LCOV - code coverage report
Current view: top level - src - rpa_gw_sigma_x.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:b4bd748) Lines: 208 430 48.4 %
Date: 2025-03-09 07:56:22 Functions: 1 4 25.0 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2025 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief Routines to calculate EXX within GW
      10             : !> \par History
      11             : !>      07.2020 separated from mp2.F [F. Stein, code by Jan Wilhelm]
      12             : !>      07.2024 determine number of corrected MOs from BSE cutoffs [Maximilian Graml]
      13             : !> \author Jan Wilhelm, Frederick Stein
      14             : ! **************************************************************************************************
      15             : MODULE rpa_gw_sigma_x
      16             :    USE admm_methods,                    ONLY: admm_mo_merge_ks_matrix
      17             :    USE admm_types,                      ONLY: admm_type,&
      18             :                                               get_admm_env
      19             :    USE bse_util,                        ONLY: determine_cutoff_indices
      20             :    USE cp_cfm_basic_linalg,             ONLY: cp_cfm_scale_and_add_fm
      21             :    USE cp_cfm_types,                    ONLY: cp_cfm_create,&
      22             :                                               cp_cfm_get_info,&
      23             :                                               cp_cfm_release,&
      24             :                                               cp_cfm_type
      25             :    USE cp_control_types,                ONLY: dft_control_type
      26             :    USE cp_dbcsr_api,                    ONLY: &
      27             :         dbcsr_add, dbcsr_copy, dbcsr_create, dbcsr_desymmetrize, dbcsr_multiply, dbcsr_p_type, &
      28             :         dbcsr_release, dbcsr_release_p, dbcsr_set, dbcsr_type, dbcsr_type_antisymmetric, &
      29             :         dbcsr_type_symmetric
      30             :    USE cp_dbcsr_contrib,                ONLY: dbcsr_get_diag
      31             :    USE cp_dbcsr_cp2k_link,              ONLY: cp_dbcsr_alloc_block_from_nbl
      32             :    USE cp_dbcsr_operations,             ONLY: copy_dbcsr_to_fm,&
      33             :                                               copy_fm_to_dbcsr,&
      34             :                                               dbcsr_allocate_matrix_set,&
      35             :                                               dbcsr_deallocate_matrix_set
      36             :    USE cp_files,                        ONLY: close_file,&
      37             :                                               open_file
      38             :    USE cp_fm_struct,                    ONLY: cp_fm_struct_type
      39             :    USE cp_fm_types,                     ONLY: cp_fm_create,&
      40             :                                               cp_fm_get_info,&
      41             :                                               cp_fm_release,&
      42             :                                               cp_fm_type
      43             :    USE hfx_energy_potential,            ONLY: integrate_four_center
      44             :    USE hfx_exx,                         ONLY: calc_exx_admm_xc_contributions,&
      45             :                                               exx_post_hfx,&
      46             :                                               exx_pre_hfx
      47             :    USE hfx_ri,                          ONLY: hfx_ri_update_ks
      48             :    USE input_constants,                 ONLY: do_admm_basis_projection,&
      49             :                                               do_admm_purify_none,&
      50             :                                               gw_print_exx,&
      51             :                                               gw_read_exx,&
      52             :                                               xc_none
      53             :    USE input_section_types,             ONLY: section_vals_get,&
      54             :                                               section_vals_get_subs_vals,&
      55             :                                               section_vals_type,&
      56             :                                               section_vals_val_get,&
      57             :                                               section_vals_val_set
      58             :    USE kinds,                           ONLY: dp
      59             :    USE kpoint_methods,                  ONLY: rskp_transform
      60             :    USE kpoint_types,                    ONLY: get_kpoint_info,&
      61             :                                               kpoint_env_type,&
      62             :                                               kpoint_type
      63             :    USE machine,                         ONLY: m_walltime
      64             :    USE mathconstants,                   ONLY: gaussi,&
      65             :                                               z_one,&
      66             :                                               z_zero
      67             :    USE message_passing,                 ONLY: mp_para_env_type
      68             :    USE mp2_integrals,                   ONLY: compute_kpoints
      69             :    USE mp2_ri_2c,                       ONLY: trunc_coulomb_for_exchange
      70             :    USE mp2_types,                       ONLY: mp2_type
      71             :    USE parallel_gemm_api,               ONLY: parallel_gemm
      72             :    USE physcon,                         ONLY: evolt
      73             :    USE qs_energy_types,                 ONLY: qs_energy_type
      74             :    USE qs_environment_types,            ONLY: get_qs_env,&
      75             :                                               qs_environment_type
      76             :    USE qs_ks_methods,                   ONLY: qs_ks_build_kohn_sham_matrix
      77             :    USE qs_ks_types,                     ONLY: qs_ks_env_type
      78             :    USE qs_mo_types,                     ONLY: get_mo_set,&
      79             :                                               mo_set_type
      80             :    USE qs_neighbor_list_types,          ONLY: neighbor_list_set_p_type
      81             :    USE qs_rho_types,                    ONLY: qs_rho_get,&
      82             :                                               qs_rho_type
      83             :    USE rpa_gw,                          ONLY: compute_minus_vxc_kpoints,&
      84             :                                               trafo_to_mo_and_kpoints
      85             :    USE rpa_gw_kpoints_util,             ONLY: get_bandstruc_and_k_dependent_MOs
      86             : 
      87             : !$ USE OMP_LIB, ONLY: omp_get_max_threads, omp_get_thread_num, omp_get_num_threads
      88             : 
      89             : #include "./base/base_uses.f90"
      90             : 
      91             :    IMPLICIT NONE
      92             : 
      93             :    PRIVATE
      94             : 
      95             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'rpa_gw_sigma_x'
      96             : 
      97             :    PUBLIC :: compute_vec_Sigma_x_minus_vxc_gw
      98             : 
      99             : CONTAINS
     100             : 
     101             : ! **************************************************************************************************
     102             : !> \brief ...
     103             : !> \param qs_env ...
     104             : !> \param mp2_env ...
     105             : !> \param mos_mp2 ...
     106             : !> \param energy_ex ...
     107             : !> \param energy_xc_admm ...
     108             : !> \param t3 ...
     109             : !> \param unit_nr ...
     110             : !> \par History
     111             : !>      04.2015 created
     112             : !> \author Jan Wilhelm
     113             : ! **************************************************************************************************
     114         104 :    SUBROUTINE compute_vec_Sigma_x_minus_vxc_gw(qs_env, mp2_env, mos_mp2, energy_ex, energy_xc_admm, t3, unit_nr)
     115             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     116             :       TYPE(mp2_type)                                     :: mp2_env
     117             :       TYPE(mo_set_type), DIMENSION(:), INTENT(IN)        :: mos_mp2
     118             :       REAL(KIND=dp), INTENT(OUT)                         :: energy_ex, energy_xc_admm(2), t3
     119             :       INTEGER, INTENT(IN)                                :: unit_nr
     120             : 
     121             :       CHARACTER(len=*), PARAMETER :: routineN = 'compute_vec_Sigma_x_minus_vxc_gw'
     122             : 
     123             :       CHARACTER(4)                                       :: occ_virt
     124             :       CHARACTER(LEN=40)                                  :: line
     125             :       INTEGER :: dimen, gw_corr_lev_occ, gw_corr_lev_tot, gw_corr_lev_virt, handle, homo, &
