LCOV - code coverage report
Current view: top level - src - xas_tdp_atom.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:b8e0b09) Lines: 1090 1132 96.3 %
Date: 2024-08-31 06:31:37 Functions: 19 20 95.0 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2024 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief This module deals with all the integrals done on local atomic grids in xas_tdp. This is
      10             : !>        mostly used to compute the xc kernel matrix elements wrt two RI basis elements (centered
      11             : !>        on the same excited atom) <P|fxc(r)|Q>, where the kernel fxc is purely a function of the
      12             : !>        ground state density and r. This is also used to compute the SOC matrix elements in the
      13             : !>        orbital basis
      14             : ! **************************************************************************************************
      15             : MODULE xas_tdp_atom
      16             :    USE ai_contraction_sphi,             ONLY: ab_contract
      17             :    USE atom_operators,                  ONLY: calculate_model_potential
      18             :    USE basis_set_types,                 ONLY: get_gto_basis_set,&
      19             :                                               gto_basis_set_p_type,&
      20             :                                               gto_basis_set_type
      21             :    USE cell_types,                      ONLY: cell_type,&
      22             :                                               pbc
      23             :    USE cp_array_utils,                  ONLY: cp_1d_i_p_type,&
      24             :                                               cp_1d_r_p_type,&
      25             :                                               cp_2d_r_p_type,&
      26             :                                               cp_3d_r_p_type
      27             :    USE cp_blacs_env,                    ONLY: cp_blacs_env_type
      28             :    USE cp_control_types,                ONLY: dft_control_type,&
      29             :                                               qs_control_type
      30             :    USE cp_dbcsr_api,                    ONLY: &
      31             :         dbcsr_copy, dbcsr_create, dbcsr_distribution_get, dbcsr_distribution_new, &
      32             :         dbcsr_distribution_release, dbcsr_distribution_type, dbcsr_filter, dbcsr_finalize, &
      33             :         dbcsr_get_block_p, dbcsr_get_stored_coordinates, dbcsr_iterator_blocks_left, &
      34             :         dbcsr_iterator_next_block, dbcsr_iterator_start, dbcsr_iterator_stop, dbcsr_iterator_type, &
      35             :         dbcsr_p_type, dbcsr_put_block, dbcsr_release, dbcsr_replicate_all, dbcsr_set, dbcsr_type, &
      36             :         dbcsr_type_antisymmetric, dbcsr_type_no_symmetry, dbcsr_type_symmetric
      37             :    USE cp_dbcsr_cholesky,               ONLY: cp_dbcsr_cholesky_decompose,&
      38             :                                               cp_dbcsr_cholesky_invert
      39             :    USE cp_dbcsr_operations,             ONLY: dbcsr_deallocate_matrix_set
      40             :    USE cp_log_handling,                 ONLY: cp_logger_get_default_io_unit
      41             :    USE dbt_api,                         ONLY: dbt_destroy,&
      42             :                                               dbt_get_block,&
      43             :                                               dbt_iterator_blocks_left,&
      44             :                                               dbt_iterator_next_block,&
      45             :                                               dbt_iterator_start,&
      46             :                                               dbt_iterator_stop,&
      47             :                                               dbt_iterator_type,&
      48             :                                               dbt_type
      49             :    USE input_constants,                 ONLY: do_potential_id
      50             :    USE input_section_types,             ONLY: section_vals_get_subs_vals,&
      51             :                                               section_vals_type
      52             :    USE kinds,                           ONLY: default_string_length,&
      53             :                                               dp
      54             :    USE lebedev,                         ONLY: deallocate_lebedev_grids,&
      55             :                                               get_number_of_lebedev_grid,&
      56             :                                               init_lebedev_grids,&
      57             :                                               lebedev_grid
      58             :    USE libint_2c_3c,                    ONLY: libint_potential_type
      59             :    USE mathlib,                         ONLY: get_diag,&
      60             :                                               invmat_symm
      61             :    USE memory_utilities,                ONLY: reallocate
      62             :    USE message_passing,                 ONLY: mp_comm_type,&
      63             :                                               mp_para_env_type,&
      64             :                                               mp_request_type,&
      65             :                                               mp_waitall
      66             :    USE orbital_pointers,                ONLY: indco,&
      67             :                                               indso,&
      68             :                                               nco,&
      69             :                                               ncoset,&
      70             :                                               nso,&
      71             :                                               nsoset
      72             :    USE orbital_transformation_matrices, ONLY: orbtramat
      73             :    USE particle_methods,                ONLY: get_particle_set
      74             :    USE particle_types,                  ONLY: particle_type
      75             :    USE physcon,                         ONLY: c_light_au
      76             :    USE qs_environment_types,            ONLY: get_qs_env,&
      77             :                                               qs_environment_type
      78             :    USE qs_grid_atom,                    ONLY: allocate_grid_atom,&
      79             :                                               create_grid_atom,&
      80             :                                               grid_atom_type
      81             :    USE qs_harmonics_atom,               ONLY: allocate_harmonics_atom,&
      82             :                                               create_harmonics_atom,&
      83             :                                               get_maxl_CG,&
      84             :                                               get_none0_cg_list,&
      85             :                                               harmonics_atom_type
      86             :    USE qs_integral_utils,               ONLY: basis_set_list_setup
      87             :    USE qs_kind_types,                   ONLY: get_qs_kind,&
      88             :                                               get_qs_kind_set,&
      89             :                                               qs_kind_type
      90             :    USE qs_neighbor_list_types,          ONLY: neighbor_list_set_p_type,&
      91             :                                               release_neighbor_list_sets
      92             :    USE qs_overlap,                      ONLY: build_overlap_matrix_simple
      93             :    USE qs_rho_types,                    ONLY: qs_rho_get,&
      94             :                                               qs_rho_type
      95             :    USE qs_tddfpt2_soc_types,            ONLY: soc_atom_env_type
      96             :    USE spherical_harmonics,             ONLY: clebsch_gordon,&
      97             :                                               clebsch_gordon_deallocate,&
      98             :                                               clebsch_gordon_init
      99             :    USE util,                            ONLY: get_limit,&
     100             :                                               sort_unique
     101             :    USE xas_tdp_integrals,               ONLY: build_xas_tdp_3c_nl,&
     102             :                                               build_xas_tdp_ovlp_nl,&
     103             :                                               create_pqX_tensor,&
     104             :                                               fill_pqx_tensor
     105             :    USE xas_tdp_types,                   ONLY: batch_info_type,&
     106             :                                               get_proc_batch_sizes,&
     107             :                                               release_batch_info,&
     108             :                                               xas_atom_env_type,&
     109             :                                               xas_tdp_control_type,&
     110             :                                               xas_tdp_env_type
     111             :    USE xc,                              ONLY: divide_by_norm_drho
     112             :    USE xc_atom,                         ONLY: xc_rho_set_atom_update
     113             :    USE xc_derivative_desc,              ONLY: deriv_norm_drho,&
     114             :                                               deriv_norm_drhoa,&
     115             :                                               deriv_norm_drhob,&
     116             :                                               deriv_rhoa,&
     117             :                                               deriv_rhob
     118             :    USE xc_derivative_set_types,         ONLY: xc_derivative_set_type,&
     119             :                                               xc_dset_create,&
     120             :                                               xc_dset_get_derivative,&
     121             :                                               xc_dset_release
     122             :    USE xc_derivative_types,             ONLY: xc_derivative_get,&
     123             :                                               xc_derivative_type
     124             :    USE xc_derivatives,                  ONLY: xc_functionals_eval,&
     125             :                                               xc_functionals_get_needs
     126             :    USE xc_rho_cflags_types,             ONLY: xc_rho_cflags_type
     127             :    USE xc_rho_set_types,                ONLY: xc_rho_set_create,&
     128             :                                               xc_rho_set_release,&
     129             :                                               xc_rho_set_type
     130             : 
     131             : !$ USE OMP_LIB, ONLY: omp_get_max_threads, omp_get_thread_num
     132             : #include "./base/base_uses.f90"
     133             : 
     134             :    IMPLICIT NONE
     135             : 
     136             :    PRIVATE
     137             : 
     138             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'xas_tdp_atom'
     139             : 
     140             :    PUBLIC :: init_xas_atom_env, &
     141             :              integrate_fxc_atoms, &
     142             :              integrate_soc_atoms, &
     143             :              calculate_density_coeffs, &
     144             :              compute_sphi_so, &
     145             :              truncate_radial_grid, &
     146             :              init_xas_atom_grid_harmo
     147             : 
     148             : CONTAINS
     149             : 
     150             : ! **************************************************************************************************
     151             : !> \brief Initializes a xas_atom_env type given the qs_enxas_atom_env, qs_envv
     152             : !> \param xas_atom_env the xas_atom_env to initialize
     153             : !> \param xas_tdp_env ...
     154             : !> \param xas_tdp_control ...
     155             : !> \param qs_env ...
     156             : !> \param ltddfpt ...
     157             : ! **************************************************************************************************
     158          48 :    SUBROUTINE init_xas_atom_env(xas_atom_env, xas_tdp_env, xas_tdp_control, qs_env, ltddfpt)
     159             : 
     160             :       TYPE(xas_atom_env_type), POINTER                   :: xas_atom_env
     161             :       TYPE(xas_tdp_env_type), POINTER                    :: xas_tdp_env
     162             :       TYPE(xas_tdp_control_type), POINTER                :: xas_tdp_control
     163             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     164             :       LOGICAL, OPTIONAL                                  :: ltddfpt
     165             : 
     166             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'init_xas_atom_env'
     167             : 
     168             :       INTEGER                                            :: handle, ikind, natom, nex_atoms, &
     169             :                                                             nex_kinds, nkind, nspins
     170             :       LOGICAL                                            :: do_xc
     171          48 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     172          48 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     173             : 
     174          48 :       NULLIFY (qs_kind_set, particle_set)
     175             : 
     176          48 :       CALL timeset(routineN, handle)
     177             : 
     178             : !  Initializing the type
     179          48 :       CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set, natom=natom, particle_set=particle_set)
     180             : 
     181          48 :       nkind = SIZE(qs_kind_set)
     182          48 :       nex_kinds = xas_tdp_env%nex_kinds
     183          48 :       nex_atoms = xas_tdp_env%nex_atoms
     184          48 :       do_xc = xas_tdp_control%do_xc
     185          48 :       IF (PRESENT(ltddfpt) .AND. ltddfpt) do_xc = .FALSE.
     186          48 :       nspins = 1; IF (xas_tdp_control%do_uks .OR. xas_tdp_control%do_roks) nspins = 2
     187             : 
     188          48 :       xas_atom_env%nspins = nspins
     189          48 :       xas_atom_env%ri_radius = xas_tdp_control%ri_radius
     190         218 :       ALLOCATE (xas_atom_env%grid_atom_set(nkind))
     191         218 :       ALLOCATE (xas_atom_env%harmonics_atom_set(nkind))
     192         218 :       ALLOCATE (xas_atom_env%ri_sphi_so(nkind))
     193         218 :       ALLOCATE (xas_atom_env%orb_sphi_so(nkind))
     194          48 :       IF (do_xc) THEN
     195         174 :          ALLOCATE (xas_atom_env%gr(nkind))
     196         174 :          ALLOCATE (xas_atom_env%ga(nkind))
     197         174 :          ALLOCATE (xas_atom_env%dgr1(nkind))
     198         174 :          ALLOCATE (xas_atom_env%dgr2(nkind))
     199         174 :          ALLOCATE (xas_atom_env%dga1(nkind))
     200         174 :          ALLOCATE (xas_atom_env%dga2(nkind))
     201             :       END IF
     202             : 
     203          48 :       xas_atom_env%excited_atoms => xas_tdp_env%ex_atom_indices
     204          48 :       xas_atom_env%excited_kinds => xas_tdp_env%ex_kind_indices
     205             : 
     206             : !  Allocate and initialize the atomic grids and harmonics
     207          48 :       CALL init_xas_atom_grid_harmo(xas_atom_env, xas_tdp_control%grid_info, do_xc, qs_env)
     208             : 
     209             : !  Compute the contraction coefficients for spherical orbitals
     210         122 :       DO ikind = 1, nkind
     211          74 :          NULLIFY (xas_atom_env%orb_sphi_so(ikind)%array, xas_atom_env%ri_sphi_so(ikind)%array)
     212          74 :          CALL compute_sphi_so(ikind, "ORB", xas_atom_env%orb_sphi_so(ikind)%array, qs_env)
     213         150 :          IF (ANY(xas_atom_env%excited_kinds == ikind)) THEN
     214          52 :             CALL compute_sphi_so(ikind, "RI_XAS", xas_atom_env%ri_sphi_so(ikind)%array, qs_env)
     215             :          END IF
     216             :       END DO !ikind
     217             : 
     218             : !  Compute the coefficients to expand the density in the RI_XAS basis, if requested
     219          48 :       IF (do_xc .AND. (.NOT. xas_tdp_control%xps_only)) THEN
     220          38 :          CALL calculate_density_coeffs(xas_atom_env=xas_atom_env, qs_env=qs_env)
     221             :       END IF
     222             : 
     223          48 :       CALL timestop(handle)
     224             : 
     225          48 :    END SUBROUTINE init_xas_atom_env
     226             : 
     227             : ! **************************************************************************************************
     228             : !> \brief Initializes the atomic grids and harmonics for the RI atomic calculations
     229             : !> \param xas_atom_env ...
     230             : !> \param grid_info ...
     231             : !> \param do_xc Whether the xc kernel will ne computed on the atomic grids. If not, the harmonics
     232             : !>        are built for the orbital basis for all kinds.
     233             : !> \param qs_env ...
