LCOV - code coverage report
Current view: top level - src/shg_int - s_contract_shg.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:d1f8d1b) Lines: 423 503 84.1 %
Date: 2024-11-29 06:42:44 Functions: 14 14 100.0 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2024 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief Routines for calculating the s-integrals and their scalar derivatives with respect to rab2
      10             : !>        over solid harmonic Gaussian (SHG) functions + contraction routines for these integrals
      11             : !>        i)  (s|O(r12)|s) where O(r12) is the overlap, coulomb operator etc.
      12             : !>        ii) (aba) and (abb) s-overlaps
      13             : !> \par Literature (partly)
      14             : !>      T.J. Giese and D. M. York, J. Chem. Phys, 128, 064104 (2008)
      15             : !>      T. Helgaker, P Joergensen, J. Olsen, Molecular Electronic-Structure
      16             : !>                                           Theory, Wiley
      17             : !>      R. Ahlrichs, PCCP, 8, 3072 (2006)
      18             : !> \par History
      19             : !>      created [05.2016]
      20             : !> \author Dorothea Golze
      21             : ! **************************************************************************************************
      22             : MODULE s_contract_shg
      23             :    USE gamma,                           ONLY: fgamma => fgamma_0
      24             :    USE kinds,                           ONLY: dp
      25             :    USE mathconstants,                   ONLY: dfac,&
      26             :                                               fac,&
      27             :                                               pi
      28             : #include "../base/base_uses.f90"
      29             : 
      30             :    IMPLICIT NONE
      31             : 
      32             :    PRIVATE
      33             : 
      34             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 's_contract_shg'
      35             : 
      36             : ! *** Public subroutines ***
      37             :    PUBLIC :: s_overlap_ab, s_overlap_abb, s_coulomb_ab, s_verf_ab, s_verfc_ab, &
      38             :              s_vgauss_ab, s_gauss_ab, s_ra2m_ab
      39             : 
      40             :    PUBLIC :: contract_sint_ab_clow, contract_sint_ab_chigh, contract_s_overlap_aba, &
      41             :              contract_s_overlap_abb, contract_s_ra2m_ab
      42             : 
      43             : CONTAINS
      44             : 
      45             : ! **************************************************************************************************
      46             : !> \brief calculates the uncontracted, not normalized [s|s] overlap
      47             : !> \param la_max maximal l quantum number on a
      48             : !> \param npgfa number of primitive Gaussian on a
      49             : !> \param zeta set of exponents on a
      50             : !> \param lb_max maximal l quantum number on b
      51             : !> \param npgfb number of primitive Gaussian on a
      52             : !> \param zetb set of exponents on a
      53             : !> \param rab distance vector between a and b
      54             : !> \param s uncontracted overlap of s functions
      55             : !> \param calculate_forces ...
      56             : ! **************************************************************************************************
      57      120606 :    SUBROUTINE s_overlap_ab(la_max, npgfa, zeta, lb_max, npgfb, zetb, rab, s, calculate_forces)
      58             : 
      59             :       INTEGER, INTENT(IN)                                :: la_max, npgfa
      60             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: zeta
      61             :       INTEGER, INTENT(IN)                                :: lb_max, npgfb
      62             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: zetb
      63             :       REAL(KIND=dp), DIMENSION(3), INTENT(IN)            :: rab
      64             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(INOUT)   :: s
      65             :       LOGICAL, INTENT(IN)                                :: calculate_forces
      66             : 
      67             :       INTEGER                                            :: ids, ipgfa, jpgfb, ndev
      68             :       REAL(KIND=dp)                                      :: a, b, rab2, xhi, zet
      69             : 
      70             :       ! Distance of the centers a and b
      71      120606 :       rab2 = rab(1)*rab(1) + rab(2)*rab(2) + rab(3)*rab(3)
      72      120606 :       ndev = 0
      73      120606 :       IF (calculate_forces) ndev = 1
      74             :       ! Loops over all pairs of primitive Gaussian-type functions
      75      305678 :       DO ipgfa = 1, npgfa
      76      833702 :          DO jpgfb = 1, npgfb
      77             : 
      78             :             ! Distance Screening   !maybe later
      79             : 
      80             :             ! Calculate some prefactors
      81      528024 :             a = zeta(ipgfa)
      82      528024 :             b = zetb(jpgfb)
      83      528024 :             zet = a + b
      84      528024 :             xhi = a*b/zet
      85             : 
      86             :             ! [s|s] integral
      87      528024 :             s(ipgfa, jpgfb, 1) = (pi/zet)**(1.5_dp)*EXP(-xhi*rab2)
      88             : 
      89     2810700 :             DO ids = 2, la_max + lb_max + ndev + 1
      90     2625628 :                s(ipgfa, jpgfb, ids) = -xhi*s(ipgfa, jpgfb, ids - 1)
      91             :             END DO
      92             : 
      93             :          END DO
      94             :       END DO
      95             : 
      96      120606 :    END SUBROUTINE s_overlap_ab
      97             : 
      98             : ! **************************************************************************************************
      99             : !> \brief calculates [s|ra^n|s] integrals for [aba] and the [s|rb^n|s]
     100             : !>        integrals for [abb]
     101             : !> \param la_max maximal l quantum number on a, orbital basis
     102             : !> \param npgfa number of primitive Gaussian on a, orbital basis
     103             : !> \param zeta set of exponents on a, orbital basis
     104             : !> \param lb_max maximal l quantum number on b, orbital basis
     105             : !> \param npgfb number of primitive Gaussian on a, orbital basis
     106             : !> \param zetb set of exponents on b, orbital basis
     107             : !> \param lcb_max maximal l quantum number of aux basis on b
     108             : !> \param npgfcb number of primitive Gaussian on b.  aux basis
     109             : !> \param zetcb set of exponents on b, aux basis
     110             : !> \param rab distance vector between a and b
     111             : !> \param s uncontracted [s|r^n|s] integrals
     112             : !> \param calculate_forces ...
     113             : ! **************************************************************************************************
     114       71192 :    SUBROUTINE s_overlap_abb(la_max, npgfa, zeta, lb_max, npgfb, zetb, lcb_max, npgfcb, zetcb, &
     115       71192 :                             rab, s, calculate_forces)
     116             : 
     117             :       INTEGER, INTENT(IN)                                :: la_max, npgfa
     118             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: zeta
     119             :       INTEGER, INTENT(IN)                                :: lb_max, npgfb
     120             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: zetb
     121             :       INTEGER, INTENT(IN)                                :: lcb_max, npgfcb
     122             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: zetcb
     123             :       REAL(KIND=dp), DIMENSION(3), INTENT(IN)            :: rab
     124             :       REAL(KIND=dp), DIMENSION(:, :, :, :, :), &
     125             :          INTENT(INOUT)                                   :: s
     126             :       LOGICAL, INTENT(IN)                                :: calculate_forces
     127             : 
     128             :       INTEGER                                            :: i, ids, il, ipgfa, j, jpgfb, kpgfb, &
     129             :                                                             lbb_max, lmax, n, ndev, nds, nfac, nl
     130             :       REAL(KIND=dp)                                      :: a, b, dfsr_int, exp_rab2, k, pfac, &
     131             :                                                             prefac, rab2, sqrt_pi3, sqrt_zet, &
     132             :                                                             sr_int, temp, xhi, zet
     133       71192 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: dsr_int, dtemp
     134             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :)     :: coeff_srs
     135             : 
     136             :       ! Distance of the centers a and b
     137       71192 :       rab2 = rab(1)*rab(1) + rab(2)*rab(2) + rab(3)*rab(3)
     138       71192 :       ndev = 0
     139       71192 :       IF (calculate_forces) ndev = 1
     140             : 
     141       71192 :       lbb_max = lb_max + lcb_max
     142       71192 :       nl = INT(lbb_max/2)
     143       71192 :       IF (lb_max == 0 .OR. lcb_max == 0) nl = 0
     144       71192 :       lmax = la_max + lbb_max
     145             : 
     146      284768 :       ALLOCATE (dtemp(nl + 1), dsr_int(nl + 1))
     147      355960 :       ALLOCATE (coeff_srs(nl + 1, nl + 1, nl + 1))
     148       71192 :       IF (nl > 5) CALL get_prefac_sabb(nl, coeff_srs)
     149             : 
     150       71192 :       sqrt_pi3 = SQRT(pi**3)