     126             :          homo_reduced_bse, homo_startindex_bse, i_img, ikp, irep, ispin, iunit, max_corr_lev_occ, &
     127             :          max_corr_lev_virt, myfun, myfun_aux, myfun_prim, n_level_gw, n_level_gw_ref, n_rep_hf, &
     128             :          nkp, nkp_Sigma, nmo, nspins, print_exx, virtual_reduced_bse, virtual_startindex_bse
     129             :       LOGICAL :: calc_ints, charge_constrain_tmp, do_admm_rpa, do_hfx, do_kpoints_cubic_RPA, &
     130             :          do_kpoints_from_Gamma, do_ri_Sigma_x, really_read_line
     131             :       REAL(KIND=dp) :: E_GAP_GW, E_HOMO_GW, E_LUMO_GW, eh1, ehfx, eigval_dft, eigval_hf_at_dft, &
     132             :          energy_exc, energy_exc1, energy_exc1_aux_fit, energy_exc_aux_fit, energy_total, &
     133             :          exx_minus_vxc, hfx_fraction, min_direct_HF_at_DFT_gap, t1, t2, tmp
     134         104 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: matrix_tmp_2_diag
     135         104 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :)        :: Eigenval_kp_HF_at_DFT, vec_Sigma_x
     136         104 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :)     :: Eigenval_kp, vec_Sigma_x_minus_vxc_gw, &
     137         104 :                                                             vec_Sigma_x_minus_vxc_gw_im
     138         104 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: mo_eigenvalues
     139             :       TYPE(admm_type), POINTER                           :: admm_env
     140             :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
     141         104 :       TYPE(dbcsr_p_type), ALLOCATABLE, DIMENSION(:)      :: mat_exchange_for_kp_from_gamma
     142         104 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_ks, matrix_ks_aux_fit, &
     143         104 :                                                             matrix_ks_aux_fit_hfx, rho_ao, &
     144         104 :                                                             rho_ao_aux_fit
     145         104 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: matrix_ks_2d, matrix_ks_kp_im, &
     146         104 :          matrix_ks_kp_re, matrix_ks_transl, matrix_sigma_x_minus_vxc, matrix_sigma_x_minus_vxc_im, &
     147         104 :          rho_ao_2d
     148             :       TYPE(dbcsr_type)                                   :: matrix_tmp, matrix_tmp_2, mo_coeff_b
     149             :       TYPE(dft_control_type), POINTER                    :: dft_control
     150             :       TYPE(kpoint_type), POINTER                         :: kpoints, kpoints_Sigma
     151             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     152             :       TYPE(qs_energy_type), POINTER                      :: energy
     153             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
     154             :       TYPE(qs_rho_type), POINTER                         :: rho, rho_aux_fit
     155             :       TYPE(section_vals_type), POINTER                   :: hfx_sections, input, xc_section, &
     156             :                                                             xc_section_admm_aux, &
     157             :                                                             xc_section_admm_prim
     158             : 
     159         104 :       NULLIFY (admm_env, matrix_ks, matrix_ks_aux_fit, rho_ao, matrix_sigma_x_minus_vxc, input, &
     160         104 :                xc_section, xc_section_admm_aux, xc_section_admm_prim, hfx_sections, rho, &
     161         104 :                dft_control, para_env, ks_env, mo_coeff, matrix_sigma_x_minus_vxc_im, matrix_ks_aux_fit_hfx, &
     162         104 :                rho_aux_fit, rho_ao_aux_fit)
     163             : 
     164         104 :       CALL timeset(routineN, handle)
     165             : 
     166         104 :       t1 = m_walltime()
     167             : 
     168         104 :       do_admm_rpa = mp2_env%ri_rpa%do_admm
     169         104 :       do_ri_Sigma_x = mp2_env%ri_g0w0%do_ri_Sigma_x
     170         104 :       do_kpoints_cubic_RPA = qs_env%mp2_env%ri_rpa_im_time%do_im_time_kpoints
     171         104 :       do_kpoints_from_Gamma = qs_env%mp2_env%ri_rpa_im_time%do_kpoints_from_Gamma
     172         104 :       print_exx = mp2_env%ri_g0w0%print_exx
     173             : 
     174         104 :       IF (do_kpoints_cubic_RPA) THEN
     175           0 :          CPASSERT(do_ri_Sigma_x)
     176             :       END IF
     177             : 
     178             :       IF (do_kpoints_cubic_RPA) THEN
     179             : 
     180             :          CALL get_qs_env(qs_env, &
     181             :                          admm_env=admm_env, &
     182             :                          matrix_ks_kp=matrix_ks_transl, &
     183             :                          rho=rho, &
     184             :                          input=input, &
     185             :                          dft_control=dft_control, &
     186             :                          para_env=para_env, &
     187             :                          kpoints=kpoints, &
     188             :                          ks_env=ks_env, &
     189           0 :                          energy=energy)
     190           0 :          nkp = kpoints%nkp
     191             : 
     192             :       ELSE
     193             : 
     194             :          CALL get_qs_env(qs_env, &
     195             :                          admm_env=admm_env, &
     196             :                          matrix_ks=matrix_ks, &
     197             :                          rho=rho, &
     198             :                          input=input, &
     199             :                          dft_control=dft_control, &
     200             :                          para_env=para_env, &
     201             :                          ks_env=ks_env, &
     202         104 :                          energy=energy)
     203         104 :          nkp = 1
     204         104 :          CALL qs_rho_get(rho, rho_ao=rho_ao)
     205             : 
     206         104 :          IF (do_admm_rpa) THEN
     207             :             CALL get_admm_env(admm_env, matrix_ks_aux_fit=matrix_ks_aux_fit, rho_aux_fit=rho_aux_fit, &
     208           8 :                               matrix_ks_aux_fit_hfx=matrix_ks_aux_fit_hfx)
     209           8 :             CALL qs_rho_get(rho_aux_fit, rho_ao=rho_ao_aux_fit)
     210             : 
     211             :             ! RPA/GW with ADMM for EXX or the exchange self-energy only implemented for
     212             :             ! ADMM_PURIFICATION_METHOD  NONE
     213             :             ! METHOD                    BASIS_PROJECTION
     214             :             ! in the admm section
     215           8 :             CPASSERT(admm_env%purification_method == do_admm_purify_none)
     216           8 :             CPASSERT(dft_control%admm_control%method == do_admm_basis_projection)
     217             :          END IF
     218             :       END IF
     219             : 
     220         104 :       nspins = dft_control%nspins
     221             : 
     222             :       ! safe ks matrix for later: we will transform matrix_ks
     223             :       ! to T-cell index and then to k-points for band structure calculation
     224         104 :       IF (do_kpoints_from_Gamma) THEN
     225             :          ! not yet there: open shell
     226          66 :          ALLOCATE (qs_env%mp2_env%ri_g0w0%matrix_ks(nspins))
     227          34 :          DO ispin = 1, nspins
     228          18 :             NULLIFY (qs_env%mp2_env%ri_g0w0%matrix_ks(ispin)%matrix)
     229          18 :             ALLOCATE (qs_env%mp2_env%ri_g0w0%matrix_ks(ispin)%matrix)
     230             :             CALL dbcsr_create(qs_env%mp2_env%ri_g0w0%matrix_ks(ispin)%matrix, &
     231          18 :                               template=matrix_ks(ispin)%matrix)
     232             :             CALL dbcsr_desymmetrize(matrix_ks(ispin)%matrix, &
     233          34 :                                     qs_env%mp2_env%ri_g0w0%matrix_ks(ispin)%matrix)
     234             : 
     235             :          END DO
     236             :       END IF
     237             : 
     238         104 :       IF (do_kpoints_cubic_RPA) THEN
     239             : 
     240           0 :          CALL allocate_matrix_ks_kp(matrix_ks_transl, matrix_ks_kp_re, matrix_ks_kp_im, kpoints)
     241           0 :          CALL transform_matrix_ks_to_kp(matrix_ks_transl, matrix_ks_kp_re, matrix_ks_kp_im, kpoints)
     242             : 
     243           0 :          DO ispin = 1, nspins
     244           0 :          DO i_img = 1, SIZE(matrix_ks_transl, 2)
     245           0 :             CALL dbcsr_set(matrix_ks_transl(ispin, i_img)%matrix, 0.0_dp)
     246             :          END DO
     247             :          END DO
     248             : 
     249             :       END IF
     250             : 
     251             :       ! initialize matrix_sigma_x_minus_vxc
     252         104 :       NULLIFY (matrix_sigma_x_minus_vxc)