     234             : !> \note Largely inspired by init_rho_atom subroutine
     235             : ! **************************************************************************************************
     236          48 :    SUBROUTINE init_xas_atom_grid_harmo(xas_atom_env, grid_info, do_xc, qs_env)
     237             : 
     238             :       TYPE(xas_atom_env_type), POINTER                   :: xas_atom_env
     239             :       CHARACTER(len=default_string_length), &
     240             :          DIMENSION(:, :), POINTER                        :: grid_info
     241             :       LOGICAL, INTENT(IN)                                :: do_xc
     242             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     243             : 
     244             :       CHARACTER(LEN=default_string_length)               :: kind_name
     245             :       INTEGER :: igrid, ikind, il, iso, iso1, iso2, l1, l1l2, l2, la, lc1, lc2, lcleb, ll, llmax, &
     246             :          lp, m1, m2, max_s_harm, max_s_set, maxl, maxlgto, maxs, mm, mp, na, nr, quadrature, stat
     247             :       REAL(dp)                                           :: kind_radius
     248          48 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :)             :: rga
     249          48 :       REAL(dp), DIMENSION(:, :, :), POINTER              :: my_CG
     250             :       TYPE(dft_control_type), POINTER                    :: dft_control
     251             :       TYPE(grid_atom_type), POINTER                      :: grid_atom
     252             :       TYPE(gto_basis_set_type), POINTER                  :: tmp_basis
     253             :       TYPE(harmonics_atom_type), POINTER                 :: harmonics
     254             :       TYPE(qs_control_type), POINTER                     :: qs_control
     255          48 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     256             : 
     257          48 :       NULLIFY (my_CG, qs_kind_set, tmp_basis, grid_atom, harmonics, qs_control, dft_control)
     258             : 
     259             : !  Initialization of some integer for the CG coeff generation
     260          48 :       CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set, dft_control=dft_control)
     261          48 :       IF (do_xc) THEN
     262          38 :          CALL get_qs_kind_set(qs_kind_set, maxlgto=maxlgto, basis_type="RI_XAS")
     263             :       ELSE
     264          10 :          CALL get_qs_kind_set(qs_kind_set, maxlgto=maxlgto, basis_type="ORB")
     265             :       END IF
     266          48 :       qs_control => dft_control%qs_control
     267             : 
     268             :       !maximum expansion
     269          48 :       llmax = 2*maxlgto
     270          48 :       max_s_harm = nsoset(llmax)
     271          48 :       max_s_set = nsoset(maxlgto)
     272          48 :       lcleb = llmax
     273             : 
     274             : !  Allocate and compute the CG coeffs (copied from init_rho_atom)
     275          48 :       CALL clebsch_gordon_init(lcleb)
     276          48 :       CALL reallocate(my_CG, 1, max_s_set, 1, max_s_set, 1, max_s_harm)
     277             : 
     278         144 :       ALLOCATE (rga(lcleb, 2))
     279         222 :       DO lc1 = 0, maxlgto
     280         888 :          DO iso1 = nsoset(lc1 - 1) + 1, nsoset(lc1)
     281         666 :             l1 = indso(1, iso1)
     282         666 :             m1 = indso(2, iso1)
     283        3558 :             DO lc2 = 0, maxlgto
     284       15282 :                DO iso2 = nsoset(lc2 - 1) + 1, nsoset(lc2)
     285       11898 :                   l2 = indso(1, iso2)
     286       11898 :                   m2 = indso(2, iso2)
     287       11898 :                   CALL clebsch_gordon(l1, m1, l2, m2, rga)
     288       11898 :                   IF (l1 + l2 > llmax) THEN
     289             :                      l1l2 = llmax
     290             :                   ELSE
     291             :                      l1l2 = l1 + l2
     292             :                   END IF
     293       11898 :                   mp = m1 + m2
     294       11898 :                   mm = m1 - m2
     295       11898 :                   IF (m1*m2 < 0 .OR. (m1*m2 == 0 .AND. (m1 < 0 .OR. m2 < 0))) THEN
     296        5616 :                      mp = -ABS(mp)
     297        5616 :                      mm = -ABS(mm)
     298             :                   ELSE
     299        6282 :                      mp = ABS(mp)
     300        6282 :                      mm = ABS(mm)
     301             :                   END IF
     302       54540 :                   DO lp = MOD(l1 + l2, 2), l1l2, 2
     303       39924 :                      il = lp/2 + 1
     304       39924 :                      IF (ABS(mp) <= lp) THEN
     305       27356 :                      IF (mp >= 0) THEN
     306       15864 :                         iso = nsoset(lp - 1) + lp + 1 + mp
     307             :                      ELSE
     308       11492 :                         iso = nsoset(lp - 1) + lp + 1 - ABS(mp)
     309             :                      END IF
     310       27356 :                      my_CG(iso1, iso2, iso) = rga(il, 1)
     311             :                      END IF
     312       51822 :                      IF (mp /= mm .AND. ABS(mm) <= lp) THEN
     313       17464 :                      IF (mm >= 0) THEN
     314       11304 :                         iso = nsoset(lp - 1) + lp + 1 + mm
     315             :                      ELSE
     316        6160 :                         iso = nsoset(lp - 1) + lp + 1 - ABS(mm)
     317             :                      END IF
     318       17464 :                      my_CG(iso1, iso2, iso) = rga(il, 2)
     319             :                      END IF
     320             :                   END DO
     321             :                END DO ! iso2
     322             :             END DO ! lc2
     323             :          END DO ! iso1
     324             :       END DO ! lc1
     325          48 :       DEALLOCATE (rga)
     326          48 :       CALL clebsch_gordon_deallocate()
     327             : 
     328             : !  Create the Lebedev grids and compute the spherical harmonics
     329          48 :       CALL init_lebedev_grids()
     330          48 :       quadrature = qs_control%gapw_control%quadrature
     331             : 
     332         122 :       DO ikind = 1, SIZE(xas_atom_env%grid_atom_set)
     333             : 
     334             : !        Allocate the grid and the harmonics for this kind
     335          74 :          NULLIFY (xas_atom_env%grid_atom_set(ikind)%grid_atom)
     336          74 :          NULLIFY (xas_atom_env%harmonics_atom_set(ikind)%harmonics_atom)
     337          74 :          CALL allocate_grid_atom(xas_atom_env%grid_atom_set(ikind)%grid_atom)
     338          74 :          CALL allocate_harmonics_atom(xas_atom_env%harmonics_atom_set(ikind)%harmonics_atom)
     339             : 
     340          74 :          NULLIFY (grid_atom, harmonics)
     341          74 :          grid_atom => xas_atom_env%grid_atom_set(ikind)%grid_atom
     342          74 :          harmonics => xas_atom_env%harmonics_atom_set(ikind)%harmonics_atom
     343             : 
     344             : !        Initialize some integers
     345          74 :          CALL get_qs_kind(qs_kind_set(ikind), ngrid_rad=nr, ngrid_ang=na, name=kind_name)
     346             : 
     347             :          !take the grid dimension given as input, if none, take the GAPW ones above
     348         222 :          IF (ANY(grid_info == kind_name)) THEN
     349          50 :             DO igrid = 1, SIZE(grid_info, 1)
     350          50 :                IF (grid_info(igrid, 1) == kind_name) THEN
     351             : 
     352             :                   !hack to convert string into integer
     353          46 :                   READ (grid_info(igrid, 2), *, iostat=stat) na
     354          46 :                   IF (stat .NE. 0) CPABORT("The 'na' value for the GRID keyword must be an integer")
     355          46 :                   READ (grid_info(igrid, 3), *, iostat=stat) nr
     356          46 :                   IF (stat .NE. 0) CPABORT("The 'nr' value for the GRID keyword must be an integer")
     357             :                   EXIT
     358             :                END IF
     359             :             END DO
     360          52 :          ELSE IF (do_xc .AND. ANY(xas_atom_env%excited_kinds == ikind)) THEN
     361             :             !need good integration grids for the xc kernel, but taking the default GAPW grid
     362           0 :             CPWARN("The default (and possibly small) GAPW grid is being used for one excited KIND")
     363             :          END IF
     364             : 
     365          74 :          ll = get_number_of_lebedev_grid(n=na)
     366          74 :          na = lebedev_grid(ll)%n
     367          74 :          la = lebedev_grid(ll)%l
     368          74 :          grid_atom%ng_sphere = na
     369          74 :          grid_atom%nr = nr
     370             : 
     371             : !        If this is an excited kind, create the harmonics with the RI_XAS basis, otherwise the ORB
     372         102 :          IF (ANY(xas_atom_env%excited_kinds == ikind) .AND. do_xc) THEN
     373          42 :             CALL get_qs_kind(qs_kind_set(ikind), basis_set=tmp_basis, basis_type="RI_XAS")
     374             :          ELSE
     375          32 :             CALL get_qs_kind(qs_kind_set(ikind), basis_set=tmp_basis, basis_type="ORB")
     376             :          END IF
     377          74 :          CALL get_gto_basis_set(gto_basis_set=tmp_basis, maxl=maxl, kind_radius=kind_radius)
     378             : 
     379          74 :          CALL create_grid_atom(grid_atom, nr, na, llmax, ll, quadrature)
     380          74 :          CALL truncate_radial_grid(grid_atom, kind_radius)
     381             : 
     382          74 :          maxs = nsoset(maxl)
     383             :          CALL create_harmonics_atom(harmonics, &
     384             :                                     my_CG, na, llmax, maxs, max_s_harm, ll, grid_atom%wa, &
     385          74 :                                     grid_atom%azi, grid_atom%pol)
     386         270 :          CALL get_maxl_CG(harmonics, tmp_basis, llmax, max_s_harm)
     387             :       END DO
     388             : 
     389          48 :       CALL deallocate_lebedev_grids()
     390          48 :       DEALLOCATE (my_CG)
     391             : 
     392          48 :    END SUBROUTINE init_xas_atom_grid_harmo
     393             : 
     394             : ! **************************************************************************************************
     395             : !> \brief Reduces the radial extension of an atomic grid such that it only covers a given radius
     396             : !> \param grid_atom the atomic grid from which we truncate the radial part
     397             : !> \param max_radius the maximal radial extension of the resulting grid
     398             : !> \note Since the RI density used for <P|fxc|Q> is only of quality close to the atom, and the
     399             : !>       integrand only non-zero within the radius of the gaussian P,Q. One can reduce the grid
     400             : !>       extansion to the largest radius of the RI basis set
     401             : ! **************************************************************************************************
     402          82 :    SUBROUTINE truncate_radial_grid(grid_atom, max_radius)
     403             : 
     404             :       TYPE(grid_atom_type), POINTER                      :: grid_atom
     405             :       REAL(dp), INTENT(IN)                               :: max_radius
     406             : 
     407             :       INTEGER                                            :: first_ir, ir, llmax_p1, na, new_nr, nr
     408             : 
     409          82 :       nr = grid_atom%nr
     410          82 :       na = grid_atom%ng_sphere
     411          82 :       llmax_p1 = SIZE(grid_atom%rad2l, 2) - 1
     412             : 
     413             : !     Find the index corresponding to the limiting radius (small ir => large radius)
     414        2076 :       DO ir = 1, nr
     415        2076 :          IF (grid_atom%rad(ir) < max_radius) THEN
     416             :             first_ir = ir
     417             :             EXIT
     418             :          END IF
     419             :       END DO
     420          82 :       new_nr = nr - first_ir + 1
     421             : 
     422             : !     Reallcoate everything that depends on r
     423          82 :       grid_atom%nr = new_nr
     424             : 
     425       15216 :       grid_atom%rad(1:new_nr) = grid_atom%rad(first_ir:nr)
     426       15216 :       grid_atom%rad2(1:new_nr) = grid_atom%rad2(first_ir:nr)
     427       15216 :       grid_atom%wr(1:new_nr) = grid_atom%wr(first_ir:nr)
     428     2372648 :       grid_atom%weight(:, 1:new_nr) = grid_atom%weight(:, first_ir:nr)
     429      114340 :       grid_atom%rad2l(1:new_nr, :) = grid_atom%rad2l(first_ir:nr, :)
     430      114340 :       grid_atom%oorad2l(1:new_nr, :) = grid_atom%oorad2l(first_ir:nr, :)
     431             : 
     432          82 :       CALL reallocate(grid_atom%rad, 1, new_nr)
     433          82 :       CALL reallocate(grid_atom%rad2, 1, new_nr)
     434          82 :       CALL reallocate(grid_atom%wr, 1, new_nr)
     435          82 :       CALL reallocate(grid_atom%weight, 1, na, 1, new_nr)
     436          82 :       CALL reallocate(grid_atom%rad2l, 1, new_nr, 0, llmax_p1)
     437          82 :       CALL reallocate(grid_atom%oorad2l, 1, new_nr, 0, llmax_p1)
     438             : 
     439          82 :    END SUBROUTINE truncate_radial_grid
     440             : 
     441             : ! **************************************************************************************************
     442             : !> \brief Computes the contraction coefficients to go from spherical orbitals to sgf for a given
     443             : !>        atomic kind and a given basis type.
     444             : !> \param ikind the kind for which we compute the coefficients
     445             : !> \param basis_type the type of basis for which we compute
     446             : !> \param sphi_so where the new contraction coefficients are stored (not yet allocated)
     447             : !> \param qs_env ...
     448             : ! **************************************************************************************************
     449         134 :    SUBROUTINE compute_sphi_so(ikind, basis_type, sphi_so, qs_env)
     450             : 
     451             :       INTEGER, INTENT(IN)                                :: ikind
     452             :       CHARACTER(len=*), INTENT(IN)                       :: basis_type
     453             :       REAL(dp), DIMENSION(:, :), POINTER                 :: sphi_so
     454             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     455             : 
     456             :       INTEGER                                            :: ico, ipgf, iset, iso, l, lx, ly, lz, &
     457             :                                                             maxso, nset, sgfi, start_c, start_s
     458         134 :       INTEGER, DIMENSION(:), POINTER                     :: lmax, lmin, npgf, nsgf_set
     459         134 :       INTEGER, DIMENSION(:, :), POINTER                  :: first_sgf
     460             :       REAL(dp)                                           :: factor
     461         134 :       REAL(dp), DIMENSION(:, :), POINTER                 :: sphi
     462             :       TYPE(gto_basis_set_type), POINTER                  :: basis
     463         134 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     464             : 
     465         134 :       NULLIFY (basis, lmax, lmin, npgf, nsgf_set, qs_kind_set, first_sgf, sphi)
     466             : 
     467         134 :       CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set)
     468         134 :       CALL get_qs_kind(qs_kind_set(ikind), basis_set=basis, basis_type=basis_type)
     469             :       CALL get_gto_basis_set(basis, lmax=lmax, nset=nset, npgf=npgf, maxso=maxso, lmin=lmin, &
     470         134 :                              nsgf_set=nsgf_set, sphi=sphi, first_sgf=first_sgf)
     471             : 
     472        1026 :       ALLOCATE (sphi_so(maxso, SUM(nsgf_set)))
     473      490452 :       sphi_so = 0.0_dp
     474             : 
     475         624 :       DO iset = 1, nset
     476         490 :          sgfi = first_sgf(1, iset)
     477        2264 :          DO ipgf = 1, npgf(iset)
     478        1640 :             start_s = (ipgf - 1)*nsoset(lmax(iset))
     479        1640 :             start_c = (ipgf - 1)*ncoset(lmax(iset))
     480        5012 :             DO l = lmin(iset), lmax(iset)
     481       12216 :                DO iso = 1, nso(l)
     482       47206 :                   DO ico = 1, nco(l)
     483       36630 :                      lx = indco(1, ico + ncoset(l - 1))
     484       36630 :                      ly = indco(2, ico + ncoset(l - 1))
     485       36630 :                      lz = indco(3, ico + ncoset(l - 1))
     486             : !MK                     factor = orbtramat(l)%s2c(iso, ico) &
     487             : !MK                              *SQRT(4.0_dp*pi/dfac(2*l + 1)*dfac(2*lx - 1)*dfac(2*ly - 1)*dfac(2*lz - 1))
     488       36630 :                      factor = orbtramat(l)%slm_inv(iso, ico)
     489             :                      sphi_so(start_s + nsoset(l - 1) + iso, sgfi:sgfi + nsgf_set(iset) - 1) = &
     490             :                         sphi_so(start_s + nsoset(l - 1) + iso, sgfi:sgfi + nsgf_set(iset) - 1) + &
     491     4183350 :                         factor*sphi(start_c + ncoset(l - 1) + ico, sgfi:sgfi + nsgf_set(iset) - 1)
     492             :                   END DO ! ico
     493             :                END DO ! iso
     494             :             END DO ! l
     495             :          END DO ! ipgf
     496             :       END DO ! iset
     497             : 
     498         268 :    END SUBROUTINE compute_sphi_so
     499             : 
     500             : ! **************************************************************************************************
     501             : !> \brief Find the neighbors of a given set of atoms based on the non-zero blocks of a provided
     502             : !>        overlap matrix. Optionally returns an array containing the indices of all involved atoms
     503             : !>        (the given subset plus all their neighbors, without repetition) AND/OR an array of arrays
     504             : !>        providing the indices of the neighbors of each input atom.
     505             : !> \param base_atoms the set of atoms for which we search neighbors
     506             : !> \param mat_s the overlap matrix used to find neighbors
     507             : !> \param radius the cutoff radius after which atoms are not considered neighbors
     508             : !> \param qs_env ...
     509             : !> \param all_neighbors the array uniquely contatining all indices of all atoms involved
     510             : !> \param neighbor_set array of arrays containing the neighbors of all given atoms
     511             : ! **************************************************************************************************
     512          38 :    SUBROUTINE find_neighbors(base_atoms, mat_s, radius, qs_env, all_neighbors, neighbor_set)
     513             : 
     514             :       INTEGER, DIMENSION(:), INTENT(INOUT)               :: base_atoms
     515             :       TYPE(dbcsr_type), INTENT(IN)                       :: mat_s
     516             :       REAL(dp)                                           :: radius
     517             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     518             :       INTEGER, DIMENSION(:), OPTIONAL, POINTER           :: all_neighbors
     519             :       TYPE(cp_1d_i_p_type), DIMENSION(:), OPTIONAL, &
     520             :          POINTER                                         :: neighbor_set
     521             : 
     522             :       INTEGER                                            :: blk, i, iat, ibase, iblk, jblk, mepos, &
     523             :                                                             natom, nb, nbase
     524          38 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: blk_to_base, inb, who_is_there
     525          38 :       INTEGER, ALLOCATABLE, DIMENSION(:, :)              :: n_neighbors
     526          38 :       LOGICAL, ALLOCATABLE, DIMENSION(:)                 :: is_base_atom
     527             :       REAL(dp)                                           :: dist2, rad2, ri(3), rij(3), rj(3)
     528             :       TYPE(cell_type), POINTER                           :: cell
     529          38 :       TYPE(cp_1d_i_p_type), DIMENSION(:), POINTER        :: my_neighbor_set
     530             :       TYPE(dbcsr_iterator_type)                          :: iter
     531             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     532          38 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     533             : 
     534          38 :       NULLIFY (particle_set, para_env, my_neighbor_set, cell)
     535             : 
     536             :       ! Initialization
     537          38 :       CALL get_qs_env(qs_env, para_env=para_env, natom=natom, particle_set=particle_set, cell=cell)
     538          38 :       mepos = para_env%mepos
     539          38 :       nbase = SIZE(base_atoms)
     540             :       !work with the neighbor_set structure, see at the end if we keep it
     541         160 :       ALLOCATE (my_neighbor_set(nbase))
     542          38 :       rad2 = radius**2
     543             : 
     544         152 :       ALLOCATE (blk_to_base(natom), is_base_atom(natom))
     545         778 :       blk_to_base = 0; is_base_atom = .FALSE.
     546          84 :       DO ibase = 1, nbase
     547          46 :          blk_to_base(base_atoms(ibase)) = ibase
     548          84 :          is_base_atom(base_atoms(ibase)) = .TRUE.
