LCOV - code coverage report
Current view: top level - src - statistical_methods.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:4dc10b3) Lines: 0 184 0.0 %
Date: 2024-11-21 06:45:46 Functions: 0 7 0.0 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2024 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief Methods to perform on the fly statistical analysis of data
      10             : !>      -) Schiferl and Wallace, J. Chem. Phys. 83 (10) 1985
      11             : !> \author Teodoro Laino (01.2007) [tlaino]
      12             : !> \par History
      13             : !>         - Teodoro Laino (10.2008) [tlaino] - University of Zurich
      14             : !>           module made publicly available
      15             : ! **************************************************************************************************
      16             : MODULE statistical_methods
      17             :    USE cp_log_handling,                 ONLY: cp_logger_get_default_io_unit
      18             :    USE global_types,                    ONLY: global_environment_type
      19             :    USE kinds,                           ONLY: dp
      20             :    USE util,                            ONLY: sort
      21             : #include "./base/base_uses.f90"
      22             : 
      23             :    IMPLICIT NONE
      24             : 
      25             :    PRIVATE
      26             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'statistical_methods'
      27             :    LOGICAL, PARAMETER                   :: debug_this_module = .FALSE.
      28             :    INTEGER, PARAMETER, PUBLIC           :: min_sample_size = 20
      29             :    PUBLIC :: sw_test, &
      30             :              k_test, &
      31             :              vn_test
      32             : 
      33             : CONTAINS
      34             : 
      35             : ! **************************************************************************************************
      36             : !> \brief Shapiro - Wilk's test or W-statistic to test normality of a distribution
      37             : !>      R94  APPL. STATIST. (1995) VOL.44, NO.4
      38             : !>      Calculates the Shapiro-Wilk W test and its significance level
      39             : !> \param ix ...
      40             : !> \param n ...
      41             : !> \param w ...
      42             : !> \param pw ...
      43             : !> \par History
      44             : !>      Teodoro Laino (02.2007) [tlaino]
      45             : ! **************************************************************************************************
      46           0 :    SUBROUTINE sw_test(ix, n, w, pw)
      47             :       REAL(KIND=dp), DIMENSION(:), POINTER               :: ix
      48             :       INTEGER, INTENT(IN)                                :: n
      49             :       REAL(KIND=dp), INTENT(OUT)                         :: w, pw
      50             : 
      51             :       REAL(KIND=dp), PARAMETER :: c1(6) = (/0.000000_dp, 0.221157_dp, -0.147981_dp, -2.071190_dp, &
      52             :          4.434685_dp, -2.706056_dp/), c2(6) = (/0.000000_dp, 0.042981_dp, -0.293762_dp, &
      53             :          -1.752461_dp, 5.682633_dp, -3.582633_dp/), &
      54             :          c3(4) = (/0.544000_dp, -0.399780_dp, 0.025054_dp, -0.6714E-3_dp/), &
      55             :          c4(4) = (/1.3822_dp, -0.77857_dp, 0.062767_dp, -0.0020322_dp/), &
      56             :          c5(4) = (/-1.5861_dp, -0.31082_dp, -0.083751_dp, 0.0038915_dp/), &
      57             :          c6(3) = (/-0.4803_dp, -0.082676_dp, 0.0030302_dp/), g(2) = (/-2.273_dp, 0.459_dp/), &
      58             :          one = 1.0_dp, pi6 = 1.909859_dp, qtr = 0.25_dp, small = EPSILON(0.0_dp), &
      59             :          sqrth = 0.70711_dp
      60             :       REAL(KIND=dp), PARAMETER :: stqr = 1.047198_dp, th = 0.375_dp, two = 2.0_dp, zero = 0.0_dp
      61             : 
      62             :       INTEGER                                            :: i, i1, j, n2, output_unit
      63           0 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: itmp
      64             :       LOGICAL                                            :: failure
      65             :       REAL(KIND=dp)                                      :: a1, a2, an, an25, asa, fac, gamma, m, &
      66             :                                                             range, rsn, s, sa, sax, ssa, ssassx, &
      67             :                                                             ssumm2, ssx, summ2, sx, w1, xi, xsx, &
      68             :                                                             xx, y
      69           0 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: a, x
      70             : 
      71           0 :       failure = .FALSE.