     253         104 :       CALL dbcsr_allocate_matrix_set(matrix_sigma_x_minus_vxc, nspins, nkp)
     254         104 :       IF (do_kpoints_cubic_RPA) THEN
     255           0 :          NULLIFY (matrix_sigma_x_minus_vxc_im)
     256           0 :          CALL dbcsr_allocate_matrix_set(matrix_sigma_x_minus_vxc_im, nspins, nkp)
     257             :       END IF
     258             : 
     259         220 :       DO ispin = 1, nspins
     260         336 :          DO ikp = 1, nkp
     261             : 
     262         232 :             IF (do_kpoints_cubic_RPA) THEN
     263             : 
     264           0 :                ALLOCATE (matrix_sigma_x_minus_vxc(ispin, ikp)%matrix)
     265             :                CALL dbcsr_create(matrix_sigma_x_minus_vxc(ispin, ikp)%matrix, &
     266             :                                  template=matrix_ks_kp_re(1, 1)%matrix, &
     267           0 :                                  matrix_type=dbcsr_type_symmetric)
     268             : 
     269           0 :                CALL dbcsr_copy(matrix_sigma_x_minus_vxc(ispin, ikp)%matrix, matrix_ks_kp_re(ispin, ikp)%matrix)
     270           0 :                CALL dbcsr_set(matrix_ks_kp_re(ispin, ikp)%matrix, 0.0_dp)
     271             : 
     272           0 :                ALLOCATE (matrix_sigma_x_minus_vxc_im(ispin, ikp)%matrix)
     273             :                CALL dbcsr_create(matrix_sigma_x_minus_vxc_im(ispin, ikp)%matrix, &
     274             :                                  template=matrix_ks_kp_im(1, 1)%matrix, &
     275           0 :                                  matrix_type=dbcsr_type_antisymmetric)
     276             : 
     277           0 :                CALL dbcsr_copy(matrix_sigma_x_minus_vxc_im(ispin, ikp)%matrix, matrix_ks_kp_im(ispin, ikp)%matrix)
     278           0 :                CALL dbcsr_set(matrix_ks_kp_im(ispin, ikp)%matrix, 0.0_dp)
     279             : 
     280             :             ELSE
     281             : 
     282         116 :                ALLOCATE (matrix_sigma_x_minus_vxc(ispin, ikp)%matrix)
     283             :                CALL dbcsr_create(matrix_sigma_x_minus_vxc(ispin, ikp)%matrix, &
     284         116 :                                  template=matrix_ks(1)%matrix)
     285             : 
     286         116 :                CALL dbcsr_copy(matrix_sigma_x_minus_vxc(ispin, ikp)%matrix, matrix_ks(ispin)%matrix)
     287         116 :                CALL dbcsr_set(matrix_ks(ispin)%matrix, 0.0_dp)
     288             : 
     289             :             END IF
     290             : 
     291             :          END DO
     292             :       END DO
     293             : 
     294             :       ! set DFT functional to none and hfx_fraction to zero
     295         104 :       hfx_sections => section_vals_get_subs_vals(input, "DFT%XC%HF")
     296         104 :       CALL section_vals_get(hfx_sections, explicit=do_hfx)
     297             : 
     298         104 :       IF (do_hfx) THEN
     299          18 :          hfx_fraction = qs_env%x_data(1, 1)%general_parameter%fraction
     300          54 :          qs_env%x_data(:, :)%general_parameter%fraction = 0.0_dp
     301             :       END IF
     302         104 :       xc_section => section_vals_get_subs_vals(input, "DFT%XC")
     303             :       CALL section_vals_val_get(xc_section, "XC_FUNCTIONAL%_SECTION_PARAMETERS_", &
     304         104 :                                 i_val=myfun)
     305             :       CALL section_vals_val_set(xc_section, "XC_FUNCTIONAL%_SECTION_PARAMETERS_", &
     306         104 :                                 i_val=xc_none)
     307             : 
     308             :       ! in ADMM, also set the XC functional for ADMM correction to none
     309             :       ! do not do this if we do ADMM for Sigma_x
     310         104 :       IF (dft_control%do_admm) THEN
     311             :          xc_section_admm_aux => section_vals_get_subs_vals(admm_env%xc_section_aux, &
     312           8 :                                                            "XC_FUNCTIONAL")
     313             :          CALL section_vals_val_get(xc_section_admm_aux, "_SECTION_PARAMETERS_", &
     314           8 :                                    i_val=myfun_aux)
     315             :          CALL section_vals_val_set(xc_section_admm_aux, "_SECTION_PARAMETERS_", &
     316           8 :                                    i_val=xc_none)
     317             : 
     318             :          ! the same for the primary basis
     319             :          xc_section_admm_prim => section_vals_get_subs_vals(admm_env%xc_section_primary, &
     320           8 :                                                             "XC_FUNCTIONAL")
     321             :          CALL section_vals_val_get(xc_section_admm_prim, "_SECTION_PARAMETERS_", &
     322           8 :                                    i_val=myfun_prim)
     323             :          CALL section_vals_val_set(xc_section_admm_prim, "_SECTION_PARAMETERS_", &
     324           8 :                                    i_val=xc_none)
     325             : 
     326             :          ! for ADMMQ/S, set the charge_constrain to false (otherwise wrong results)
     327           8 :          charge_constrain_tmp = .FALSE.
     328           8 :          IF (admm_env%charge_constrain) THEN
     329           0 :             admm_env%charge_constrain = .FALSE.
     330           0 :             charge_constrain_tmp = .TRUE.
     331             :          END IF
     332             : 
     333             :       END IF
     334             : 
     335             :       ! if we do ADMM for Sigma_x, we write the ADMM correction into matrix_ks_aux_fit
     336             :       ! and therefore we should set it to zero
     337         104 :       IF (do_admm_rpa) THEN
     338          18 :          DO ispin = 1, nspins
     339          18 :             CALL dbcsr_set(matrix_ks_aux_fit(ispin)%matrix, 0.0_dp)
     340             :          END DO
     341             :       END IF
     342             : 
     343         104 :       IF (.NOT. mp2_env%ri_g0w0%update_xc_energy) THEN
     344          78 :          energy_total = energy%total
     345          78 :          energy_exc = energy%exc
     346          78 :          energy_exc1 = energy%exc1
     347          78 :          energy_exc_aux_fit = energy%ex
     348          78 :          energy_exc1_aux_fit = energy%exc_aux_fit
     349          78 :          energy_ex = energy%exc1_aux_fit
     350             :       END IF
     351             : 
     352             :       ! Remove the Exchange-correlation energy contributions from the total energy
     353             :       energy%total = energy%total - (energy%exc + energy%exc1 + energy%ex + &
     354         104 :                                      energy%exc_aux_fit + energy%exc1_aux_fit)
     355             : 
     356             :       ! calculate KS-matrix without XC and without HF
     357             :       CALL qs_ks_build_kohn_sham_matrix(qs_env=qs_env, calculate_forces=.FALSE., &
     358         104 :                                         just_energy=.FALSE.)
     359             : 
     360         104 :       IF (.NOT. mp2_env%ri_g0w0%update_xc_energy) THEN
     361          78 :          energy%exc = energy_exc
     362          78 :          energy%exc1 = energy_exc1
     363          78 :          energy%exc_aux_fit = energy_ex
     364          78 :          energy%exc1_aux_fit = energy_exc_aux_fit
     365          78 :          energy%ex = energy_exc1_aux_fit
     366          78 :          energy%total = energy_total
     367             :       END IF
     368             : 
     369             :       ! set the DFT functional and HF fraction back
     370             :       CALL section_vals_val_set(xc_section, "XC_FUNCTIONAL%_SECTION_PARAMETERS_", &
     371         104 :                                 i_val=myfun)
     372         104 :       IF (do_hfx) THEN
     373          54 :          qs_env%x_data(:, :)%general_parameter%fraction = hfx_fraction
     374             :       END IF
     375             : 
     376         104 :       IF (dft_control%do_admm) THEN
     377             :          xc_section_admm_aux => section_vals_get_subs_vals(admm_env%xc_section_aux, &
     378           8 :                                                            "XC_FUNCTIONAL")
     379             :          xc_section_admm_prim => section_vals_get_subs_vals(admm_env%xc_section_primary, &
     380           8 :                                                             "XC_FUNCTIONAL")
     381             : 
     382             :          CALL section_vals_val_set(xc_section_admm_aux, "_SECTION_PARAMETERS_", &
     383           8 :                                    i_val=myfun_aux)
     384             :          CALL section_vals_val_set(xc_section_admm_prim, "_SECTION_PARAMETERS_", &
     385           8 :                                    i_val=myfun_prim)
     386           8 :          IF (charge_constrain_tmp) THEN
     387           0 :             admm_env%charge_constrain = .TRUE.
