 
    6064             :                   CALL contract_to_self_energy(t_3c_O_all, t_greens_fct_occ, t_3c_O_W, &
    6065             :                                                mat_self_energy_ao_ao_neg_tau, &
    6066             :                                                bounds_ao_ao_j, bounds_RI_i, unit_nr_prv, &
    6067        1840 :                                                eps_filter, do_occ=.TRUE., do_virt=.FALSE.)
    6068             : 
    6069             :                   CALL contract_to_self_energy(t_3c_O_all, t_greens_fct_virt, t_3c_O_W, &
    6070             :                                                mat_self_energy_ao_ao_pos_tau, &
    6071             :                                                bounds_ao_ao_j, bounds_RI_i, unit_nr_prv, &
    6072        4196 :                                                eps_filter, do_occ=.FALSE., do_virt=.TRUE.)
    6073             : 
    6074             :                END DO ! j_mem
    6075             : 
    6076             :                !            CALL dbt_batched_contract_finalize(t_W)
    6077             :                !            CALL dbt_batched_contract_finalize(t_3c_M)
    6078             :                !            CALL dbt_batched_contract_finalize(t_3c_M_W_tmp)
    6079             : 
    6080             :             END DO ! i_mem
    6081             : 
    6082         150 :             CALL dbt_batched_contract_finalize(t_3c_O_W)
    6083             :             !         CALL dbt_batched_contract_finalize(t_3c_O_G)
    6084             :             !         CALL dbt_batched_contract_finalize(t_self_energy)
    6085             : 
    6086         272 :             IF (jquad <= num_integ_points) THEN
    6087             : 
    6088             :                CALL trafo_to_mo_and_kpoints(qs_env, mat_self_energy_ao_ao_neg_tau, vec_Sigma_c_gw_neg_tau(:, jquad, :, ispin), &
    6089         132 :                                             homo(ispin), gw_corr_lev_occ(ispin), gw_corr_lev_virt(ispin), ispin)
    6090             : 
    6091             :                CALL trafo_to_mo_and_kpoints(qs_env, mat_self_energy_ao_ao_pos_tau, vec_Sigma_c_gw_pos_tau(:, jquad, :, ispin), &
    6092         132 :                                             homo(ispin), gw_corr_lev_occ(ispin), gw_corr_lev_virt(ispin), ispin)
    6093             : 
    6094             :                vec_Sigma_c_gw_cos_tau(:, jquad, :, ispin) = 0.5_dp*(vec_Sigma_c_gw_pos_tau(:, jquad, :, ispin) + &
    6095        3156 :                                                                     vec_Sigma_c_gw_neg_tau(:, jquad, :, ispin))
    6096             : 
    6097             :                vec_Sigma_c_gw_sin_tau(:, jquad, :, ispin) = 0.5_dp*(vec_Sigma_c_gw_pos_tau(:, jquad, :, ispin) - &
    6098        3156 :                                                                     vec_Sigma_c_gw_neg_tau(:, jquad, :, ispin))
    6099             :             ELSE
    6100             : 
    6101             :                CALL trafo_to_mo_and_kpoints(qs_env, mat_self_energy_ao_ao_neg_tau, &
    6102             :                                             vec_Sigma_x_gw(mo_start(ispin):mo_end(ispin), :, ispin), &
    6103          18 :                                             homo(ispin), gw_corr_lev_occ(ispin), gw_corr_lev_virt(ispin), ispin)
    6104             : 
    6105             :             END IF
    6106             : 
    6107             :          END DO ! spins
    6108             : 
    6109         122 :          t2 = m_walltime()
    6110             : 
    6111         140 :          IF (unit_nr > 0) WRITE (unit_nr, '(T6,A,T56,F25.1)') 'Execution time (s):', t2 - t1
    6112             : 
    6113             :       END DO ! jquad (tau)
    6114             : 
    6115          18 :       IF (count_ev_sc_GW == 1 .AND. count_sc_GW0 == 1) THEN
    6116             : 
    6117          18 :          CALL compute_minus_vxc_kpoints(qs_env)
    6118             : 
    6119          18 :          IF (do_ri_Sigma_x) THEN
    6120          32 :             DO ispin = 1, nspins
    6121             :                mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, ispin, :) = mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, ispin, :) + &
    6122        2672 :                                                                        vec_Sigma_x_gw(:, :, ispin)
    6123             :             END DO
    6124             :          END IF
    6125             : 
    6126             :       END IF
    6127             : 
    6128             :       ! Fourier transform from time to frequency
    6129          70 :       DO jquad = 1, num_fit_points
    6130             : 
    6131         382 :          DO iquad = 1, num_integ_points
    6132             : 
    6133         312 :             omega = tj(jquad)
    6134         312 :             tau = tau_tj(iquad)
    6135         312 :             weight_cos = weights_cos_tf_t_to_w(jquad, iquad)*COS(omega*tau)
    6136         312 :             weight_sin = weights_sin_tf_t_to_w(jquad, iquad)*SIN(omega*tau)
    6137             : 
    6138             :             vec_Sigma_c_gw_cos_omega(:, jquad, :, :) = vec_Sigma_c_gw_cos_omega(:, jquad, :, :) + &
    6139        9480 :                                                        weight_cos*vec_Sigma_c_gw_cos_tau(:, iquad, :, :)
    6140             : 
    6141             :             vec_Sigma_c_gw_sin_omega(:, jquad, :, :) = vec_Sigma_c_gw_sin_omega(:, jquad, :, :) + &
    6142        9532 :                                                        weight_sin*vec_Sigma_c_gw_sin_tau(:, iquad, :, :)
    6143             : 
    6144             :          END DO
    6145             : 
    6146             :       END DO
    6147             : 
    6148             :       ! for occupied levels, we need the correlation self-energy for negative omega. Therefore, weight_sin
    6149             :       ! should be computed with -omega, which results in an additional minus for vec_Sigma_c_gw_sin_omega:
    6150          40 :       DO ispin = 1, nspins
    6151             :          vec_Sigma_c_gw_sin_omega(1:gw_corr_lev_occ(ispin), :, :, ispin) = &
    6152        2224 :             -vec_Sigma_c_gw_sin_omega(1:gw_corr_lev_occ(ispin), :, :, ispin)
    6153             :       END DO
    6154             : 
    6155             :       vec_Sigma_c_gw(:, 1:num_fit_points, :, :) = vec_Sigma_c_gw_cos_omega(:, 1:num_fit_points, :, :) + &
    6156        1672 :                                                   gaussi*vec_Sigma_c_gw_sin_omega(:, 1:num_fit_points, :, :)
    6157             : 
    6158          18 :       CALL dbt_pgrid_destroy(pgrid_2d)
    6159             : 
    6160          18 :       CALL dbcsr_release(mat_greens_fct_occ)
    6161          18 :       CALL dbcsr_release(mat_greens_fct_virt)
    6162          18 :       CALL dbcsr_release(mat_self_energy_ao_ao_neg_tau)
    6163          18 :       CALL dbcsr_release(mat_self_energy_ao_ao_pos_tau)
    6164          18 :       CALL dbcsr_release(mat_mo_coeff)
    6165             : 
    6166          18 :       CALL dbcsr_deallocate_matrix_set(mat_p_greens_fct_occ)
    6167          18 :       CALL dbcsr_deallocate_matrix_set(mat_p_greens_fct_virt)
    6168             : 
    6169          18 :       CALL dbt_destroy(t_W)
    6170          18 :       CALL dbt_destroy(t_RI_tmp)
    6171          18 :       CALL dbt_destroy(t_greens_fct_occ)
    6172          18 :       CALL dbt_destroy(t_greens_fct_virt)
    6173          18 :       CALL dbt_destroy(t_AO_tmp)
    6174          18 :       CALL dbt_destroy(t_3c_O_all)
    6175          18 :       CALL dbt_destroy(t_3c_M_W_tmp)
    6176          18 :       CALL dbt_destroy(t_3c_O_W)
    6177             : 
    6178          18 :       DEALLOCATE (vec_Sigma_c_gw_pos_tau)
    6179          18 :       DEALLOCATE (vec_Sigma_c_gw_neg_tau)
    6180          18 :       DEALLOCATE (vec_Sigma_c_gw_cos_tau)
    6181          18 :       DEALLOCATE (vec_Sigma_c_gw_sin_tau)
    6182          18 :       DEALLOCATE (vec_Sigma_c_gw_cos_omega)
    6183          18 :       DEALLOCATE (vec_Sigma_c_gw_sin_omega)
    6184             : 
    6185          18 :       CALL timestop(handle)
    6186             : 
    6187         108 :    END SUBROUTINE compute_self_energy_cubic_gw_kpoints
    6188             : 
    6189             : ! **************************************************************************************************
    6190             : !> \brief ...