      72           0 :       output_unit = cp_logger_get_default_io_unit()
      73             :       ! Check for  N < 3
      74           0 :       IF (n < 3 .OR. n > 5000) THEN
      75           0 :          IF (output_unit > 0) WRITE (output_unit, '(A)') &
      76           0 :             "Shapiro Wilk test: number of points less than 3 or greated than 5000."
      77             :          IF (output_unit > 0) WRITE (output_unit, '(A)') &
      78           0 :             "Not able to perform the test!"
      79             :       END IF
      80             :       ! Sort input array of data in ascending order
      81           0 :       IF (MOD(n, 2) == 0) THEN
      82           0 :          n2 = n/2
      83             :       ELSE
      84           0 :          n2 = (n - 1)/2
      85             :       END IF
      86           0 :       ALLOCATE (x(n))
      87           0 :       ALLOCATE (itmp(n))
      88           0 :       ALLOCATE (a(n2))
      89           0 :       x(:) = ix
      90           0 :       CALL sort(x, n, itmp)
      91             :       ! Check for zero range
      92           0 :       range = x(n) - x(1)
      93           0 :       IF (range < small) failure = .TRUE.
      94           0 :       IF (failure .AND. (output_unit > 0)) THEN
      95           0 :          WRITE (output_unit, '(A)') "Shapiro Wilk test: two data points are numerically identical."
      96           0 :          WRITE (output_unit, '(A)') "Not able to perform the test!"
      97             :       END IF
      98           0 :       pw = one
      99           0 :       w = one
     100           0 :       an = n
     101             :       ! Calculates coefficients for the test
     102           0 :       IF (n == 3) THEN
     103           0 :          a(1) = sqrth
     104             :       ELSE
     105           0 :          an25 = an + qtr
     106           0 :          summ2 = zero
     107           0 :          DO i = 1, n2
     108           0 :             CALL ppnd7((i - th)/an25, a(i))
     109           0 :             summ2 = summ2 + a(i)**2
     110             :          END DO
     111           0 :          summ2 = summ2*two
     112           0 :          ssumm2 = SQRT(summ2)
     113           0 :          rsn = one/SQRT(an)
     114           0 :          a1 = poly(c1, 6, rsn) - a(1)/ssumm2
     115             :          ! Normalize coefficients
     116           0 :          IF (n > 5) THEN
     117           0 :             i1 = 3
     118           0 :             a2 = -a(2)/ssumm2 + poly(c2, 6, rsn)
     119           0 :             fac = SQRT((summ2 - two*a(1)**2 - two*a(2)**2)/(one - two*a1**2 - two*a2**2))
     120           0 :             a(1) = a1
     121           0 :             a(2) = a2
     122             :          ELSE
     123           0 :             i1 = 2
     124           0 :             fac = SQRT((summ2 - two*a(1)**2)/(one - two*a1**2))
     125           0 :             a(1) = a1
     126             :          END IF
     127           0 :          DO i = i1, n2
     128           0 :             a(i) = -a(i)/fac
     129             :          END DO
     130             :       END IF
     131             :       ! scaled X
     132           0 :       xx = x(1)/range
     133           0 :       sx = xx
     134           0 :       sa = -a(1)
     135           0 :       j = n - 1
     136           0 :       DO i = 2, n
     137           0 :          xi = x(i)/range
     138           0 :          sx = sx + xi
     139           0 :          IF (i /= j) sa = sa + SIGN(1, i - j)*a(MIN(i, j))
     140             :          xx = xi
     141           0 :          j = j - 1
     142             :       END DO
     143             :       ! Calculate W statistic as squared correlation
     144             :       ! between data and coefficients
     145           0 :       sa = sa/n
     146           0 :       sx = sx/n
     147           0 :       ssa = zero
     148           0 :       ssx = zero
     149           0 :       sax = zero
     150           0 :       j = n
     151           0 :       DO i = 1, n
     152           0 :          IF (i /= j) THEN
     153           0 :             asa = SIGN(1, i - j)*a(MIN(i, j)) - sa
     154             :          ELSE
     155           0 :             asa = -sa
     156             :          END IF
     157           0 :          xsx = x(i)/range - sx
     158           0 :          ssa = ssa + asa*asa
     159           0 :          ssx = ssx + xsx*xsx
     160           0 :          sax = sax + asa*xsx
     161           0 :          j = j - 1
     162             :       END DO
     163             :       ! W1 equals (1-W) calculated to avoid excessive rounding error
     164             :       ! for W very near 1 (a potential problem in very large samples)
     165           0 :       ssassx = SQRT(ssa*ssx)
     166           0 :       w1 = (ssassx - sax)*(ssassx + sax)/(ssa*ssx)
     167           0 :       w = one - w1
     168             :       ! Calculate significance level for W (exact for N=3)
     169           0 :       IF (n == 3) THEN
     170           0 :          pw = pi6*(ASIN(SQRT(w)) - stqr)
     171             :       ELSE
     172           0 :          y = LOG(w1)
     173           0 :          xx = LOG(an)
     174           0 :          m = zero
     175           0 :          s = one
     176           0 :          IF (n <= 11) THEN
     177           0 :             gamma = poly(g, 2, an)
     178           0 :             IF (y >= gamma) THEN
     179           0 :                pw = small
     180             :             ELSE
     181           0 :                y = -LOG(gamma - y)
     182           0 :                m = poly(c3, 4, an)
     183           0 :                s = EXP(poly(c4, 4, an))
     184           0 :                pw = alnorm((y - m)/s, .TRUE.)