     151             : 
     152             :       ! Loops over all pairs of primitive Gaussian-type functions
     153      156950 :       DO kpgfb = 1, npgfcb
     154      622648 :          DO jpgfb = 1, npgfb
     155     3161930 :             DO ipgfa = 1, npgfa
     156             : 
     157             :                !Calculate some prefactors
     158     2610474 :                a = zeta(ipgfa)
     159     2610474 :                b = zetb(jpgfb) + zetcb(kpgfb)
     160             : 
     161     2610474 :                zet = a + b
     162     2610474 :                xhi = a*b/zet
     163     2610474 :                exp_rab2 = EXP(-xhi*rab2)
     164             : 
     165     2610474 :                pfac = a**2/zet
     166     2610474 :                sqrt_zet = SQRT(zet)
     167             : 
     168     9686688 :                DO il = 0, nl
     169     6610516 :                   nds = lmax - 2*il + ndev + 1
     170     2610474 :                   SELECT CASE (il)
     171             :                   CASE (0)
     172             :                      ! [s|s] integral
     173     2610474 :                      s(ipgfa, jpgfb, kpgfb, il + 1, 1) = (pi/zet)**(1.5_dp)*exp_rab2
     174    16569083 :                      DO ids = 2, nds
     175    13958609 :                         n = ids - 1
     176    16569083 :                         s(ipgfa, jpgfb, kpgfb, il + 1, ids) = (-xhi)**n*s(ipgfa, jpgfb, kpgfb, il + 1, 1)
     177             :                      END DO
     178             :                   CASE (1)
     179             :                      ![s|r^2|s] integral
     180     2056110 :                      sr_int = sqrt_pi3/sqrt_zet**5*(3.0_dp + 2.0_dp*pfac*rab2)/2.0_dp
     181     2056110 :                      s(ipgfa, jpgfb, kpgfb, il + 1, 1) = exp_rab2*sr_int
     182     2056110 :                      k = sqrt_pi3*a**2/sqrt_zet**7
     183    10717201 :                      DO ids = 2, nds
     184     8661091 :                         n = ids - 1
     185             :                         s(ipgfa, jpgfb, kpgfb, il + 1, ids) = (-xhi)**n*exp_rab2*sr_int &
     186    10717201 :                                                               + n*(-xhi)**(n - 1)*k*exp_rab2
     187             :                      END DO
     188             :                   CASE (2)
     189             :                      ![s|r^4|s] integral
     190     1793960 :                      prefac = sqrt_pi3/4.0_dp/sqrt_zet**7
     191     1793960 :                      temp = 15.0_dp + 20.0_dp*pfac*rab2 + 4.0_dp*(pfac*rab2)**2
     192     1793960 :                      sr_int = prefac*temp
     193     1793960 :                      s(ipgfa, jpgfb, kpgfb, il + 1, 1) = exp_rab2*sr_int
     194             :                      !** derivatives
     195     1793960 :                      k = sqrt_pi3*a**4/sqrt_zet**11
     196     1793960 :                      dsr_int(1) = prefac*(20.0_dp*pfac + 8.0_dp*pfac**2*rab2)
     197     6414440 :                      DO ids = 2, nds
     198     4620480 :                         n = ids - 1
     199     4620480 :                         dtemp(1) = (-xhi)**n*exp_rab2*sr_int
     200     4620480 :                         dtemp(2) = n*(-xhi)**(n - 1)*exp_rab2*dsr_int(1)
     201     4620480 :                         dtemp(3) = (n**2 - n)*(-xhi)**(n - 2)*k*exp_rab2
     202     6414440 :                         s(ipgfa, jpgfb, kpgfb, il + 1, ids) = dtemp(1) + dtemp(2) + dtemp(3)
     203             :                      END DO
     204             :                   CASE (3)
     205             :                      ![s|r^6|s] integral
     206      148048 :                      prefac = sqrt_pi3/8.0_dp/sqrt_zet**9
     207      148048 :                      temp = 105.0_dp + 210.0_dp*pfac*rab2
     208      148048 :                      temp = temp + 84.0_dp*(pfac*rab2)**2 + 8.0_dp*(pfac*rab2)**3
     209      148048 :                      sr_int = prefac*temp
     210      148048 :                      s(ipgfa, jpgfb, kpgfb, il + 1, 1) = exp_rab2*sr_int
     211             :                      !** derivatives
     212      148048 :                      k = sqrt_pi3*a**6/sqrt_zet**15
     213             :                      dsr_int(1) = prefac*(210.0_dp*pfac + 168.0_dp*pfac**2*rab2 &
     214      148048 :                                           + 24.0_dp*pfac**3*rab2**2)
     215      148048 :                      dsr_int(2) = prefac*(168.0_dp*pfac**2 + 48.0_dp*pfac**3*rab2)
     216      322848 :                      DO ids = 2, nds
     217      174800 :                         n = ids - 1
     218      174800 :                         dtemp(1) = (-xhi)**n*exp_rab2*sr_int
     219      174800 :                         dtemp(2) = REAL(n, dp)*(-xhi)**(n - 1)*exp_rab2*dsr_int(1)
     220             :                         dtemp(3) = REAL(n**2 - n, dp)/2.0_dp*(-xhi)**(n - 2) &
     221      174800 :                                    *exp_rab2*dsr_int(2)
     222      174800 :                         dtemp(4) = REAL(n*(n - 1)*(n - 2), dp)*(-xhi)**(n - 3)*k*exp_rab2
     223             :                         s(ipgfa, jpgfb, kpgfb, il + 1, ids) = dtemp(1) + dtemp(2) &
     224      322848 :                                                               + dtemp(3) + dtemp(4)
     225             :                      END DO
     226             :                   CASE (4)
     227             :                      ![s|r^8|s] integral
     228        1284 :                      prefac = sqrt_pi3/16.0_dp/sqrt_zet**11
     229        1284 :                      temp = 945.0_dp + 2520.0_dp*pfac*rab2 + 1512.0_dp*(pfac*rab2)**2
     230        1284 :                      temp = temp + 288.0_dp*(pfac*rab2)**3 + 16.0_dp*(pfac*rab2)**4
     231        1284 :                      sr_int = prefac*temp
     232        1284 :                      s(ipgfa, jpgfb, kpgfb, il + 1, 1) = exp_rab2*sr_int
     233             :                      !** derivatives
     234        1284 :                      k = sqrt_pi3*a**8/sqrt_zet**19
     235        1284 :                      dsr_int(1) = 2520.0_dp*pfac + 3024.0_dp*pfac**2*rab2
     236             :                      dsr_int(1) = dsr_int(1) + 864.0_dp*pfac**3*rab2**2 &
     237        1284 :                                   + 64.0_dp*pfac**4*rab2**3
     238        1284 :                      dsr_int(1) = prefac*dsr_int(1)
     239        1284 :                      dsr_int(2) = 3024.0_dp*pfac**2 + 1728.0_dp*pfac**3*rab2
     240        1284 :                      dsr_int(2) = dsr_int(2) + 192.0_dp*pfac**4*rab2**2
     241        1284 :                      dsr_int(2) = prefac*dsr_int(2)
     242        1284 :                      dsr_int(3) = 1728.0_dp*pfac**3 + 384.0_dp*pfac**4*rab2
     243        1284 :                      dsr_int(3) = prefac*dsr_int(3)
     244        3314 :                      DO ids = 2, nds
     245        2030 :                         n = ids - 1
     246        2030 :                         dtemp(1) = (-xhi)**n*exp_rab2*sr_int
     247        2030 :                         dtemp(2) = REAL(n, dp)*(-xhi)**(n - 1)*exp_rab2*dsr_int(1)
     248             :                         dtemp(3) = REAL(n**2 - n, dp)/2.0_dp*(-xhi)**(n - 2) &
     249        2030 :                                    *exp_rab2*dsr_int(2)
     250             :                         dtemp(4) = REAL(n*(n - 1)*(n - 2), dp)/6.0_dp*(-xhi)**(n - 3) &
     251        2030 :                                    *exp_rab2*dsr_int(3)
     252             :                         dtemp(5) = REAL(n*(n - 1)*(n - 2)*(n - 3), dp)*(-xhi)**(n - 4) &
     253        2030 :                                    *k*exp_rab2
     254             :                         s(ipgfa, jpgfb, kpgfb, il + 1, ids) = dtemp(1) + dtemp(2) + dtemp(3) &
     255        3314 :                                                               + dtemp(4) + dtemp(5)
     256             :                      END DO
     257             :                   CASE (5)
     258             :                      ![s|r^10|s] integral
     259         640 :                      prefac = sqrt_pi3/32.0_dp/sqrt_zet**13
     260         640 :                      temp = 10395.0_dp + 34650.0_dp*pfac*rab2
     261         640 :                      temp = temp + 27720.0_dp*(pfac*rab2)**2 + 7920.0_dp*(pfac*rab2)**3
     262         640 :                      temp = temp + 880.0_dp*(pfac*rab2)**4 + 32.0_dp*(pfac*rab2)**5
     263         640 :                      sr_int = prefac*temp
     264         640 :                      s(ipgfa, jpgfb, kpgfb, il + 1, 1) = exp_rab2*sr_int
     265             :                      !** derivatives
     266         640 :                      k = sqrt_pi3*a**10/sqrt_zet**23
     267         640 :                      dsr_int(1) = 34650.0_dp*pfac + 55440.0_dp*pfac**2*rab2
     268         640 :                      dsr_int(1) = dsr_int(1) + 23760.0_dp*pfac**3*rab2**2
     269         640 :                      dsr_int(1) = dsr_int(1) + 3520.0_dp*pfac**4*rab2**3
     270         640 :                      dsr_int(1) = dsr_int(1) + 160.0_dp*pfac**5*rab2**4
     271         640 :                      dsr_int(1) = prefac*dsr_int(1)
     272         640 :                      dsr_int(2) = 55440.0_dp*pfac**2 + 47520.0_dp*pfac**3*rab2
     273         640 :                      dsr_int(2) = dsr_int(2) + 10560.0_dp*pfac**4*rab2**2
     274         640 :                      dsr_int(2) = dsr_int(2) + 640.0_dp*pfac**5*rab2**3
     275         640 :                      dsr_int(2) = prefac*dsr_int(2)
     276         640 :                      dsr_int(3) = 47520.0_dp*pfac**3 + 21120.0_dp*pfac**4*rab2
     277         640 :                      dsr_int(3) = dsr_int(3) + 1920.0_dp*pfac**5*rab2**2
     278         640 :                      dsr_int(3) = prefac*dsr_int(3)
     279         640 :                      dsr_int(4) = 21120.0_dp*pfac**4 + 3840.0_dp*pfac**5*rab2