    6191             : !> \param qs_env ...
    6192             : ! **************************************************************************************************
    6193          18 :    SUBROUTINE compute_minus_vxc_kpoints(qs_env)
    6194             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    6195             : 
    6196             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_minus_vxc_kpoints'
    6197             : 
    6198             :       INTEGER                                            :: handle, ikp, ispin, nkp_self_energy, &
    6199             :                                                             nmo, nspins
    6200             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: diag_Sigma_x_minus_vxc_mo_mo
    6201             :       TYPE(cp_cfm_type)                                  :: cfm_mo_coeff, ks_mat_ao_ao, &
    6202             :                                                             ks_mat_no_xc_ao_ao, vxc_ao_ao, &
    6203             :                                                             vxc_ao_mo, vxc_mo_mo
    6204             :       TYPE(cp_fm_struct_type), POINTER                   :: matrix_struct
    6205             :       TYPE(cp_fm_type)                                   :: fm_dummy, fm_Sigma_x_minus_vxc_mo_mo, &
    6206             :                                                             fm_tmp_im, fm_tmp_re
    6207             :       TYPE(dft_control_type), POINTER                    :: dft_control
    6208             :       TYPE(kpoint_type), POINTER                         :: kpoints_Sigma, kpoints_Sigma_no_xc
    6209             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    6210             : 
    6211          18 :       CALL timeset(routineN, handle)
    6212             : 
    6213          18 :       CALL get_qs_env(qs_env, para_env=para_env, dft_control=dft_control)
    6214             : 
    6215          18 :       kpoints_Sigma => qs_env%mp2_env%ri_rpa_im_time%kpoints_Sigma
    6216             : 
    6217          18 :       kpoints_Sigma_no_xc => qs_env%mp2_env%ri_rpa_im_time%kpoints_Sigma_no_xc
    6218             : 
    6219          18 :       nkp_self_energy = kpoints_Sigma%nkp
    6220             : 
    6221          18 :       nspins = dft_control%nspins
    6222             : 
    6223          18 :       matrix_struct => kpoints_Sigma%kp_env(1)%kpoint_env%wmat(1, 1)%matrix_struct
    6224             : 
    6225          18 :       CALL cp_cfm_create(ks_mat_ao_ao, matrix_struct)
    6226          18 :       CALL cp_cfm_create(ks_mat_no_xc_ao_ao, matrix_struct)
    6227          18 :       CALL cp_cfm_create(vxc_ao_ao, matrix_struct)
    6228          18 :       CALL cp_cfm_create(vxc_ao_mo, matrix_struct)
    6229          18 :       CALL cp_cfm_create(vxc_mo_mo, matrix_struct)
    6230          18 :       CALL cp_cfm_create(cfm_mo_coeff, matrix_struct)
    6231          18 :       CALL cp_fm_create(fm_Sigma_x_minus_vxc_mo_mo, matrix_struct)
    6232          18 :       CALL cp_fm_create(fm_tmp_re, matrix_struct)
    6233          18 :       CALL cp_fm_create(fm_tmp_im, matrix_struct)
    6234             : 
    6235          18 :       CALL cp_cfm_get_info(cfm_mo_coeff, nrow_global=nmo)
    6236          54 :       ALLOCATE (diag_Sigma_x_minus_vxc_mo_mo(nmo))
    6237             : 
    6238          18 :       DEALLOCATE (qs_env%mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw)
    6239             : 
    6240          72 :       ALLOCATE (qs_env%mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(nmo, 2, nkp_self_energy))
    6241             : 
    6242         154 :       DO ikp = 1, nkp_self_energy
    6243             : 
    6244         322 :          DO ispin = 1, nspins
    6245             : 
    6246             :             ASSOCIATE (mos => kpoints_Sigma%kp_env(ikp)%kpoint_env%mos)
    6247         168 :             IF (ASSOCIATED(mos(1, ispin)%mo_coeff)) THEN
    6248         168 :                CALL cp_fm_copy_general(mos(1, ispin)%mo_coeff, fm_tmp_re, para_env)
    6249             :             ELSE
    6250           0 :                CALL cp_fm_copy_general(fm_dummy, fm_tmp_re, para_env)
    6251             :             END IF
    6252         336 :             IF (ASSOCIATED(mos(2, ispin)%mo_coeff)) THEN
    6253         168 :                CALL cp_fm_copy_general(mos(2, ispin)%mo_coeff, fm_tmp_im, para_env)
    6254             :             ELSE
    6255           0 :                CALL cp_fm_copy_general(fm_dummy, fm_tmp_im, para_env)
    6256             :             END IF
    6257             :             END ASSOCIATE
    6258             : 
    6259         168 :             CALL cp_fm_to_cfm(fm_tmp_re, fm_tmp_im, cfm_mo_coeff)
    6260             : 
    6261             :             CALL cp_fm_to_cfm(kpoints_Sigma%kp_env(ikp)%kpoint_env%wmat(1, ispin), &
    6262         168 :                               kpoints_Sigma%kp_env(ikp)%kpoint_env%wmat(2, ispin), ks_mat_ao_ao)
    6263             :             ASSOCIATE (wmat => kpoints_Sigma_no_xc%kp_env(ikp)%kpoint_env%wmat)
    6264         168 :             IF (ASSOCIATED(wmat(1, ispin)%matrix_struct)) THEN
    6265         168 :                CALL cp_fm_copy_general(wmat(1, ispin), fm_tmp_re, para_env)
    6266             :             ELSE
    6267           0 :                CALL cp_fm_copy_general(fm_dummy, fm_tmp_re, para_env)
    6268             :             END IF
    6269         336 :             IF (ASSOCIATED(wmat(2, ispin)%matrix_struct)) THEN
    6270         168 :                CALL cp_fm_copy_general(wmat(2, ispin), fm_tmp_im, para_env)
    6271             :             ELSE
    6272           0 :                CALL cp_fm_copy_general(fm_dummy, fm_tmp_im, para_env)
    6273             :             END IF
    6274             :             END ASSOCIATE
    6275             : 