     185             :             END IF
     186             :          ELSE
     187           0 :             m = poly(c5, 4, xx)
     188           0 :             s = EXP(poly(c6, 3, xx))
     189           0 :             pw = alnorm((y - m)/s, .TRUE.)
     190             :          END IF
     191             :       END IF
     192           0 :       DEALLOCATE (x)
     193           0 :       DEALLOCATE (itmp)
     194           0 :       DEALLOCATE (a)
     195             : 
     196           0 :    END SUBROUTINE sw_test
     197             : 
     198             : ! **************************************************************************************************
     199             : !> \brief Produces the normal deviate Z corresponding to a given lower tail area of P
     200             : !>      Z is accurate to about 1 part in 10**7.
     201             : !>      AS241  APPL. STATIST. (1988) VOL. 37, NO. 3, 477- 484.
     202             : !> \param p ...
     203             : !> \param normal_dev ...
     204             : !> \par History
     205             : !>      Original version by Alain J. Miller - 1996
     206             : !>      Teodoro Laino (02.2007) [tlaino]
     207             : ! **************************************************************************************************
     208           0 :    SUBROUTINE ppnd7(p, normal_dev)
     209             :       REAL(KIND=dp), INTENT(IN)                          :: p
     210             :       REAL(KIND=dp), INTENT(OUT)                         :: normal_dev
     211             : 
     212             :       REAL(KIND=dp), PARAMETER :: a0 = 3.3871327179E+00_dp, a1 = 5.0434271938E+01_dp, &
     213             :          a2 = 1.5929113202E+02_dp, a3 = 5.9109374720E+01_dp, b1 = 1.7895169469E+01_dp, &
     214             :          b2 = 7.8757757664E+01_dp, b3 = 6.7187563600E+01_dp, c0 = 1.4234372777E+00_dp, &
     215             :          c1 = 2.7568153900E+00_dp, c2 = 1.3067284816E+00_dp, c3 = 1.7023821103E-01_dp, &
     216             :          const1 = 0.180625_dp, const2 = 1.6_dp, d1 = 7.3700164250E-01_dp, &
     217             :          d2 = 1.2021132975E-01_dp, e0 = 6.6579051150E+00_dp, e1 = 3.0812263860E+00_dp, &
     218             :          e2 = 4.2868294337E-01_dp, e3 = 1.7337203997E-02_dp, f1 = 2.4197894225E-01_dp, &
     219             :          f2 = 1.2258202635E-02_dp, half = 0.5_dp, one = 1.0_dp
     220             :       REAL(KIND=dp), PARAMETER :: split1 = 0.425_dp, split2 = 5.0_dp, zero = 0.0_dp
     221             : 
     222             :       REAL(KIND=dp)                                      :: q, r
     223             : 
     224           0 :       q = p - half
     225           0 :       IF (ABS(q) <= split1) THEN
     226           0 :          r = const1 - q*q
     227             :          normal_dev = q*(((a3*r + a2)*r + a1)*r + a0)/ &
     228           0 :                       (((b3*r + b2)*r + b1)*r + one)
     229           0 :          RETURN
     230             :       ELSE
     231           0 :          IF (q < zero) THEN
     232             :             r = p
     233             :          ELSE
     234           0 :             r = one - p
     235             :          END IF
     236           0 :          IF (r <= zero) THEN
     237           0 :             normal_dev = zero
     238           0 :             RETURN
     239             :          END IF
     240           0 :          r = SQRT(-LOG(r))
     241           0 :          IF (r <= split2) THEN
     242           0 :             r = r - const2
     243           0 :             normal_dev = (((c3*r + c2)*r + c1)*r + c0)/((d2*r + d1)*r + one)
     244             :          ELSE
     245           0 :             r = r - split2
     246           0 :             normal_dev = (((e3*r + e2)*r + e1)*r + e0)/((f2*r + f1)*r + one)
     247             :          END IF
     248           0 :          IF (q < zero) normal_dev = -normal_dev
     249           0 :          RETURN
     250             :       END IF
     251             :    END SUBROUTINE ppnd7
     252             : 
     253             : ! **************************************************************************************************
     254             : !> \brief Evaluates the tail area of the standardised normal curve
     255             : !>      from x to infinity if upper is .true. or
     256             : !>      from minus infinity to x if upper is .false.