     280         640 :                      dsr_int(4) = prefac*dsr_int(4)
     281         998 :                      DO ids = 2, nds
     282         358 :                         n = ids - 1
     283         358 :                         dtemp(1) = (-xhi)**n*exp_rab2*sr_int
     284         358 :                         dtemp(2) = REAL(n, dp)*(-xhi)**(n - 1)*exp_rab2*dsr_int(1)
     285             :                         dtemp(3) = REAL(n**2 - n, dp)/2.0_dp*(-xhi)**(n - 2) &
     286         358 :                                    *exp_rab2*dsr_int(2)
     287             :                         dtemp(4) = REAL(n*(n - 1)*(n - 2), dp)/6.0_dp*(-xhi)**(n - 3) &
     288         358 :                                    *exp_rab2*dsr_int(3)
     289             :                         dtemp(5) = REAL(n*(n - 1)*(n - 2)*(n - 3), dp)/24.0_dp*(-xhi)**(n - 4) &
     290         358 :                                    *exp_rab2*dsr_int(4)
     291             :                         dtemp(6) = REAL(n*(n - 1)*(n - 2)*(n - 3)*(n - 4), dp)*(-xhi)**(n - 5) &
     292         358 :                                    *k*exp_rab2
     293             :                         s(ipgfa, jpgfb, kpgfb, il + 1, ids) = dtemp(1) + dtemp(2) + dtemp(3) &
     294         998 :                                                               + dtemp(4) + dtemp(5) + dtemp(6)
     295             :                      END DO
     296             :                   CASE DEFAULT
     297             :                      !*** general formula; factor 1.5-2 slower than explicit expressions
     298           0 :                      prefac = exp_rab2/sqrt_zet**(2*il + 3)
     299           0 :                      sr_int = 0.0_dp
     300           0 :                      DO i = 0, il
     301           0 :                         sr_int = sr_int + coeff_srs(i + 1, 1, il + 1)*(pfac)**i*rab2**i
     302             :                      END DO
     303           0 :                      s(ipgfa, jpgfb, kpgfb, il + 1, 1) = prefac*sr_int
     304     6610516 :                      DO ids = 2, nds
     305           0 :                         n = ids - 1
     306           0 :                         nfac = 1
     307           0 :                         dfsr_int = (-xhi)**n*sr_int
     308           0 :                         DO j = 1, il
     309             :                            temp = 0.0_dp
     310           0 :                            DO i = j, il
     311           0 :                               temp = temp + coeff_srs(i + 1, j + 1, il + 1)*(pfac)**i*rab2**(i - j)
     312             :                            END DO
     313           0 :                            nfac = nfac*(n - j + 1)
     314           0 :                            dfsr_int = dfsr_int + temp*REAL(nfac, dp)/fac(j)*(-xhi)**(n - j)
     315             :                         END DO
     316           0 :                         s(ipgfa, jpgfb, kpgfb, il + 1, ids) = prefac*dfsr_int
     317             :                      END DO
     318             : 
     319             :                   END SELECT
     320             : 
     321             :                END DO
     322             : 
     323             :             END DO
     324             :          END DO
     325             :       END DO
     326             : 
     327       71192 :       DEALLOCATE (dtemp, dsr_int)
     328       71192 :       DEALLOCATE (coeff_srs)
     329             : 
     330       71192 :    END SUBROUTINE s_overlap_abb
     331             : 
     332             : ! **************************************************************************************************
     333             : !> \brief calculates the uncontracted, not normalized [0a|ra^(2m)|0b] two-center integral,
     334             : !>        where ra = r-Ra and Ra center of a
     335             : !> \param la_max maximal l quantum number on a
     336             : !> \param npgfa number of primitive Gaussian on a
     337             : !> \param zeta set of exponents on a
     338             : !> \param lb_max maximal l quantum number on b
     339             : !> \param npgfb number of primitive Gaussian on a
     340             : !> \param zetb set of exponents on a
     341             : !> \param m exponent of the ra operator
     342             : !> \param rab distance vector between a and b
     343             : !> \param s ...
     344             : !> \param calculate_forces ...
     345             : ! **************************************************************************************************
     346        4800 :    SUBROUTINE s_ra2m_ab(la_max, npgfa, zeta, lb_max, npgfb, zetb, m, rab, s, calculate_forces)
     347             : 
     348             :       INTEGER, INTENT(IN)                                :: la_max, npgfa
     349             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: zeta
     350             :       INTEGER, INTENT(IN)                                :: lb_max, npgfb
     351             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: zetb
     352             :       INTEGER, INTENT(IN)                                :: m
     353             :       REAL(KIND=dp), DIMENSION(3), INTENT(IN)            :: rab
     354             :       REAL(KIND=dp), DIMENSION(:, :, :, :), &
     355             :          INTENT(INOUT)                                   :: s
     356             :       LOGICAL, INTENT(IN)                                :: calculate_forces
     357             : 
     358             :       INTEGER                                            :: i, ids, il, ipgfa, j, jpgfb, n, ndev, &
     359             :                                                             nds, nfac
     360             :       REAL(KIND=dp)                                      :: a, b, dfsr_int, exp_rab2, k, pfac, &
     361             :                                                             prefac, rab2, sqrt_pi3, sqrt_zet, &
     362             :                                                             sr_int, temp, xhi, zet
     363        4800 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: dsr_int, dtemp
     364             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :)     :: coeff_srs
     365             : 
     366             :       ! Distance of the centers a and b
     367        4800 :       rab2 = rab(1)*rab(1) + rab(2)*rab(2) + rab(3)*rab(3)
     368        4800 :       ndev = 0
     369        4800 :       IF (calculate_forces) ndev = 1
     370             : 
     371       19200 :       ALLOCATE (dtemp(m + 1), dsr_int(m + 1))
     372       24000 :       ALLOCATE (coeff_srs(m + 1, m + 1, m + 1))
     373        4800 :       CALL get_prefac_sabb(m, coeff_srs)
     374             :       !IF(m > 5) CALL get_prefac_sabb(m, coeff_srs)
     375        4800 :       sqrt_pi3 = SQRT(pi**3)
     376             : 
     377             :       ! Loops over all pairs of primitive Gaussian-type functions
     378        9600 :       DO ipgfa = 1, npgfa
     379       14400 :          DO jpgfb = 1, npgfb
     380             : 
     381             :             ! Calculate some prefactors
     382        4800 :             a = zeta(ipgfa)
     383        4800 :             b = zetb(jpgfb)
     384        4800 :             zet = a + b
     385        4800 :             xhi = a*b/zet
     386        4800 :             exp_rab2 = EXP(-xhi*rab2)
     387             : 
     388        4800 :             sqrt_zet = SQRT(zet)
     389        4800 :             pfac = b**2/zet
     390             : 
     391        4800 :             nds = la_max + lb_max + ndev + 1
     392       28800 :             DO il = 0, m
     393        4800 :                SELECT CASE (il)
     394             :                CASE (0)
     395             :                   ! [s|s] integral
     396        4800 :                   s(ipgfa, jpgfb, m - il + 1, 1) = (pi/zet)**(1.5_dp)*exp_rab2
     397       34080 :                   DO ids = 2, nds
     398       29280 :                      n = ids - 1
     399       34080 :                      s(ipgfa, jpgfb, m - il + 1, ids) = (-xhi)**n*s(ipgfa, jpgfb, m - il + 1, 1)
     400             :                   END DO
     401             :                CASE (1)
     402             :                   ![s|r^2|s] integral
     403        4800 :                   sr_int = sqrt_pi3/sqrt_zet**5*(3.0_dp + 2.0_dp*pfac*rab2)/2.0_dp
     404        4800 :                   s(ipgfa, jpgfb, m - il + 1, 1) = exp_rab2*sr_int
     405        4800 :                   k = sqrt_pi3*b**2/sqrt_zet**7
     406       34080 :                   DO ids = 2, nds
     407       29280 :                      n = ids - 1
     408             :                      s(ipgfa, jpgfb, m - il + 1, ids) = (-xhi)**n*exp_rab2*sr_int &
     409       34080 :                                                         + n*(-xhi)**(n - 1)*k*exp_rab2
     410             :                   END DO
     411             :                CASE (2)
     412             :                   ![s|r^4|s] integral
     413        4800 :                   prefac = sqrt_pi3/4.0_dp/sqrt_zet**7
     414        4800 :                   temp = 15.0_dp + 20.0_dp*pfac*rab2 + 4.0_dp*(pfac*rab2)**2
     415        4800 :                   sr_int = prefac*temp
     416        4800 :                   s(ipgfa, jpgfb, m - il + 1, 1) = exp_rab2*sr_int
     417             :                   !** derivatives
     418        4800 :                   k = sqrt_pi3*b**4/sqrt_zet**11
     419        4800 :                   dsr_int(1) = prefac*(20.0_dp*pfac + 8.0_dp*pfac**2*rab2)
     420       34080 :                   DO ids = 2, nds
     421       29280 :                      n = ids - 1
     422       29280 :                      dtemp(1) = (-xhi)**n*exp_rab2*sr_int
     423       29280 :                      dtemp(2) = n*(-xhi)**(n - 1)*exp_rab2*dsr_int(1)