     388             :          END IF
     389             :       END IF
     390             : 
     391         104 :       IF (do_kpoints_cubic_RPA) THEN
     392           0 :          CALL transform_matrix_ks_to_kp(matrix_ks_transl, matrix_ks_kp_re, matrix_ks_kp_im, kpoints)
     393             :       END IF
     394             : 
     395             :       ! remove the single-particle part (kin. En + Hartree pot) and change the sign
     396         220 :       DO ispin = 1, nspins
     397         220 :          IF (do_kpoints_cubic_RPA) THEN
     398           0 :             DO ikp = 1, nkp
     399           0 :                CALL dbcsr_add(matrix_sigma_x_minus_vxc(ispin, ikp)%matrix, matrix_ks_kp_re(ispin, ikp)%matrix, -1.0_dp, 1.0_dp)
     400           0 :                CALL dbcsr_add(matrix_sigma_x_minus_vxc_im(ispin, ikp)%matrix, matrix_ks_kp_im(ispin, ikp)%matrix, -1.0_dp, 1.0_dp)
     401             :             END DO
     402             :          ELSE
     403         116 :             CALL dbcsr_add(matrix_sigma_x_minus_vxc(ispin, 1)%matrix, matrix_ks(ispin)%matrix, -1.0_dp, 1.0_dp)
     404             :          END IF
     405             :       END DO
     406             : 
     407         104 :       IF (do_kpoints_cubic_RPA) THEN
     408             : 
     409             :          CALL transform_sigma_x_minus_vxc_to_MO_basis(kpoints, matrix_sigma_x_minus_vxc, &
     410             :                                                       matrix_sigma_x_minus_vxc_im, &
     411             :                                                       vec_Sigma_x_minus_vxc_gw, &
     412             :                                                       vec_Sigma_x_minus_vxc_gw_im, &
     413           0 :                                                       para_env, nmo, mp2_env)
     414             : 
     415             :       ELSE
     416             : 
     417         220 :          DO ispin = 1, nspins
     418         116 :             CALL dbcsr_set(matrix_ks(ispin)%matrix, 0.0_dp)
     419         220 :             IF (do_admm_rpa) THEN
     420          10 :                CALL dbcsr_set(matrix_ks_aux_fit(ispin)%matrix, 0.0_dp)
     421             :             END IF
     422             :          END DO
     423             : 
     424         104 :          hfx_sections => section_vals_get_subs_vals(input, "DFT%XC%WF_CORRELATION%RI_RPA%HF")
     425             : 
     426         104 :          CALL section_vals_get(hfx_sections, n_repetition=n_rep_hf)
     427             : 
     428             :          ! in most cases, we calculate the exchange self-energy here. But if we do only RI for
     429             :          ! the exchange self-energy, we do not calculate exchange here
     430         104 :          ehfx = 0.0_dp
     431         104 :          IF (.NOT. do_ri_Sigma_x) THEN
     432             : 
     433          48 :             CALL exx_pre_hfx(hfx_sections, qs_env%mp2_env%ri_rpa%x_data, qs_env%mp2_env%ri_rpa%reuse_hfx)
     434          48 :             calc_ints = .NOT. qs_env%mp2_env%ri_rpa%reuse_hfx
     435             : 
     436             :             ! add here HFX (=Sigma_exchange) to matrix_sigma_x_minus_vxc
     437          96 :             DO irep = 1, n_rep_hf
     438          48 :                IF (do_admm_rpa) THEN
     439           8 :                   matrix_ks_2d(1:nspins, 1:1) => matrix_ks_aux_fit(1:nspins)
     440           8 :                   rho_ao_2d(1:nspins, 1:1) => rho_ao_aux_fit(1:nspins)
     441             :                ELSE
     442          40 :                   matrix_ks_2d(1:nspins, 1:1) => matrix_ks(1:nspins)
     443          40 :                   rho_ao_2d(1:nspins, 1:1) => rho_ao(1:nspins)
     444             :                END IF
     445             : 
     446          96 :                IF (qs_env%mp2_env%ri_rpa%x_data(irep, 1)%do_hfx_ri) THEN
     447             :                   CALL hfx_ri_update_ks(qs_env, qs_env%mp2_env%ri_rpa%x_data(irep, 1)%ri_data, matrix_ks_2d, ehfx, &
     448             :                                         rho_ao=rho_ao_2d, geometry_did_change=calc_ints, nspins=nspins, &
     449           0 :                                         hf_fraction=qs_env%mp2_env%ri_rpa%x_data(irep, 1)%general_parameter%fraction)
     450             : 
     451           0 :                   IF (do_admm_rpa) THEN
     452             :                      !for ADMMS, we need the exchange matrix k(d) for both spins
     453           0 :                      DO ispin = 1, nspins
     454             :                         CALL dbcsr_copy(matrix_ks_aux_fit_hfx(ispin)%matrix, matrix_ks_2d(ispin, 1)%matrix, &
     455           0 :                                         name="HF exch. part of matrix_ks_aux_fit for ADMMS")
     456             :                      END DO
     457             :                   END IF
     458             :                ELSE
     459             :                   CALL integrate_four_center(qs_env, qs_env%mp2_env%ri_rpa%x_data, matrix_ks_2d, eh1, &
     460             :                                              rho_ao_2d, hfx_sections, &
     461             :                                              para_env, calc_ints, irep, .TRUE., &
     462          48 :                                              ispin=1)
     463          48 :                   ehfx = ehfx + eh1
     464             :                END IF
     465             :             END DO
     466             : 
     467             :             !ADMM XC correction
     468          48 :             IF (do_admm_rpa) THEN
     469             :                CALL calc_exx_admm_xc_contributions(qs_env=qs_env, &
     470             :                                                    matrix_prim=matrix_ks, &
     471             :                                                    matrix_aux=matrix_ks_aux_fit, &
     472             :                                                    x_data=qs_env%mp2_env%ri_rpa%x_data, &
     473             :                                                    exc=energy_xc_admm(1), &
     474             :                                                    exc_aux_fit=energy_xc_admm(2), &
     475             :                                                    calc_forces=.FALSE., &
     476           8 :                                                    use_virial=.FALSE.)
     477             :             END IF
     478             : 
     479          48 :             IF (do_kpoints_from_Gamma .AND. print_exx == gw_print_exx) THEN
     480           0 :                ALLOCATE (mat_exchange_for_kp_from_gamma(1))
     481             : 
     482           0 :                DO ispin = 1, 1
     483           0 :                   NULLIFY (mat_exchange_for_kp_from_gamma(ispin)%matrix)
     484           0 :                   ALLOCATE (mat_exchange_for_kp_from_gamma(ispin)%matrix)
     485           0 :                   CALL dbcsr_create(mat_exchange_for_kp_from_gamma(ispin)%matrix, template=matrix_ks(ispin)%matrix)
     486           0 :                   CALL dbcsr_desymmetrize(matrix_ks(ispin)%matrix, mat_exchange_for_kp_from_gamma(ispin)%matrix)
     487             :                END DO
     488             : 
     489             :             END IF
     490             : 
     491          48 :             CALL exx_post_hfx(qs_env, qs_env%mp2_env%ri_rpa%x_data, qs_env%mp2_env%ri_rpa%reuse_hfx)
     492             :          END IF
     493             : 
     494         104 :          energy_ex = ehfx
     495             : 
     496             :          ! transform Fock-Matrix (calculated in integrate_four_center, written in matrix_ks_aux_fit in case
     497             :          ! of ADMM) from ADMM basis to primary basis
     498         104 :          IF (do_admm_rpa) THEN
     499           8 :             CALL admm_mo_merge_ks_matrix(qs_env)
     500             :          END IF
     501             : 
     502         220 :          DO ispin = 1, nspins
     503         220 :             CALL dbcsr_add(matrix_sigma_x_minus_vxc(ispin, 1)%matrix, matrix_ks(ispin)%matrix, 1.0_dp, 1.0_dp)
     504             :          END DO
     505             : 
     506             :          ! safe matrix_sigma_x_minus_vxc for later: for example, we will transform matrix_sigma_x_minus_vxc
     507             :          ! to T-cell index and then to k-points for band structure calculation
     508         104 :          IF (do_kpoints_from_Gamma) THEN
     509             :             ! not yet there: open shell
     510          66 :             ALLOCATE (qs_env%mp2_env%ri_g0w0%matrix_sigma_x_minus_vxc(nspins))
     511          34 :             DO ispin = 1, nspins
     512          18 :                NULLIFY (qs_env%mp2_env%ri_g0w0%matrix_sigma_x_minus_vxc(ispin)%matrix)
     513          18 :                ALLOCATE (qs_env%mp2_env%ri_g0w0%matrix_sigma_x_minus_vxc(ispin)%matrix)
     514             :                CALL dbcsr_create(qs_env%mp2_env%ri_g0w0%matrix_sigma_x_minus_vxc(ispin)%matrix, &
     515          18 :                                  template=matrix_ks(ispin)%matrix)
     516             : 
     517             :                CALL dbcsr_desymmetrize(matrix_sigma_x_minus_vxc(ispin, 1)%matrix, &
     518          34 :                                        qs_env%mp2_env%ri_g0w0%matrix_sigma_x_minus_vxc(ispin)%matrix)
     519             : 
     520             :             END DO
     521             :          END IF
     522             : 
     523         104 :          CALL dbcsr_desymmetrize(matrix_ks(1)%matrix, mo_coeff_b)
     524         104 :          CALL dbcsr_set(mo_coeff_b, 0.0_dp)
     525             : 
     526             :          ! Transform matrix_sigma_x_minus_vxc to MO basis
     527         220 :          DO ispin = 1, nspins
     528             : 
     529             :             CALL get_mo_set(mo_set=mos_mp2(ispin), &
     530             :                             mo_coeff=mo_coeff, &
     531             :                             eigenvalues=mo_eigenvalues, &
     532             :                             nmo=nmo, &
     533             :                             homo=homo, &
     534         116 :                             nao=dimen)
     535             : 
     536         116 :             IF (ispin == 1) THEN
     537             : 
     538         520 :                ALLOCATE (vec_Sigma_x_minus_vxc_gw(nmo, nspins, nkp))
     539        3070 :                vec_Sigma_x_minus_vxc_gw = 0.0_dp
     540             : 
     541         312 :                ALLOCATE (matrix_tmp_2_diag(dimen))
     542             :             END IF
     543             : 
     544         116 :             CALL dbcsr_set(mo_coeff_b, 0.0_dp)
     545         116 :             CALL copy_fm_to_dbcsr(mo_coeff, mo_coeff_b, keep_sparsity=.FALSE.)