     257             : !>      AS66 Applied Statistics (1973) vol.22, no.3
     258             : !> \param x ...
     259             : !> \param upper ...
     260             : !> \return ...
     261             : !> \par History
     262             : !>      Original version by Alain J. Miller - 1996
     263             : !>      Teodoro Laino (02.2007) [tlaino]
     264             : ! **************************************************************************************************
     265           0 :    FUNCTION alnorm(x, upper) RESULT(fn_val)
     266             :       REAL(KIND=dp), INTENT(IN)                          :: x
     267             :       LOGICAL, INTENT(IN)                                :: upper
     268             :       REAL(KIND=dp)                                      :: fn_val
     269             : 
     270             :       REAL(KIND=dp), PARAMETER :: a1 = 5.75885480458_dp, a2 = 2.62433121679_dp, &
     271             :          a3 = 5.92885724438_dp, b1 = -29.8213557807_dp, b2 = 48.6959930692_dp, c1 = -3.8052E-8_dp, &
     272             :          c2 = 3.98064794E-4_dp, c3 = -0.151679116635_dp, c4 = 4.8385912808_dp, &
     273             :          c5 = 0.742380924027_dp, c6 = 3.99019417011_dp, con = 1.28_dp, d1 = 1.00000615302_dp, &
     274             :          d2 = 1.98615381364_dp, d3 = 5.29330324926_dp, d4 = -15.1508972451_dp, &
     275             :          d5 = 30.789933034_dp, half = 0.5_dp, ltone = 7.0_dp, one = 1.0_dp, p = 0.398942280444_dp, &
     276             :          q = 0.39990348504_dp, r = 0.398942280385_dp, utzero = 18.66_dp, zero = 0.0_dp
     277             : 
     278             :       LOGICAL                                            :: up
     279             :       REAL(KIND=dp)                                      :: y, z
     280             : 
     281           0 :       up = upper
     282           0 :       z = x
     283           0 :       IF (z < zero) THEN
     284           0 :          up = .NOT. up
     285           0 :          z = -z
     286             :       END IF
     287           0 :       IF (.NOT. (z <= ltone .OR. up .AND. z <= utzero)) THEN
     288           0 :          fn_val = zero
     289           0 :          IF (.NOT. up) fn_val = one - fn_val
     290           0 :          RETURN
     291             :       END IF
     292           0 :       y = half*z*z
     293           0 :       IF (z <= con) THEN
     294           0 :          fn_val = r*EXP(-y)/(z + c1 + d1/(z + c2 + d2/(z + c3 + d3/(z + c4 + d4/(z + c5 + d5/(z + c6))))))
     295             :       ELSE
     296           0 :          fn_val = half - z*(p - q*y/(y + a1 + b1/(y + a2 + b2/(y + a3))))
     297             :       END IF
     298           0 :       IF (.NOT. up) fn_val = one - fn_val
     299             : 
     300             :    END FUNCTION alnorm
     301             : 
     302             : ! **************************************************************************************************
     303             : !> \brief Calculates the algebraic polynomial of order nored-1 with
     304             : !>      array of coefficients c.  Zero order coefficient is c(1)
     305             : !>      AS 181.2   Appl. Statist.  (1982) Vol. 31, No. 2
     306             : !> \param c ...