     424       29280 :                      dtemp(3) = (n**2 - n)*(-xhi)**(n - 2)*k*exp_rab2
     425       34080 :                      s(ipgfa, jpgfb, m - il + 1, ids) = dtemp(1) + dtemp(2) + dtemp(3)
     426             :                   END DO
     427             :                CASE (3)
     428             :                   ![s|r^6|s] integral
     429        4800 :                   prefac = sqrt_pi3/8.0_dp/sqrt_zet**9
     430        4800 :                   temp = 105.0_dp + 210.0_dp*pfac*rab2
     431        4800 :                   temp = temp + 84.0_dp*(pfac*rab2)**2 + 8.0_dp*(pfac*rab2)**3
     432        4800 :                   sr_int = prefac*temp
     433        4800 :                   s(ipgfa, jpgfb, m - il + 1, 1) = exp_rab2*sr_int
     434             :                   !** derivatives
     435        4800 :                   k = sqrt_pi3*b**6/sqrt_zet**15
     436             :                   dsr_int(1) = prefac*(210.0_dp*pfac + 168.0_dp*pfac**2*rab2 &
     437        4800 :                                        + 24.0_dp*pfac**3*rab2**2)
     438        4800 :                   dsr_int(2) = prefac*(168.0_dp*pfac**2 + 48.0_dp*pfac**3*rab2)
     439       34080 :                   DO ids = 2, nds
     440       29280 :                      n = ids - 1
     441       29280 :                      dtemp(1) = (-xhi)**n*exp_rab2*sr_int
     442       29280 :                      dtemp(2) = REAL(n, dp)*(-xhi)**(n - 1)*exp_rab2*dsr_int(1)
     443             :                      dtemp(3) = REAL(n**2 - n, dp)/2.0_dp*(-xhi)**(n - 2) &
     444       29280 :                                 *exp_rab2*dsr_int(2)
     445       29280 :                      dtemp(4) = REAL(n*(n - 1)*(n - 2), dp)*(-xhi)**(n - 3)*k*exp_rab2
     446             :                      s(ipgfa, jpgfb, m - il + 1, ids) = dtemp(1) + dtemp(2) &
     447       34080 :                                                         + dtemp(3) + dtemp(4)
     448             :                   END DO
     449             :                CASE (4)
     450             :                   ![s|r^8|s] integral
     451           0 :                   prefac = sqrt_pi3/16.0_dp/sqrt_zet**11
     452           0 :                   temp = 945.0_dp + 2520.0_dp*pfac*rab2 + 1512.0_dp*(pfac*rab2)**2
     453           0 :                   temp = temp + 288.0_dp*(pfac*rab2)**3 + 16.0_dp*(pfac*rab2)**4
     454           0 :                   sr_int = prefac*temp
     455           0 :                   s(ipgfa, jpgfb, m - il + 1, 1) = exp_rab2*sr_int
     456             :                   !** derivatives
     457           0 :                   k = sqrt_pi3*b**8/sqrt_zet**19
     458           0 :                   dsr_int(1) = 2520.0_dp*pfac + 3024.0_dp*pfac**2*rab2
     459             :                   dsr_int(1) = dsr_int(1) + 864.0_dp*pfac**3*rab2**2 &
     460           0 :                                + 64.0_dp*pfac**4*rab2**3
     461           0 :                   dsr_int(1) = prefac*dsr_int(1)
     462           0 :                   dsr_int(2) = 3024.0_dp*pfac**2 + 1728.0_dp*pfac**3*rab2
     463           0 :                   dsr_int(2) = dsr_int(2) + 192.0_dp*pfac**4*rab2**2
     464           0 :                   dsr_int(2) = prefac*dsr_int(2)
     465           0 :                   dsr_int(3) = 1728.0_dp*pfac**3 + 384.0_dp*pfac**4*rab2
     466           0 :                   dsr_int(3) = prefac*dsr_int(3)
     467           0 :                   DO ids = 2, nds
     468           0 :                      n = ids - 1
     469           0 :                      dtemp(1) = (-xhi)**n*exp_rab2*sr_int
     470           0 :                      dtemp(2) = REAL(n, dp)*(-xhi)**(n - 1)*exp_rab2*dsr_int(1)
     471             :                      dtemp(3) = REAL(n**2 - n, dp)/2.0_dp*(-xhi)**(n - 2) &
     472           0 :                                 *exp_rab2*dsr_int(2)
     473             :                      dtemp(4) = REAL(n*(n - 1)*(n - 2), dp)/6.0_dp*(-xhi)**(n - 3) &
     474           0 :                                 *exp_rab2*dsr_int(3)
     475             :                      dtemp(5) = REAL(n*(n - 1)*(n - 2)*(n - 3), dp)*(-xhi)**(n - 4) &
     476           0 :                                 *k*exp_rab2
     477             :                      s(ipgfa, jpgfb, m - il + 1, ids) = dtemp(1) + dtemp(2) + dtemp(3) &
     478           0 :                                                         + dtemp(4) + dtemp(5)
     479             :                   END DO
     480             :                CASE (5)
     481             :                   ![s|r^10|s] integral
     482           0 :                   prefac = sqrt_pi3/32.0_dp/sqrt_zet**13
     483           0 :                   temp = 10395.0_dp + 34650.0_dp*pfac*rab2
     484           0 :                   temp = temp + 27720.0_dp*(pfac*rab2)**2 + 7920.0_dp*(pfac*rab2)**3
     485           0 :                   temp = temp + 880.0_dp*(pfac*rab2)**4 + 32.0_dp*(pfac*rab2)**5
     486           0 :                   sr_int = prefac*temp
     487           0 :                   s(ipgfa, jpgfb, m - il + 1, 1) = exp_rab2*sr_int
     488             :                   !** derivatives
     489           0 :                   k = sqrt_pi3*b**10/sqrt_zet**23
     490           0 :                   dsr_int(1) = 34650.0_dp*pfac + 55440.0_dp*pfac**2*rab2
     491           0 :                   dsr_int(1) = dsr_int(1) + 23760.0_dp*pfac**3*rab2**2
     492           0 :                   dsr_int(1) = dsr_int(1) + 3520.0_dp*pfac**4*rab2**3
     493           0 :                   dsr_int(1) = dsr_int(1) + 160.0_dp*pfac**5*rab2**4
     494           0 :                   dsr_int(1) = prefac*dsr_int(1)
     495           0 :                   dsr_int(2) = 55440.0_dp*pfac**2 + 47520.0_dp*pfac**3*rab2
     496           0 :                   dsr_int(2) = dsr_int(2) + 10560.0_dp*pfac**4*rab2**2
     497           0 :                   dsr_int(2) = dsr_int(2) + 640.0_dp*pfac**5*rab2**3
     498           0 :                   dsr_int(2) = prefac*dsr_int(2)
     499           0 :                   dsr_int(3) = 47520.0_dp*pfac**3 + 21120.0_dp*pfac**4*rab2
     500           0 :                   dsr_int(3) = dsr_int(3) + 1920.0_dp*pfac**5*rab2**2
     501           0 :                   dsr_int(3) = prefac*dsr_int(3)
     502           0 :                   dsr_int(4) = 21120.0_dp*pfac**4 + 3840.0_dp*pfac**5*rab2
     503           0 :                   dsr_int(4) = prefac*dsr_int(4)
     504           0 :                   DO ids = 2, nds
     505           0 :                      n = ids - 1
     506           0 :                      dtemp(1) = (-xhi)**n*exp_rab2*sr_int
     507           0 :                      dtemp(2) = REAL(n, dp)*(-xhi)**(n - 1)*exp_rab2*dsr_int(1)
     508             :                      dtemp(3) = REAL(n**2 - n, dp)/2.0_dp*(-xhi)**(n - 2) &
     509           0 :                                 *exp_rab2*dsr_int(2)
     510             :                      dtemp(4) = REAL(n*(n - 1)*(n - 2), dp)/6.0_dp*(-xhi)**(n - 3) &
     511           0 :                                 *exp_rab2*dsr_int(3)
     512             :                      dtemp(5) = REAL(n*(n - 1)*(n - 2)*(n - 3), dp)/24.0_dp*(-xhi)**(n - 4) &
     513           0 :                                 *exp_rab2*dsr_int(4)
     514             :                      dtemp(6) = REAL(n*(n - 1)*(n - 2)*(n - 3)*(n - 4), dp)*(-xhi)**(n - 5) &
     515           0 :                                 *k*exp_rab2
     516             :                      s(ipgfa, jpgfb, m - il + 1, ids) = dtemp(1) + dtemp(2) + dtemp(3) &
     517           0 :                                                         + dtemp(4) + dtemp(5) + dtemp(6)
     518             :                   END DO
     519             :                CASE DEFAULT
     520           0 :                   prefac = exp_rab2/sqrt_zet**(2*il + 3)
     521           0 :                   sr_int = 0.0_dp
     522           0 :                   DO i = 0, il
     523           0 :                      sr_int = sr_int + coeff_srs(i + 1, 1, il + 1)*(pfac)**i*rab2**i
     524             :                   END DO
     525           0 :                   s(ipgfa, jpgfb, m - il + 1, 1) = prefac*sr_int
     526       19200 :                   DO ids = 2, nds
     527           0 :                      n = ids - 1
     528           0 :                      nfac = 1
     529           0 :                      dfsr_int = (-xhi)**n*sr_int
     530           0 :                      DO j = 1, il
     531             :                         temp = 0.0_dp
     532           0 :                         DO i = j, il
     533           0 :                            temp = temp + coeff_srs(i + 1, j + 1, il + 1)*(pfac)**i*rab2**(i - j)
     534             :                         END DO
     535           0 :                         nfac = nfac*(n - j + 1)
     536           0 :                         dfsr_int = dfsr_int + temp*REAL(nfac, dp)/fac(j)*(-xhi)**(n - j)
     537             :                      END DO
     538           0 :                      s(ipgfa, jpgfb, m - il + 1, ids) = prefac*dfsr_int
     539             :                   END DO
     540             :                END SELECT
     541             :             END DO
     542             :          END DO
     543             :       END DO
     544             : 
     545        4800 :       DEALLOCATE (coeff_srs)
     546        4800 :       DEALLOCATE (dtemp, dsr_int)
     547             : 
     548        4800 :    END SUBROUTINE s_ra2m_ab
     549             : 
     550             : ! **************************************************************************************************
     551             : !> \brief prefactor for the general formula to calculate the (0a|0b|0b) overlap integrals
     552             : !> \param nl ...
     553             : !> \param prefac ...