     546             : 
     547             :             ! initialize matrix_tmp and matrix_tmp2
     548         116 :             IF (ispin == 1) THEN
     549         104 :                CALL dbcsr_create(matrix_tmp, template=mo_coeff_b)
     550         104 :                CALL dbcsr_copy(matrix_tmp, mo_coeff_b)
     551         104 :                CALL dbcsr_set(matrix_tmp, 0.0_dp)
     552             : 
     553         104 :                CALL dbcsr_create(matrix_tmp_2, template=mo_coeff_b)
     554         104 :                CALL dbcsr_copy(matrix_tmp_2, mo_coeff_b)
     555         104 :                CALL dbcsr_set(matrix_tmp_2, 0.0_dp)
     556             :             END IF
     557             : 
     558         116 :             gw_corr_lev_occ = mp2_env%ri_g0w0%corr_mos_occ
     559         116 :             gw_corr_lev_virt = mp2_env%ri_g0w0%corr_mos_virt
     560             : 
     561             :             ! If SVD is used to invert overlap matrix (for CHOLESKY OFF), some MOs are removed
     562             :             ! Therefore, setting the number of gw_corr_lev_virt simply to dimen - homo leads to index problems
     563             :             ! Instead, we take into account the removed MOs
     564         116 :             max_corr_lev_occ = homo
     565         116 :             max_corr_lev_virt = nmo - homo
     566             : 
     567             :             ! If BSE is invoked, manipulate corrected MO number
     568         116 :             IF (mp2_env%bse%do_bse) THEN
     569             :                ! Logic: If cutoff is negative, all MOs are included in BSE, i.e. we need to correct them all
     570             :                !        If cutoff is positive, we can reduce the number of MOs to be corrected and force gw_corr_lev_...
     571             :                !        to a sufficiently large number by setting it to -2 and read indices afterwards
     572             :                ! Handling for occupied levels
     573          30 :                IF (mp2_env%bse%bse_cutoff_occ < 0) THEN
     574           2 :                   gw_corr_lev_occ = -1
     575             :                ELSE
     576          28 :                   IF (gw_corr_lev_occ > 0) THEN
     577          28 :                      gw_corr_lev_occ = -2
     578             :                   END IF
     579             :                END IF
     580             :                ! Handling for virtual levels
     581          30 :                IF (mp2_env%bse%bse_cutoff_empty < 0) THEN
     582           0 :                   gw_corr_lev_virt = -1
     583             :                ELSE
     584          30 :                   IF (gw_corr_lev_virt > 0) THEN
     585          30 :                      gw_corr_lev_virt = -2
     586             :                   END IF
     587             :                END IF
     588             : 
     589             :                ! Obtain indices from DFT if gw_corr... are set to -2
     590             :                CALL determine_cutoff_indices(mo_eigenvalues, &
     591             :                                              homo, max_corr_lev_virt, &
     592             :                                              homo_reduced_bse, virtual_reduced_bse, &
     593             :                                              homo_startindex_bse, virtual_startindex_bse, &
     594          30 :                                              mp2_env)
     595          30 :                IF (gw_corr_lev_occ == -2) THEN
     596          28 :                   CPWARN("BSE cutoff overwrites user input for CORR_MOS_OCC")
     597          28 :                   gw_corr_lev_occ = homo_reduced_bse
     598             :                END IF
     599          30 :                IF (gw_corr_lev_virt == -2) THEN
     600          30 :                   CPWARN("BSE cutoff overwrites user input for CORR_MOS_VIRT")
     601          30 :                   gw_corr_lev_virt = virtual_reduced_bse
     602             :                END IF
     603             :             END IF
     604             : 
     605             :             ! if requested number of occ/virt levels for correction either exceed the number of
     606             :             ! occ/virt levels or the requested number is negative, default to correct all
     607             :             ! occ/virt level energies
     608         116 :             IF (gw_corr_lev_occ > homo .OR. gw_corr_lev_occ < 0) gw_corr_lev_occ = max_corr_lev_occ
     609         116 :             IF (gw_corr_lev_virt > max_corr_lev_virt .OR. gw_corr_lev_virt < 0) gw_corr_lev_virt = max_corr_lev_virt
     610         116 :             IF (ispin == 1) THEN
     611         104 :                mp2_env%ri_g0w0%corr_mos_occ = gw_corr_lev_occ
     612         104 :                mp2_env%ri_g0w0%corr_mos_virt = gw_corr_lev_virt
     613          12 :             ELSE IF (ispin == 2) THEN
     614             :                ! ensure that the total number of corrected MOs is the same for alpha and beta, important
     615             :                ! for parallelization
     616          12 :                IF (mp2_env%ri_g0w0%corr_mos_occ + mp2_env%ri_g0w0%corr_mos_virt /= &
     617             :                    gw_corr_lev_occ + gw_corr_lev_virt) THEN
     618          10 :                   gw_corr_lev_virt = mp2_env%ri_g0w0%corr_mos_occ + mp2_env%ri_g0w0%corr_mos_virt - gw_corr_lev_occ
     619             :                END IF
     620          12 :                mp2_env%ri_g0w0%corr_mos_occ_beta = gw_corr_lev_occ
     621          12 :                mp2_env%ri_g0w0%corr_mos_virt_beta = gw_corr_lev_virt
     622             : 
     623             :             END IF
     624             : 
     625             :             CALL dbcsr_multiply('N', 'N', 1.0_dp, matrix_sigma_x_minus_vxc(ispin, 1)%matrix, &
     626             :                                 mo_coeff_b, 0.0_dp, matrix_tmp, first_column=homo + 1 - gw_corr_lev_occ, &
     627         116 :                                 last_column=homo + gw_corr_lev_virt)
     628             : 
     629             :             CALL dbcsr_multiply('T', 'N', 1.0_dp, mo_coeff_b, &
     630             :                                 matrix_tmp, 0.0_dp, matrix_tmp_2, first_row=homo + 1 - gw_corr_lev_occ, &
     631         116 :                                 last_row=homo + gw_corr_lev_virt)
     632             : 
     633         116 :             CALL dbcsr_get_diag(matrix_tmp_2, matrix_tmp_2_diag)
     634        2862 :             vec_Sigma_x_minus_vxc_gw(1:nmo, ispin, 1) = matrix_tmp_2_diag(1:nmo)
     635             : 
     636         116 :             CALL dbcsr_set(matrix_tmp, 0.0_dp)
     637         336 :             CALL dbcsr_set(matrix_tmp_2, 0.0_dp)
     638             : 
     639             :          END DO
     640             : 
     641         104 :          CALL para_env%sum(vec_Sigma_x_minus_vxc_gw)
     642             : 
     643             :       END IF
     644             : 
     645         104 :       CALL dbcsr_release(mo_coeff_b)
     646         104 :       CALL dbcsr_release(matrix_tmp)
     647         104 :       CALL dbcsr_release(matrix_tmp_2)
     648         104 :       IF (do_kpoints_cubic_RPA) THEN
     649           0 :          CALL dbcsr_deallocate_matrix_set(matrix_ks_kp_re)
     650           0 :          CALL dbcsr_deallocate_matrix_set(matrix_ks_kp_im)
     651             :       END IF
     652             : 
     653         220 :       DO ispin = 1, nspins
     654         336 :          DO ikp = 1, nkp
     655         116 :             CALL dbcsr_release_p(matrix_sigma_x_minus_vxc(ispin, ikp)%matrix)
     656         232 :             IF (do_kpoints_cubic_RPA) THEN
     657           0 :                CALL dbcsr_release_p(matrix_sigma_x_minus_vxc_im(ispin, ikp)%matrix)
     658             :             END IF
     659             :          END DO
     660             :       END DO
     661             : 
     662         520 :       ALLOCATE (mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(nmo, nspins, nkp))
     663             : 
     664         104 :       IF (print_exx == gw_print_exx) THEN
     665             : 
     666           0 :          IF (do_kpoints_from_Gamma) THEN
     667             : 
     668           0 :             gw_corr_lev_tot = gw_corr_lev_occ + gw_corr_lev_virt
     669             : 
     670             :             CALL get_qs_env(qs_env=qs_env, &
     671           0 :                             kpoints=kpoints)
     672             : 
     673           0 :             CALL trunc_coulomb_for_exchange(qs_env)
     674             : 
     675           0 :             CALL compute_kpoints(qs_env, kpoints, unit_nr)
     676             : 
     677           0 :             ALLOCATE (Eigenval_kp(nmo, 1, nspins))
     678             : 
     679           0 :             CALL get_bandstruc_and_k_dependent_MOs(qs_env, Eigenval_kp)
     680             : 