     549             :       END DO
     550             : 
     551             :       ! First loop over S => count the number of neighbors
     552         152 :       ALLOCATE (n_neighbors(nbase, 0:para_env%num_pe - 1))
     553         206 :       n_neighbors = 0
     554             : 
     555          38 :       CALL dbcsr_iterator_start(iter, mat_s)
     556        3814 :       DO WHILE (dbcsr_iterator_blocks_left(iter))
     557             : 
     558        3776 :          CALL dbcsr_iterator_next_block(iter, row=iblk, column=jblk, blk=blk)
     559             : 
     560             :          !avoid self-neighbors
     561        3776 :          IF (iblk == jblk) CYCLE
     562             : 
     563             :          !test distance
     564        3591 :          ri = pbc(particle_set(iblk)%r, cell)
     565        3591 :          rj = pbc(particle_set(jblk)%r, cell)
     566        3591 :          rij = pbc(ri, rj, cell)
     567       14364 :          dist2 = SUM(rij**2)
     568        3591 :          IF (dist2 > rad2) CYCLE
     569             : 
     570          11 :          IF (is_base_atom(iblk)) THEN
     571           6 :             ibase = blk_to_base(iblk)
     572           6 :             n_neighbors(ibase, mepos) = n_neighbors(ibase, mepos) + 1
     573             :          END IF
     574          49 :          IF (is_base_atom(jblk)) THEN
     575           3 :             ibase = blk_to_base(jblk)
     576           3 :             n_neighbors(ibase, mepos) = n_neighbors(ibase, mepos) + 1
     577             :          END IF
     578             : 
     579             :       END DO !iter
     580          38 :       CALL dbcsr_iterator_stop(iter)
     581          38 :       CALL para_env%sum(n_neighbors)
     582             : 
     583             :       ! Allocate the neighbor_set arrays at the correct length
     584          84 :       DO ibase = 1, nbase
     585         190 :          ALLOCATE (my_neighbor_set(ibase)%array(SUM(n_neighbors(ibase, :))))
     586         102 :          my_neighbor_set(ibase)%array = 0
     587             :       END DO
     588             : 
     589             :       ! Loop a second time over S, this time fill the neighbors details
     590          38 :       CALL dbcsr_iterator_start(iter, mat_s)
     591         114 :       ALLOCATE (inb(nbase))
     592          84 :       inb = 1
     593        3814 :       DO WHILE (dbcsr_iterator_blocks_left(iter))
     594             : 
     595        3776 :          CALL dbcsr_iterator_next_block(iter, row=iblk, column=jblk, blk=blk)
     596        3776 :          IF (iblk == jblk) CYCLE
     597             : 
     598             :          !test distance
     599        3591 :          ri = pbc(particle_set(iblk)%r, cell)
     600        3591 :          rj = pbc(particle_set(jblk)%r, cell)
     601        3591 :          rij = pbc(ri, rj, cell)
     602       14364 :          dist2 = SUM(rij**2)
     603        3591 :          IF (dist2 > rad2) CYCLE
     604             : 
     605          11 :          IF (is_base_atom(iblk)) THEN
     606           6 :             ibase = blk_to_base(iblk)
     607          10 :             my_neighbor_set(ibase)%array(SUM(n_neighbors(ibase, 0:mepos - 1)) + inb(ibase)) = jblk
     608           6 :             inb(ibase) = inb(ibase) + 1
     609             :          END IF
     610          49 :          IF (is_base_atom(jblk)) THEN
     611           3 :             ibase = blk_to_base(jblk)
     612           4 :             my_neighbor_set(ibase)%array(SUM(n_neighbors(ibase, 0:mepos - 1)) + inb(ibase)) = iblk
     613           3 :             inb(ibase) = inb(ibase) + 1
     614             :          END IF
     615             : 
     616             :       END DO !iter
     617          38 :       CALL dbcsr_iterator_stop(iter)
     618             : 
     619             :       ! Make sure the info is shared among the procs
     620          84 :       DO ibase = 1, nbase
     621         120 :          CALL para_env%sum(my_neighbor_set(ibase)%array)
     622             :       END DO
     623             : 
     624             :       ! Gather all indices if asked for it
     625          38 :       IF (PRESENT(all_neighbors)) THEN
     626         114 :          ALLOCATE (who_is_there(natom))
     627         408 :          who_is_there = 0
     628             : 
     629          84 :          DO ibase = 1, nbase
     630          46 :             who_is_there(base_atoms(ibase)) = 1
     631         102 :             DO nb = 1, SIZE(my_neighbor_set(ibase)%array)
     632          64 :                who_is_there(my_neighbor_set(ibase)%array(nb)) = 1
     633             :             END DO
     634             :          END DO
     635             : 
     636          76 :          ALLOCATE (all_neighbors(natom))
     637          38 :          i = 0
     638         408 :          DO iat = 1, natom
     639         408 :             IF (who_is_there(iat) == 1) THEN
     640          56 :                i = i + 1
     641          56 :                all_neighbors(i) = iat
     642             :             END IF
     643             :          END DO
     644          38 :          CALL reallocate(all_neighbors, 1, i)
     645             :       END IF
     646             : 
     647             :       ! If not asked for the neighbor set, deallocate it
     648          38 :       IF (PRESENT(neighbor_set)) THEN
     649          38 :          neighbor_set => my_neighbor_set
     650             :       ELSE
     651           0 :          DO ibase = 1, nbase
     652           0 :             DEALLOCATE (my_neighbor_set(ibase)%array)
     653             :          END DO
     654           0 :          DEALLOCATE (my_neighbor_set)
     655             :       END IF
     656             : 
     657         152 :    END SUBROUTINE find_neighbors
     658             : 
     659             : ! **************************************************************************************************
     660             : !> \brief Returns the RI inverse overlap for a subset of the RI_XAS matrix spaning a given
     661             : !>        excited atom and its neighbors.
     662             : !> \param ri_sinv the inverse overlap as a dbcsr matrix
     663             : !> \param whole_s the whole RI overlap matrix
     664             : !> \param neighbors the indeces of the excited atom and their neighbors
     665             : !> \param idx_to_nb array telling where any atom can be found in neighbors (if there at all)
     666             : !> \param basis_set_ri the RI basis set list for all kinds
     667             : !> \param qs_env ...
     668             : !> \note It is assumed that the neighbors are sorted, the output matrix is assumed to be small and
     669             : !>       is replicated on all processors
     670             : ! **************************************************************************************************
     671          46 :    SUBROUTINE get_exat_ri_sinv(ri_sinv, whole_s, neighbors, idx_to_nb, basis_set_ri, qs_env)
     672             : 
     673             :       TYPE(dbcsr_type)                                   :: ri_sinv, whole_s
     674             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: neighbors, idx_to_nb
     675             :       TYPE(gto_basis_set_p_type), DIMENSION(:), POINTER  :: basis_set_ri
     676             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     677             : 
     678             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'get_exat_ri_sinv'
     679             : 
     680             :       INTEGER                                            :: blk, dest, group_handle, handle, iat, &
     681             :                                                             ikind, inb, ir, is, jat, jnb, natom, &
     682             :                                                             nnb, npcols, nprows, source, tag
     683          46 :       INTEGER, DIMENSION(:), POINTER                     :: col_dist, nsgf, row_dist
     684          46 :       INTEGER, DIMENSION(:, :), POINTER                  :: pgrid
     685             :       LOGICAL                                            :: found_risinv, found_whole
     686          46 :       LOGICAL, ALLOCATABLE, DIMENSION(:)                 :: is_neighbor
     687             :       REAL(dp)                                           :: ri(3), rij(3), rj(3)
     688          46 :       REAL(dp), ALLOCATABLE, DIMENSION(:)                :: radius
     689          46 :       REAL(dp), DIMENSION(:, :), POINTER                 :: block_risinv, block_whole
     690             :       TYPE(cell_type), POINTER                           :: cell
     691          46 :       TYPE(cp_2d_r_p_type), ALLOCATABLE, DIMENSION(:)    :: recv_buff, send_buff
     692             :       TYPE(cp_blacs_env_type), POINTER                   :: blacs_env
     693             :       TYPE(dbcsr_distribution_type)                      :: sinv_dist
     694             :       TYPE(dbcsr_distribution_type), POINTER             :: dbcsr_dist
     695             :       TYPE(dbcsr_iterator_type)                          :: iter
     696             :       TYPE(mp_comm_type)                                 :: group
     697             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     698          46 :       TYPE(mp_request_type), ALLOCATABLE, DIMENSION(:)   :: recv_req, send_req
     699          46 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     700             : 
     701          46 :       NULLIFY (pgrid, dbcsr_dist, row_dist, col_dist, nsgf, particle_set, block_whole, block_risinv)
     702          46 :       NULLIFY (cell, para_env, blacs_env)
     703             : 
     704          46 :       CALL timeset(routineN, handle)
     705             : 
     706             :       CALL get_qs_env(qs_env, dbcsr_dist=dbcsr_dist, particle_set=particle_set, natom=natom, &
     707          46 :                       para_env=para_env, blacs_env=blacs_env, cell=cell)
     708          46 :       nnb = SIZE(neighbors)
     709         322 :       ALLOCATE (nsgf(nnb), is_neighbor(natom), radius(nnb))
     710         626 :       is_neighbor = .FALSE.
     711         110 :       DO inb = 1, nnb
     712          64 :          iat = neighbors(inb)
     713          64 :          ikind = particle_set(iat)%atomic_kind%kind_number
     714          64 :          CALL get_gto_basis_set(basis_set_ri(ikind)%gto_basis_set, nsgf=nsgf(inb), kind_radius=radius(inb))
     715         110 :          is_neighbor(iat) = .TRUE.
     716             :       END DO
     717             : 
     718             :       !Create the ri_sinv matrix based on some arbitrary dbcsr_dist
     719          46 :       CALL dbcsr_distribution_get(dbcsr_dist, group=group_handle, pgrid=pgrid, nprows=nprows, npcols=npcols)
     720          46 :       CALL group%set_handle(group_handle)
     721             : 
     722         138 :       ALLOCATE (row_dist(nnb), col_dist(nnb))
     723         110 :       DO inb = 1, nnb
     724          64 :          row_dist(inb) = MODULO(nprows - inb, nprows)
     725         110 :          col_dist(inb) = MODULO(npcols - inb, npcols)
     726             :       END DO
     727             : 
     728             :       CALL dbcsr_distribution_new(sinv_dist, group=group_handle, pgrid=pgrid, row_dist=row_dist, &
     729          46 :                                   col_dist=col_dist)
     730             : 
     731             :       CALL dbcsr_create(matrix=ri_sinv, name="RI_SINV", matrix_type=dbcsr_type_symmetric, &
     732          46 :                         dist=sinv_dist, row_blk_size=nsgf, col_blk_size=nsgf)
     733             :       !reserving the blocks in the correct pattern
     734         110 :       DO inb = 1, nnb
     735          64 :          ri = pbc(particle_set(neighbors(inb))%r, cell)
     736         210 :          DO jnb = inb, nnb
     737             : 
     738             :             !do the atom overlap ?
     739         100 :             rj = pbc(particle_set(neighbors(jnb))%r, cell)
     740         100 :             rij = pbc(ri, rj, cell)
     741         400 :             IF (SUM(rij**2) > (radius(inb) + radius(jnb))**2) CYCLE
     742             : 
     743         100 :             CALL dbcsr_get_stored_coordinates(ri_sinv, inb, jnb, blk)
     744         164 :             IF (para_env%mepos == blk) THEN
     745         200 :                ALLOCATE (block_risinv(nsgf(inb), nsgf(jnb)))
     746      183897 :                block_risinv = 0.0_dp
     747          50 :                CALL dbcsr_put_block(ri_sinv, inb, jnb, block_risinv)
     748          50 :                DEALLOCATE (block_risinv)
     749             :             END IF
     750             :          END DO
     751             :       END DO
     752          46 :       CALL dbcsr_finalize(ri_sinv)
     753             : 
     754          46 :       CALL dbcsr_distribution_release(sinv_dist)
     755          46 :       DEALLOCATE (row_dist, col_dist)
     756             : 
     757             :       !prepare the send and recv buffers we will need for change of dist between the two matrices
     758             :       !worst case scenario: all neighbors are on same procs => need to send nnb**2 messages
     759         456 :       ALLOCATE (send_buff(nnb**2), recv_buff(nnb**2))
     760         456 :       ALLOCATE (send_req(nnb**2), recv_req(nnb**2))
     761          46 :       is = 0; ir = 0
     762             : 
     763             :       !Loop over the whole RI overlap matrix and pick the blocks we need
     764          46 :       CALL dbcsr_iterator_start(iter, whole_s)
     765        7403 :       DO WHILE (dbcsr_iterator_blocks_left(iter))
     766             : 
     767        7357 :          CALL dbcsr_iterator_next_block(iter, row=iat, column=jat, blk=blk)
     768        7357 :          CALL dbcsr_get_block_p(whole_s, iat, jat, block_whole, found_whole)
     769             : 
     770             :          !only interested in neighbors
     771        7357 :          IF (.NOT. found_whole) CYCLE
     772        7357 :          IF (.NOT. is_neighbor(iat)) CYCLE
     773         204 :          IF (.NOT. is_neighbor(jat)) CYCLE
     774             : 
     775          50 :          inb = idx_to_nb(iat)
     776          50 :          jnb = idx_to_nb(jat)
     777             : 
     778             :          !If blocks are on the same proc for both matrices, simply copy
     779          50 :          CALL dbcsr_get_block_p(ri_sinv, inb, jnb, block_risinv, found_risinv)
     780          96 :          IF (found_risinv) THEN
     781           4 :             CALL dcopy(nsgf(inb)*nsgf(jnb), block_whole, 1, block_risinv, 1)
     782             :          ELSE
     783             : 
     784             :             !send the block with unique tag to the proc where inb,jnb is in ri_sinv
     785          46 :             CALL dbcsr_get_stored_coordinates(ri_sinv, inb, jnb, dest)
     786          46 :             is = is + 1
     787          46 :             send_buff(is)%array => block_whole
     788          46 :             tag = natom*inb + jnb
     789          46 :             CALL group%isend(msgin=send_buff(is)%array, dest=dest, request=send_req(is), tag=tag)
     790             : 
     791             :          END IF
     792             : 
     793             :       END DO !dbcsr iter
     794          46 :       CALL dbcsr_iterator_stop(iter)
     795             : 
     796             :       !Loop over ri_sinv and receive all those blocks
     797          46 :       CALL dbcsr_iterator_start(iter, ri_sinv)
     798          96 :       DO WHILE (dbcsr_iterator_blocks_left(iter))
     799             : 
     800          50 :          CALL dbcsr_iterator_next_block(iter, row=inb, column=jnb, blk=blk)
     801          50 :          CALL dbcsr_get_block_p(ri_sinv, inb, jnb, block_risinv, found_risinv)
     802             : 
     803          50 :          IF (.NOT. found_risinv) CYCLE
     804             : 
     805          50 :          iat = neighbors(inb)
     806          50 :          jat = neighbors(jnb)
     807             : 
     808             :          !If blocks are on the same proc on both matrices do nothing
     809          50 :          CALL dbcsr_get_stored_coordinates(whole_s, iat, jat, source)
     810          50 :          IF (para_env%mepos == source) CYCLE
     811             : 
     812          46 :          tag = natom*inb + jnb
     813          46 :          ir = ir + 1
     814          46 :          recv_buff(ir)%array => block_risinv
     815             :          CALL group%irecv(msgout=recv_buff(ir)%array, source=source, request=recv_req(ir), &
     816          96 :                           tag=tag)
     817             : 
     818             :       END DO
     819          46 :       CALL dbcsr_iterator_stop(iter)
     820             : 
     821             :       !make sure that all comm is over before proceeding
     822          46 :       CALL mp_waitall(send_req(1:is))
     823          46 :       CALL mp_waitall(recv_req(1:ir))
     824             : 
     825             :       !Invert. 2 cases: with or without neighbors. If no neighbors, easier to invert on one proc and
     826             :       !avoid the whole fm to dbcsr to fm that is quite expensive
     827          46 :       IF (nnb == 1) THEN
     828             : 
     829          40 :          CALL dbcsr_get_block_p(ri_sinv, 1, 1, block_risinv, found_risinv)
     830          40 :          IF (found_risinv) THEN
     831          20 :             CALL invmat_symm(block_risinv)
     832             :          END IF
     833             : 
     834             :       ELSE
     835           6 :          CALL cp_dbcsr_cholesky_decompose(ri_sinv, para_env=para_env, blacs_env=blacs_env)
     836           6 :          CALL cp_dbcsr_cholesky_invert(ri_sinv, para_env=para_env, blacs_env=blacs_env, upper_to_full=.TRUE.)
     837           6 :          CALL dbcsr_filter(ri_sinv, 1.E-10_dp) !make sure ri_sinv is sparse coming out of fm routines
     838             :       END IF
     839          46 :       CALL dbcsr_replicate_all(ri_sinv)
     840             : 
     841             :       !clean-up
     842          46 :       DEALLOCATE (nsgf)
     843             : 
     844          46 :       CALL timestop(handle)
     845             : 
     846         276 :    END SUBROUTINE get_exat_ri_sinv
     847             : 
     848             : ! **************************************************************************************************
     849             : !> \brief Compute the coefficients to project the density on a partial RI_XAS basis
     850             : !> \param xas_atom_env ...
     851             : !> \param qs_env ...
     852             : !> \note The density is n = sum_ab P_ab*phi_a*phi_b, the RI basis covers the products of orbital sgfs
     853             : !>       => n = sum_ab sum_cd P_ab (phi_a phi_b xi_c) S_cd^-1 xi_d
     854             : !>            = sum_d coeff_d xi_d , where xi are the RI basis func.
     855             : !>       In this case, with the partial RI projection, the RI basis is restricted to an excited atom
     856             : !>       and its neighbors at a time. Leads to smaller overlap matrix to invert and less 3-center
     857             : !>       overlap to compute. The procedure is repeated for each excited atom
     858             : ! **************************************************************************************************
     859          38 :    SUBROUTINE calculate_density_coeffs(xas_atom_env, qs_env)
     860             : 
     861             :       TYPE(xas_atom_env_type), POINTER                   :: xas_atom_env
     862             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     863             : 
     864             :       CHARACTER(len=*), PARAMETER :: routineN = 'calculate_density_coeffs'
     865             : 
     866             :       INTEGER                                            :: exat, handle, i, iat, iatom, iex, inb, &
     867             :                                                             ind(3), ispin, jatom, jnb, katom, &
     868             :                                                             natom, nex, nkind, nnb, nspins, &
     869             :                                                             output_unit, ri_at
     870          38 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: blk_size_orb, blk_size_ri, idx_to_nb, &
     871          38 :                                                             neighbors
     872          38 :       INTEGER, DIMENSION(:), POINTER                     :: all_ri_atoms
     873             :       LOGICAL                                            :: pmat_found, pmat_foundt, sinv_found, &
     874             :                                                             sinv_foundt, tensor_found, unique
     875             :       REAL(dp)                                           :: factor, prefac
     876          38 :       REAL(dp), ALLOCATABLE, DIMENSION(:)                :: work2
     877          38 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :)             :: work1
     878          38 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :, :)          :: t_block
     879          76 :       REAL(dp), DIMENSION(:, :), POINTER                 :: pmat_block, pmat_blockt, sinv_block, &
     880          38 :                                                             sinv_blockt
     881             :       TYPE(cp_blacs_env_type), POINTER                   :: blacs_env
     882             :       TYPE(dbcsr_distribution_type), POINTER             :: dbcsr_dist
     883          76 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: overlap, rho_ao
     884             :       TYPE(dbcsr_type)                                   :: ri_sinv
     885             :       TYPE(dbcsr_type), POINTER                          :: ri_mats
     886             :       TYPE(dbt_iterator_type)                            :: iter
     887         342 :       TYPE(dbt_type)                                     :: pqX
     888          38 :       TYPE(gto_basis_set_p_type), DIMENSION(:), POINTER  :: basis_set_orb, basis_set_ri
     889             :       TYPE(libint_potential_type)                        :: pot
     890             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     891             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
     892          76 :          POINTER                                         :: ab_list, ac_list, sab_ri
     893          38 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     894          38 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     895             :       TYPE(qs_rho_type), POINTER                         :: rho
     896             : 
     897          38 :       NULLIFY (qs_kind_set, basis_set_ri, basis_set_orb, ac_list, rho, rho_ao, sab_ri, ri_mats)
     898          38 :       NULLIFY (particle_set, para_env, all_ri_atoms, overlap, pmat_blockt)
     899          38 :       NULLIFY (blacs_env, pmat_block, ab_list, dbcsr_dist, sinv_block, sinv_blockt)
     900             : 
     901             :       !Idea: We don't do a full RI here as it would be too expensive in many ways (inversion of a
     902             :       !      large matrix, many 3-center overlaps, density coefficients for all atoms, etc...)