     307             : !> \param nord ...
     308             : !> \param x ...
     309             : !> \return ...
     310             : !> \par History
     311             : !>      Original version by Alain J. Miller - 1996
     312             : !>      Teodoro Laino (02.2007) [tlaino]
     313             : ! **************************************************************************************************
     314           0 :    FUNCTION poly(c, nord, x) RESULT(fn_val)
     315             : 
     316             :       REAL(KIND=dp), INTENT(IN)                          :: c(:)
     317             :       INTEGER, INTENT(IN)                                :: nord
     318             :       REAL(KIND=dp), INTENT(IN)                          :: x
     319             :       REAL(KIND=dp)                                      :: fn_val
     320             : 
     321             :       INTEGER                                            :: i, j, n2
     322             :       REAL(KIND=dp)                                      :: p
     323             : 
     324           0 :       fn_val = c(1)
     325           0 :       IF (nord == 1) RETURN
     326           0 :       p = x*c(nord)
     327           0 :       IF (nord == 2) THEN
     328           0 :          fn_val = fn_val + p
     329           0 :          RETURN
     330             :       END IF
     331           0 :       n2 = nord - 2
     332           0 :       j = n2 + 1
     333           0 :       DO i = 1, n2
     334           0 :          p = (p + c(j))*x
     335           0 :          j = j - 1
     336             :       END DO
     337           0 :       fn_val = fn_val + p
     338           0 :    END FUNCTION poly
     339             : 
     340             : ! **************************************************************************************************
     341             : !> \brief Kandall's test for correlation
     342             : !> \param xdata ...
     343             : !> \param istart ...
     344             : !> \param n ...
     345             : !> \param tau ...
     346             : !> \param z ...
     347             : !> \param prob ...
     348             : !> \par History
     349             : !>      Teodoro Laino (02.2007) [tlaino]
     350             : !> \note
     351             : !>      tau:  Kendall's Tau
     352             : !>      z:    number of std devs from 0 of tau
     353             : !>      prob: tau's probability
     354             : ! **************************************************************************************************
     355           0 :    SUBROUTINE k_test(xdata, istart, n, tau, z, prob)
     356             :       REAL(KIND=dp), DIMENSION(:), POINTER               :: xdata
     357             :       INTEGER, INTENT(IN)                                :: istart, n
     358             :       REAL(KIND=dp)                                      :: tau, z, prob
     359             : 
     360             :       INTEGER                                            :: is, j, k, nt
     361             :       REAL(KIND=dp)                                      :: a1, var
     362             : 
     363           0 :       nt = n - istart + 1
     364           0 :       IF (nt .GE. min_sample_size) THEN
     365             :          is = 0
     366           0 :          DO j = istart, n - 1
     367           0 :             DO k = j + 1, n
     368           0 :                a1 = xdata(j) - xdata(k)
     369           0 :                IF (a1 .GT. 0.0_dp) THEN
     370           0 :                   is = is + 1
     371           0 :                ELSE IF (a1 .LT. 0.0_dp) THEN
     372           0 :                   is = is - 1
     373             :                END IF
     374             :             END DO
     375             :          END DO
     376           0 :          tau = REAL(is, KIND=dp)
     377           0 :          var = REAL(nt, KIND=dp)*REAL(nt - 1, KIND=dp)*REAL(2*nt + 5, KIND=dp)/18.0_dp
     378           0 :          z = tau/SQRT(var)
     379           0 :          prob = erf(ABS(z)/SQRT(2.0_dp))
     380             :       ELSE
     381           0 :          tau = 0.0_dp
     382           0 :          z = 0.0_dp
     383           0 :          prob = 1.0_dp
     384             :       END IF
     385           0 :    END SUBROUTINE k_test
     386             : 
     387             : ! **************************************************************************************************
     388             : !> \brief Von Neumann test for serial correlation
     389             : !> \param xdata ...
     390             : !> \param n ...
     391             : !> \param r ...
     392             : !> \param u ...
     393             : !> \param prob ...