    6276         168 :             CALL cp_fm_to_cfm(fm_tmp_re, fm_tmp_im, vxc_ao_ao)
    6277             : 
    6278         168 :             CALL parallel_gemm('N', 'N', nmo, nmo, nmo, z_one, vxc_ao_ao, cfm_mo_coeff, z_zero, vxc_ao_mo)
    6279         168 :             CALL parallel_gemm('C', 'N', nmo, nmo, nmo, z_one, cfm_mo_coeff, vxc_ao_mo, z_zero, vxc_mo_mo)
    6280             : 
    6281         168 :             CALL cp_cfm_to_fm(vxc_mo_mo, fm_Sigma_x_minus_vxc_mo_mo)
    6282             : 
    6283         168 :             CALL cp_fm_get_diag(fm_Sigma_x_minus_vxc_mo_mo, diag_Sigma_x_minus_vxc_mo_mo)
    6284             : 
    6285        3544 :             qs_env%mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, ispin, ikp) = diag_Sigma_x_minus_vxc_mo_mo(:)
    6286             : 
    6287             :          END DO
    6288             : 
    6289             :       END DO
    6290             : 
    6291          18 :       CALL cp_cfm_release(ks_mat_ao_ao)
    6292          18 :       CALL cp_cfm_release(ks_mat_no_xc_ao_ao)
    6293          18 :       CALL cp_cfm_release(vxc_ao_ao)
    6294          18 :       CALL cp_cfm_release(vxc_ao_mo)
    6295          18 :       CALL cp_cfm_release(vxc_mo_mo)
    6296          18 :       CALL cp_cfm_release(cfm_mo_coeff)
    6297          18 :       CALL cp_fm_release(fm_Sigma_x_minus_vxc_mo_mo)
    6298          18 :       CALL cp_fm_release(fm_tmp_re)
    6299          18 :       CALL cp_fm_release(fm_tmp_im)
    6300             : 
    6301          18 :       DEALLOCATE (diag_Sigma_x_minus_vxc_mo_mo)
    6302             : 
    6303          18 :       CALL timestop(handle)
    6304             : 
    6305          36 :    END SUBROUTINE compute_minus_vxc_kpoints
    6306             : 
    6307             : ! **************************************************************************************************
    6308             : !> \brief ...
    6309             : !> \param qs_env ...
    6310             : !> \param mat_self_energy_ao_ao ...
    6311             : !> \param vec_Sigma ...
    6312             : !> \param homo ...
    6313             : !> \param gw_corr_lev_occ ...
    6314             : !> \param gw_corr_lev_virt ...
    6315             : !> \param ispin ...
    6316             : ! **************************************************************************************************
    6317         282 :    SUBROUTINE trafo_to_mo_and_kpoints(qs_env, mat_self_energy_ao_ao, vec_Sigma, &
    6318             :                                       homo, gw_corr_lev_occ, gw_corr_lev_virt, ispin)
    6319             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    6320             :       TYPE(dbcsr_type), TARGET                           :: mat_self_energy_ao_ao
    6321             :       REAL(KIND=dp), DIMENSION(:, :)                     :: vec_Sigma
    6322             :       INTEGER                                            :: homo, gw_corr_lev_occ, gw_corr_lev_virt, &
    6323             :                                                             ispin
    6324             : 
    6325             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'trafo_to_mo_and_kpoints'
    6326             : 
    6327             :       INTEGER                                            :: handle, ikp, nkp_self_energy, nmo, &
    6328             :                                                             periodic(3), size_real_space
    6329             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: diag_self_energy
    6330             :       TYPE(cell_type), POINTER                           :: cell
    6331             :       TYPE(cp_cfm_type)                                  :: cfm_mo_coeff, cfm_self_energy_ao_ao, &
    6332             :                                                             cfm_self_energy_ao_mo, &
    6333             :                                                             cfm_self_energy_mo_mo
    6334             :       TYPE(cp_fm_struct_type), POINTER                   :: matrix_struct
    6335             :       TYPE(cp_fm_type)                                   :: fm_self_energy_mo_mo
    6336         282 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: mat_self_energy_ao_ao_kp_im, &
    6337         282 :          mat_self_energy_ao_ao_kp_re, mat_self_energy_ao_ao_real_space
    6338             :       TYPE(kpoint_type), POINTER                         :: kpoints_Sigma
    6339             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    6340             : 
    6341         282 :       CALL timeset(routineN, handle)
    6342             : 
    6343         282 :       CALL get_qs_env(qs_env, cell=cell, para_env=para_env)
    6344         282 :       CALL get_cell(cell=cell, periodic=periodic)
    6345             : 
    6346         282 :       size_real_space = 3**(periodic(1) + periodic(2) + periodic(3))
    6347             : 
    6348         282 :       CALL alloc_mat_set(mat_self_energy_ao_ao_real_space, size_real_space, mat_self_energy_ao_ao)
    6349             : 
    6350         282 :       CALL dbcsr_copy(mat_self_energy_ao_ao_real_space(1)%matrix, mat_self_energy_ao_ao)
    6351             : 
    6352         282 :       kpoints_Sigma => qs_env%mp2_env%ri_rpa_im_time%kpoints_Sigma
    6353             : 
    6354         282 :       CALL get_mat_cell_T_from_mat_gamma(mat_self_energy_ao_ao_real_space, qs_env, kpoints_Sigma, 0, 0)
    6355             : 
    6356         282 :       nkp_self_energy = kpoints_Sigma%nkp
    6357             : 
    6358         282 :       CALL alloc_mat_set(mat_self_energy_ao_ao_kp_re, nkp_self_energy, mat_self_energy_ao_ao)
    6359         282 :       CALL alloc_mat_set(mat_self_energy_ao_ao_kp_im, nkp_self_energy, mat_self_energy_ao_ao)
    6360             : 
    6361             :       CALL real_space_to_kpoint_transform_rpa(mat_self_energy_ao_ao_kp_re, mat_self_energy_ao_ao_kp_im, &