     903             :       !      Instead, we go excited atom by excited atom and only do a RI expansion on its basis
     904             :       !      and that of its closest neighbors (defined through RI_RADIUS), such that we only have
     905             :       !      very small matrices to invert and only a few (abc) overlp integrals with c on the
     906             :       !      excited atom its neighbors. This is physically sound since we only need the density
     907             :       !      well defined on the excited atom grid as we do (aI|P)*(P|Q)^-1*(Q|fxc|R)*(R|S)^-1*(S|Jb)
     908             : 
     909          38 :       CALL timeset(routineN, handle)
     910             : 
     911             :       CALL get_qs_env(qs_env, nkind=nkind, qs_kind_set=qs_kind_set, rho=rho, &
     912             :                       natom=natom, particle_set=particle_set, dbcsr_dist=dbcsr_dist, &
     913          38 :                       para_env=para_env, blacs_env=blacs_env)
     914          38 :       nspins = xas_atom_env%nspins
     915          38 :       nex = SIZE(xas_atom_env%excited_atoms)
     916          38 :       CALL qs_rho_get(rho, rho_ao=rho_ao)
     917             : 
     918             : !  Create the needed neighbor list and basis set lists.
     919         174 :       ALLOCATE (basis_set_ri(nkind))
     920         136 :       ALLOCATE (basis_set_orb(nkind))
     921          38 :       CALL basis_set_list_setup(basis_set_ri, "RI_XAS", qs_kind_set)
     922          38 :       CALL basis_set_list_setup(basis_set_orb, "ORB", qs_kind_set)
     923             : 
     924             : !  Compute the RI overlap matrix on the whole system
     925          38 :       CALL build_xas_tdp_ovlp_nl(sab_ri, basis_set_ri, basis_set_ri, qs_env)
     926          38 :       CALL build_overlap_matrix_simple(qs_env%ks_env, overlap, basis_set_ri, basis_set_ri, sab_ri)
     927          38 :       ri_mats => overlap(1)%matrix
     928          38 :       CALL release_neighbor_list_sets(sab_ri)
     929             : 
     930             : !  Get the neighbors of the excited atoms (= all the atoms where density coeffs are needed)
     931             :       CALL find_neighbors(xas_atom_env%excited_atoms, ri_mats, xas_atom_env%ri_radius, &
     932          38 :                           qs_env, all_neighbors=all_ri_atoms, neighbor_set=xas_atom_env%exat_neighbors)
     933             : 
     934             :       !keep in mind that double occupation is included in rho_ao in case of closed-shell
     935          38 :       factor = 0.5_dp; IF (nspins == 2) factor = 1.0_dp
     936             : 
     937             : !  Allocate space for the projected density coefficients. On all ri_atoms.
     938             : !  Note: the sub-region where we project the density changes from excited atom to excited atom
     939             : !        => need different sets of RI coeffs
     940         114 :       ALLOCATE (blk_size_ri(natom))
     941          38 :       CALL get_particle_set(particle_set, qs_kind_set, nsgf=blk_size_ri, basis=basis_set_ri)
     942         872 :       ALLOCATE (xas_atom_env%ri_dcoeff(natom, nspins, nex))
     943          84 :       DO iex = 1, nex
     944         132 :          DO ispin = 1, nspins
     945         682 :             DO iat = 1, natom
     946         588 :                NULLIFY (xas_atom_env%ri_dcoeff(iat, ispin, iex)%array)
     947             :                IF ((.NOT. ANY(xas_atom_env%exat_neighbors(iex)%array == iat)) &
     948         636 :                    .AND. (.NOT. xas_atom_env%excited_atoms(iex) == iat)) CYCLE
     949         216 :                ALLOCATE (xas_atom_env%ri_dcoeff(iat, ispin, iex)%array(blk_size_ri(iat)))
     950        4450 :                xas_atom_env%ri_dcoeff(iat, ispin, iex)%array = 0.0_dp
     951             :             END DO
     952             :          END DO
     953             :       END DO
     954             : 
     955          38 :       output_unit = cp_logger_get_default_io_unit()
     956          38 :       IF (output_unit > 0) THEN
     957             :          WRITE (output_unit, FMT="(/,T7,A,/,T7,A)") &
     958          19 :             "Excited atom, natoms in RI_REGION:", &
     959          38 :             "---------------------------------"
     960             :       END IF
     961             : 
     962             :       !We go atom by atom, first computing the integrals themselves that we put into a tensor, then we do
     963             :       !the contraction with the density. We do that in the original dist, which is optimized for overlap
     964             : 
     965         114 :       ALLOCATE (blk_size_orb(natom))
     966          38 :       CALL get_particle_set(particle_set, qs_kind_set, nsgf=blk_size_orb, basis=basis_set_orb)
     967             : 
     968          84 :       DO iex = 1, nex
     969             : 
     970             :          !get neighbors of current atom
     971          46 :          exat = xas_atom_env%excited_atoms(iex)
     972          46 :          nnb = 1 + SIZE(xas_atom_env%exat_neighbors(iex)%array)
     973         138 :          ALLOCATE (neighbors(nnb))
     974          46 :          neighbors(1) = exat
     975          64 :          neighbors(2:nnb) = xas_atom_env%exat_neighbors(iex)%array(:)
     976          46 :          CALL sort_unique(neighbors, unique)
     977             : 
     978             :          !link the atoms to their position in neighbors
     979         138 :          ALLOCATE (idx_to_nb(natom))
     980         626 :          idx_to_nb = 0
     981         110 :          DO inb = 1, nnb
     982         110 :             idx_to_nb(neighbors(inb)) = inb
     983             :          END DO
     984             : 
     985          46 :          IF (output_unit > 0) THEN
     986             :             WRITE (output_unit, FMT="(T7,I12,I21)") &
     987          23 :                exat, nnb
     988             :          END IF
     989             : 
     990             :          !Get the neighbor lists for the overlap integrals (abc), centers c on the current
     991             :          !excited atom and its neighbors defined by RI_RADIUS
     992          46 :          CALL build_xas_tdp_ovlp_nl(ab_list, basis_set_orb, basis_set_orb, qs_env)
     993             :          CALL build_xas_tdp_3c_nl(ac_list, basis_set_orb, basis_set_ri, do_potential_id, &
     994          46 :                                   qs_env, excited_atoms=neighbors)
     995             : 
     996             :          !Compute the 3-center overlap integrals
     997          46 :          pot%potential_type = do_potential_id
     998             : 
     999             :          CALL create_pqX_tensor(pqX, ab_list, ac_list, dbcsr_dist, blk_size_orb, blk_size_orb, &
    1000          46 :                                 blk_size_ri)
    1001             :          CALL fill_pqX_tensor(pqX, ab_list, ac_list, basis_set_orb, basis_set_orb, basis_set_ri, &
    1002          46 :                               pot, qs_env)
    1003             : 
    1004             :          !Compute the RI inverse overlap matrix on the reduced RI basis that spans the excited
    1005             :          !atom and its neighbors, ri_sinv is replicated over all procs
    1006          46 :          CALL get_exat_ri_sinv(ri_sinv, ri_mats, neighbors, idx_to_nb, basis_set_ri, qs_env)
    1007             : 
    1008             :          !Do the actual contraction: coeff_y = sum_pq sum_x P_pq (phi_p phi_q xi_x) S_xy^-1
    1009             : 
    1010             : !$OMP PARALLEL DEFAULT(NONE) &
    1011             : !$OMP SHARED(pqX,rho_ao,ri_sinv,xas_atom_env) &
    1012             : !$OMP SHARED(blk_size_ri,idx_to_nb,nspins,nnb,neighbors,iex,factor) &
    1013             : !$OMP PRIVATE(iter,ind,t_block,tensor_found,iatom,jatom,katom,inb,prefac,ispin) &
    1014             : !$OMP PRIVATE(pmat_block,pmat_found,pmat_blockt,pmat_foundt,work1,work2,jnb,ri_at) &
    1015          46 : !$OMP PRIVATE(sinv_block,sinv_found,sinv_blockt,sinv_foundt)
    1016             :          CALL dbt_iterator_start(iter, pqX)
    1017             :          DO WHILE (dbt_iterator_blocks_left(iter))
    1018             :             CALL dbt_iterator_next_block(iter, ind)
    1019             :             CALL dbt_get_block(pqX, ind, t_block, tensor_found)
    1020             : 
    1021             :             iatom = ind(1)
    1022             :             jatom = ind(2)
    1023             :             katom = ind(3)
    1024             :             inb = idx_to_nb(katom)
    1025             : 
    1026             :             !non-diagonal elements need to be counted twice
    1027             :             prefac = 2.0_dp
    1028             :             IF (iatom == jatom) prefac = 1.0_dp
    1029             : 
    1030             :             DO ispin = 1, nspins
    1031             : 
    1032             :                !rho_ao is symmetric, block can be in either location
    1033             :                CALL dbcsr_get_block_p(rho_ao(ispin)%matrix, iatom, jatom, pmat_block, pmat_found)
    1034             :                CALL dbcsr_get_block_p(rho_ao(ispin)%matrix, jatom, iatom, pmat_blockt, pmat_foundt)
    1035             :                IF ((.NOT. pmat_found) .AND. (.NOT. pmat_foundt)) CYCLE
    1036             : 
    1037             :                ALLOCATE (work1(blk_size_ri(katom), 1))
    1038             :                work1 = 0.0_dp
    1039             : 
    1040             :                !first contraction with the density matrix
    1041             :                IF (pmat_found) THEN
    1042             :                   DO i = 1, blk_size_ri(katom)
    1043             :                      work1(i, 1) = prefac*SUM(pmat_block(:, :)*t_block(:, :, i))
    1044             :                   END DO
    1045             :                ELSE
    1046             :                   DO i = 1, blk_size_ri(katom)
    1047             :                      work1(i, 1) = prefac*SUM(TRANSPOSE(pmat_blockt(:, :))*t_block(:, :, i))
    1048             :                   END DO
    1049             :                END IF
    1050             : 
    1051             :                !loop over neighbors
    1052             :                DO jnb = 1, nnb
    1053             : 
    1054             :                   ri_at = neighbors(jnb)
    1055             : 
    1056             :                   !ri_sinv is a symmetric matrix => actual block is one of the two
    1057             :                   CALL dbcsr_get_block_p(ri_sinv, inb, jnb, sinv_block, sinv_found)
    1058             :                   CALL dbcsr_get_block_p(ri_sinv, jnb, inb, sinv_blockt, sinv_foundt)
    1059             :                   IF ((.NOT. sinv_found) .AND. (.NOT. sinv_foundt)) CYCLE
    1060             : 
    1061             :                   !second contraction with the inverse RI overlap
    1062             :                   ALLOCATE (work2(SIZE(xas_atom_env%ri_dcoeff(ri_at, ispin, iex)%array)))
    1063             :                   work2 = 0.0_dp
    1064             : 
    1065             :                   IF (sinv_found) THEN
    1066             :                      DO i = 1, blk_size_ri(katom)
    1067             :                         work2(:) = work2(:) + factor*work1(i, 1)*sinv_block(i, :)
    1068             :                      END DO
    1069             :                   ELSE
    1070             :                      DO i = 1, blk_size_ri(katom)
    1071             :                         work2(:) = work2(:) + factor*work1(i, 1)*sinv_blockt(:, i)
    1072             :                      END DO
    1073             :                   END IF
    1074             :                   DO i = 1, SIZE(work2)
    1075             : !$OMP ATOMIC
    1076             :                      xas_atom_env%ri_dcoeff(ri_at, ispin, iex)%array(i) = &
    1077             :                         xas_atom_env%ri_dcoeff(ri_at, ispin, iex)%array(i) + work2(i)
    1078             :                   END DO
    1079             : 
    1080             :                   DEALLOCATE (work2)
    1081             :                END DO !jnb
    1082             : 
    1083             :                DEALLOCATE (work1)
    1084             :             END DO
    1085             : 
    1086             :             DEALLOCATE (t_block)
    1087             :          END DO !iter
    1088             :          CALL dbt_iterator_stop(iter)
    1089             : !$OMP END PARALLEL
    1090             : 
    1091             :          !clean-up
    1092          46 :          CALL dbcsr_release(ri_sinv)
    1093          46 :          CALL dbt_destroy(pqX)
    1094          46 :          CALL release_neighbor_list_sets(ab_list)
    1095          46 :          CALL release_neighbor_list_sets(ac_list)
    1096         130 :          DEALLOCATE (neighbors, idx_to_nb)
    1097             : 
    1098             :       END DO !iex
    1099             : 
    1100             :       !making sure all procs have the same info
    1101          84 :       DO iex = 1, nex
    1102         132 :          DO ispin = 1, nspins
    1103         682 :             DO iat = 1, natom
    1104             :                IF ((.NOT. ANY(xas_atom_env%exat_neighbors(iex)%array == iat)) &
    1105         636 :                    .AND. (.NOT. xas_atom_env%excited_atoms(iex) == iat)) CYCLE
    1106        9296 :                CALL para_env%sum(xas_atom_env%ri_dcoeff(iat, ispin, iex)%array)
    1107             :             END DO !iat
    1108             :          END DO !ispin
    1109             :       END DO !iex
    1110             : 
    1111             : !  clean-up
    1112          38 :       CALL dbcsr_deallocate_matrix_set(overlap)
    1113          38 :       DEALLOCATE (basis_set_ri, basis_set_orb, all_ri_atoms)
    1114             : 
    1115          38 :       CALL timestop(handle)
    1116             : 
    1117         114 :    END SUBROUTINE calculate_density_coeffs
    1118             : 
    1119             : ! **************************************************************************************************
    1120             : !> \brief Evaluates the density on a given atomic grid
    1121             : !> \param rho_set where the densities are stored
    1122             : !> \param ri_dcoeff the arrays containing the RI density coefficients of this atom, for each spin
    1123             : !> \param atom_kind the kind of the atom in question
    1124             : !> \param do_gga whether the gradient of the density should also be put on the grid
    1125             : !> \param batch_info how the so are distributed
    1126             : !> \param xas_atom_env ...
    1127             : !> \param qs_env ...