     554             : ! **************************************************************************************************
     555        4800 :    SUBROUTINE get_prefac_sabb(nl, prefac)
     556             :       INTEGER, INTENT(IN)                                :: nl
     557             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(INOUT)   :: prefac
     558             : 
     559             :       INTEGER                                            :: il, j, k
     560             :       REAL(KIND=dp)                                      :: sqrt_pi3, temp
     561             : 
     562        4800 :       sqrt_pi3 = SQRT(pi**3)
     563             : 
     564       24000 :       DO il = 0, nl
     565       19200 :          temp = dfac(2*il + 1)*sqrt_pi3*fac(il)/2.0_dp**il
     566       72000 :          DO j = 0, il
     567      163200 :             DO k = j, il
     568      144000 :                prefac(k + 1, j + 1, il + 1) = temp*2.0_dp**k/dfac(2*k + 1)/fac(il - k)/fac(k - j)
     569             :             END DO
     570             :          END DO
     571             :       END DO
     572             : 
     573        4800 :    END SUBROUTINE get_prefac_sabb
     574             : 
     575             : ! **************************************************************************************************
     576             : !> \brief calculates the uncontracted, not normalized [s|1/r12|s] two-center coulomb integral
     577             : !> \param la_max maximal l quantum number on a
     578             : !> \param npgfa number of primitive Gaussian on a
     579             : !> \param zeta set of exponents on a
     580             : !> \param lb_max maximal l quantum number on b
     581             : !> \param npgfb number of primitive Gaussian on a
     582             : !> \param zetb set of exponents on a
     583             : !> \param omega parameter not needed, but given for the sake of the abstract interface
     584             : !> \param rab distance vector between a and b
     585             : !> \param v uncontracted coulomb integral of s functions
     586             : !> \param calculate_forces ...
     587             : ! **************************************************************************************************
     588    19123724 :    SUBROUTINE s_coulomb_ab(la_max, npgfa, zeta, lb_max, npgfb, zetb, omega, rab, v, calculate_forces)
     589             : 
     590             :       INTEGER, INTENT(IN)                                :: la_max, npgfa
     591             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: zeta
     592             :       INTEGER, INTENT(IN)                                :: lb_max, npgfb
     593             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: zetb
     594             :       REAL(KIND=dp), INTENT(IN)                          :: omega
     595             :       REAL(KIND=dp), DIMENSION(3), INTENT(IN)            :: rab
     596             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(INOUT)   :: v
     597             :       LOGICAL, INTENT(IN)                                :: calculate_forces
     598             : 
     599             :       INTEGER                                            :: ids, ipgfa, jpgfb, n, ndev, nmax
     600             :       REAL(KIND=dp)                                      :: a, b, dummy, prefac, rab2, T, xhi, zet
     601    19123724 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: f
     602             : 
     603    19123724 :       dummy = omega
     604             : 
     605             :       ! Distance of the centers a and b
     606    19123724 :       rab2 = rab(1)*rab(1) + rab(2)*rab(2) + rab(3)*rab(3)
     607    19123724 :       ndev = 0
     608    19123724 :       IF (calculate_forces) ndev = 1
     609    19123724 :       nmax = la_max + lb_max + ndev + 1
     610    57371172 :       ALLOCATE (f(0:nmax))
     611             :       ! Loops over all pairs of primitive Gaussian-type functions
     612    38247448 :       DO ipgfa = 1, npgfa
     613    57371172 :          DO jpgfb = 1, npgfb
     614             : 
     615             :             ! Calculate some prefactors
     616    19123724 :             a = zeta(ipgfa)
     617    19123724 :             b = zetb(jpgfb)
     618    19123724 :             zet = a + b
     619    19123724 :             xhi = a*b/zet
     620    19123724 :             prefac = 2.0_dp*SQRT(pi**5)/(a*b)/SQRT(zet)
     621    19123724 :             T = xhi*rab2
     622    19123724 :             CALL fgamma(nmax - 1, T, f)
     623             : 
     624    89095788 :             DO ids = 1, nmax
     625    50848340 :                n = ids - 1
     626    69972064 :                v(ipgfa, jpgfb, ids) = prefac*(-xhi)**n*f(n)
     627             :             END DO
     628             : 
     629             :          END DO
     630             :       END DO
     631    19123724 :       DEALLOCATE (f)
     632             : 
     633    19123724 :    END SUBROUTINE s_coulomb_ab
     634             : 
     635             : ! **************************************************************************************************
     636             : !> \brief calculates the uncontracted, not normalized [s|1/erf(omega*r12)/r12|s] two-center integral
     637             : !> \param la_max maximal l quantum number on a
     638             : !> \param npgfa number of primitive Gaussian on a
     639             : !> \param zeta set of exponents on a
     640             : !> \param lb_max maximal l quantum number on b
     641             : !> \param npgfb number of primitive Gaussian on a
     642             : !> \param zetb set of exponents on a
     643             : !> \param omega parameter in the operator
     644             : !> \param rab distance vector between a and b
     645             : !> \param v uncontracted erf(r)/r integral of s functions
     646             : !> \param calculate_forces ...
     647             : ! **************************************************************************************************
     648        4800 :    SUBROUTINE s_verf_ab(la_max, npgfa, zeta, lb_max, npgfb, zetb, omega, rab, v, calculate_forces)
     649             : 
     650             :       INTEGER, INTENT(IN)                                :: la_max, npgfa
     651             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: zeta
     652             :       INTEGER, INTENT(IN)                                :: lb_max, npgfb
     653             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: zetb
     654             :       REAL(KIND=dp), INTENT(IN)                          :: omega
     655             :       REAL(KIND=dp), DIMENSION(3), INTENT(IN)            :: rab
     656             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(INOUT)   :: v
     657             :       LOGICAL, INTENT(IN)                                :: calculate_forces
     658             : 
     659             :       INTEGER                                            :: ids, ipgfa, jpgfb, n, ndev, nmax
     660             :       REAL(KIND=dp)                                      :: a, Arg, b, comega, prefac, rab2, T, xhi, &
     661             :                                                             zet
     662        4800 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: f
     663             : 
     664             :       ! Distance of the centers a and b
     665        4800 :       rab2 = rab(1)*rab(1) + rab(2)*rab(2) + rab(3)*rab(3)
     666        4800 :       ndev = 0
     667        4800 :       IF (calculate_forces) ndev = 1
     668        4800 :       nmax = la_max + lb_max + ndev + 1
     669       14400 :       ALLOCATE (f(0:nmax))
     670             :       ! Loops over all pairs of primitive Gaussian-type functions
     671        9600 :       DO ipgfa = 1, npgfa
     672       14400 :          DO jpgfb = 1, npgfb
     673             : 
     674             :             ! Calculate some prefactors
     675        4800 :             a = zeta(ipgfa)
     676        4800 :             b = zetb(jpgfb)
     677        4800 :             zet = a + b
     678        4800 :             xhi = a*b/zet
     679        4800 :             comega = omega**2/(omega**2 + xhi)
     680        4800 :             prefac = 2.0_dp*SQRT(pi**5)*SQRT(comega)/(a*b)/SQRT(zet)
     681        4800 :             T = xhi*rab2
     682        4800 :             Arg = comega*T
     683        4800 :             CALL fgamma(nmax - 1, Arg, f)
     684             : 
     685       43680 :             DO ids = 1, nmax
     686       34080 :                n = ids - 1
     687       38880 :                v(ipgfa, jpgfb, ids) = prefac*(-xhi*comega)**n*f(n)
     688             :             END DO
     689             : 
     690             :          END DO
     691             :       END DO
     692        4800 :       DEALLOCATE (f)
     693             : 
     694        4800 :    END SUBROUTINE s_verf_ab
     695             : 
     696             : ! **************************************************************************************************
     697             : !> \brief calculates the uncontracted, not normalized [s|1/erfc(omega*r12)/r12|s] two-center
     698             : !>        integral
     699             : !> \param la_max maximal l quantum number on a
     700             : !> \param npgfa number of primitive Gaussian on a
     701             : !> \param zeta set of exponents on a
     702             : !> \param lb_max maximal l quantum number on b
     703             : !> \param npgfb number of primitive Gaussian on a
     704             : !> \param zetb set of exponents on a
     705             : !> \param omega parameter in the operator
     706             : !> \param rab distance vector between a and b
     707             : !> \param v uncontracted erf(r)/r integral of s functions
     708             : !> \param calculate_forces ...