    6362         282 :                                               mat_self_energy_ao_ao_real_space, kpoints_Sigma, 1.0E-50_dp)
    6363             : 
    6364         282 :       CALL dbcsr_get_info(mat_self_energy_ao_ao, nfullrows_total=nmo)
    6365         846 :       ALLOCATE (diag_self_energy(nmo))
    6366             : 
    6367         282 :       matrix_struct => kpoints_Sigma%kp_env(1)%kpoint_env%mos(1, 1)%mo_coeff%matrix_struct
    6368             : 
    6369         282 :       CALL cp_cfm_create(cfm_self_energy_ao_ao, matrix_struct)
    6370         282 :       CALL cp_cfm_create(cfm_self_energy_ao_mo, matrix_struct)
    6371         282 :       CALL cp_cfm_create(cfm_self_energy_mo_mo, matrix_struct)
    6372         282 :       CALL cp_cfm_set_all(cfm_self_energy_ao_ao, z_zero)
    6373         282 :       CALL cp_cfm_set_all(cfm_self_energy_ao_mo, z_zero)
    6374         282 :       CALL cp_cfm_set_all(cfm_self_energy_mo_mo, z_zero)
    6375             : 
    6376         282 :       CALL cp_fm_create(fm_self_energy_mo_mo, matrix_struct)
    6377         282 :       CALL cp_cfm_create(cfm_mo_coeff, matrix_struct)
    6378             : 
    6379        2434 :       DO ikp = 1, nkp_self_energy
    6380             : 
    6381             :          CALL dbcsr_to_cfm(mat_self_energy_ao_ao_kp_re(ikp)%matrix, &
    6382        2152 :                            mat_self_energy_ao_ao_kp_im(ikp)%matrix, cfm_self_energy_ao_ao)
    6383             : 
    6384             :          CALL cp_fm_to_cfm(kpoints_Sigma%kp_env(ikp)%kpoint_env%mos(1, ispin)%mo_coeff, &
    6385        2152 :                            kpoints_Sigma%kp_env(ikp)%kpoint_env%mos(2, ispin)%mo_coeff, cfm_mo_coeff)
    6386             : 
    6387             :          CALL parallel_gemm('N', 'N', nmo, nmo, nmo, z_one, cfm_self_energy_ao_ao, cfm_mo_coeff, &
    6388        2152 :                             z_zero, cfm_self_energy_ao_mo)
    6389             : 
    6390             :          CALL parallel_gemm('C', 'N', nmo, nmo, nmo, z_one, cfm_mo_coeff, cfm_self_energy_ao_mo, &
    6391        2152 :                             z_zero, cfm_self_energy_mo_mo)
    6392             : 
    6393        2152 :          CALL cp_cfm_to_fm(cfm_self_energy_mo_mo, fm_self_energy_mo_mo)
    6394             : 
    6395        2152 :          CALL cp_fm_get_diag(fm_self_energy_mo_mo, diag_self_energy)
    6396             : 
    6397        6738 :          vec_Sigma(:, ikp) = diag_self_energy(homo - gw_corr_lev_occ + 1:homo + gw_corr_lev_virt)
    6398             : 
    6399             :       END DO
    6400             : 
    6401         282 :       CALL dbcsr_deallocate_matrix_set(mat_self_energy_ao_ao_real_space)
    6402         282 :       CALL dbcsr_deallocate_matrix_set(mat_self_energy_ao_ao_kp_re)
    6403         282 :       CALL dbcsr_deallocate_matrix_set(mat_self_energy_ao_ao_kp_im)
    6404             : 
    6405         282 :       CALL cp_cfm_release(cfm_self_energy_ao_ao)
    6406         282 :       CALL cp_cfm_release(cfm_self_energy_ao_mo)
    6407         282 :       CALL cp_cfm_release(cfm_self_energy_mo_mo)
    6408         282 :       CALL cp_cfm_release(cfm_mo_coeff)
    6409         282 :       CALL cp_fm_release(fm_self_energy_mo_mo)
    6410             : 
    6411         282 :       DEALLOCATE (diag_self_energy)
    6412             : 
    6413         282 :       CALL timestop(handle)
    6414             : 
    6415        1128 :    END SUBROUTINE trafo_to_mo_and_kpoints
    6416             : 
    6417             : ! **************************************************************************************************
    6418             : !> \brief ...
    6419             : !> \param dbcsr_re ...
    6420             : !> \param dbcsr_im ...
    6421             : !> \param cfm_mat ...
    6422             : ! **************************************************************************************************
    6423        6456 :    SUBROUTINE dbcsr_to_cfm(dbcsr_re, dbcsr_im, cfm_mat)
    6424             : 
    6425             :       TYPE(dbcsr_type), POINTER                          :: dbcsr_re, dbcsr_im
    6426             :       TYPE(cp_cfm_type), INTENT(IN)                      :: cfm_mat
    6427             : 
    6428             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'dbcsr_to_cfm'
    6429             : 
    6430             :       INTEGER                                            :: handle
    6431             :       TYPE(cp_fm_type)                                   :: fm_mat_im, fm_mat_re
    6432             : 
    6433        2152 :       CALL timeset(routineN, handle)
    6434             : 
    6435        2152 :       CALL cp_fm_create(fm_mat_re, cfm_mat%matrix_struct)
    6436        2152 :       CALL cp_fm_create(fm_mat_im, cfm_mat%matrix_struct)
    6437        2152 :       CALL cp_fm_set_all(fm_mat_re, 0.0_dp)
    6438        2152 :       CALL cp_fm_set_all(fm_mat_im, 0.0_dp)
    6439             : 
    6440        2152 :       CALL copy_dbcsr_to_fm(dbcsr_re, fm_mat_re)
    6441        2152 :       CALL copy_dbcsr_to_fm(dbcsr_im, fm_mat_im)
    6442             : 
    6443        2152 :       CALL cp_fm_to_cfm(fm_mat_re, fm_mat_im, cfm_mat)
    6444             : 
    6445        2152 :       CALL cp_fm_release(fm_mat_re)
    6446        2152 :       CALL cp_fm_release(fm_mat_im)
    6447             : 
    6448        2152 :       CALL timestop(handle)
    6449             : 
    6450        2152 :    END SUBROUTINE dbcsr_to_cfm
    6451             : 
    6452             : ! **************************************************************************************************
    6453             : !> \brief ...
    6454             : !> \param mat_set ...
    6455             : !> \param mat_size ...
    6456             : !> \param template ...