    1128             : !> \note The density is expressed as n = sum_d coeff_d*xi_d. Knowing the coordinate of each grid
    1129             : !>       grid point, one can simply evaluate xi_d(r)
    1130             : ! **************************************************************************************************
    1131          38 :    SUBROUTINE put_density_on_atomic_grid(rho_set, ri_dcoeff, atom_kind, do_gga, batch_info, &
    1132             :                                          xas_atom_env, qs_env)
    1133             : 
    1134             :       TYPE(xc_rho_set_type), INTENT(INOUT)               :: rho_set
    1135             :       TYPE(cp_1d_r_p_type), DIMENSION(:)                 :: ri_dcoeff
    1136             :       INTEGER, INTENT(IN)                                :: atom_kind
    1137             :       LOGICAL, INTENT(IN)                                :: do_gga
    1138             :       TYPE(batch_info_type)                              :: batch_info
    1139             :       TYPE(xas_atom_env_type), POINTER                   :: xas_atom_env
    1140             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1141             : 
    1142             :       CHARACTER(len=*), PARAMETER :: routineN = 'put_density_on_atomic_grid'
    1143             : 
    1144             :       INTEGER                                            :: dir, handle, ipgf, iset, iso, iso_proc, &
    1145             :                                                             ispin, maxso, n, na, nr, nset, nsgfi, &
    1146             :                                                             nsoi, nspins, sgfi, starti
    1147          38 :       INTEGER, DIMENSION(:), POINTER                     :: lmax, lmin, npgf, nsgf_set
    1148          38 :       INTEGER, DIMENSION(:, :), POINTER                  :: first_sgf
    1149          38 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :)             :: so
    1150          38 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :, :)          :: dso
    1151          38 :       REAL(dp), DIMENSION(:, :), POINTER                 :: dgr1, dgr2, ga, gr, ri_sphi_so, zet
    1152          38 :       REAL(dp), DIMENSION(:, :, :), POINTER              :: dga1, dga2, rhoa, rhob
    1153          38 :       TYPE(cp_1d_r_p_type), DIMENSION(:), POINTER        :: ri_dcoeff_so
    1154             :       TYPE(grid_atom_type), POINTER                      :: grid_atom
    1155             :       TYPE(gto_basis_set_type), POINTER                  :: ri_basis
    1156          38 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    1157             : 
    1158          38 :       NULLIFY (grid_atom, ri_basis, qs_kind_set, lmax, npgf, zet, nsgf_set, ri_sphi_so)
    1159          38 :       NULLIFY (lmin, first_sgf, rhoa, rhob, ga, gr, dgr1, dgr2, dga1, dga2, ri_dcoeff_so)
    1160             : 
    1161          38 :       CALL timeset(routineN, handle)
    1162             : 
    1163             : !  Strategy: it makes sense to evaluate the spherical orbital on the grid (because of symmetry)
    1164             : !            From there, one can directly contract into sgf using ri_sphi_so and then take the weight
    1165             : !            The spherical orbital were precomputed and split in a purely radial and a purely
    1166             : !            angular part. The full values on each grid point are obtain through gemm
    1167             : 
    1168             : !  Generalities
    1169          38 :       CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set)
    1170          38 :       CALL get_qs_kind(qs_kind_set(atom_kind), basis_set=ri_basis, basis_type="RI_XAS")
    1171             :       CALL get_gto_basis_set(ri_basis, lmax=lmax, npgf=npgf, zet=zet, nset=nset, nsgf_set=nsgf_set, &
    1172          38 :                              first_sgf=first_sgf, lmin=lmin, maxso=maxso)
    1173             : 
    1174             : !  Get the grid and the info we need from it
    1175          38 :       grid_atom => xas_atom_env%grid_atom_set(atom_kind)%grid_atom
    1176          38 :       na = grid_atom%ng_sphere
    1177          38 :       nr = grid_atom%nr
    1178          38 :       n = na*nr
    1179          38 :       nspins = xas_atom_env%nspins
    1180          38 :       ri_sphi_so => xas_atom_env%ri_sphi_so(atom_kind)%array
    1181             : 
    1182             : !  Point to the rho_set densities
    1183          38 :       rhoa => rho_set%rhoa
    1184          38 :       rhob => rho_set%rhob
    1185     1911146 :       rhoa = 0.0_dp; rhob = 0.0_dp; 
    1186          38 :       IF (do_gga) THEN
    1187          72 :          DO dir = 1, 3
    1188     1575909 :             rho_set%drhoa(dir)%array = 0.0_dp
    1189     1575927 :             rho_set%drhob(dir)%array = 0.0_dp
    1190             :          END DO
    1191             :       END IF
    1192             : 
    1193             : !  Point to the precomputed SO
    1194          38 :       ga => xas_atom_env%ga(atom_kind)%array
    1195          38 :       gr => xas_atom_env%gr(atom_kind)%array
    1196          38 :       IF (do_gga) THEN
    1197          18 :          dga1 => xas_atom_env%dga1(atom_kind)%array
    1198          18 :          dga2 => xas_atom_env%dga2(atom_kind)%array
    1199          18 :          dgr1 => xas_atom_env%dgr1(atom_kind)%array
    1200          18 :          dgr2 => xas_atom_env%dgr2(atom_kind)%array
    1201             :       ELSE
    1202          20 :          dga1 => xas_atom_env%dga1(atom_kind)%array
    1203          20 :          dga2 => xas_atom_env%dga2(atom_kind)%array
    1204          20 :          dgr1 => xas_atom_env%dgr1(atom_kind)%array
    1205          20 :          dgr2 => xas_atom_env%dgr2(atom_kind)%array
    1206             :       END IF
    1207             : 
    1208             : !  Need to express the ri_dcoeffs in terms of so (and not sgf)
    1209         154 :       ALLOCATE (ri_dcoeff_so(nspins))
    1210          78 :       DO ispin = 1, nspins
    1211         120 :          ALLOCATE (ri_dcoeff_so(ispin)%array(nset*maxso))
    1212        7468 :          ri_dcoeff_so(ispin)%array = 0.0_dp
    1213             : 
    1214             :          !for a given so, loop over sgf and sum
    1215         196 :          DO iset = 1, nset
    1216         118 :             sgfi = first_sgf(1, iset)
    1217         118 :             nsoi = npgf(iset)*nsoset(lmax(iset))
    1218         118 :             nsgfi = nsgf_set(iset)
    1219             : 
    1220             :             CALL dgemv('N', nsoi, nsgfi, 1.0_dp, ri_sphi_so(1:nsoi, sgfi:sgfi + nsgfi - 1), nsoi, &
    1221             :                        ri_dcoeff(ispin)%array(sgfi:sgfi + nsgfi - 1), 1, 0.0_dp, &
    1222         158 :                        ri_dcoeff_so(ispin)%array((iset - 1)*maxso + 1:(iset - 1)*maxso + nsoi), 1)
    1223             : 
    1224             :          END DO
    1225             :       END DO
    1226             : 
    1227             :       !allocate space to store the spherical orbitals on the grid
    1228         152 :       ALLOCATE (so(na, nr))
    1229         110 :       IF (do_gga) ALLOCATE (dso(na, nr, 3))
    1230             : 
    1231             : !  Loop over the spherical orbitals on this proc
    1232        4040 :       DO iso_proc = 1, batch_info%nso_proc(atom_kind)
    1233        4002 :          iset = batch_info%so_proc_info(atom_kind)%array(1, iso_proc)
    1234        4002 :          ipgf = batch_info%so_proc_info(atom_kind)%array(2, iso_proc)
    1235        4002 :          iso = batch_info%so_proc_info(atom_kind)%array(3, iso_proc)
    1236        4002 :          IF (iso < 0) CYCLE
    1237             : 
    1238        2150 :          starti = (iset - 1)*maxso + (ipgf - 1)*nsoset(lmax(iset))
    1239             : 
    1240             :          !the spherical orbital on the grid
    1241             :          CALL dgemm('N', 'T', na, nr, 1, 1.0_dp, ga(:, iso_proc:iso_proc), na, &
    1242        2150 :                     gr(:, iso_proc:iso_proc), nr, 0.0_dp, so(:, :), na)
    1243             : 
    1244             :          !the gradient on the grid
    1245        2150 :          IF (do_gga) THEN
    1246             : 
    1247        5020 :             DO dir = 1, 3
    1248             :                CALL dgemm('N', 'T', na, nr, 1, 1.0_dp, dga1(:, iso_proc:iso_proc, dir), na, &
    1249        3765 :                           dgr1(:, iso_proc:iso_proc), nr, 0.0_dp, dso(:, :, dir), na)
    1250             :                CALL dgemm('N', 'T', na, nr, 1, 1.0_dp, dga2(:, iso_proc:iso_proc, dir), na, &
    1251        5020 :                           dgr2(:, iso_proc:iso_proc), nr, 1.0_dp, dso(:, :, dir), na)
    1252             :             END DO
    1253             :          END IF
    1254             : 
    1255             :          !put the so on the grid with the approriate coefficients and sum
    1256        2150 :          CALL daxpy(n, ri_dcoeff_so(1)%array(starti + iso), so, 1, rhoa(:, :, 1), 1)
    1257             : 
    1258        2150 :          IF (nspins == 2) THEN
    1259         126 :             CALL daxpy(n, ri_dcoeff_so(2)%array(starti + iso), so, 1, rhob(:, :, 1), 1)
    1260             :          END IF
    1261             : 
    1262        2188 :          IF (do_gga) THEN
    1263             : 
    1264             :             !put the gradient of the so on the grid with correspond RI coeff
    1265        5020 :             DO dir = 1, 3
    1266             :                CALL daxpy(n, ri_dcoeff_so(1)%array(starti + iso), dso(:, :, dir), &
    1267        3765 :                           1, rho_set%drhoa(dir)%array(:, :, 1), 1)
    1268             : 
    1269        5020 :                IF (nspins == 2) THEN
    1270             :                   CALL daxpy(n, ri_dcoeff_so(2)%array(starti + iso), dso(:, :, dir), &
    1271         378 :                              1, rho_set%drhob(dir)%array(:, :, 1), 1)
    1272             :                END IF
    1273             :             END DO !dir
    1274             :          END IF !do_gga
    1275             : 
    1276             :       END DO
    1277             : 
    1278             : ! Treat spin restricted case (=> copy alpha into beta)
    1279          38 :       IF (nspins == 1) THEN
    1280          36 :          CALL dcopy(n, rhoa(:, :, 1), 1, rhob(:, :, 1), 1)
    1281             : 
    1282          36 :          IF (do_gga) THEN
    1283          64 :             DO dir = 1, 3
    1284          64 :                CALL dcopy(n, rho_set%drhoa(dir)%array(:, :, 1), 1, rho_set%drhob(dir)%array(:, :, 1), 1)
    1285             :             END DO
    1286             :          END IF
    1287             :       END IF
    1288             : 
    1289             : ! Note: sum over procs is done outside
    1290             : 
    1291             : !  clean-up
    1292          78 :       DO ispin = 1, nspins
    1293          78 :          DEALLOCATE (ri_dcoeff_so(ispin)%array)
    1294             :       END DO
    1295          38 :       DEALLOCATE (ri_dcoeff_so)
    1296             : 
    1297          38 :       CALL timestop(handle)
    1298             : 
    1299         114 :    END SUBROUTINE put_density_on_atomic_grid
    1300             : 
    1301             : ! **************************************************************************************************
    1302             : !> \brief Adds the density of a given source atom with source kind (with ri_dcoeff) on the atomic
    1303             : !>        grid belonging to another target atom of target kind. The evaluations of the basis
    1304             : !>        function first requires the evaluation of the x,y,z coordinates on each grid point of
    1305             : !>        target atom wrt to the position of source atom
    1306             : !> \param rho_set where the densities are stored
    1307             : !> \param ri_dcoeff the arrays containing the RI density coefficient of source_iat, for each spin
    1308             : !> \param source_iat the index of the source atom
    1309             : !> \param source_ikind the kind of the source atom
    1310             : !> \param target_iat the index of the target atom
    1311             : !> \param target_ikind the kind of the target atom
    1312             : !> \param sr starting r index for the local grid
    1313             : !> \param er ending r index for the local grid
    1314             : !> \param do_gga whether the gradient of the density is needed
    1315             : !> \param xas_atom_env ...
    1316             : !> \param qs_env ...
    1317             : ! **************************************************************************************************
    1318          12 :    SUBROUTINE put_density_on_other_grid(rho_set, ri_dcoeff, source_iat, source_ikind, target_iat, &
    1319             :                                         target_ikind, sr, er, do_gga, xas_atom_env, qs_env)
    1320             : 
    1321             :       TYPE(xc_rho_set_type), INTENT(INOUT)               :: rho_set
    1322             :       TYPE(cp_1d_r_p_type), DIMENSION(:)                 :: ri_dcoeff
    1323             :       INTEGER, INTENT(IN)                                :: source_iat, source_ikind, target_iat, &
    1324             :                                                             target_ikind, sr, er
    1325             :       LOGICAL, INTENT(IN)                                :: do_gga
    1326             :       TYPE(xas_atom_env_type), POINTER                   :: xas_atom_env
    1327             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1328             : 
    1329             :       CHARACTER(len=*), PARAMETER :: routineN = 'put_density_on_other_grid'
    1330             : 
    1331             :       INTEGER                                            :: dir, handle, ia, ico, ipgf, ir, iset, &
    1332             :                                                             isgf, lx, ly, lz, n, na, nr, nset, &
    1333             :                                                             nspins, sgfi, start
    1334          12 :       INTEGER, DIMENSION(:), POINTER                     :: lmax, lmin, npgf, nsgf_set
    1335          12 :       INTEGER, DIMENSION(:, :), POINTER                  :: first_sgf
    1336             :       REAL(dp)                                           :: rmom
    1337          12 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :)             :: sgf
    1338          12 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :, :)          :: co, dsgf, pos
    1339          12 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :, :, :)       :: dco
    1340             :       REAL(dp), DIMENSION(3)                             :: rs, rst, rt
    1341          12 :       REAL(dp), DIMENSION(:, :), POINTER                 :: ri_sphi, zet
    1342          12 :       REAL(dp), DIMENSION(:, :, :), POINTER              :: rhoa, rhob
    1343             :       TYPE(cell_type), POINTER                           :: cell
    1344             :       TYPE(grid_atom_type), POINTER                      :: grid_atom
    1345             :       TYPE(gto_basis_set_type), POINTER                  :: ri_basis
    1346             :       TYPE(harmonics_atom_type), POINTER                 :: harmonics
    1347          12 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    1348          12 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    1349             : 
    1350          12 :       NULLIFY (qs_kind_set, ri_basis, lmax, npgf, nsgf_set, lmin, zet, first_sgf, grid_atom)
    1351          12 :       NULLIFY (harmonics, rhoa, rhob, particle_set, cell, ri_sphi)
    1352             : 
    1353             :       !Same logic as the  put_density_on_own_grid routine. Loop over orbitals, put them on the grid,
    1354             :       !contract into sgf and daxpy with coeff. Notable difference: use cartesian orbitals instead of
    1355             :       !spherical, since the center of the grid is not the origin and thus, spherical symmetry can't
    1356             :       !be exploited so well
    1357             : 
    1358          12 :       CALL timeset(routineN, handle)
    1359             : 
    1360             :       !Generalities
    1361          12 :       CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set, particle_set=particle_set, cell=cell)
    1362             :       !want basis of the source atom
    1363          12 :       CALL get_qs_kind(qs_kind_set(source_ikind), basis_set=ri_basis, basis_type="RI_XAS")
    1364             :       CALL get_gto_basis_set(ri_basis, lmax=lmax, npgf=npgf, zet=zet, nset=nset, nsgf_set=nsgf_set, &
    1365          12 :                              first_sgf=first_sgf, lmin=lmin, sphi=ri_sphi)
    1366             : 
    1367             :       ! Want the grid and harmonics of the target atom
    1368          12 :       grid_atom => xas_atom_env%grid_atom_set(target_ikind)%grid_atom
    1369          12 :       harmonics => xas_atom_env%harmonics_atom_set(target_ikind)%harmonics_atom
    1370          12 :       na = grid_atom%ng_sphere
    1371          12 :       nr = er - sr + 1
    1372          12 :       n = na*nr
    1373          12 :       nspins = xas_atom_env%nspins
    1374             : 
    1375             :       !  Point to the rho_set densities
    1376          12 :       rhoa => rho_set%rhoa
    1377          12 :       rhob => rho_set%rhob
    1378             : 
    1379             :       !  Need the source-target position vector
    1380          12 :       rs = pbc(particle_set(source_iat)%r, cell)
    1381          12 :       rt = pbc(particle_set(target_iat)%r, cell)
    1382          12 :       rst = pbc(rs, rt, cell)
    1383             : 
    1384             :       ! Precompute the positions on the target grid
    1385          60 :       ALLOCATE (pos(na, sr:er, 4))
    1386             : !$OMP PARALLEL DO COLLAPSE(2) SCHEDULE(STATIC) DEFAULT(NONE), &
    1387             : !$OMP SHARED(na,sr,er,pos,harmonics,grid_atom,rst), &
    1388          12 : !$OMP PRIVATE(ia,ir)
    1389             :       DO ir = sr, er
    1390             :          DO ia = 1, na
    1391             :             pos(ia, ir, 1:3) = harmonics%a(:, ia)*grid_atom%rad(ir) + rst
    1392             :             pos(ia, ir, 4) = pos(ia, ir, 1)**2 + pos(ia, ir, 2)**2 + pos(ia, ir, 3)**2
    1393             :          END DO
    1394             :       END DO
    1395             : !$OMP END PARALLEL DO
    1396             : 
    1397             :       ! Loop over the cartesian gaussian functions and evaluate them
    1398          36 :       DO iset = 1, nset
    1399             : 
    1400             :          !allocate space to store the cartesian orbtial on the grid
    1401         120 :          ALLOCATE (co(na, sr:er, npgf(iset)*ncoset(lmax(iset))))
    1402         144 :          IF (do_gga) ALLOCATE (dco(na, sr:er, 3, npgf(iset)*ncoset(lmax(iset))))
    1403             : 
    1404             : !$OMP PARALLEL DEFAULT(NONE), &
    1405             : !$OMP SHARED(co,npgf,ncoset,lmax,lmin,indco,pos,zet,iset,na,sr,er,do_gga,dco), &
    1406          24 : !$OMP PRIVATE(ipgf,start,ico,lx,ly,lz,ia,ir,rmom)
    1407             : 
    1408             : !$OMP DO COLLAPSE(2) SCHEDULE(STATIC)
    1409             :          DO ir = sr, er
    1410             :             DO ia = 1, na
    1411             :                co(ia, ir, :) = 0.0_dp
    1412             :                IF (do_gga) THEN
    1413             :                   dco(ia, ir, :, :) = 0.0_dp
    1414             :                END IF
    1415             :             END DO
    1416             :          END DO