     681           0 :             CALL compute_minus_vxc_kpoints(qs_env)
     682             : 
     683           0 :             nkp_Sigma = SIZE(Eigenval_kp, 2)
     684             : 
     685           0 :             ALLOCATE (vec_Sigma_x(nmo, nkp_Sigma))
     686           0 :             vec_Sigma_x(:, :) = 0.0_dp
     687             : 
     688             :             CALL trafo_to_mo_and_kpoints(qs_env, &
     689             :                                          mat_exchange_for_kp_from_gamma(1)%matrix, &
     690             :                                          vec_Sigma_x(homo - gw_corr_lev_occ + 1:homo + gw_corr_lev_virt, :), &
     691           0 :                                          homo, gw_corr_lev_occ, gw_corr_lev_virt, 1)
     692             : 
     693           0 :             CALL dbcsr_release(mat_exchange_for_kp_from_gamma(1)%matrix)
     694           0 :             DEALLOCATE (mat_exchange_for_kp_from_gamma(1)%matrix)
     695           0 :             DEALLOCATE (mat_exchange_for_kp_from_gamma)
     696             : 
     697           0 :             DEALLOCATE (vec_Sigma_x_minus_vxc_gw)
     698             : 
     699           0 :             ALLOCATE (vec_Sigma_x_minus_vxc_gw(nmo, nspins, nkp_Sigma))
     700             : 
     701             :             vec_Sigma_x_minus_vxc_gw(:, 1, :) = vec_Sigma_x(:, :) + &
     702           0 :                                                 qs_env%mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 1, :)
     703             : 
     704           0 :             kpoints_Sigma => qs_env%mp2_env%ri_rpa_im_time%kpoints_Sigma
     705             : 
     706             :          ELSE
     707             : 
     708           0 :             nkp_Sigma = 1
     709             : 
     710             :          END IF
     711             : 
     712           0 :          IF (unit_nr > 0) THEN
     713             : 
     714           0 :             ALLOCATE (Eigenval_kp_HF_at_DFT(nmo, nkp_Sigma))
     715           0 :             Eigenval_kp_HF_at_DFT(:, :) = Eigenval_kp(:, :, 1) + vec_Sigma_x_minus_vxc_gw(:, 1, :)
     716             : 
     717           0 :             min_direct_HF_at_DFT_gap = 100.0_dp
     718             : 
     719           0 :             WRITE (unit_nr, '(T3,A)') ''
     720           0 :             WRITE (unit_nr, '(T3,A)') 'Exchange energies'
     721           0 :             WRITE (unit_nr, '(T3,A)') '-----------------'
     722           0 :             WRITE (unit_nr, '(T3,A)') ''
     723           0 :             WRITE (unit_nr, '(T6,2A)') 'MO                        e_n^DFT          Sigma_x-vxc           e_n^HF@DFT'
     724           0 :             DO ikp = 1, nkp_Sigma
     725           0 :                IF (nkp_Sigma > 1) THEN
     726           0 :                   WRITE (unit_nr, '(T3,A)') ''
     727           0 :                   WRITE (unit_nr, '(T3,A7,I3,A3,I3,A8,3F7.3,A12,3F7.3)') 'Kpoint ', ikp, '  /', nkp_Sigma, &
     728           0 :                      '   xkp =', kpoints_Sigma%xkp(1, ikp), kpoints_Sigma%xkp(2, ikp), &
     729           0 :                      kpoints_Sigma%xkp(3, ikp), '  and  xkp =', -kpoints_Sigma%xkp(1, ikp), &
     730           0 :                      -kpoints_Sigma%xkp(2, ikp), -kpoints_Sigma%xkp(3, ikp)
     731           0 :                   WRITE (unit_nr, '(T3,A)') ''
     732             :                END IF
     733           0 :                DO n_level_gw = 1, gw_corr_lev_occ + gw_corr_lev_virt
     734             : 
     735           0 :                   n_level_gw_ref = n_level_gw + homo - gw_corr_lev_occ
     736           0 :                   IF (n_level_gw <= gw_corr_lev_occ) THEN
     737           0 :                      occ_virt = 'occ'
     738             :                   ELSE
     739           0 :                      occ_virt = 'vir'
     740             :                   END IF
     741             : 
     742           0 :                   eigval_dft = Eigenval_kp(n_level_gw_ref, ikp, 1)*evolt
     743           0 :                   exx_minus_vxc = REAL(vec_Sigma_x_minus_vxc_gw(n_level_gw_ref, 1, ikp)*evolt, kind=dp)
     744           0 :                   eigval_hf_at_dft = Eigenval_kp_HF_at_DFT(n_level_gw_ref, ikp)*evolt
     745             : 
     746             :                   WRITE (unit_nr, '(T4,I4,3A,3F21.3,3F21.3,3F21.3)') &
     747           0 :                      n_level_gw_ref, ' ( ', occ_virt, ')  ', eigval_dft, exx_minus_vxc, eigval_hf_at_dft
     748             : 
     749             :                END DO
     750           0 :                E_HOMO_GW = MAXVAL(Eigenval_kp_HF_at_DFT(homo - gw_corr_lev_occ + 1:homo, ikp))
     751           0 :                E_LUMO_GW = MINVAL(Eigenval_kp_HF_at_DFT(homo + 1:homo + gw_corr_lev_virt, ikp))
     752           0 :                E_GAP_GW = E_LUMO_GW - E_HOMO_GW
     753           0 :                IF (E_GAP_GW < min_direct_HF_at_DFT_gap) min_direct_HF_at_DFT_gap = E_GAP_GW
     754           0 :                WRITE (unit_nr, '(T3,A)') ''
     755           0 :                WRITE (unit_nr, '(T3,A,F53.2)') 'HF@DFT HOMO-LUMO gap (eV)', E_GAP_GW*evolt
     756           0 :                WRITE (unit_nr, '(T3,A)') ''
     757             :             END DO
     758             : 
     759           0 :             WRITE (unit_nr, '(T3,A)') ''
     760           0 :             WRITE (unit_nr, '(T3,A)') ''
     761           0 :             WRITE (unit_nr, '(T3,A,F63.3)') 'HF@DFT direct bandgap (eV)', min_direct_HF_at_DFT_gap*evolt
     762             : 
     763           0 :             WRITE (unit_nr, '(T3,A)') ''
     764           0 :             WRITE (unit_nr, '(T3,A)') 'End of exchange energies'
     765           0 :             WRITE (unit_nr, '(T3,A)') '------------------------'
     766           0 :             WRITE (unit_nr, '(T3,A)') ''
     767             : 
     768           0 :             CPABORT('Stop after printing exchange energies.')
     769             : 
     770             :          ELSE
     771           0 :             CALL para_env%sync()
     772             :          END IF
     773             : 
     774             :       END IF
     775             : 
     776         104 :       IF (print_exx == gw_read_exx) THEN
     777             : 
     778           0 :          CALL open_file(unit_number=iunit, file_name="exx.out")
     779             : 
     780           0 :          really_read_line = .FALSE.
     781             : 
     782             :          DO WHILE (.TRUE.)
     783             : 
     784           0 :             READ (iunit, '(A)') line
     785             : 
     786           0 :             IF (line == "  End of exchange energies              ") EXIT
     787             : 
     788           0 :             IF (really_read_line) THEN
     789             : 
     790           0 :                READ (line(1:7), *) n_level_gw_ref
     791           0 :                READ (line(17:40), *) tmp
     792             : 
     793           0 :                DO ikp = 1, SIZE(vec_Sigma_x_minus_vxc_gw, 3)
     794           0 :                   vec_Sigma_x_minus_vxc_gw(n_level_gw_ref, 1, ikp) = tmp/evolt
     795             :                END DO
     796             : 
     797             :             END IF
     798             : 
     799           0 :             IF (line == "     MO                    Sigma_x-vxc  ") really_read_line = .TRUE.
     800             : 
     801             :          END DO
     802             : 
     803           0 :          CALL close_file(iunit)
     804             : 
     805             :       END IF
     806             : 
     807             :       ! store vec_Sigma_x_minus_vxc_gw in the mp2_environment
     808        3070 :       mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, :, :) = vec_Sigma_x_minus_vxc_gw(:, :, :)
     809             : 
     810             :       ! clean up
     811         104 :       DEALLOCATE (matrix_sigma_x_minus_vxc, vec_Sigma_x_minus_vxc_gw)
     812         104 :       IF (do_kpoints_cubic_RPA) THEN
     813           0 :          DEALLOCATE (matrix_sigma_x_minus_vxc_im)
     814             :       END IF
     815             : 
     816         104 :       t2 = m_walltime()
     817             : 
     818         104 :       t3 = t2 - t1
     819             : 
     820         104 :       CALL timestop(handle)
     821             : 
     822         416 :    END SUBROUTINE compute_vec_Sigma_x_minus_vxc_gw
     823             : 
     824             : ! **************************************************************************************************
     825             : !> \brief ...
     826             : !> \param kpoints ...
     827             : !> \param matrix_sigma_x_minus_vxc ...
     828             : !> \param matrix_sigma_x_minus_vxc_im ...
     829             : !> \param vec_Sigma_x_minus_vxc_gw ...
     830             : !> \param vec_Sigma_x_minus_vxc_gw_im ...
     831             : !> \param para_env ...
     832             : !> \param nmo ...