     709             : ! **************************************************************************************************
     710        4800 :    SUBROUTINE s_verfc_ab(la_max, npgfa, zeta, lb_max, npgfb, zetb, omega, rab, v, calculate_forces)
     711             : 
     712             :       INTEGER, INTENT(IN)                                :: la_max, npgfa
     713             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: zeta
     714             :       INTEGER, INTENT(IN)                                :: lb_max, npgfb
     715             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: zetb
     716             :       REAL(KIND=dp), INTENT(IN)                          :: omega
     717             :       REAL(KIND=dp), DIMENSION(3), INTENT(IN)            :: rab
     718             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(INOUT)   :: v
     719             :       LOGICAL, INTENT(IN)                                :: calculate_forces
     720             : 
     721             :       INTEGER                                            :: ids, ipgfa, jpgfb, n, ndev, nmax
     722             :       REAL(KIND=dp)                                      :: a, b, comega, comegaT, prefac, rab2, T, &
     723             :                                                             xhi, zet
     724        4800 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: fv, fverf
     725             : 
     726             :       ! Distance of the centers a and b
     727        4800 :       rab2 = rab(1)*rab(1) + rab(2)*rab(2) + rab(3)*rab(3)
     728        4800 :       ndev = 0
     729        4800 :       IF (calculate_forces) ndev = 1
     730        4800 :       nmax = la_max + lb_max + ndev + 1
     731       19200 :       ALLOCATE (fv(0:nmax), fverf(0:nmax))
     732             :       ! Loops over all pairs of primitive Gaussian-type functions
     733        9600 :       DO ipgfa = 1, npgfa
     734       14400 :          DO jpgfb = 1, npgfb
     735             : 
     736             :             ! Calculate some prefactors
     737        4800 :             a = zeta(ipgfa)
     738        4800 :             b = zetb(jpgfb)
     739        4800 :             zet = a + b
     740        4800 :             xhi = a*b/zet
     741        4800 :             comega = omega**2/(omega**2 + xhi)
     742        4800 :             prefac = 2.0_dp*SQRT(pi**5)/(a*b)/SQRT(zet)
     743        4800 :             T = xhi*rab2
     744        4800 :             comegaT = comega*T
     745        4800 :             CALL fgamma(nmax - 1, T, fv)
     746        4800 :             CALL fgamma(nmax - 1, comegaT, fverf)
     747             : 
     748       43680 :             DO ids = 1, nmax
     749       34080 :                n = ids - 1
     750       38880 :                v(ipgfa, jpgfb, ids) = prefac*(-xhi)**n*(fv(n) - SQRT(comega)*comega**n*fverf(n))
     751             :             END DO
     752             : 
     753             :          END DO
     754             :       END DO
     755        4800 :       DEALLOCATE (fv, fverf)
     756             : 
     757        4800 :    END SUBROUTINE s_verfc_ab
     758             : 
     759             : ! **************************************************************************************************
     760             : !> \brief calculates the uncontracted, not normalized [s|exp(-omega*r12**2)/r12|s] two-center
     761             : !>        integral
     762             : !> \param la_max maximal l quantum number on a
     763             : !> \param npgfa number of primitive Gaussian on a
     764             : !> \param zeta set of exponents on a
     765             : !> \param lb_max maximal l quantum number on b
     766             : !> \param npgfb number of primitive Gaussian on a
     767             : !> \param zetb set of exponents on a
     768             : !> \param omega parameter in the operator
     769             : !> \param rab distance vector between a and b
     770             : !> \param v uncontracted exp(-omega*r**2)/r integral of s functions
     771             : !> \param calculate_forces ...
     772             : ! **************************************************************************************************
     773        4800 :    SUBROUTINE s_vgauss_ab(la_max, npgfa, zeta, lb_max, npgfb, zetb, omega, rab, v, calculate_forces)
     774             : 
     775             :       INTEGER, INTENT(IN)                                :: la_max, npgfa
     776             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: zeta
     777             :       INTEGER, INTENT(IN)                                :: lb_max, npgfb
     778             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: zetb
     779             :       REAL(KIND=dp), INTENT(IN)                          :: omega
     780             :       REAL(KIND=dp), DIMENSION(3), INTENT(IN)            :: rab
     781             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(INOUT)   :: v
     782             :       LOGICAL, INTENT(IN)                                :: calculate_forces
     783             : 
     784             :       INTEGER                                            :: ids, ipgfa, j, jpgfb, n, ndev, nmax
     785             :       REAL(KIND=dp)                                      :: a, b, eta, etaT, expT, oeta, prefac, &
     786             :                                                             rab2, T, xeta, xhi, zet
     787        4800 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: f
     788             : 
     789             :       ! Distance of the centers a and b
     790        4800 :       rab2 = rab(1)*rab(1) + rab(2)*rab(2) + rab(3)*rab(3)
     791        4800 :       ndev = 0
     792        4800 :       IF (calculate_forces) ndev = 1
     793        4800 :       nmax = la_max + lb_max + ndev + 1
     794       14400 :       ALLOCATE (f(0:nmax))
     795             :       ! Loops over all pairs of primitive Gaussian-type functions
     796      134400 :       v = 0.0_dp
     797        9600 :       DO ipgfa = 1, npgfa
     798       14400 :          DO jpgfb = 1, npgfb
     799             : 
     800             :             ! Calculate some prefactors
     801        4800 :             a = zeta(ipgfa)
     802        4800 :             b = zetb(jpgfb)
     803        4800 :             zet = a + b
     804        4800 :             xhi = a*b/zet
     805        4800 :             eta = xhi/(xhi + omega)
     806        4800 :             oeta = omega*eta
     807        4800 :             xeta = xhi*eta
     808        4800 :             T = xhi*rab2
     809        4800 :             expT = EXP(-omega/(omega + xhi)*T)
     810        4800 :             prefac = 2.0_dp*SQRT(pi**5/zet**3)/(xhi + omega)*expT
     811        4800 :             etaT = eta*T
     812        4800 :             CALL fgamma(nmax - 1, etaT, f)
     813             : 
     814       43680 :             DO ids = 1, nmax
     815       34080 :                n = ids - 1
     816      184832 :                DO j = 0, n
     817             :                   v(ipgfa, jpgfb, ids) = v(ipgfa, jpgfb, ids) &
     818      180032 :                                          + prefac*fac(n)/fac(j)/fac(n - j)*(-oeta)**(n - j)*(-xeta)**j*f(j)
     819             :                END DO
     820             :             END DO
     821             : 
     822             :          END DO
     823             :       END DO
     824        4800 :       DEALLOCATE (f)
     825             : 
     826        4800 :    END SUBROUTINE s_vgauss_ab
     827             : 
     828             : ! **************************************************************************************************
     829             : !> \brief calculates the uncontracted, not normalized [s|exp(-omega*r12**2)|s] two-center
     830             : !>        integral
     831             : !> \param la_max maximal l quantum number on a
     832             : !> \param npgfa number of primitive Gaussian on a
     833             : !> \param zeta set of exponents on a
     834             : !> \param lb_max maximal l quantum number on b
     835             : !> \param npgfb number of primitive Gaussian on a
     836             : !> \param zetb set of exponents on a
     837             : !> \param omega parameter in the operator
     838             : !> \param rab distance vector between a and b
     839             : !> \param v uncontracted exp(-omega*r**2) integral of s functions
     840             : !> \param calculate_forces ...
     841             : ! **************************************************************************************************
     842        4800 :    SUBROUTINE s_gauss_ab(la_max, npgfa, zeta, lb_max, npgfb, zetb, omega, rab, v, calculate_forces)
     843             : 
     844             :       INTEGER, INTENT(IN)                                :: la_max, npgfa
     845             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: zeta
     846             :       INTEGER, INTENT(IN)                                :: lb_max, npgfb
     847             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: zetb
     848             :       REAL(KIND=dp), INTENT(IN)                          :: omega
     849             :       REAL(KIND=dp), DIMENSION(3), INTENT(IN)            :: rab
     850             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(INOUT)   :: v
     851             :       LOGICAL, INTENT(IN)                                :: calculate_forces
     852             : 
     853             :       INTEGER                                            :: ids, ipgfa, jpgfb, n, ndev, nmax
     854             :       REAL(KIND=dp)                                      :: a, b, eta, expT, oeta, prefac, rab2, T, &
     855             :                                                             xhi, zet
     856        4800 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: f
     857             : 
     858             :       ! Distance of the centers a and b
     859        4800 :       rab2 = rab(1)*rab(1) + rab(2)*rab(2) + rab(3)*rab(3)
     860        4800 :       ndev = 0
     861        4800 :       IF (calculate_forces) ndev = 1
     862        4800 :       nmax = la_max + lb_max + ndev + 1
     863       14400 :       ALLOCATE (f(0:nmax))
     864             :       ! Loops over all pairs of primitive Gaussian-type functions
     865        9600 :       DO ipgfa = 1, npgfa
     866       14400 :          DO jpgfb = 1, npgfb
     867             : 
     868             :             ! Calculate some prefactors
     869        4800 :             a = zeta(ipgfa)
     870        4800 :             b = zetb(jpgfb)
     871        4800 :             zet = a + b
     872        4800 :             xhi = a*b/zet
     873        4800 :             eta = xhi/(xhi + omega)
     874        4800 :             oeta = omega*eta
     875        4800 :             T = xhi*rab2
     876        4800 :             expT = EXP(-omega/(omega + xhi)*T)
     877        4800 :             prefac = pi**3/SQRT(zet**3)/SQRT((xhi + omega)**3)*expT
     878             : 
     879       43680 :             DO ids = 1, nmax
     880       34080 :                n = ids - 1
     881       38880 :                v(ipgfa, jpgfb, ids) = prefac*(-oeta)**n
     882             :             END DO
     883             : 
     884             :          END DO
     885             :       END DO
     886        4800 :       DEALLOCATE (f)
     887             : 
     888        4800 :    END SUBROUTINE s_gauss_ab
     889             : 
     890             : ! **************************************************************************************************
     891             : !> \brief Contraction and normalization of the [s|O(r12)|s] integrals and their scalar derivatives;
     892             : !>        this routine is more efficient for uncontracted basis sets (clow), e.g. for ri basis sets
     893             : !> \param la set of l quantum numbers for a
     894             : !> \param npgfa number of primitive Gaussian on a
     895             : !> \param nshella number of shells for a
     896             : !> \param scona_shg SHG contraction/normalization matrix for a
     897             : !> \param lb set of l quantum numbers for b
     898             : !> \param npgfb number of primitive Gaussian on b
     899             : !> \param nshellb number of shells for b
     900             : !> \param sconb_shg SHG contraction/normalization matrix for b
     901             : !> \param swork matrix storing the uncontracted and unnormalized s-integrals and derivatives
     902             : !> \param swork_cont matrix storing the contracted and normalized s-integrals and derivatives
     903             : !> \param calculate_forces ...