    1417             : !$OMP END DO NOWAIT
    1418             : 
    1419             :          DO ipgf = 1, npgf(iset)
    1420             :             start = (ipgf - 1)*ncoset(lmax(iset))
    1421             : 
    1422             :             !loop over the cartesian orbitals
    1423             :             DO ico = ncoset(lmin(iset) - 1) + 1, ncoset(lmax(iset))
    1424             :                lx = indco(1, ico)
    1425             :                ly = indco(2, ico)
    1426             :                lz = indco(3, ico)
    1427             : 
    1428             :                ! compute g = x**lx * y**ly * z**lz * exp(-zet * r**2)
    1429             : !$OMP DO COLLAPSE(2) SCHEDULE(STATIC)
    1430             :                DO ir = sr, er
    1431             :                   DO ia = 1, na
    1432             :                      rmom = EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1433             :                      IF (lx /= 0) rmom = rmom*pos(ia, ir, 1)**lx
    1434             :                      IF (ly /= 0) rmom = rmom*pos(ia, ir, 2)**ly
    1435             :                      IF (lz /= 0) rmom = rmom*pos(ia, ir, 3)**lz
    1436             :                      co(ia, ir, start + ico) = rmom
    1437             :                      !co(ia, ir, start + ico) = pos(ia, ir, 1)**lx*pos(ia, ir, 2)**ly*pos(ia, ir, 3)**lz &
    1438             :                      !                          *EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1439             :                   END DO
    1440             :                END DO
    1441             : !$OMP END DO NOWAIT
    1442             : 
    1443             :                IF (do_gga) THEN
    1444             :                   !the gradient: dg_x = lx*x**(lx-1) * y**ly * z**lz * exp(-zet * r**2)
    1445             :                   !                     -2*zet* x**(lx+1) * y**ly * z**lz * exp(-zet * r**2)
    1446             :                   !                   = (lx*x**(lx-1) - 2*zet*x**(lx+1)) * y**ly * z**lz * exp(-zet * r**2)
    1447             : 
    1448             :                   !x direction, special case if lx == 0
    1449             :                   IF (lx == 0) THEN
    1450             : !$OMP DO COLLAPSE(2) SCHEDULE(STATIC)
    1451             :                      DO ir = sr, er
    1452             :                         DO ia = 1, na
    1453             :                            rmom = -2.0_dp*pos(ia, ir, 1)*zet(ipgf, iset)*EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1454             :                            IF (ly /= 0) rmom = rmom*pos(ia, ir, 2)**ly
    1455             :                            IF (lz /= 0) rmom = rmom*pos(ia, ir, 3)**lz
    1456             :                            dco(ia, ir, 1, start + ico) = rmom
    1457             : !                          dco(ia, ir, 1, start + ico) = -2.0_dp*pos(ia, ir, 1)*zet(ipgf, iset) &
    1458             : !                                                        *pos(ia, ir, 2)**ly*pos(ia, ir, 3)**lz &
    1459             : !                                                        *EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1460             :                         END DO
    1461             :                      END DO
    1462             : !$OMP END DO NOWAIT
    1463             :                   ELSE
    1464             : !$OMP DO COLLAPSE(2) SCHEDULE(STATIC)
    1465             :                      DO ir = sr, er
    1466             :                         DO ia = 1, na
    1467             :                            IF (lx /= 1) THEN
    1468             :                               rmom = (lx*pos(ia, ir, 1)**(lx - 1) - 2.0_dp*pos(ia, ir, 1)**(lx + 1)* &
    1469             :                                       zet(ipgf, iset))*EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1470             :                            ELSE
    1471             :                               rmom = (1.0_dp - 2.0_dp*pos(ia, ir, 1)**2*zet(ipgf, iset))* &
    1472             :                                      EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1473             :                            END IF
    1474             :                            IF (ly /= 0) rmom = rmom*pos(ia, ir, 2)**ly
    1475             :                            IF (lz /= 0) rmom = rmom*pos(ia, ir, 3)**lz
    1476             :                            dco(ia, ir, 1, start + ico) = rmom
    1477             : !                          dco(ia, ir, 1, start + ico) = (lx*pos(ia, ir, 1)**(lx - 1) &
    1478             : !                                                         - 2.0_dp*pos(ia, ir, 1)**(lx + 1)*zet(ipgf, iset)) &
    1479             : !                                                        *pos(ia, ir, 2)**ly*pos(ia, ir, 3)**lz &
    1480             : !                                                        *EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1481             :                         END DO
    1482             :                      END DO
    1483             : !$OMP END DO NOWAIT
    1484             :                   END IF !lx == 0
    1485             : 
    1486             :                   !y direction, special case if ly == 0
    1487             :                   IF (ly == 0) THEN
    1488             : !$OMP DO COLLAPSE(2) SCHEDULE(STATIC)
    1489             :                      DO ir = sr, er
    1490             :                         DO ia = 1, na
    1491             :                            rmom = -2.0_dp*pos(ia, ir, 2)*zet(ipgf, iset)*EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1492             :                            IF (lx /= 0) rmom = rmom*pos(ia, ir, 1)**lx
    1493             :                            IF (lz /= 0) rmom = rmom*pos(ia, ir, 3)**lz
    1494             :                            dco(ia, ir, 2, start + ico) = rmom
    1495             : !                          dco(ia, ir, 2, start + ico) = -2.0_dp*pos(ia, ir, 2)*zet(ipgf, iset) &
    1496             : !                                                        *pos(ia, ir, 1)**lx*pos(ia, ir, 3)**lz &
    1497             : !                                                        *EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1498             :                         END DO
    1499             :                      END DO
    1500             : !$OMP END DO NOWAIT
    1501             :                   ELSE
    1502             : !$OMP DO COLLAPSE(2) SCHEDULE(STATIC)
    1503             :                      DO ir = sr, er
    1504             :                         DO ia = 1, na
    1505             :                            IF (ly /= 1) THEN
    1506             :                               rmom = (ly*pos(ia, ir, 2)**(ly - 1) - 2.0_dp*pos(ia, ir, 2)**(ly + 1)*zet(ipgf, iset)) &
    1507             :                                      *EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1508             :                            ELSE
    1509             :                               rmom = (1.0_dp - 2.0_dp*pos(ia, ir, 2)**2*zet(ipgf, iset)) &
    1510             :                                      *EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1511             :                            END IF
    1512             :                            IF (lx /= 0) rmom = rmom*pos(ia, ir, 1)**lx
    1513             :                            IF (lz /= 0) rmom = rmom*pos(ia, ir, 3)**lz
    1514             :                            dco(ia, ir, 2, start + ico) = rmom
    1515             : !                          dco(ia, ir, 2, start + ico) = (ly*pos(ia, ir, 2)**(ly - 1) &
    1516             : !                                                         - 2.0_dp*pos(ia, ir, 2)**(ly + 1)*zet(ipgf, iset)) &
    1517             : !                                                        *pos(ia, ir, 1)**lx*pos(ia, ir, 3)**lz &
    1518             : !                                                        *EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1519             :                         END DO
    1520             :                      END DO
    1521             : !$OMP END DO NOWAIT
    1522             :                   END IF !ly == 0
    1523             : 
    1524             :                   !z direction, special case if lz == 0
    1525             :                   IF (lz == 0) THEN
    1526             : !$OMP DO COLLAPSE(2) SCHEDULE(STATIC)
    1527             :                      DO ir = sr, er
    1528             :                         DO ia = 1, na
    1529             :                            rmom = -2.0_dp*pos(ia, ir, 3)*zet(ipgf, iset)*EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1530             :                            IF (lx /= 0) rmom = rmom*pos(ia, ir, 1)**lx
    1531             :                            IF (ly /= 0) rmom = rmom*pos(ia, ir, 2)**ly
    1532             :                            dco(ia, ir, 3, start + ico) = rmom
    1533             : !                          dco(ia, ir, 3, start + ico) = -2.0_dp*pos(ia, ir, 3)*zet(ipgf, iset) &
    1534             : !                                                        *pos(ia, ir, 1)**lx*pos(ia, ir, 2)**ly &
    1535             : !                                                        *EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1536             :                         END DO
    1537             :                      END DO
    1538             : !$OMP END DO NOWAIT
    1539             :                   ELSE
    1540             : !$OMP DO COLLAPSE(2) SCHEDULE(STATIC)
    1541             :                      DO ir = sr, er
    1542             :                         DO ia = 1, na
    1543             :                            IF (lz /= 1) THEN
    1544             :                               rmom = (lz*pos(ia, ir, 3)**(lz - 1) - 2.0_dp*pos(ia, ir, 3)**(lz + 1)* &
    1545             :                                       zet(ipgf, iset))*EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1546             :                            ELSE
    1547             :                               rmom = (1.0_dp - 2.0_dp*pos(ia, ir, 3)**2*zet(ipgf, iset))* &
    1548             :                                      EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1549             :                            END IF
    1550             :                            IF (lx /= 0) rmom = rmom*pos(ia, ir, 1)**lx
    1551             :                            IF (ly /= 0) rmom = rmom*pos(ia, ir, 2)**ly
    1552             :                            dco(ia, ir, 3, start + ico) = rmom
    1553             : !                          dco(ia, ir, 3, start + ico) = (lz*pos(ia, ir, 3)**(lz - 1) &
    1554             : !                                                         - 2.0_dp*pos(ia, ir, 3)**(lz + 1)*zet(ipgf, iset)) &
    1555             : !                                                        *pos(ia, ir, 1)**lx*pos(ia, ir, 2)**ly &
    1556             : !                                                        *EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1557             :                         END DO
    1558             :                      END DO
    1559             : !$OMP END DO NOWAIT
    1560             :                   END IF !lz == 0
    1561             : 
    1562             :                END IF !gga
    1563             : 
    1564             :             END DO !ico
    1565             :          END DO !ipgf
    1566             : 
    1567             : !$OMP END PARALLEL
    1568             : 
    1569             :          !contract the co into sgf
    1570          96 :          ALLOCATE (sgf(na, sr:er))
    1571         120 :          IF (do_gga) ALLOCATE (dsgf(na, sr:er, 3))
    1572          24 :          sgfi = first_sgf(1, iset) - 1
    1573             : 
    1574         362 :          DO isgf = 1, nsgf_set(iset)
    1575    14897939 :             sgf = 0.0_dp
    1576    44694493 :             IF (do_gga) dsgf = 0.0_dp
    1577             : 
    1578        2632 :             DO ipgf = 1, npgf(iset)
    1579        2294 :                start = (ipgf - 1)*ncoset(lmax(iset))
    1580       21546 :                DO ico = ncoset(lmin(iset) - 1) + 1, ncoset(lmax(iset))
    1581       21208 :                   CALL daxpy(n, ri_sphi(start + ico, sgfi + isgf), co(:, sr:er, start + ico), 1, sgf(:, sr:er), 1)
    1582             :                END DO !ico
    1583             :             END DO !ipgf
    1584             : 
    1585             :             !add the density to the grid
    1586         338 :             CALL daxpy(n, ri_dcoeff(1)%array(sgfi + isgf), sgf(:, sr:er), 1, rhoa(:, sr:er, 1), 1)
    1587             : 
    1588         338 :             IF (nspins == 2) THEN
    1589         138 :                CALL daxpy(n, ri_dcoeff(2)%array(sgfi + isgf), sgf(:, sr:er), 1, rhob(:, sr:er, 1), 1)
    1590             :             END IF
    1591             : 
    1592             :             !deal with the gradient
    1593         362 :             IF (do_gga) THEN
    1594             : 
    1595        2632 :                DO ipgf = 1, npgf(iset)
    1596        2294 :                   start = (ipgf - 1)*ncoset(lmax(iset))
    1597       21546 :                   DO ico = ncoset(lmin(iset) - 1) + 1, ncoset(lmax(iset))
    1598       77950 :                      DO dir = 1, 3
    1599             :                         CALL daxpy(n, ri_sphi(start + ico, sgfi + isgf), dco(:, sr:er, dir, start + ico), &
    1600       75656 :                                    1, dsgf(:, sr:er, dir), 1)
    1601             :                      END DO
    1602             :                   END DO !ico
    1603             :                END DO !ipgf
    1604             : 
    1605        1352 :                DO dir = 1, 3
    1606             :                   CALL daxpy(n, ri_dcoeff(1)%array(sgfi + isgf), dsgf(:, sr:er, dir), 1, &
    1607        1014 :                              rho_set%drhoa(dir)%array(:, sr:er, 1), 1)
    1608             : 
    1609        1352 :                   IF (nspins == 2) THEN
    1610             :                      CALL daxpy(n, ri_dcoeff(2)%array(sgfi + isgf), dsgf(:, sr:er, dir), 1, &
    1611         414 :                                 rho_set%drhob(dir)%array(:, sr:er, 1), 1)
    1612             :                   END IF
    1613             :                END DO
    1614             :             END IF !do_gga
    1615             : 
    1616             :          END DO !isgf
    1617             : 
    1618          24 :          DEALLOCATE (co, sgf)
    1619          36 :          IF (do_gga) DEALLOCATE (dco, dsgf)
    1620             :       END DO !iset
    1621             : 
    1622             :       !Treat spin-restricted case (copy alpha into beta)
    1623          12 :       IF (nspins == 1) THEN
    1624           6 :          CALL dcopy(n, rhoa(:, sr:er, 1), 1, rhob(:, sr:er, 1), 1)
    1625             : 
    1626           6 :          IF (do_gga) THEN
    1627          24 :             DO dir = 1, 3
    1628          24 :                CALL dcopy(n, rho_set%drhoa(dir)%array(:, sr:er, 1), 1, rho_set%drhob(dir)%array(:, sr:er, 1), 1)
    1629             :             END DO
    1630             :          END IF
    1631             :       END IF
    1632             : 
    1633          12 :       CALL timestop(handle)
    1634             : 
    1635          36 :    END SUBROUTINE put_density_on_other_grid
    1636             : 
    1637             : ! **************************************************************************************************
    1638             : !> \brief Computes the norm of the density gradient on the atomic grid
    1639             : !> \param rho_set ...
    1640             : !> \param atom_kind ...
    1641             : !> \param xas_atom_env ...
    1642             : !> \note GGA is assumed
    1643             : ! **************************************************************************************************
    1644          18 :    SUBROUTINE compute_norm_drho(rho_set, atom_kind, xas_atom_env)
    1645             : 
    1646             :       TYPE(xc_rho_set_type), INTENT(INOUT)               :: rho_set
    1647             :       INTEGER, INTENT(IN)                                :: atom_kind
    1648             :       TYPE(xas_atom_env_type), POINTER                   :: xas_atom_env
    1649             : 
    1650             :       INTEGER                                            :: dir, ia, ir, n, na, nr, nspins
    1651             : 
    1652          18 :       na = xas_atom_env%grid_atom_set(atom_kind)%grid_atom%ng_sphere
    1653          18 :       nr = xas_atom_env%grid_atom_set(atom_kind)%grid_atom%nr
    1654          18 :       n = na*nr
    1655          18 :       nspins = xas_atom_env%nspins
    1656             : 
    1657      525303 :       rho_set%norm_drhoa = 0.0_dp
    1658      525303 :       rho_set%norm_drhob = 0.0_dp
    1659      525303 :       rho_set%norm_drho = 0.0_dp
    1660             : 
    1661          72 :       DO dir = 1, 3
    1662        8007 :          DO ir = 1, nr
    1663     1575855 :             DO ia = 1, na
    1664             :                rho_set%norm_drhoa(ia, ir, 1) = rho_set%norm_drhoa(ia, ir, 1) &
    1665     1575801 :                                                + rho_set%drhoa(dir)%array(ia, ir, 1)**2
    1666             :             END DO !ia
    1667             :          END DO !ir
    1668             :       END DO !dir
    1669      525303 :       rho_set%norm_drhoa = SQRT(rho_set%norm_drhoa)
    1670             : 
    1671          18 :       IF (nspins == 1) THEN
    1672             :          !spin-restricted
    1673          16 :          CALL dcopy(n, rho_set%norm_drhoa(:, :, 1), 1, rho_set%norm_drhob(:, :, 1), 1)
    1674             :       ELSE
    1675           8 :          DO dir = 1, 3
    1676        1466 :             DO ir = 1, nr
    1677      441780 :                DO ia = 1, na
    1678             :                   rho_set%norm_drhob(ia, ir, 1) = rho_set%norm_drhob(ia, ir, 1) &
    1679      441774 :                                                   + rho_set%drhob(dir)%array(ia, ir, 1)**2
    1680             :                END DO
    1681             :             END DO
    1682             :          END DO
    1683      147262 :          rho_set%norm_drhob = SQRT(rho_set%norm_drhob)
    1684             :       END IF
    1685             : 
    1686          72 :       DO dir = 1, 3
    1687        8007 :          DO ir = 1, nr
    1688     1575855 :             DO ia = 1, na
    1689             :                rho_set%norm_drho(ia, ir, 1) = rho_set%norm_drho(ia, ir, 1) + &
    1690             :                                               (rho_set%drhoa(dir)%array(ia, ir, 1) + &
    1691     1575801 :                                                rho_set%drhob(dir)%array(ia, ir, 1))**2
    1692             :             END DO
    1693             :          END DO
    1694             :       END DO
    1695      525303 :       rho_set%norm_drho = SQRT(rho_set%norm_drho)
    1696             : 
    1697          18 :    END SUBROUTINE compute_norm_drho
    1698             : 
    1699             : ! **************************************************************************************************
    1700             : !> \brief Precomputes the spherical orbitals of the RI basis on the excited atom grids
    1701             : !> \param do_gga whether the gradient needs to be computed for GGA or not
    1702             : !> \param batch_info the parallelization info to complete with so distribution info
    1703             : !> \param xas_atom_env ...
    1704             : !> \param qs_env ...