    6457             : !> \param explicitly_no_symmetry ...
    6458             : ! **************************************************************************************************
    6459         846 :    SUBROUTINE alloc_mat_set(mat_set, mat_size, template, explicitly_no_symmetry)
    6460             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: mat_set
    6461             :       INTEGER, INTENT(IN)                                :: mat_size
    6462             :       TYPE(dbcsr_type), TARGET                           :: template
    6463             :       LOGICAL, OPTIONAL                                  :: explicitly_no_symmetry
    6464             : 
    6465             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'alloc_mat_set'
    6466             : 
    6467             :       INTEGER                                            :: handle, i_size
    6468             :       LOGICAL                                            :: my_explicitly_no_symmetry
    6469             : 
    6470         846 :       CALL timeset(routineN, handle)
    6471             : 
    6472         846 :       my_explicitly_no_symmetry = .FALSE.
    6473         846 :       IF (PRESENT(explicitly_no_symmetry)) my_explicitly_no_symmetry = explicitly_no_symmetry
    6474             : 
    6475         846 :       NULLIFY (mat_set)
    6476         846 :       CALL dbcsr_allocate_matrix_set(mat_set, mat_size)
    6477        7688 :       DO i_size = 1, mat_size
    6478        6842 :          ALLOCATE (mat_set(i_size)%matrix)
    6479        6842 :          IF (my_explicitly_no_symmetry) THEN
    6480             :             CALL dbcsr_create(matrix=mat_set(i_size)%matrix, template=template, &
    6481           0 :                               matrix_type=dbcsr_type_no_symmetry)
    6482             :          ELSE
    6483        6842 :             CALL dbcsr_create(matrix=mat_set(i_size)%matrix, template=template)
    6484             :          END IF
    6485        6842 :          CALL dbcsr_copy(mat_set(i_size)%matrix, template)
    6486        7688 :          CALL dbcsr_set(mat_set(i_size)%matrix, 0.0_dp)
    6487             :       END DO
    6488             : 
    6489         846 :       CALL timestop(handle)
    6490             : 
    6491         846 :    END SUBROUTINE alloc_mat_set
    6492             : 
    6493             : ! **************************************************************************************************
    6494             : !> \brief ...
    6495             : !> \param mat_set ...
    6496             : !> \param mat_size_1 ...
    6497             : !> \param mat_size_2 ...
    6498             : !> \param template ...
    6499             : !> \param explicitly_no_symmetry ...
    6500             : ! **************************************************************************************************
    6501           4 :    SUBROUTINE alloc_mat_set_2d(mat_set, mat_size_1, mat_size_2, template, explicitly_no_symmetry)
    6502             :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: mat_set
    6503             :       INTEGER, INTENT(IN)                                :: mat_size_1, mat_size_2
    6504             :       TYPE(dbcsr_type), TARGET                           :: template
    6505             :       LOGICAL, OPTIONAL                                  :: explicitly_no_symmetry
    6506             : 
    6507             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'alloc_mat_set_2d'
    6508             : 
    6509             :       INTEGER                                            :: handle, i_size, j_size
    6510             :       LOGICAL                                            :: my_explicitly_no_symmetry
    6511             : 
    6512           4 :       CALL timeset(routineN, handle)
    6513             : 
    6514           4 :       my_explicitly_no_symmetry = .FALSE.
    6515           4 :       IF (PRESENT(explicitly_no_symmetry)) my_explicitly_no_symmetry = explicitly_no_symmetry
    6516             : 
    6517           4 :       NULLIFY (mat_set)
    6518           4 :       CALL dbcsr_allocate_matrix_set(mat_set, mat_size_1, mat_size_2)
    6519          16 :       DO i_size = 1, mat_size_1
    6520         124 :          DO j_size = 1, mat_size_2
    6521         108 :             ALLOCATE (mat_set(i_size, j_size)%matrix)
    6522         108 :             IF (my_explicitly_no_symmetry) THEN
    6523             :                CALL dbcsr_create(matrix=mat_set(i_size, j_size)%matrix, template=template, &
    6524         108 :                                  matrix_type=dbcsr_type_no_symmetry)
    6525             :             ELSE
    6526           0 :                CALL dbcsr_create(matrix=mat_set(i_size, j_size)%matrix, template=template)
    6527             :             END IF
    6528         108 :             CALL dbcsr_copy(mat_set(i_size, j_size)%matrix, template)
    6529         120 :             CALL dbcsr_set(mat_set(i_size, j_size)%matrix, 0.0_dp)
    6530             :          END DO
    6531             :       END DO
    6532             : 
    6533           4 :       CALL timestop(handle)
    6534             : 
    6535           4 :    END SUBROUTINE alloc_mat_set_2d
    6536             : 
    6537             : ! **************************************************************************************************
    6538             : !> \brief ...
    6539             : !> \param t_3c_O_all ...
    6540             : !> \param t_greens_fct ...
    6541             : !> \param t_3c_O_W ...
    6542             : !> \param mat_self_energy_ao_ao ...
    6543             : !> \param bounds_ao_ao_j ...
    6544             : !> \param bounds_RI_i ...
    6545             : !> \param unit_nr ...
    6546             : !> \param eps_filter ...
    6547             : !> \param do_occ ...
    6548             : !> \param do_virt ...