     904             : ! **************************************************************************************************
     905      100787 :    SUBROUTINE contract_sint_ab_clow(la, npgfa, nshella, scona_shg, lb, npgfb, nshellb, sconb_shg, &
     906      201574 :                                     swork, swork_cont, calculate_forces)
     907             : 
     908             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: la
     909             :       INTEGER, INTENT(IN)                                :: npgfa, nshella
     910             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(IN)         :: scona_shg
     911             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: lb
     912             :       INTEGER, INTENT(IN)                                :: npgfb, nshellb
     913             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(IN)         :: sconb_shg
     914             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(IN)      :: swork
     915             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(INOUT)   :: swork_cont
     916             :       LOGICAL, INTENT(IN)                                :: calculate_forces
     917             : 
     918             :       INTEGER                                            :: ids, ids_start, ipgfa, ishella, jpgfb, &
     919             :                                                             jshellb, lai, lbj, ndev, nds
     920             : 
     921      100787 :       ndev = 0
     922      100787 :       IF (calculate_forces) ndev = 1
     923             : 
     924     8777315 :       swork_cont = 0.0_dp
     925      352772 :       DO ishella = 1, nshella
     926      251985 :          lai = la(ishella)
     927     1009456 :          DO jshellb = 1, nshellb
     928      656684 :             lbj = lb(jshellb)
     929      656684 :             nds = lai + lbj + 1
     930      656684 :             ids_start = nds - MIN(lai, lbj)
     931     1571977 :             DO ipgfa = 1, npgfa
     932     2010984 :                DO jpgfb = 1, npgfb
     933     2745677 :                   DO ids = ids_start, nds + ndev
     934             :                      swork_cont(ids, ishella, jshellb) = swork_cont(ids, ishella, jshellb) &
     935             :                                                          + scona_shg(ipgfa, ishella) &
     936             :                                                          *sconb_shg(jpgfb, jshellb) &
     937     2082369 :                                                          *swork(ipgfa, jpgfb, ids)
     938             :                   END DO
     939             :                END DO
     940             :             END DO
     941             :          END DO
     942             :       END DO
     943             : 
     944      100787 :    END SUBROUTINE contract_sint_ab_clow
     945             : 
     946             : ! **************************************************************************************************
     947             : !> \brief Contraction and normalization of the [s|O(r12)|s] integrals and their scalar derivatives;
     948             : !>        this routine is more efficient for highly contracted basis sets (chigh)
     949             : !> \param npgfa number of primitive Gaussian on a
     950             : !> \param nshella number of shells for a
     951             : !> \param scona SHG contraction/normalization matrix for a
     952             : !> \param npgfb number of primitive Gaussian on b
     953             : !> \param nshellb number of shells for b
     954             : !> \param sconb SHG contraction/normalization matrix for b
     955             : !> \param nds maximal derivative of [s|O(r12)|s] with respect to rab2
     956             : !> \param swork matrix storing the uncontracted and unnormalized s-integrals and derivatives
     957             : !> \param swork_cont matrix storing the contracted and normalized s-integrals and derivatives
     958             : ! **************************************************************************************************
     959    57488229 :    SUBROUTINE contract_sint_ab_chigh(npgfa, nshella, scona, &
     960    19162743 :                                      npgfb, nshellb, sconb, &
     961    19162743 :                                      nds, swork, swork_cont)
     962             : 
     963             :       INTEGER, INTENT(IN)                                :: npgfa, nshella
     964             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(IN)         :: scona
     965             :       INTEGER, INTENT(IN)                                :: npgfb, nshellb
     966             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(IN)         :: sconb
     967             :       INTEGER, INTENT(IN)                                :: nds
     968             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(IN)      :: swork
     969             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(INOUT)   :: swork_cont
     970             : 
     971    19162743 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :)     :: work_pc
     972             : 
     973   113775654 :       swork_cont = 0.0_dp
     974    95813715 :       ALLOCATE (work_pc(npgfb, nds, nshella))
     975             : 
     976             :       CALL dgemm("T", "N", npgfb*nds, nshella, npgfa, 1._dp, swork, npgfa, scona, npgfa, &
     977    19195517 :                  0.0_dp, work_pc, npgfb*nds)
     978             :       CALL dgemm("T", "N", nds*nshella, nshellb, npgfb, 1._dp, work_pc, npgfb, sconb, npgfb, &
     979   200392809 :                  0.0_dp, swork_cont, nds*nshella)
     980             : 
     981    19162743 :       DEALLOCATE (work_pc)
     982             : 
     983    19162743 :    END SUBROUTINE contract_sint_ab_chigh
     984             : 
     985             : ! **************************************************************************************************
     986             : !> \brief Contraction, normalization and combinatiorial combination of the [0a|(r-Ra)^(2m)|0b]
     987             : !>         integrals and their scalar derivatives
     988             : !> \param npgfa number of primitive Gaussian on a
     989             : !> \param nshella number of shells for a
     990             : !> \param scon_ra2m contraction matrix on a containg the combinatorial factors
     991             : !> \param npgfb number of primitive Gaussian on b
     992             : !> \param nshellb number of shells for b
     993             : !> \param sconb SHG contraction/normalization matrix for b
     994             : !> \param swork matrix storing the uncontracted and unnormalized s-integrals and derivatives
     995             : !> \param swork_cont matrix storing the contracted and normalized s-integrals and derivatives
     996             : !> \param m exponent in operator (r-Ra)^(2m)
     997             : !> \param nds_max maximal derivative with respect to rab2
     998             : ! **************************************************************************************************
     999        4800 :    SUBROUTINE contract_s_ra2m_ab(npgfa, nshella, scon_ra2m, npgfb, nshellb, sconb, swork, swork_cont, &
    1000             :                                  m, nds_max)
    1001             : 
    1002             :       INTEGER, INTENT(IN)                                :: npgfa, nshella
    1003             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(IN)      :: scon_ra2m
    1004             :       INTEGER, INTENT(IN)                                :: npgfb, nshellb
    1005             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(IN)         :: sconb
    1006             :       REAL(KIND=dp), DIMENSION(:, :, :, :), &
    1007             :          INTENT(INOUT)                                   :: swork
    1008             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(INOUT)   :: swork_cont
    1009             :       INTEGER, INTENT(IN)                                :: m, nds_max
    1010             : 
    1011             :       INTEGER                                            :: i, my_m
    1012        4800 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :)     :: work_pc
    1013             : 
    1014        4800 :       my_m = m + 1
    1015       24000 :       ALLOCATE (work_pc(npgfb, nds_max, nshella))
    1016      255264 :       work_pc = 0.0_dp
    1017      565344 :       swork_cont = 0.0_dp
    1018       24000 :       DO i = 1, my_m
    1019             :          CALL dgemm("T", "N", npgfb*nds_max, nshella, npgfa, 1.0_dp, swork(1:npgfa, 1:npgfb, i, 1:nds_max), npgfa, &
    1020     1095360 :                     scon_ra2m(1:npgfa, i, 1:nshella), npgfa, 1.0_dp, work_pc, npgfb*nds_max)
    1021             :       END DO
    1022             :       CALL dgemm("T", "N", nds_max*nshella, nshellb, npgfb, 1.0_dp, work_pc, npgfb, sconb, npgfb, 0.0_dp, &
    1023      499392 :                  swork_cont, nds_max*nshella)
    1024             : 
    1025        4800 :       DEALLOCATE (work_pc)
    1026             : 
    1027        4800 :    END SUBROUTINE contract_s_ra2m_ab
    1028             : 
    1029             : ! **************************************************************************************************
    1030             : !> \brief Contraction and normalization of the (abb) overlap
    1031             : !> \param la set of l quantum numbers on a
    1032             : !> \param npgfa number of primitive Gaussians functions on a; orbital basis
    1033             : !> \param nshella number of shells for a; orbital basis
    1034             : !> \param scona_shg SHG contraction/normalization matrix for a; orbital basis
    1035             : !> \param lb set of l quantum numbers on b; orbital basis
    1036             : !> \param npgfb number of primitive Gaussians functions on b; orbital basis
    1037             : !> \param nshellb number of shells for b; orbital basis
    1038             : !> \param lcb set of l quantum numbers on b; ri basis
    1039             : !> \param npgfcb number of primitive Gaussians functions on b; ri basis
    1040             : !> \param nshellcb number of shells for b; ri basis
    1041             : !> \param orbb_index index for orbital basis at B for sconb_mix
    1042             : !> \param rib_index index for ri basis at B for sconb_mix
    1043             : !> \param sconb_mix  mixed contraction matrix for orbital and ri basis at B
    1044             : !> \param nl_max related to the parameter m in (a|rb^(2m)|b)
    1045             : !> \param nds_max derivative with respect to rab**2
    1046             : !> \param swork matrix of storing the uncontracted and unnormalized s-integrals and derivatives
    1047             : !> \param swork_cont matrix storing the contracted and normalized s-integrals and derivatives
    1048             : !> \param calculate_forces ...