     833             : !> \param mp2_env ...
     834             : ! **************************************************************************************************
     835           0 :    SUBROUTINE transform_sigma_x_minus_vxc_to_MO_basis(kpoints, matrix_sigma_x_minus_vxc, &
     836             :                                                       matrix_sigma_x_minus_vxc_im, vec_Sigma_x_minus_vxc_gw, &
     837             :                                                       vec_Sigma_x_minus_vxc_gw_im, para_env, nmo, mp2_env)
     838             : 
     839             :       TYPE(kpoint_type), POINTER                         :: kpoints
     840             :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: matrix_sigma_x_minus_vxc, &
     841             :                                                             matrix_sigma_x_minus_vxc_im
     842             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :)     :: vec_Sigma_x_minus_vxc_gw, &
     843             :                                                             vec_Sigma_x_minus_vxc_gw_im
     844             :       TYPE(mp_para_env_type), INTENT(IN)                 :: para_env
     845             :       INTEGER                                            :: nmo
     846             :       TYPE(mp2_type)                                     :: mp2_env
     847             : 
     848             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'transform_sigma_x_minus_vxc_to_MO_basis'
     849             : 
     850             :       INTEGER :: dimen, gw_corr_lev_occ, gw_corr_lev_virt, handle, homo, i_global, iiB, ikp, &
     851             :          ispin, j_global, jjB, max_corr_lev_occ, max_corr_lev_virt, ncol_local, nkp, nrow_local, &
     852             :          nspins
     853             :       INTEGER, DIMENSION(2)                              :: kp_range
     854           0 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices, row_indices
     855             :       REAL(KIND=dp)                                      :: imval, reval
     856             :       TYPE(cp_cfm_type)                                  :: cfm_mos, cfm_sigma_x_minus_vxc, &
     857             :                                                             cfm_sigma_x_minus_vxc_mo_basis, cfm_tmp
     858             :       TYPE(cp_fm_struct_type), POINTER                   :: matrix_struct
     859             :       TYPE(cp_fm_type)                                   :: fwork_im, fwork_re
     860             :       TYPE(kpoint_env_type), POINTER                     :: kp
     861             :       TYPE(mo_set_type), POINTER                         :: mo_set, mo_set_im, mo_set_re
     862             : 
     863           0 :       CALL timeset(routineN, handle)
     864             : 
     865           0 :       mo_set => kpoints%kp_env(1)%kpoint_env%mos(1, 1)
     866           0 :       CALL get_mo_set(mo_set, nmo=nmo)
     867             : 
     868           0 :       nspins = SIZE(matrix_sigma_x_minus_vxc, 1)
     869           0 :       CALL get_kpoint_info(kpoints, nkp=nkp, kp_range=kp_range)
     870             : 
     871             :       ! if this CPASSERT is wrong, please make sure that the kpoint group size PARALLEL_GROUP_SIZE
     872             :       ! in the kpoint environment &DFT &KPOINTS is -1
     873           0 :       CPASSERT(kp_range(1) == 1 .AND. kp_range(2) == nkp)
     874             : 
     875           0 :       ALLOCATE (vec_Sigma_x_minus_vxc_gw(nmo, nspins, nkp))
     876           0 :       vec_Sigma_x_minus_vxc_gw = 0.0_dp
     877             : 
     878           0 :       ALLOCATE (vec_Sigma_x_minus_vxc_gw_im(nmo, nspins, nkp))
     879           0 :       vec_Sigma_x_minus_vxc_gw_im = 0.0_dp
     880             : 
     881           0 :       CALL cp_fm_get_info(mo_set%mo_coeff, matrix_struct=matrix_struct)
     882           0 :       CALL cp_fm_create(fwork_re, matrix_struct)
     883           0 :       CALL cp_fm_create(fwork_im, matrix_struct)
     884           0 :       CALL cp_cfm_create(cfm_mos, matrix_struct)
     885           0 :       CALL cp_cfm_create(cfm_sigma_x_minus_vxc, matrix_struct)
     886           0 :       CALL cp_cfm_create(cfm_sigma_x_minus_vxc_mo_basis, matrix_struct)
     887           0 :       CALL cp_cfm_create(cfm_tmp, matrix_struct)
     888             : 
     889             :       CALL cp_cfm_get_info(matrix=cfm_sigma_x_minus_vxc_mo_basis, &
     890             :                            nrow_local=nrow_local, &
     891             :                            ncol_local=ncol_local, &
     892             :                            row_indices=row_indices, &
     893           0 :                            col_indices=col_indices)
     894             : 
     895             :       ! Transform matrix_sigma_x_minus_vxc to MO basis
     896           0 :       DO ikp = 1, nkp
     897             : 
     898           0 :          kp => kpoints%kp_env(ikp)%kpoint_env
     899             : 
     900           0 :          DO ispin = 1, nspins
     901             : 
     902             :             ! v_xc_n to fm matrix
     903           0 :             CALL copy_dbcsr_to_fm(matrix_sigma_x_minus_vxc(ispin, ikp)%matrix, fwork_re)
     904           0 :             CALL copy_dbcsr_to_fm(matrix_sigma_x_minus_vxc_im(ispin, ikp)%matrix, fwork_im)
     905             : 
     906           0 :             CALL cp_cfm_scale_and_add_fm(z_zero, cfm_sigma_x_minus_vxc, z_one, fwork_re)
     907           0 :             CALL cp_cfm_scale_and_add_fm(z_one, cfm_sigma_x_minus_vxc, gaussi, fwork_im)
     908             : 
     909             :             ! get real part (1) and imag. part (2) of the mo coeffs
     910           0 :             mo_set_re => kp%mos(1, ispin)
     911           0 :             mo_set_im => kp%mos(2, ispin)
     912             : 
     913           0 :             CALL cp_cfm_scale_and_add_fm(z_zero, cfm_mos, z_one, mo_set_re%mo_coeff)
     914           0 :             CALL cp_cfm_scale_and_add_fm(z_one, cfm_mos, gaussi, mo_set_im%mo_coeff)
     915             : 
     916             :             ! tmp = V(k)*C(k)
     917             :             CALL parallel_gemm('N', 'N', nmo, nmo, nmo, z_one, cfm_sigma_x_minus_vxc, &
     918           0 :                                cfm_mos, z_zero, cfm_tmp)
     919             : 
     920             :             ! V_n(k) = C^H(k)*tmp
     921             :             CALL parallel_gemm('C', 'N', nmo, nmo, nmo, z_one, cfm_mos, cfm_tmp, &
     922           0 :                                z_zero, cfm_sigma_x_minus_vxc_mo_basis)
     923             : 
     924           0 :             DO jjB = 1, ncol_local
     925             : 
     926           0 :                j_global = col_indices(jjB)
     927             : 
     928           0 :                DO iiB = 1, nrow_local
     929             : 
     930           0 :                   i_global = row_indices(iiB)
     931             : 
     932           0 :                   IF (j_global == i_global .AND. i_global <= nmo) THEN
     933             : 
     934           0 :                      reval = REAL(cfm_sigma_x_minus_vxc_mo_basis%local_data(iiB, jjB), kind=dp)
     935           0 :                      imval = AIMAG(cfm_sigma_x_minus_vxc_mo_basis%local_data(iiB, jjB))
     936             : 
     937           0 :                      vec_Sigma_x_minus_vxc_gw(i_global, ispin, ikp) = reval
     938           0 :                      vec_Sigma_x_minus_vxc_gw_im(i_global, ispin, ikp) = imval
     939             : 
     940             :                   END IF
     941             : 
     942             :                END DO
     943             : 
     944             :             END DO
     945             : 
     946             :          END DO
     947             : 
     948             :       END DO
     949             : 
     950           0 :       CALL para_env%sum(vec_Sigma_x_minus_vxc_gw)
     951           0 :       CALL para_env%sum(vec_Sigma_x_minus_vxc_gw_im)
     952             :       ! also adjust in the case of kpoints too big gw_corr_lev_occ and gw_corr_lev_virt
     953           0 :       DO ispin = 1, nspins
     954             :          CALL get_mo_set(mo_set=kpoints%kp_env(1)%kpoint_env%mos(ispin, 1), &
     955           0 :                          homo=homo, nao=dimen)
     956             :          ! If SVD is used to invert overlap matrix (for CHOLESKY OFF), some MOs are removed
     957             :          ! Therefore, setting the number of gw_corr_lev_virt simply to dimen - homo leads to index problems
     958             :          ! Instead, we take into account the removed MOs
     959           0 :          max_corr_lev_occ = homo
     960           0 :          max_corr_lev_virt = nmo - homo
     961             : 
     962           0 :          gw_corr_lev_occ = mp2_env%ri_g0w0%corr_mos_occ
     963           0 :          gw_corr_lev_virt = mp2_env%ri_g0w0%corr_mos_virt
     964             :          ! if corrected occ/virt levels exceed the number of occ/virt levels or are negative,
     965             :          ! correct all occ/virt level energies
     966           0 :          IF (gw_corr_lev_occ > homo .OR. gw_corr_lev_occ < 0) gw_corr_lev_occ = max_corr_lev_occ
     967           0 :          IF (gw_corr_lev_virt > max_corr_lev_virt .OR. gw_corr_lev_virt < 0) gw_corr_lev_virt = max_corr_lev_virt
     968           0 :          IF (ispin == 1) THEN
     969           0 :             mp2_env%ri_g0w0%corr_mos_occ = gw_corr_lev_occ
     970           0 :             mp2_env%ri_g0w0%corr_mos_virt = gw_corr_lev_virt
     971           0 :          ELSE IF (ispin == 2) THEN
     972             :             ! ensure that the total number of corrected MOs is the same for alpha and beta, important
     973             :             ! for parallelization
     974           0 :             IF (mp2_env%ri_g0w0%corr_mos_occ + mp2_env%ri_g0w0%corr_mos_virt /= &
     975             :                 gw_corr_lev_occ + gw_corr_lev_virt) THEN
     976           0 :                gw_corr_lev_virt = mp2_env%ri_g0w0%corr_mos_occ + mp2_env%ri_g0w0%corr_mos_virt - gw_corr_lev_occ
     977             :             END IF
     978           0 :             mp2_env%ri_g0w0%corr_mos_occ_beta = gw_corr_lev_occ
     979           0 :             mp2_env%ri_g0w0%corr_mos_virt_beta = gw_corr_lev_virt
     980             :          END IF
     981             :       END DO
     982             : 
     983           0 :       CALL cp_fm_release(fwork_re)
     984           0 :       CALL cp_fm_release(fwork_im)
     985           0 :       CALL cp_cfm_release(cfm_mos)
     986           0 :       CALL cp_cfm_release(cfm_sigma_x_minus_vxc)
     987           0 :       CALL cp_cfm_release(cfm_sigma_x_minus_vxc_mo_basis)
     988           0 :       CALL cp_cfm_release(cfm_tmp)
     989             : 
     990           0 :       CALL timestop(handle)
     991             : 
     992           0 :    END SUBROUTINE
     993             : 
     994             : ! **************************************************************************************************
     995             : !> \brief ...