    6549             : ! **************************************************************************************************
    6550        3680 :    SUBROUTINE contract_to_self_energy(t_3c_O_all, t_greens_fct, t_3c_O_W, &
    6551             :                                       mat_self_energy_ao_ao, bounds_ao_ao_j, bounds_RI_i, &
    6552             :                                       unit_nr, eps_filter, do_occ, do_virt)
    6553             : 
    6554             :       TYPE(dbt_type)                                     :: t_3c_O_all, t_greens_fct, t_3c_O_W
    6555             :       TYPE(dbcsr_type), TARGET                           :: mat_self_energy_ao_ao
    6556             :       INTEGER, DIMENSION(2, 2)                           :: bounds_ao_ao_j
    6557             :       INTEGER, DIMENSION(2, 1)                           :: bounds_RI_i
    6558             :       INTEGER                                            :: unit_nr
    6559             :       REAL(KIND=dp)                                      :: eps_filter
    6560             :       LOGICAL                                            :: do_occ, do_virt
    6561             : 
    6562             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'contract_to_self_energy'
    6563             : 
    6564             :       INTEGER                                            :: handle
    6565             :       INTEGER, DIMENSION(2, 1)                           :: bounds_ao_j
    6566             :       INTEGER, DIMENSION(2, 2)                           :: bounds_ao_all_RI_i, bounds_RI_i_ao_j
    6567             :       REAL(KIND=dp)                                      :: sign_self_energy
    6568       92000 :       TYPE(dbt_type)                                     :: t_3c_O_G, t_3c_O_G_tmp, t_self_energy, &
    6569       33120 :                                                             t_self_energy_tmp
    6570             : 
    6571        3680 :       CALL timeset(routineN, handle)
    6572             : 
    6573        3680 :       CPASSERT(do_occ .EQV. (.NOT. do_virt))
    6574             : 
    6575        3680 :       CALL dbt_create(t_3c_O_all, t_3c_O_G, name="M occ (RI AO | AO)")
    6576        3680 :       CALL dbt_create(t_3c_O_all, t_3c_O_G_tmp, name="M occ (RI AO | AO)")
    6577        3680 :       CALL dbt_create(t_greens_fct, t_self_energy, name="(AO|AO)")
    6578        3680 :       CALL dbt_create(mat_self_energy_ao_ao, t_self_energy_tmp)
    6579             : 
    6580       11040 :       bounds_ao_j(:, 1) = bounds_ao_ao_j(:, 1)
    6581       11040 :       bounds_ao_all_RI_i(:, 1) = bounds_RI_i(:, 1)
    6582       11040 :       bounds_ao_all_RI_i(:, 2) = bounds_ao_ao_j(:, 2)
    6583             : 
    6584             :       CALL dbt_contract(1.0_dp, t_greens_fct, t_3c_O_all, 0.0_dp, &
    6585             :                         t_3c_O_G_tmp, &
    6586             :                         contract_1=[2], notcontract_1=[1], &
    6587             :                         contract_2=[3], notcontract_2=[1, 2], &
    6588             :                         map_1=[3], map_2=[1, 2], &
    6589             :                         bounds_2=bounds_ao_j, &
    6590             :                         bounds_3=bounds_ao_all_RI_i, &
    6591             :                         filter_eps=eps_filter, &
    6592        3680 :                         unit_nr=unit_nr)
    6593             : 
    6594        3680 :       CALL dbt_copy(t_3c_O_G_tmp, t_3c_O_G, order=[1, 3, 2], move_data=.TRUE.)
    6595             : 
    6596        3680 :       IF (do_occ) sign_self_energy = -1.0_dp
    6597        3680 :       IF (do_virt) sign_self_energy = 1.0_dp
    6598             : 
    6599       11040 :       bounds_RI_i_ao_j(:, 1) = bounds_RI_i(:, 1)
    6600       11040 :       bounds_RI_i_ao_j(:, 2) = bounds_ao_ao_j(:, 1)
    6601             : 
    6602             :       CALL dbt_contract(sign_self_energy, t_3c_O_W, t_3c_O_G, 0.0_dp, &
    6603             :                         t_self_energy, &
    6604             :                         contract_1=[1, 2], notcontract_1=[3], &
    6605             :                         contract_2=[1, 2], notcontract_2=[3], &
    6606             :                         map_1=[1], map_2=[2], &
    6607             :                         bounds_1=bounds_RI_i_ao_j, &
    6608             :                         filter_eps=eps_filter, &
    6609        3680 :                         unit_nr=unit_nr)
    6610             : 
    6611        3680 :       CALL dbt_copy(t_self_energy, t_self_energy_tmp)
    6612        3680 :       CALL dbt_clear(t_self_energy)
    6613             : 
    6614        3680 :       CALL dbt_copy_tensor_to_matrix(t_self_energy_tmp, mat_self_energy_ao_ao, summation=.TRUE.)
    6615             : 
    6616        3680 :       CALL dbt_destroy(t_3c_O_G)
    6617        3680 :       CALL dbt_destroy(t_3c_O_G_tmp)
    6618        3680 :       CALL dbt_destroy(t_self_energy)
    6619        3680 :       CALL dbt_destroy(t_self_energy_tmp)
    6620             : 
    6621        3680 :       CALL timestop(handle)
    6622             : 
    6623        3680 :    END SUBROUTINE contract_to_self_energy
    6624             : 
    6625             : ! **************************************************************************************************
    6626             : !> \brief ...
    6627             : !> \param t_3c_overl_int_gw_AO ...
    6628             : !> \param t_3c_overl_int_gw_RI ...
    6629             : !> \param t_AO ...
    6630             : !> \param t_RI ...
    6631             : !> \param prefac ...
    6632             : !> \param mo_bounds ...
    6633             : !> \param unit_nr ...
    6634             : !> \param t_3c_ctr_RI ...
    6635             : !> \param t_3c_ctr_AO ...
    6636             : !> \param calculate_ctr_RI ...
    6637             : ! **************************************************************************************************
    6638        1322 :    SUBROUTINE contract_cubic_gw(t_3c_overl_int_gw_AO, t_3c_overl_int_gw_RI, &
    6639             :                                 t_AO, t_RI, prefac, &
    6640             :                                 mo_bounds, unit_nr, &
    6641             :                                 t_3c_ctr_RI, t_3c_ctr_AO, calculate_ctr_RI)
    6642             :       TYPE(dbt_type), INTENT(INOUT)                      :: t_3c_overl_int_gw_AO, &
    6643             :                                                             t_3c_overl_int_gw_RI, t_AO, t_RI
    6644             :       REAL(dp), DIMENSION(2), INTENT(IN)                 :: prefac
    6645             :       INTEGER, DIMENSION(2), INTENT(IN)                  :: mo_bounds
    6646             :       INTEGER, INTENT(IN)                                :: unit_nr
    6647             :       TYPE(dbt_type), INTENT(INOUT)                      :: t_3c_ctr_RI, t_3c_ctr_AO
    6648             :       LOGICAL, INTENT(IN)                                :: calculate_ctr_RI
    6649             : 
    6650             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'contract_cubic_gw'
    6651             : 
    6652             :       INTEGER                                            :: handle
    6653             :       INTEGER, DIMENSION(2, 2)                           :: ctr_bounds_mo
    6654             :       INTEGER, DIMENSION(3)                              :: bounds_3c
    6655             : 
    6656        1322 :       CALL timeset(routineN, handle)
    6657             : 
    6658        1322 :       IF (calculate_ctr_RI) THEN
    6659         662 :          CALL dbt_get_info(t_3c_overl_int_gw_RI, nfull_total=bounds_3c)
    6660        1986 :          ctr_bounds_mo(:, 1) = [1, bounds_3c(2)]
    6661        1986 :          ctr_bounds_mo(:, 2) = mo_bounds
    6662             : 
    6663             :          CALL dbt_contract(prefac(1), t_RI, t_3c_overl_int_gw_RI, 0.0_dp, &
    6664             :                            t_3c_ctr_RI, &
    6665             :                            contract_1=[2], notcontract_1=[1], &
    6666             :                            contract_2=[1], notcontract_2=[2, 3], &
    6667             :                            map_1=[1], map_2=[2, 3], &
    6668             :                            bounds_3=ctr_bounds_mo, &
    6669         662 :                            unit_nr=unit_nr)
    6670             : 
    6671             :       END IF
    6672             : 
    6673        1322 :       CALL dbt_get_info(t_3c_overl_int_gw_AO, nfull_total=bounds_3c)
    6674        3966 :       ctr_bounds_mo(:, 1) = [1, bounds_3c(2)]
    6675        3966 :       ctr_bounds_mo(:, 2) = mo_bounds
    6676             : 
    6677             :       CALL dbt_contract(prefac(2), t_AO, t_3c_overl_int_gw_AO, 0.0_dp, &
    6678             :                         t_3c_ctr_AO, &
    6679             :                         contract_1=[2], notcontract_1=[1], &
    6680             :                         contract_2=[1], notcontract_2=[2, 3], &
    6681             :                         map_1=[1], map_2=[2, 3], &
    6682             :                         bounds_3=ctr_bounds_mo, &
    6683        1322 :                         unit_nr=unit_nr)
    6684             : 
    6685        1322 :       CALL timestop(handle)
    6686             : 
    6687        1322 :    END SUBROUTINE
    6688             : 
    6689             : ! **************************************************************************************************
    6690             : !> \brief ...