    1049             : ! **************************************************************************************************
    1050        4004 :    SUBROUTINE contract_s_overlap_abb(la, npgfa, nshella, scona_shg, lb, npgfb, nshellb, &
    1051        8008 :                                      lcb, npgfcb, nshellcb, orbb_index, rib_index, sconb_mix, &
    1052        4004 :                                      nl_max, nds_max, swork, swork_cont, calculate_forces)
    1053             : 
    1054             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: la
    1055             :       INTEGER, INTENT(IN)                                :: npgfa, nshella
    1056             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(IN)         :: scona_shg
    1057             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: lb
    1058             :       INTEGER, INTENT(IN)                                :: npgfb, nshellb
    1059             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: lcb
    1060             :       INTEGER, INTENT(IN)                                :: npgfcb, nshellcb
    1061             :       INTEGER, DIMENSION(:, :), INTENT(IN)               :: orbb_index, rib_index
    1062             :       REAL(KIND=dp), DIMENSION(:, :, :, :), INTENT(IN)   :: sconb_mix
    1063             :       INTEGER, INTENT(IN)                                :: nl_max, nds_max
    1064             :       REAL(KIND=dp), DIMENSION(:, :, :, :, :), &
    1065             :          INTENT(IN)                                      :: swork
    1066             :       REAL(KIND=dp), DIMENSION(:, 0:, :, :, :), &
    1067             :          INTENT(INOUT)                                   :: swork_cont
    1068             :       LOGICAL, INTENT(IN)                                :: calculate_forces
    1069             : 
    1070             :       INTEGER                                            :: forb, fri, ids, ids_start, iil, il, &
    1071             :                                                             ishella, jpgfb, jshellb, kpgfb, &
    1072             :                                                             kshellb, lai, lbb, lbj, lbk, ndev, &
    1073             :                                                             nds, nl
    1074             :       REAL(KIND=dp), ALLOCATABLE, &
    1075        4004 :          DIMENSION(:, :, :, :, :)                        :: work_ppc
    1076             : 
    1077        4004 :       ndev = 0
    1078        4004 :       IF (calculate_forces) ndev = 1
    1079             : 
    1080       28028 :       ALLOCATE (work_ppc(npgfb, npgfcb, nl_max, nds_max, nshella))
    1081     2382679 :       work_ppc = 0.0_dp
    1082             :       CALL dgemm("T", "N", npgfb*npgfcb*nl_max*nds_max, nshella, npgfa, 1._dp, swork, npgfa, &
    1083     2747209 :                  scona_shg, npgfa, 0.0_dp, work_ppc, npgfb*npgfcb*nl_max*nds_max)
    1084     6816765 :       swork_cont = 0.0_dp
    1085       17594 :       DO kshellb = 1, nshellcb
    1086       13590 :          lbk = lcb(kshellb)
    1087       69296 :          DO jshellb = 1, nshellb
    1088       51702 :             lbj = lb(jshellb)
    1089       51702 :             nl = INT((lbj + lbk)/2)
    1090       51702 :             IF (lbj == 0 .OR. lbk == 0) nl = 0
    1091      227859 :             DO ishella = 1, nshella
    1092      162567 :                lai = la(ishella)
    1093      480531 :                DO il = 0, nl
    1094      266262 :                   lbb = lbj + lbk - 2*il
    1095      266262 :                   nds = lai + lbb + 1
    1096      266262 :                   ids_start = nds - MIN(lai, lbb)
    1097     2238579 :                   DO jpgfb = 1, npgfb
    1098     1809750 :                      forb = orbb_index(jpgfb, jshellb)
    1099     3988158 :                      DO kpgfb = 1, npgfcb
    1100     1912146 :                         fri = rib_index(kpgfb, kshellb)
    1101     6522309 :                         DO ids = ids_start, nds + ndev
    1102     8857283 :                            DO iil = 0, il
    1103             :                               swork_cont(ids, il, ishella, jshellb, kshellb) = &
    1104             :                                  swork_cont(ids, il, ishella, jshellb, kshellb) &
    1105     6945137 :                                  + sconb_mix(iil + 1, fri, forb, il + 1)*work_ppc(jpgfb, kpgfb, il - iil + 1, ids, ishella)
    1106             :                            END DO
    1107             :                         END DO
    1108             :                      END DO
    1109             :                   END DO
    1110             :                END DO
    1111             :             END DO
    1112             :          END DO
    1113             :       END DO
    1114        4004 :       DEALLOCATE (work_ppc)
    1115             : 
    1116        4004 :    END SUBROUTINE contract_s_overlap_abb
    1117             : 
    1118             : ! **************************************************************************************************
    1119             : !> \brief Contraction and normalization of the (aba) overlap
    1120             : !> \param la set of l quantum numbers on a; orbital basis
    1121             : !> \param npgfa number of primitive Gaussians functions on a; orbital basis
    1122             : !> \param nshella number of shells for a; orbital basis
    1123             : !> \param lb set of l quantum numbers on b; orbital basis
    1124             : !> \param npgfb number of primitive Gaussians functions on b; orbital basis
    1125             : !> \param nshellb number of shells for b; orbital basis
    1126             : !> \param sconb_shg SHG contraction/normalization matrix for b; orbital basis
    1127             : !> \param lca set of l quantum numbers on a; ri basis
    1128             : !> \param npgfca number of primitive Gaussians functions on a; ri basis
    1129             : !> \param nshellca number of shells for a; ri basis
    1130             : !> \param orba_index index for orbital basis at A for scona_mix
    1131             : !> \param ria_index index for ri basis at A for scona_mix
    1132             : !> \param scona_mix mixed contraction matrix for orbital and ri basis at A
    1133             : !> \param nl_max related to the parameter m in (a|ra^(2m)|b)
    1134             : !> \param nds_max maximal derivative with respect to rab**2
    1135             : !> \param swork matrix of storing the uncontracted and unnormalized s-integrals and derivatives
    1136             : !> \param swork_cont matrix storing the contracted and normalized s-integrals and derivatives
    1137             : !> \param calculate_forces ...
    1138             : ! **************************************************************************************************
    1139       67188 :    SUBROUTINE contract_s_overlap_aba(la, npgfa, nshella, lb, npgfb, nshellb, sconb_shg, &
    1140      134376 :                                      lca, npgfca, nshellca, orba_index, ria_index, scona_mix, &
    1141       67188 :                                      nl_max, nds_max, swork, swork_cont, calculate_forces)
    1142             : 
    1143             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: la
    1144             :       INTEGER, INTENT(IN)                                :: npgfa, nshella
    1145             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: lb
    1146             :       INTEGER, INTENT(IN)                                :: npgfb, nshellb
    1147             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(IN)         :: sconb_shg
    1148             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: lca
    1149             :       INTEGER, INTENT(IN)                                :: npgfca, nshellca
    1150             :       INTEGER, DIMENSION(:, :), INTENT(IN)               :: orba_index, ria_index
    1151             :       REAL(KIND=dp), DIMENSION(:, :, :, :), INTENT(IN)   :: scona_mix
    1152             :       INTEGER, INTENT(IN)                                :: nl_max, nds_max
    1153             :       REAL(KIND=dp), DIMENSION(:, :, :, :, :), &
    1154             :          INTENT(IN)                                      :: swork
    1155             :       REAL(KIND=dp), DIMENSION(:, 0:, :, :, :), &
    1156             :          INTENT(INOUT)                                   :: swork_cont
    1157             :       LOGICAL, INTENT(IN)                                :: calculate_forces
    1158             : 
    1159             :       INTEGER                                            :: forb, fri, ids, ids_start, iil, il, &
    1160             :                                                             ipgfa, ishella, jshellb, kpgfa, &
    1161             :                                                             kshella, laa, lai, lak, lbj, ndev, &
    1162             :                                                             nds, nl
    1163             :       REAL(KIND=dp), ALLOCATABLE, &
    1164       67188 :          DIMENSION(:, :, :, :, :)                        :: work_ppc
    1165             : 
    1166       67188 :       ndev = 0
    1167       67188 :       IF (calculate_forces) ndev = 1
    1168             : 
    1169      470316 :       ALLOCATE (work_ppc(npgfa, npgfca, nl_max, nds_max, nshellb))
    1170    53116313 :       work_ppc = 0.0_dp
    1171             :       CALL dgemm("T", "N", npgfa*npgfca*nl_max*nds_max, nshellb, npgfb, 1._dp, swork, npgfb, &
    1172    12730845 :                  sconb_shg, npgfb, 0.0_dp, work_ppc, npgfa*npgfca*nl_max*nds_max)
    1173   136140716 :       swork_cont = 0.0_dp
    1174      237666 :       DO kshella = 1, nshellca
    1175      170478 :          lak = lca(kshella)
    1176     1022027 :          DO jshellb = 1, nshellb
    1177      784361 :             lbj = lb(jshellb)
    1178     4730610 :             DO ishella = 1, nshella
    1179     3775771 :                lai = la(ishella)
    1180     3775771 :                nl = INT((lai + lak)/2)
    1181     3775771 :                IF (lai == 0 .OR. lak == 0) nl = 0
    1182    10386951 :                DO il = 0, nl
    1183     5826819 :                   laa = lai + lak - 2*il
    1184     5826819 :                   nds = laa + lbj + 1
    1185     5826819 :                   ids_start = nds - MIN(laa, lbj)
    1186    15489187 :                   DO kpgfa = 1, npgfca
    1187     5886597 :                      fri = ria_index(kpgfa, kshella)
    1188    42069363 :                      DO ipgfa = 1, npgfa
    1189    30355947 :                         forb = orba_index(ipgfa, ishella)
    1190    95756521 :                         DO ids = ids_start, nds + ndev
    1191   172445835 :                            DO iil = 0, il
    1192             :                               swork_cont(ids, il, ishella, jshellb, kshella) = &
    1193             :                                  swork_cont(ids, il, ishella, jshellb, kshella) &
    1194   142089888 :                                  + scona_mix(iil + 1, fri, forb, il + 1)*work_ppc(ipgfa, kpgfa, il - iil + 1, ids, jshellb)
    1195             :                            END DO
    1196             :                         END DO
    1197             :                      END DO
    1198             :                   END DO
    1199             :                END DO
    1200             :             END DO
    1201             :          END DO
    1202             :       END DO
    1203             : 
    1204       67188 :       DEALLOCATE (work_ppc)
    1205       67188 :    END SUBROUTINE contract_s_overlap_aba
    1206             : 
    1207             : END MODULE s_contract_shg

Generated by: LCOV version 1.15