    1705             : !> \note the functions are split in a purely angular part of size na and a purely radial part of
    1706             : !>       size nr. The full function on the grid can simply be obtained with dgemm and we save space
    1707             : ! **************************************************************************************************
    1708          38 :    SUBROUTINE precompute_so_dso(do_gga, batch_info, xas_atom_env, qs_env)
    1709             : 
    1710             :       LOGICAL, INTENT(IN)                                :: do_gga
    1711             :       TYPE(batch_info_type)                              :: batch_info
    1712             :       TYPE(xas_atom_env_type), POINTER                   :: xas_atom_env
    1713             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1714             : 
    1715             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'precompute_so_dso'
    1716             : 
    1717             :       INTEGER                                            :: bo(2), dir, handle, ikind, ipgf, iset, &
    1718             :                                                             iso, iso_proc, l, maxso, n, na, nkind, &
    1719             :                                                             nr, nset, nso_proc, nsotot, starti
    1720          38 :       INTEGER, DIMENSION(:), POINTER                     :: lmax, lmin, npgf, nsgf_set
    1721          38 :       INTEGER, DIMENSION(:, :), POINTER                  :: so_proc_info
    1722          38 :       REAL(dp), ALLOCATABLE, DIMENSION(:)                :: rexp
    1723          38 :       REAL(dp), DIMENSION(:, :), POINTER                 :: dgr1, dgr2, ga, gr, slm, zet
    1724          38 :       REAL(dp), DIMENSION(:, :, :), POINTER              :: dga1, dga2, dslm_dxyz
    1725             :       TYPE(grid_atom_type), POINTER                      :: grid_atom
    1726             :       TYPE(gto_basis_set_type), POINTER                  :: ri_basis
    1727             :       TYPE(harmonics_atom_type), POINTER                 :: harmonics
    1728             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    1729          38 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    1730             : 
    1731          38 :       NULLIFY (qs_kind_set, harmonics, grid_atom, slm, dslm_dxyz, ri_basis, lmax, lmin, npgf)
    1732          38 :       NULLIFY (nsgf_set, zet, para_env, so_proc_info)
    1733             : 
    1734          38 :       CALL timeset(routineN, handle)
    1735             : 
    1736          38 :       CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set, para_env=para_env)
    1737          38 :       nkind = SIZE(qs_kind_set)
    1738             : 
    1739         174 :       ALLOCATE (batch_info%so_proc_info(nkind))
    1740         114 :       ALLOCATE (batch_info%nso_proc(nkind))
    1741         114 :       ALLOCATE (batch_info%so_bo(2, nkind))
    1742             : 
    1743          98 :       DO ikind = 1, nkind
    1744             : 
    1745          60 :          NULLIFY (xas_atom_env%ga(ikind)%array)
    1746          60 :          NULLIFY (xas_atom_env%gr(ikind)%array)
    1747          60 :          NULLIFY (xas_atom_env%dga1(ikind)%array)
    1748          60 :          NULLIFY (xas_atom_env%dga2(ikind)%array)
    1749          60 :          NULLIFY (xas_atom_env%dgr1(ikind)%array)
    1750          60 :          NULLIFY (xas_atom_env%dgr2(ikind)%array)
    1751             : 
    1752          60 :          NULLIFY (batch_info%so_proc_info(ikind)%array)
    1753             : 
    1754          84 :          IF (.NOT. ANY(xas_atom_env%excited_kinds == ikind)) CYCLE
    1755             : 
    1756             :          !grid info
    1757          42 :          harmonics => xas_atom_env%harmonics_atom_set(ikind)%harmonics_atom
    1758          42 :          grid_atom => xas_atom_env%grid_atom_set(ikind)%grid_atom
    1759             : 
    1760          42 :          na = grid_atom%ng_sphere
    1761          42 :          nr = grid_atom%nr
    1762          42 :          n = na*nr
    1763             : 
    1764          42 :          slm => harmonics%slm
    1765          42 :          dslm_dxyz => harmonics%dslm_dxyz
    1766             : 
    1767             :          !basis info
    1768          42 :          CALL get_qs_kind(qs_kind_set(ikind), basis_set=ri_basis, basis_type="RI_XAS")
    1769             :          CALL get_gto_basis_set(ri_basis, lmax=lmax, npgf=npgf, zet=zet, nset=nset, &
    1770          42 :                                 nsgf_set=nsgf_set, lmin=lmin, maxso=maxso)
    1771          42 :          nsotot = maxso*nset
    1772             : 
    1773             :          !we split all so among the processors of the batch
    1774          42 :          bo = get_limit(nsotot, batch_info%batch_size, batch_info%ipe)
    1775          42 :          nso_proc = bo(2) - bo(1) + 1
    1776         126 :          batch_info%so_bo(:, ikind) = bo
    1777          42 :          batch_info%nso_proc(ikind) = nso_proc
    1778             : 
    1779             :          !store info about the so's set, pgf and index
    1780         126 :          ALLOCATE (batch_info%so_proc_info(ikind)%array(3, nso_proc))
    1781          42 :          so_proc_info => batch_info%so_proc_info(ikind)%array
    1782       17586 :          so_proc_info = -1 !default is -1 => set so value to zero
    1783         164 :          DO iset = 1, nset
    1784         838 :             DO ipgf = 1, npgf(iset)
    1785         674 :                starti = (iset - 1)*maxso + (ipgf - 1)*nsoset(lmax(iset))
    1786        4738 :                DO iso = nsoset(lmin(iset) - 1) + 1, nsoset(lmax(iset))
    1787             : 
    1788             :                   !only consider so that are on this proc
    1789        3942 :                   IF (starti + iso < bo(1) .OR. starti + iso > bo(2)) CYCLE
    1790        2442 :                   iso_proc = starti + iso - bo(1) + 1
    1791        2442 :                   so_proc_info(1, iso_proc) = iset
    1792        2442 :                   so_proc_info(2, iso_proc) = ipgf
    1793        4616 :                   so_proc_info(3, iso_proc) = iso
    1794             : 
    1795             :                END DO
    1796             :             END DO
    1797             :          END DO
    1798             : 
    1799             :          !Put the gaussians and their gradient as purely angular or radial arrays
    1800         168 :          ALLOCATE (xas_atom_env%ga(ikind)%array(na, nso_proc))
    1801         168 :          ALLOCATE (xas_atom_env%gr(ikind)%array(nr, nso_proc))
    1802     1440120 :          xas_atom_env%ga(ikind)%array = 0.0_dp; xas_atom_env%gr(ikind)%array = 0.0_dp
    1803          42 :          IF (do_gga) THEN
    1804         110 :             ALLOCATE (xas_atom_env%dga1(ikind)%array(na, nso_proc, 3))
    1805          66 :             ALLOCATE (xas_atom_env%dgr1(ikind)%array(nr, nso_proc))
    1806          66 :             ALLOCATE (xas_atom_env%dga2(ikind)%array(na, nso_proc, 3))
    1807          66 :             ALLOCATE (xas_atom_env%dgr2(ikind)%array(nr, nso_proc))
    1808     1752334 :             xas_atom_env%dga1(ikind)%array = 0.0_dp; xas_atom_env%dgr1(ikind)%array = 0.0_dp
    1809     1752334 :             xas_atom_env%dga2(ikind)%array = 0.0_dp; xas_atom_env%dgr2(ikind)%array = 0.0_dp
    1810             :          END IF
    1811             : 
    1812          42 :          ga => xas_atom_env%ga(ikind)%array
    1813          42 :          gr => xas_atom_env%gr(ikind)%array
    1814          42 :          dga1 => xas_atom_env%dga1(ikind)%array
    1815          42 :          dga2 => xas_atom_env%dga2(ikind)%array
    1816          42 :          dgr1 => xas_atom_env%dgr1(ikind)%array
    1817          42 :          dgr2 => xas_atom_env%dgr2(ikind)%array
    1818             : 
    1819         126 :          ALLOCATE (rexp(nr))
    1820             : 
    1821        4428 :          DO iso_proc = 1, nso_proc
    1822        4386 :             iset = so_proc_info(1, iso_proc)
    1823        4386 :             ipgf = so_proc_info(2, iso_proc)
    1824        4386 :             iso = so_proc_info(3, iso_proc)
    1825        4386 :             IF (iso < 0) CYCLE
    1826             : 
    1827        2442 :             l = indso(1, iso)
    1828             : 
    1829             :             !The gaussian is g = r^l * Ylm * exp(-a*r^2)
    1830             : 
    1831             :             !radial part of the gaussian
    1832      327717 :             rexp(1:nr) = EXP(-zet(ipgf, iset)*grid_atom%rad2(1:nr))
    1833      652992 :             gr(1:nr, iso_proc) = grid_atom%rad(1:nr)**l*rexp(1:nr)
    1834             : 
    1835             :             !angular part of the gaussian
    1836      859962 :             ga(1:na, iso_proc) = slm(1:na, iso)
    1837             : 
    1838             :             !For the gradient, devide in 2 parts: dg/dx = d/dx(r^l * Ylm) * exp(-a*r^2)
    1839             :             !                                            + r^l * Ylm *  d/dx(exp(-a*r^2))
    1840             :             !Note: we make this choice of separation because of cartesian coordinates, where
    1841             :             !      g = x^lx * y^ly * z^lz * exp(-a*r^2) and r^(l-1)*dslm_dxyz = d/dx(r^l * Ylm)
    1842             : 
    1843        2484 :             IF (do_gga) THEN
    1844             :                !radial part of the gradient => same in all three direction
    1845      444727 :                dgr1(1:nr, iso_proc) = grid_atom%rad(1:nr)**(l - 1)*rexp(1:nr)
    1846      444727 :                dgr2(1:nr, iso_proc) = -2.0_dp*zet(ipgf, iset)*grid_atom%rad(1:nr)**(l + 1)*rexp(1:nr)
    1847             : 
    1848             :                !angular part of the gradient
    1849        6188 :                DO dir = 1, 3
    1850     1630029 :                   dga1(1:na, iso_proc, dir) = dslm_dxyz(dir, 1:na, iso)
    1851     1631576 :                   dga2(1:na, iso_proc, dir) = harmonics%a(dir, 1:na)*slm(1:na, iso)
    1852             :                END DO
    1853             :             END IF
    1854             : 
    1855             :          END DO !iso_proc
    1856             : 
    1857         140 :          DEALLOCATE (rexp)
    1858             :       END DO !ikind
    1859             : 
    1860          38 :       CALL timestop(handle)
    1861             : 
    1862          76 :    END SUBROUTINE precompute_so_dso
    1863             : 
    1864             : ! **************************************************************************************************
    1865             : !> \brief Integrate the xc kernel as a function of r on the atomic grids for the RI_XAS basis
    1866             : !> \param int_fxc the global array containing the (P|fxc|Q) integrals, for all spin configurations
    1867             : !> \param xas_atom_env ...
    1868             : !> \param xas_tdp_control ...
    1869             : !> \param qs_env ...
    1870             : !> \note Note that if closed-shell, alpha-alpha term and beta-beta terms are the same
    1871             : !>       Store the (P|fxc|Q) integrals on the processor they were computed on
    1872             : !>       int_fxc(1)%matrix is alpha-alpha, 2: alpha-beta, 3: beta-beta
    1873             : ! **************************************************************************************************
    1874          38 :    SUBROUTINE integrate_fxc_atoms(int_fxc, xas_atom_env, xas_tdp_control, qs_env)
    1875             : 
    1876             :       TYPE(cp_2d_r_p_type), DIMENSION(:, :), POINTER     :: int_fxc
    1877             :       TYPE(xas_atom_env_type), POINTER                   :: xas_atom_env
    1878             :       TYPE(xas_tdp_control_type), POINTER                :: xas_tdp_control
    1879             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1880             : 
    1881             :       CHARACTER(len=*), PARAMETER :: routineN = 'integrate_fxc_atoms'
    1882             : 
    1883             :       INTEGER :: batch_size, dir, er, ex_bo(2), handle, i, iatom, ibatch, iex, ikind, inb, ipe, &
    1884             :          mepos, na, natom, nb, nb_bo(2), nbatch, nbk, nex_atom, nr, num_pe, sr
    1885             :       INTEGER, DIMENSION(2, 3)                           :: bounds
    1886          38 :       INTEGER, DIMENSION(:), POINTER                     :: exat_neighbors
    1887             :       LOGICAL                                            :: do_gga, do_sc, do_sf
    1888          38 :       TYPE(batch_info_type)                              :: batch_info
    1889          38 :       TYPE(cp_1d_r_p_type), DIMENSION(:, :), POINTER     :: ri_dcoeff
    1890             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1891             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    1892          38 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    1893          38 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    1894             :       TYPE(section_vals_type), POINTER                   :: input, xc_functionals
    1895             :       TYPE(xc_derivative_set_type)                       :: deriv_set
    1896             :       TYPE(xc_rho_cflags_type)                           :: needs
    1897             :       TYPE(xc_rho_set_type)                              :: rho_set
    1898             : 
    1899          38 :       NULLIFY (particle_set, qs_kind_set, dft_control, para_env, exat_neighbors)
    1900          38 :       NULLIFY (input, xc_functionals)
    1901             : 
    1902          38 :       CALL timeset(routineN, handle)
    1903             : 
    1904             : !  Initialize
    1905             :       CALL get_qs_env(qs_env, particle_set=particle_set, qs_kind_set=qs_kind_set, natom=natom, &
    1906          38 :                       dft_control=dft_control, input=input, para_env=para_env)
    1907        1746 :       ALLOCATE (int_fxc(natom, 4))
    1908         408 :       DO iatom = 1, natom
    1909        1888 :          DO i = 1, 4
    1910        1850 :             NULLIFY (int_fxc(iatom, i)%array)
    1911             :          END DO
    1912             :       END DO
    1913          38 :       nex_atom = SIZE(xas_atom_env%excited_atoms)
    1914             :       !spin conserving in the general sense here
    1915          38 :       do_sc = xas_tdp_control%do_spin_cons .OR. xas_tdp_control%do_singlet .OR. xas_tdp_control%do_triplet
    1916          38 :       do_sf = xas_tdp_control%do_spin_flip
    1917             : 
    1918             : !  Get some info on the functionals
    1919          38 :       xc_functionals => section_vals_get_subs_vals(input, "DFT%XAS_TDP%KERNEL%XC_FUNCTIONAL")
    1920             :       ! ask for lsd in any case
    1921          38 :       needs = xc_functionals_get_needs(xc_functionals, lsd=.TRUE., calc_potential=.TRUE.)
    1922          38 :       do_gga = needs%drho_spin !because either LDA or GGA, and the former does not need gradient
    1923             : 
    1924             : !  Distribute the excited atoms over batches of processors
    1925             : !  Then, the spherical orbital of the RI basis are distributed among the procs of the batch, making
    1926             : !  the GGA integration very efficient
    1927          38 :       num_pe = para_env%num_pe
    1928          38 :       mepos = para_env%mepos
    1929             : 
    1930             :       !create a batch_info_type
    1931          38 :       CALL get_proc_batch_sizes(batch_size, nbatch, nex_atom, num_pe)
    1932             : 
    1933             :       !the batch index
    1934          38 :       ibatch = mepos/batch_size
    1935             :       !the proc index within the batch
    1936          38 :       ipe = MODULO(mepos, batch_size)
    1937             : 
    1938          38 :       batch_info%batch_size = batch_size
    1939          38 :       batch_info%nbatch = nbatch
    1940          38 :       batch_info%ibatch = ibatch
    1941          38 :       batch_info%ipe = ipe
    1942             : 
    1943             :       !create a subcommunicator for this batch
    1944          38 :       CALL batch_info%para_env%from_split(para_env, ibatch)
    1945             : 
    1946             : !  Precompute the spherical orbital of the RI basis (and maybe their gradient) on the grids of the
    1947             : !  excited atoms. Needed for the GGA integration and to actually put the density on the grid
    1948          38 :       CALL precompute_so_dso(do_gga, batch_info, xas_atom_env, qs_env)
    1949             : 
    1950             :       !distribute the excted atoms over the batches
    1951          38 :       ex_bo = get_limit(nex_atom, nbatch, ibatch)
    1952             : 
    1953             : !  Looping over the excited atoms
    1954          76 :       DO iex = ex_bo(1), ex_bo(2)
    1955             : 
    1956          38 :          iatom = xas_atom_env%excited_atoms(iex)
    1957          38 :          ikind = particle_set(iatom)%atomic_kind%kind_number
    1958          38 :          exat_neighbors => xas_atom_env%exat_neighbors(iex)%array
    1959          38 :          ri_dcoeff => xas_atom_env%ri_dcoeff(:, :, iex)
    1960             : 
    1961             : !     General grid/basis info
    1962          38 :          na = xas_atom_env%grid_atom_set(ikind)%grid_atom%ng_sphere
    1963          38 :          nr = xas_atom_env%grid_atom_set(ikind)%grid_atom%nr
    1964             : 
    1965             : !     Creating a xc_rho_set to store the density and dset for the kernel
    1966         380 :          bounds(1:2, 1:3) = 1
    1967          38 :          bounds(2, 1) = na
    1968          38 :          bounds(2, 2) = nr
    1969             : 
    1970             :          CALL xc_rho_set_create(rho_set=rho_set, local_bounds=bounds, &
    1971             :                                 rho_cutoff=dft_control%qs_control%eps_rho_rspace, &
    1972          38 :                                 drho_cutoff=dft_control%qs_control%eps_rho_rspace)
    1973          38 :          CALL xc_dset_create(deriv_set, local_bounds=bounds)
    1974             : 
    1975             :          ! allocate internals of the rho_set
    1976          38 :          CALL xc_rho_set_atom_update(rho_set, needs, nspins=2, bo=bounds)
    1977             : 
    1978             : !     Put the density, and possibly its gradient,  on the grid (for this atom)
    1979             :          CALL put_density_on_atomic_grid(rho_set, ri_dcoeff(iatom, :), ikind, &
    1980          38 :                                          do_gga, batch_info, xas_atom_env, qs_env)
    1981             : 
    1982             : !     Take the neighboring atom contributions to the density (and gradient)
    1983             : !     distribute the grid among the procs (for best load balance)
    1984          38 :          nb_bo = get_limit(nr, batch_size, ipe)
    1985          38 :          sr = nb_bo(1); er = nb_bo(2)
    1986          50 :          DO inb = 1, SIZE(exat_neighbors)
    1987             : 
    1988          12 :             nb = exat_neighbors(inb)
    1989          12 :             nbk = particle_set(nb)%atomic_kind%kind_number
    1990             :             CALL put_density_on_other_grid(rho_set, ri_dcoeff(nb, :), nb, nbk, iatom, &
    1991          50 :                                            ikind, sr, er, do_gga, xas_atom_env, qs_env)
    1992             : 
    1993             :          END DO
    1994             : 
    1995             :          ! make sure contributions from different procs are summed up
    1996          38 :          CALL batch_info%para_env%sum(rho_set%rhoa)
    1997          38 :          CALL batch_info%para_env%sum(rho_set%rhob)
    1998          38 :          IF (do_gga) THEN
    1999          72 :             DO dir = 1, 3
    2000          54 :                CALL batch_info%para_env%sum(rho_set%drhoa(dir)%array)
    2001          72 :                CALL batch_info%para_env%sum(rho_set%drhob(dir)%array)
    2002             :             END DO
    2003             :          END IF
    2004             : 
    2005             : !     In case of GGA, also need the norm of the density gradient
    2006          38 :          IF (do_gga) CALL compute_norm_drho(rho_set, ikind, xas_atom_env)
    2007             : 
    2008             : !     Compute the required derivatives
    2009             :          CALL xc_functionals_eval(xc_functionals, lsd=.TRUE., rho_set=rho_set, deriv_set=deriv_set, &
    2010          38 :                                   deriv_order=2)
    2011             : 
    2012             :          !spin-conserving (LDA part)
    2013          38 :          IF (do_sc) THEN
    2014          38 :             CALL integrate_sc_fxc(int_fxc, iatom, ikind, deriv_set, xas_atom_env, qs_env)
    2015             :          END IF
    2016             : 
    2017             :          !spin-flip (LDA part)
    2018          38 :          IF (do_sf) THEN
    2019           0 :             CALL integrate_sf_fxc(int_fxc, iatom, ikind, rho_set, deriv_set, xas_atom_env, qs_env)
    2020             :          END IF
    2021             : 
    2022             :          !Gradient correction (note: spin-flip only keeps the lda part, aka ALDA0)
    2023          38 :          IF (do_gga .AND. do_sc) THEN
    2024             :             CALL integrate_gga_fxc(int_fxc, iatom, ikind, batch_info, rho_set, deriv_set, &
    2025          18 :                                    xas_atom_env, qs_env)
    2026             :          END IF
    2027             : 
    2028             : !     Clean-up
    2029          38 :          CALL xc_dset_release(deriv_set)
    2030         114 :          CALL xc_rho_set_release(rho_set)
    2031             :       END DO !iex
    2032             : 
    2033          38 :       CALL release_batch_info(batch_info)
    2034             : 
    2035             :       !Not necessary to sync, but makes sure that any load inbalance is reported here
    2036          38 :       CALL para_env%sync()
    2037             : 
    2038          38 :       CALL timestop(handle)
    2039             : 
    2040         912 :    END SUBROUTINE integrate_fxc_atoms
    2041             : 
    2042             : ! **************************************************************************************************
    2043             : !> \brief Integrate the gradient correction part of the xc kernel on the atomic grid
    2044             : !> \param int_fxc the array containing the (P|fxc|Q) integrals
    2045             : !> \param iatom the index of the current excited atom
    2046             : !> \param ikind the index of the current excited kind
    2047             : !> \param batch_info how the so are distributed over the processor batch
    2048             : !> \param rho_set the variable contatinind the density and its gradient
    2049             : !> \param deriv_set the functional derivatives
    2050             : !> \param xas_atom_env ...