    6691             : !> \param t3c_1 ...
    6692             : !> \param t3c_2 ...
    6693             : !> \param vec_sigma ...
    6694             : !> \param mo_offset ...
    6695             : !> \param mo_bounds ...
    6696             : !> \param para_env ...
    6697             : ! **************************************************************************************************
    6698        1322 :    SUBROUTINE trace_sigma_gw(t3c_1, t3c_2, vec_sigma, mo_offset, mo_bounds, para_env)
    6699             :       TYPE(dbt_type), INTENT(INOUT)                      :: t3c_1, t3c_2
    6700             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: vec_Sigma
    6701             :       INTEGER, INTENT(IN)                                :: mo_offset
    6702             :       INTEGER, DIMENSION(2), INTENT(IN)                  :: mo_bounds
    6703             :       TYPE(mp_para_env_type), INTENT(IN)                 :: para_env
    6704             : 
    6705             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'trace_sigma_gw'
    6706             : 
    6707             :       INTEGER                                            :: handle, n, n_end, n_end_block, n_start, &
    6708             :                                                             n_start_block
    6709             :       INTEGER, DIMENSION(1)                              :: trace_shape
    6710             :       INTEGER, DIMENSION(2)                              :: mo_bounds_off
    6711             :       INTEGER, DIMENSION(3)                              :: boff, bsize, ind
    6712             :       LOGICAL                                            :: found
    6713        1322 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :)     :: block_1, block_2
    6714             :       REAL(KIND=dp), &
    6715        2644 :          DIMENSION(mo_bounds(2)-mo_bounds(1)+1)          :: vec_Sigma_prv
    6716             :       TYPE(dbt_iterator_type)                            :: iter
    6717       11898 :       TYPE(dbt_type)                                     :: t3c_1_redist
    6718             : 
    6719        1322 :       CALL timeset(routineN, handle)
    6720             : 
    6721        1322 :       CALL dbt_create(t3c_2, t3c_1_redist)
    6722        1322 :       CALL dbt_copy(t3c_1, t3c_1_redist, order=[2, 1, 3], move_data=.TRUE.)
    6723             : 
    6724       16206 :       vec_Sigma_prv = 0.0_dp
    6725             : 
    6726             : !$OMP PARALLEL DEFAULT(NONE) REDUCTION(+:vec_Sigma_prv) &
    6727             : !$OMP SHARED(t3c_1_redist,t3c_2,mo_bounds) &
    6728             : !$OMP PRIVATE(iter,ind,bsize,boff,block_1,block_2,found) &
    6729        1322 : !$OMP PRIVATE(n_start_block,n_start,n_end_block,n_end,trace_shape)
    6730             :       CALL dbt_iterator_start(iter, t3c_1_redist)
    6731             :       DO WHILE (dbt_iterator_blocks_left(iter))
    6732             :          CALL dbt_iterator_next_block(iter, ind, blk_size=bsize, blk_offset=boff)
    6733             :          CALL dbt_get_block(t3c_1_redist, ind, block_1, found)
    6734             :          CPASSERT(found)
    6735             :          CALL dbt_get_block(t3c_2, ind, block_2, found)
    6736             :          IF (.NOT. found) CYCLE
    6737             : 
    6738             :          IF (boff(3) < mo_bounds(1)) THEN
    6739             :             n_start_block = mo_bounds(1) - boff(3) + 1
    6740             :             n_start = 1
    6741             :          ELSE
    6742             :             n_start_block = 1
    6743             :             n_start = boff(3) - mo_bounds(1) + 1
    6744             :          END IF
    6745             : 
    6746             :          IF (boff(3) + bsize(3) - 1 > mo_bounds(2)) THEN
    6747             :             n_end_block = mo_bounds(2) - boff(3) + 1
    6748             :             n_end = mo_bounds(2) - mo_bounds(1) + 1
    6749             :          ELSE
    6750             :             n_end_block = bsize(3)
    6751             :             n_end = boff(3) + bsize(3) - mo_bounds(1)
    6752             :          END IF
    6753             : 
    6754             :          trace_shape(1) = SIZE(block_1, 1)*SIZE(block_1, 2)
    6755             :          vec_Sigma_prv(n_start:n_end) = &
    6756             :             vec_Sigma_prv(n_start:n_end) + &
    6757             :             (/(DOT_PRODUCT(RESHAPE(block_1(:, :, n), trace_shape), &
    6758             :                            RESHAPE(block_2(:, :, n), trace_shape)), &
    6759             :                n=n_start_block, n_end_block)/)
    6760             :          DEALLOCATE (block_1, block_2)
    6761             :       END DO
    6762             :       CALL dbt_iterator_stop(iter)
    6763             : !$OMP END PARALLEL
    6764             : 
    6765        1322 :       CALL dbt_destroy(t3c_1_redist)
    6766             : 
    6767        1322 :       CALL para_env%sum(vec_Sigma_prv)
    6768             : 
    6769        3966 :       mo_bounds_off = mo_bounds - mo_offset + 1
    6770             :       vec_Sigma(mo_bounds_off(1):mo_bounds_off(2)) = &
    6771       16206 :          vec_Sigma(mo_bounds_off(1):mo_bounds_off(2)) + vec_Sigma_prv
    6772             : 
    6773        1322 :       CALL timestop(handle)
    6774        2644 :    END SUBROUTINE
    6775             : 
    6776             : ! **************************************************************************************************
    6777             : !> \brief ...
    6778             : !> \param mat_greens_fct_occ ...
    6779             : !> \param mat_greens_fct_virt ...
    6780             : !> \param fm_mo_coeff_occ ...
    6781             : !> \param fm_mo_coeff_virt ...
    6782             : !> \param fm_mo_coeff_occ_scaled ...