     996             : !> \param matrix_ks_transl ...
     997             : !> \param matrix_ks_kp_re ...
     998             : !> \param matrix_ks_kp_im ...
     999             : !> \param kpoints ...
    1000             : ! **************************************************************************************************
    1001           0 :    SUBROUTINE transform_matrix_ks_to_kp(matrix_ks_transl, matrix_ks_kp_re, matrix_ks_kp_im, kpoints)
    1002             : 
    1003             :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: matrix_ks_transl, matrix_ks_kp_re, &
    1004             :                                                             matrix_ks_kp_im
    1005             :       TYPE(kpoint_type), POINTER                         :: kpoints
    1006             : 
    1007             :       CHARACTER(len=*), PARAMETER :: routineN = 'transform_matrix_ks_to_kp'
    1008             : 
    1009             :       INTEGER                                            :: handle, ikp, ispin, nkp, nspin
    1010           0 :       INTEGER, DIMENSION(:, :, :), POINTER               :: cell_to_index
    1011           0 :       REAL(KIND=dp), DIMENSION(:, :), POINTER            :: xkp
    1012             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    1013           0 :          POINTER                                         :: sab_nl
    1014             : 
    1015           0 :       CALL timeset(routineN, handle)
    1016             : 
    1017           0 :       NULLIFY (sab_nl)
    1018           0 :       CALL get_kpoint_info(kpoints, nkp=nkp, xkp=xkp, sab_nl=sab_nl, cell_to_index=cell_to_index)
    1019             : 
    1020           0 :       CPASSERT(ASSOCIATED(sab_nl))
    1021             : 
    1022           0 :       nspin = SIZE(matrix_ks_transl, 1)
    1023             : 
    1024           0 :       DO ikp = 1, nkp
    1025           0 :          DO ispin = 1, nspin
    1026             : 
    1027           0 :             CALL dbcsr_set(matrix_ks_kp_re(ispin, ikp)%matrix, 0.0_dp)
    1028           0 :             CALL dbcsr_set(matrix_ks_kp_im(ispin, ikp)%matrix, 0.0_dp)
    1029             :             CALL rskp_transform(rmatrix=matrix_ks_kp_re(ispin, ikp)%matrix, &
    1030             :                                 cmatrix=matrix_ks_kp_im(ispin, ikp)%matrix, &
    1031             :                                 rsmat=matrix_ks_transl, ispin=ispin, &
    1032           0 :                                 xkp=xkp(1:3, ikp), cell_to_index=cell_to_index, sab_nl=sab_nl)
    1033             : 
    1034             :          END DO
    1035             :       END DO
    1036             : 
    1037           0 :       CALL timestop(handle)
    1038             : 
    1039           0 :    END SUBROUTINE
    1040             : 
    1041             : ! **************************************************************************************************
    1042             : !> \brief ...
    1043             : !> \param matrix_ks_transl ...
    1044             : !> \param matrix_ks_kp_re ...
    1045             : !> \param matrix_ks_kp_im ...
    1046             : !> \param kpoints ...
    1047             : ! **************************************************************************************************
    1048           0 :    SUBROUTINE allocate_matrix_ks_kp(matrix_ks_transl, matrix_ks_kp_re, matrix_ks_kp_im, kpoints)
    1049             : 
    1050             :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: matrix_ks_transl, matrix_ks_kp_re, &
    1051             :                                                             matrix_ks_kp_im
    1052             :       TYPE(kpoint_type), POINTER                         :: kpoints
    1053             : 
    1054             :       CHARACTER(len=*), PARAMETER :: routineN = 'allocate_matrix_ks_kp'
    1055             : 
    1056             :       INTEGER                                            :: handle, ikp, ispin, nkp, nspin
    1057           0 :       INTEGER, DIMENSION(:, :, :), POINTER               :: cell_to_index
    1058           0 :       REAL(KIND=dp), DIMENSION(:, :), POINTER            :: xkp
    1059             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    1060           0 :          POINTER                                         :: sab_nl
    1061             : 
    1062           0 :       CALL timeset(routineN, handle)
    1063             : 
    1064           0 :       NULLIFY (sab_nl)
    1065           0 :       CALL get_kpoint_info(kpoints, nkp=nkp, xkp=xkp, sab_nl=sab_nl, cell_to_index=cell_to_index)
    1066             : 
    1067           0 :       CPASSERT(ASSOCIATED(sab_nl))
    1068             : 
    1069           0 :       nspin = SIZE(matrix_ks_transl, 1)
    1070             : 
    1071           0 :       NULLIFY (matrix_ks_kp_re, matrix_ks_kp_im)
    1072           0 :       CALL dbcsr_allocate_matrix_set(matrix_ks_kp_re, nspin, nkp)
    1073           0 :       CALL dbcsr_allocate_matrix_set(matrix_ks_kp_im, nspin, nkp)
    1074             : 
    1075           0 :       DO ikp = 1, nkp
    1076           0 :       DO ispin = 1, nspin
    1077             : 
    1078           0 :          ALLOCATE (matrix_ks_kp_re(ispin, ikp)%matrix)
    1079           0 :          ALLOCATE (matrix_ks_kp_im(ispin, ikp)%matrix)
    1080             : 
    1081             :          CALL dbcsr_create(matrix_ks_kp_re(ispin, ikp)%matrix, &
    1082             :                            template=matrix_ks_transl(1, 1)%matrix, &
    1083           0 :                            matrix_type=dbcsr_type_symmetric)
    1084             :          CALL dbcsr_create(matrix_ks_kp_im(ispin, ikp)%matrix, &
    1085             :                            template=matrix_ks_transl(1, 1)%matrix, &
    1086           0 :                            matrix_type=dbcsr_type_antisymmetric)
    1087             : 
    1088           0 :          CALL cp_dbcsr_alloc_block_from_nbl(matrix_ks_kp_re(ispin, ikp)%matrix, sab_nl)
    1089           0 :          CALL cp_dbcsr_alloc_block_from_nbl(matrix_ks_kp_im(ispin, ikp)%matrix, sab_nl)
    1090             : 
    1091           0 :          CALL dbcsr_set(matrix_ks_kp_re(ispin, ikp)%matrix, 0.0_dp)
    1092           0 :          CALL dbcsr_set(matrix_ks_kp_im(ispin, ikp)%matrix, 0.0_dp)
    1093             : 
    1094             :       END DO
    1095             :       END DO
    1096             : 
    1097           0 :       CALL timestop(handle)
    1098             : 
    1099           0 :    END SUBROUTINE
    1100             : 
    1101             : END MODULE rpa_gw_sigma_x
    1102             : 

Generated by: LCOV version 1.15