     394             : !> \par History
     395             : !>      Teodoro Laino (02.2007) [tlaino]
     396             : ! **************************************************************************************************
     397           0 :    SUBROUTINE vn_test(xdata, n, r, u, prob)
     398             :       REAL(KIND=dp), DIMENSION(:), POINTER               :: xdata
     399             :       INTEGER, INTENT(IN)                                :: n
     400             :       REAL(KIND=dp)                                      :: r, u, prob
     401             : 
     402             :       INTEGER                                            :: i
     403             :       REAL(KIND=dp)                                      :: q, s, var, x
     404             : 
     405           0 :       IF (n .GE. min_sample_size) THEN
     406             :          x = 0.0_dp
     407             :          q = 0.0_dp
     408           0 :          s = 0.0_dp
     409           0 :          DO i = 1, n - 1
     410           0 :             x = x + xdata(i)
     411           0 :             q = q + (xdata(i + 1) - xdata(i))**2
     412             :          END DO
     413           0 :          x = x + xdata(n)
     414           0 :          x = x/REAL(n, KIND=dp)
     415           0 :          DO i = 1, n
     416           0 :             s = s + (xdata(i) - x)**2
     417             :          END DO
     418           0 :          s = s/REAL(n - 1, KIND=dp)
     419           0 :          q = q/REAL(2*(n - 1), KIND=dp)
     420           0 :          r = q/s
     421           0 :          var = SQRT(1.0_dp/REAL(n + 1, KIND=dp)*(1.0_dp + 1.0_dp/REAL(n - 1, KIND=dp)))
     422           0 :          u = (r - 1.0_dp)/var
     423           0 :          prob = erf(ABS(u)/SQRT(2.0_dp))
     424             :       ELSE
     425           0 :          r = 0.0_dp
     426           0 :          u = 0.0_dp
     427           0 :          prob = 1.0_dp
     428             :       END IF
     429             : 
     430           0 :    END SUBROUTINE vn_test
     431             : 
     432             : ! **************************************************************************************************
     433             : !> \brief Performs tests on statistical methods
     434             : !>      Debug use only
     435             : !> \param xdata ...
     436             : !> \param globenv ...
     437             : !> \par History
     438             : !>      Teodoro Laino (02.2007) [tlaino]
     439             : ! **************************************************************************************************
     440           0 :    SUBROUTINE tests(xdata, globenv)
     441             :       REAL(KIND=dp), DIMENSION(:), POINTER               :: xdata
     442             :       TYPE(global_environment_type), POINTER             :: globenv
     443             : 
     444             :       INTEGER                                            :: i, n
     445             :       REAL(KINd=dp)                                      :: prob, pw, r, tau, u, w, z
     446           0 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: ydata
     447             : 
     448             :       IF (debug_this_module) THEN
     449             :          n = 50 ! original sample size
     450             :          NULLIFY (xdata)
     451             :          ALLOCATE (xdata(n))
     452             :          DO i = 1, 10
     453             :             xdata(i) = 5.0_dp - REAL(i, KIND=dp)/2.0_dp + 0.1*globenv%gaussian_rng_stream%next()
     454             :             WRITE (3, *) xdata(i)
     455             :          END DO
     456             :          DO i = 11, n
     457             :             xdata(i) = 0.1*globenv%gaussian_rng_stream%next()
     458             :          END DO
     459             : 
     460             :          ! Test for trend
     461             :          DO i = 1, n
     462             :             CALL k_test(xdata, i, n, tau, z, prob)
     463             :             IF (prob <= 0.2_dp) EXIT
     464             :          END DO
     465             :          WRITE (*, *) "Mann-Kendall test", i
     466             : 
     467             :          ! Test for normality distribution and for serial correlation
     468             :          DO i = 1, n
     469             :             ALLOCATE (ydata(n - i + 1))
     470             :             ydata = xdata(i:n)
     471             :             CALL sw_test(ydata, n - i + 1, w, pw)
     472             :             CALL vn_test(ydata, n - i + 1, r, u, prob)
     473             :             WRITE (*, *) "Shapiro Wilks test", i, w, pw
     474             :             WRITE (*, *) "Von Neu", i, r, u, prob
     475             :             DEALLOCATE (ydata)
     476             :          END DO
     477             : 
     478             :          DEALLOCATE (xdata)
     479             :       END IF
     480           0 :    END SUBROUTINE tests
     481             : 
     482             : END MODULE statistical_methods
     483             : 

Generated by: LCOV version 1.15