    6783             : !> \param fm_mo_coeff_virt_scaled ...
    6784             : !> \param fm_scaled_dm_occ_tau ...
    6785             : !> \param fm_scaled_dm_virt_tau ...
    6786             : !> \param Eigenval ...
    6787             : !> \param nmo ...
    6788             : !> \param eps_filter ...
    6789             : !> \param e_fermi ...
    6790             : !> \param tau ...
    6791             : !> \param para_env ...
    6792             : ! **************************************************************************************************
    6793        1980 :    SUBROUTINE compute_Greens_function_time(mat_greens_fct_occ, mat_greens_fct_virt, fm_mo_coeff_occ, fm_mo_coeff_virt, &
    6794             :                                            fm_mo_coeff_occ_scaled, fm_mo_coeff_virt_scaled, &
    6795         660 :                                            fm_scaled_dm_occ_tau, fm_scaled_dm_virt_tau, Eigenval, nmo, &
    6796             :                                            eps_filter, e_fermi, tau, para_env)
    6797             : 
    6798             :       TYPE(dbcsr_type), INTENT(INOUT)                    :: mat_greens_fct_occ, mat_greens_fct_virt
    6799             :       TYPE(cp_fm_type), INTENT(IN) :: fm_mo_coeff_occ, fm_mo_coeff_virt, fm_mo_coeff_occ_scaled, &
    6800             :          fm_mo_coeff_virt_scaled, fm_scaled_dm_occ_tau, fm_scaled_dm_virt_tau
    6801             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: Eigenval
    6802             :       INTEGER, INTENT(IN)                                :: nmo
    6803             :       REAL(KIND=dp), INTENT(IN)                          :: eps_filter, e_fermi, tau
    6804             :       TYPE(mp_para_env_type), INTENT(IN)                 :: para_env
    6805             : 
    6806             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_Greens_function_time'
    6807             : 
    6808             :       INTEGER                                            :: handle, i_global, iiB, jjB, ncol_local, &
    6809             :                                                             nrow_local
    6810         660 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices, row_indices
    6811             :       REAL(KIND=dp)                                      :: stabilize_exp
    6812             : 
    6813         660 :       CALL timeset(routineN, handle)
    6814             : 
    6815         660 :       CALL para_env%sync()
    6816             : 
    6817             :       ! get info of fm_mo_coeff_occ
    6818             :       CALL cp_fm_get_info(matrix=fm_mo_coeff_occ, &
    6819             :                           nrow_local=nrow_local, &
    6820             :                           ncol_local=ncol_local, &
    6821             :                           row_indices=row_indices, &
    6822         660 :                           col_indices=col_indices)
    6823             : 
    6824             :       ! Multiply the occupied and the virtual MO coefficients with the factor exp((-e_i-e_F)*tau/2).
    6825             :       ! Then, we simply get the sum over all occ states and virt. states by a simple matrix-matrix
    6826             :       ! multiplication.
    6827             : 
    6828         660 :       stabilize_exp = 70.0_dp
    6829             : 
    6830             :       ! first, the occ
    6831        9640 :       DO jjB = 1, nrow_local
    6832      320760 :          DO iiB = 1, ncol_local
    6833      311120 :             i_global = col_indices(iiB)
    6834             : 
    6835      320100 :             IF (ABS(tau*0.5_dp*(Eigenval(i_global) - e_fermi)) < stabilize_exp) THEN
    6836             :                fm_mo_coeff_occ_scaled%local_data(jjB, iiB) = &
    6837      244904 :                   fm_mo_coeff_occ%local_data(jjB, iiB)*EXP(tau*0.5_dp*(Eigenval(i_global) - e_fermi))
    6838             :             ELSE
    6839       66216 :                fm_mo_coeff_occ_scaled%local_data(jjB, iiB) = 0.0_dp
    6840             :             END IF
    6841             : 
    6842             :          END DO
    6843             :       END DO
    6844             : 
    6845             :       ! the same for virt
    6846        9640 :       DO jjB = 1, nrow_local
    6847      320760 :          DO iiB = 1, ncol_local
    6848      311120 :             i_global = col_indices(iiB)
    6849             : 
    6850      320100 :             IF (ABS(tau*0.5_dp*(Eigenval(i_global) - e_fermi)) < stabilize_exp) THEN
    6851             :                fm_mo_coeff_virt_scaled%local_data(jjB, iiB) = &
    6852      244904 :                   fm_mo_coeff_virt%local_data(jjB, iiB)*EXP(-tau*0.5_dp*(Eigenval(i_global) - e_fermi))
    6853             :             ELSE
    6854       66216 :                fm_mo_coeff_virt_scaled%local_data(jjB, iiB) = 0.0_dp
    6855             :             END IF
    6856             : 
    6857             :          END DO
    6858             :       END DO
    6859             : 
    6860         660 :       CALL para_env%sync()
    6861             : 
    6862             :       CALL parallel_gemm(transa="N", transb="T", m=nmo, n=nmo, k=nmo, alpha=1.0_dp, &
    6863             :                          matrix_a=fm_mo_coeff_occ_scaled, matrix_b=fm_mo_coeff_occ_scaled, beta=0.0_dp, &
    6864         660 :                          matrix_c=fm_scaled_dm_occ_tau)
    6865             : 
    6866             :       CALL parallel_gemm(transa="N", transb="T", m=nmo, n=nmo, k=nmo, alpha=1.0_dp, &
    6867             :                          matrix_a=fm_mo_coeff_virt_scaled, matrix_b=fm_mo_coeff_virt_scaled, beta=0.0_dp, &
    6868         660 :                          matrix_c=fm_scaled_dm_virt_tau)
    6869             : 
    6870         660 :       CALL dbcsr_set(mat_greens_fct_occ, 0.0_dp)
    6871             : 
    6872             :       CALL copy_fm_to_dbcsr(fm_scaled_dm_occ_tau, &
    6873             :                             mat_greens_fct_occ, &
    6874         660 :                             keep_sparsity=.FALSE.)
    6875             : 
    6876         660 :       CALL dbcsr_filter(mat_greens_fct_occ, eps_filter)
    6877             : 
    6878         660 :       CALL dbcsr_set(mat_greens_fct_virt, 0.0_dp)
    6879             : 
    6880             :       CALL copy_fm_to_dbcsr(fm_scaled_dm_virt_tau, &
    6881             :                             mat_greens_fct_virt, &
    6882         660 :                             keep_sparsity=.FALSE.)
    6883             : 
    6884         660 :       CALL dbcsr_filter(mat_greens_fct_virt, eps_filter)
    6885             : 
    6886         660 :       CALL timestop(handle)
    6887             : 
    6888         660 :    END SUBROUTINE compute_Greens_function_time
    6889             : 
    6890             : END MODULE rpa_gw
    6891             : 

Generated by: LCOV version 1.15