    2051             : !> \param qs_env ...
    2052             : !> \note Ignored in case of pure LDA, added on top of the LDA kernel in case of GGA
    2053             : ! **************************************************************************************************
    2054          18 :    SUBROUTINE integrate_gga_fxc(int_fxc, iatom, ikind, batch_info, rho_set, deriv_set, &
    2055             :                                 xas_atom_env, qs_env)
    2056             : 
    2057             :       TYPE(cp_2d_r_p_type), DIMENSION(:, :), POINTER     :: int_fxc
    2058             :       INTEGER, INTENT(IN)                                :: iatom, ikind
    2059             :       TYPE(batch_info_type)                              :: batch_info
    2060             :       TYPE(xc_rho_set_type), INTENT(IN)                  :: rho_set
    2061             :       TYPE(xc_derivative_set_type), INTENT(INOUT)        :: deriv_set
    2062             :       TYPE(xas_atom_env_type), POINTER                   :: xas_atom_env
    2063             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2064             : 
    2065             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'integrate_gga_fxc'
    2066             : 
    2067             :       INTEGER                                            :: bo(2), dir, handle, i, ia, ir, jpgf, &
    2068             :                                                             jset, jso, l, maxso, na, nr, nset, &
    2069             :                                                             nsgf, nsoi, nsotot, startj, ub
    2070          18 :       INTEGER, DIMENSION(:), POINTER                     :: lmax, lmin, npgf
    2071          18 :       REAL(dp), ALLOCATABLE, DIMENSION(:)                :: rexp
    2072          18 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :)             :: int_sgf, res, so, work
    2073          18 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :, :)          :: dso
    2074          18 :       REAL(dp), DIMENSION(:, :), POINTER                 :: dgr1, dgr2, ga, gr, ri_sphi_so, weight, &
    2075          18 :                                                             zet
    2076          18 :       REAL(dp), DIMENSION(:, :, :), POINTER              :: dga1, dga2
    2077          18 :       TYPE(cp_2d_r_p_type), ALLOCATABLE, DIMENSION(:)    :: int_so, vxc
    2078             :       TYPE(cp_3d_r_p_type), ALLOCATABLE, DIMENSION(:)    :: vxg
    2079             :       TYPE(grid_atom_type), POINTER                      :: grid_atom
    2080             :       TYPE(gto_basis_set_type), POINTER                  :: ri_basis
    2081             :       TYPE(harmonics_atom_type), POINTER                 :: harmonics
    2082             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    2083          18 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    2084             : 
    2085          18 :       NULLIFY (grid_atom, ri_basis, qs_kind_set, ga, gr, dgr1, dgr2, lmax, lmin, npgf)
    2086          18 :       NULLIFY (weight, ri_sphi_so, dga1, dga2, para_env, harmonics, zet)
    2087             : 
    2088             :       !Strategy: we need to compute <phi_i|fxc|phij>, most of existing application of the 2nd
    2089             :       !          functional derivative involve the response density, and the expression of the
    2090             :       !          integral int (fxc*n^1) is well known. We substitute the spherical orbital phi_j
    2091             :       !          in place of n^1 in the formula and thus perform the first integration. Then
    2092             :       !          we obtain something in the form int (fxc*phi_j) = Vxc - div (Vxg) that we can
    2093             :       !          put on the grid and treat like a potential. The second integration is done by
    2094             :       !          using the divergence theorem and numerical integration:
    2095             :       !          <phi_i|fxc|phi_j> = int phi_i*(Vxc - div(Vxg)) = int phi_i*Vxc + grad(phi_i).Vxg
    2096             :       !          Note the sign change and the dot product.
    2097             : 
    2098          18 :       CALL timeset(routineN, handle)
    2099             : 
    2100             :       !If closed shell, only compute f_aa and f_ab (ub = 2)
    2101          18 :       ub = 2
    2102          18 :       IF (xas_atom_env%nspins == 2) ub = 3
    2103             : 
    2104             :       !Get the necessary grid info
    2105          18 :       harmonics => xas_atom_env%harmonics_atom_set(ikind)%harmonics_atom
    2106          18 :       grid_atom => xas_atom_env%grid_atom_set(ikind)%grid_atom
    2107          18 :       na = grid_atom%ng_sphere
    2108          18 :       nr = grid_atom%nr
    2109          18 :       weight => grid_atom%weight
    2110             : 
    2111             :       !get the ri_basis info
    2112          18 :       CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set, para_env=para_env)
    2113          18 :       CALL get_qs_kind(qs_kind_set(ikind), basis_set=ri_basis, basis_type="RI_XAS")
    2114             : 
    2115             :       CALL get_gto_basis_set(gto_basis_set=ri_basis, lmax=lmax, lmin=lmin, nsgf=nsgf, &
    2116          18 :                              maxso=maxso, npgf=npgf, nset=nset, zet=zet)
    2117          18 :       nsotot = nset*maxso
    2118             : 
    2119             :       !Point to the precomputed so
    2120          18 :       ga => xas_atom_env%ga(ikind)%array
    2121          18 :       gr => xas_atom_env%gr(ikind)%array
    2122          18 :       dgr1 => xas_atom_env%dgr1(ikind)%array
    2123          18 :       dgr2 => xas_atom_env%dgr2(ikind)%array
    2124          18 :       dga1 => xas_atom_env%dga1(ikind)%array
    2125          18 :       dga2 => xas_atom_env%dga2(ikind)%array
    2126             : 
    2127             :       !Before integration, wanna pre-divide all relevant derivastives by the nrom of the gradient
    2128          18 :       CALL divide_by_norm_drho(deriv_set, rho_set, lsd=.TRUE.)
    2129             : 
    2130             :       !Wanna integrate <phi_i|fxc|phi_j>, start looping over phi_j and do the first integration, then
    2131             :       !collect vxc and vxg and loop over phi_i for the second integration
    2132             :       !Note: we do not use the CG coefficients because they are only useful when there is a product
    2133             :       !      of Gaussians, which is not really the case here
    2134             :       !Note: the spherical orbitals for phi_i are distributed among the prcos of the current batch
    2135             : 
    2136          72 :       ALLOCATE (so(na, nr))
    2137          90 :       ALLOCATE (dso(na, nr, 3))
    2138          54 :       ALLOCATE (rexp(nr))
    2139             : 
    2140          74 :       ALLOCATE (vxc(ub))
    2141          56 :       ALLOCATE (vxg(ub))
    2142          56 :       ALLOCATE (int_so(ub))
    2143          56 :       DO i = 1, ub
    2144         114 :          ALLOCATE (vxc(i)%array(na, nr))
    2145         114 :          ALLOCATE (vxg(i)%array(na, nr, 3))
    2146         152 :          ALLOCATE (int_so(i)%array(nsotot, nsotot))
    2147     6342734 :          vxc(i)%array = 0.0_dp; vxg(i)%array = 0.0_dp; int_so(i)%array = 0.0_dp
    2148             :       END DO
    2149             : 
    2150          54 :       DO jset = 1, nset
    2151         312 :          DO jpgf = 1, npgf(jset)
    2152         258 :             startj = (jset - 1)*maxso + (jpgf - 1)*nsoset(lmax(jset))
    2153        2300 :             DO jso = nsoset(lmin(jset) - 1) + 1, nsoset(lmax(jset))
    2154        2006 :                l = indso(1, jso)
    2155             : 
    2156             :                !put the so phi_j and its gradient on the grid
    2157             :                !more efficient to recompute it rather than mp_bcast each chunk
    2158             : 
    2159      300685 :                rexp(1:nr) = EXP(-zet(jpgf, jset)*grid_atom%rad2(1:nr))
    2160             : !$OMP PARALLEL DO COLLAPSE(2) DEFAULT(NONE), &
    2161             : !$OMP SHARED(nr,na,so,dso,grid_atom,l,rexp,harmonics,jso,zet,jset,jpgf), &
    2162        2006 : !$OMP PRIVATE(ir,ia,dir)
    2163             :                DO ir = 1, nr
    2164             :                   DO ia = 1, na
    2165             : 
    2166             :                      !so
    2167             :                      so(ia, ir) = grid_atom%rad(ir)**l*rexp(ir)*harmonics%slm(ia, jso)
    2168             : 
    2169             :                      !dso
    2170             :                      dso(ia, ir, :) = 0.0_dp
    2171             :                      DO dir = 1, 3
    2172             :                         dso(ia, ir, dir) = dso(ia, ir, dir) &
    2173             :                                            + grid_atom%rad(ir)**(l - 1)*rexp(ir)*harmonics%dslm_dxyz(dir, ia, jso) &
    2174             :                                            - 2.0_dp*zet(jpgf, jset)*grid_atom%rad(ir)**(l + 1)*rexp(ir) &
    2175             :                                            *harmonics%a(dir, ia)*harmonics%slm(ia, jso)
    2176             :                      END DO
    2177             :                   END DO
    2178             :                END DO
    2179             : !$OMP END PARALLEL DO
    2180             : 
    2181             :                !Perform the first integration (analytically)
    2182        2006 :                CALL get_vxc_vxg(vxc, vxg, so, dso, na, nr, rho_set, deriv_set, weight)
    2183             : 
    2184             :                !For a given phi_j, compute the second integration with all phi_i at once
    2185             :                !=> allows for efficient gemm to take place, especially since so are distributed
    2186        2006 :                nsoi = batch_info%nso_proc(ikind)
    2187        6018 :                bo = batch_info%so_bo(:, ikind)
    2188       14042 :                ALLOCATE (res(nsoi, nsoi), work(na, nsoi))
    2189    80897954 :                res = 0.0_dp; work = 0.0_dp
    2190             : 
    2191        6270 :                DO i = 1, ub
    2192             : 
    2193             :                   !integrate so*Vxc and store in the int_so
    2194             :                   CALL dgemm('N', 'N', na, nsoi, nr, 1.0_dp, vxc(i)%array(:, :), na, &
    2195        4264 :                              gr(:, 1:nsoi), nr, 0.0_dp, work, na)
    2196             :                   CALL dgemm('T', 'N', nsoi, nsoi, na, 1.0_dp, work, na, &
    2197        4264 :                              ga(:, 1:nsoi), na, 0.0_dp, res, nsoi)
    2198      512884 :                   int_so(i)%array(bo(1):bo(2), startj + jso) = get_diag(res)
    2199             : 
    2200       19062 :                   DO dir = 1, 3
    2201             : 
    2202             :                      ! integrate and sum up Vxg*dso
    2203             :                      CALL dgemm('N', 'N', na, nsoi, nr, 1.0_dp, vxg(i)%array(:, :, dir), na, &
    2204       12792 :                                 dgr1(:, 1:nsoi), nr, 0.0_dp, work, na)
    2205             :                      CALL dgemm('T', 'N', nsoi, nsoi, na, 1.0_dp, work, na, &
    2206       12792 :                                 dga1(:, 1:nsoi, dir), na, 0.0_dp, res, nsoi)
    2207       12792 :                      CALL daxpy(nsoi, 1.0_dp, get_diag(res), 1, int_so(i)%array(bo(1):bo(2), startj + jso), 1)
    2208             : 
    2209             :                      CALL dgemm('N', 'N', na, nsoi, nr, 1.0_dp, vxg(i)%array(:, :, dir), na, &
    2210       12792 :                                 dgr2(:, 1:nsoi), nr, 0.0_dp, work, na)
    2211             :                      CALL dgemm('T', 'N', nsoi, nsoi, na, 1.0_dp, work, na, &
    2212       12792 :                                 dga2(:, 1:nsoi, dir), na, 0.0_dp, res, nsoi)
    2213       17056 :                      CALL daxpy(nsoi, 1.0_dp, get_diag(res), 1, int_so(i)%array(bo(1):bo(2), startj + jso), 1)
    2214             : 
    2215             :                   END DO
    2216             : 
    2217             :                END DO !i
    2218        2264 :                DEALLOCATE (res, work)
    2219             : 
    2220             :             END DO !jso
    2221             :          END DO !jpgf
    2222             :       END DO !jset
    2223             : 
    2224             :       !Contract into sgf and add to already computed LDA part of int_fxc
    2225          18 :       ri_sphi_so => xas_atom_env%ri_sphi_so(ikind)%array
    2226          72 :       ALLOCATE (int_sgf(nsgf, nsgf))
    2227          56 :       DO i = 1, ub
    2228     3102830 :          CALL batch_info%para_env%sum(int_so(i)%array)
    2229          38 :          CALL contract_so2sgf(int_sgf, int_so(i)%array, ri_basis, ri_sphi_so)
    2230          56 :          CALL daxpy(nsgf*nsgf, 1.0_dp, int_sgf, 1, int_fxc(iatom, i)%array, 1)
    2231             :       END DO
    2232             : 
    2233             :       !Clean-up
    2234          56 :       DO i = 1, ub
    2235          38 :          DEALLOCATE (vxc(i)%array)
    2236          38 :          DEALLOCATE (vxg(i)%array)
    2237          56 :          DEALLOCATE (int_so(i)%array)
    2238             :       END DO
    2239          18 :       DEALLOCATE (vxc, vxg, int_so)
    2240             : 
    2241          18 :       CALL timestop(handle)
    2242             : 
    2243          54 :    END SUBROUTINE integrate_gga_fxc
    2244             : 
    2245             : ! **************************************************************************************************
    2246             : !> \brief Computes the first integration of the GGA part of <phi_i|fxc|phi_j>, i.e. int fxc*phi_j.
    2247             : !>        The result is of the form Vxc - div(Vxg). Up to 3 results are returned, correspoinding to
    2248             : !>        f_aa, f_ab and (if open-shell) f_bb
    2249             : !> \param vxc ...
    2250             : !> \param vxg ...
    2251             : !> \param so the spherical orbital on the grid
    2252             : !> \param dso the derivative of the spherical orbital on the grid
    2253             : !> \param na ...
    2254             : !> \param nr ...
    2255             : !> \param rho_set ...
    2256             : !> \param deriv_set ...
    2257             : !> \param weight the grid weight
    2258             : !> \note This method is extremely similar to xc_calc_2nd_deriv of xc.F, but because it is a special
    2259             : !>       case that can be further optimized and because the interface of the original routine does
    2260             : !>       not fit this code, it has been re-written (no pw, no rho1_set but just the so, etc...)
    2261             : ! **************************************************************************************************
    2262        2006 :    SUBROUTINE get_vxc_vxg(vxc, vxg, so, dso, na, nr, rho_set, deriv_set, weight)
    2263             : 
    2264             :       TYPE(cp_2d_r_p_type), DIMENSION(:)                 :: vxc
    2265             :       TYPE(cp_3d_r_p_type), DIMENSION(:)                 :: vxg
    2266             :       REAL(dp), DIMENSION(:, :)                          :: so
    2267             :       REAL(dp), DIMENSION(:, :, :)                       :: dso
    2268             :       INTEGER, INTENT(IN)                                :: na, nr
    2269             :       TYPE(xc_rho_set_type), INTENT(IN)                  :: rho_set
    2270             :       TYPE(xc_derivative_set_type), INTENT(IN)           :: deriv_set
    2271             :       REAL(dp), DIMENSION(:, :), POINTER                 :: weight
    2272             : 
    2273             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'get_vxc_vxg'
    2274             : 
    2275             :       INTEGER                                            :: dir, handle, i, ia, ir, ub
    2276        2006 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :)             :: dot_proda, dot_prodb, tmp
    2277        2006 :       REAL(dp), DIMENSION(:, :, :), POINTER              :: d1e, d2e, norm_drhoa, norm_drhob
    2278             :       TYPE(xc_derivative_type), POINTER                  :: deriv
    2279             : 
    2280        2006 :       NULLIFY (norm_drhoa, norm_drhob, d2e, d1e, deriv)
    2281             : 
    2282        2006 :       CALL timeset(routineN, handle)
    2283             : 
    2284             :       !Note: this routines follows the order of the terms in equaiton (A.7) of Thomas Chassaing
    2285             :       !      thesis, except for the pure LDA terms that are dropped. The n^(1)_a and n^(1)_b
    2286             :       !      response densities are replaced by the spherical orbital.
    2287             :       !      The usual spin ordering is used: aa => 1, ab => 2 , bb => 3
    2288             : 
    2289             :       !point to the relevant components of rho_set
    2290        2006 :       ub = SIZE(vxc)
    2291        2006 :       norm_drhoa => rho_set%norm_drhoa
    2292        2006 :       norm_drhob => rho_set%norm_drhob
    2293             : 
    2294             :       !Some init
    2295        6270 :       DO i = 1, ub
    2296   141677782 :          vxc(i)%array = 0.0_dp
    2297   425039616 :          vxg(i)%array = 0.0_dp
    2298             :       END DO
    2299             : 
    2300       16048 :       ALLOCATE (tmp(na, nr), dot_proda(na, nr), dot_prodb(na, nr))
    2301   123123022 :       dot_proda = 0.0_dp; dot_prodb = 0.0_dp
    2302             : 
    2303             :       !Strategy: most terms are either multiplied by drhoa or drhob => group those first and then
    2304             :       !          multiply. Also most terms are multiplied by the dot product grad_n . grad_so, so
    2305             :       !          precompute it as well
    2306             : 
    2307             : !$OMP PARALLEL DEFAULT(NONE), &
    2308             : !$OMP SHARED(dot_proda,dot_prodb,tmp,vxc,vxg,deriv_set,rho_set,na,nr,norm_drhoa,norm_drhob,dso, &
    2309             : !$OMP        so,weight,ub), &
    2310        2006 : !$OMP PRIVATE(ia,ir,dir,deriv,d1e,d2e)
    2311             : 
    2312             :       !Precompute the very common dot products grad_na . grad_so and grad_nb . grad_so
    2313             :       DO dir = 1, 3
    2314             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2315             :          DO ir = 1, nr
    2316             :             DO ia = 1, na
    2317             :                dot_proda(ia, ir) = dot_proda(ia, ir) + rho_set%drhoa(dir)%array(ia, ir, 1)*dso(ia, ir, dir)
    2318             :                dot_prodb(ia, ir) = dot_prodb(ia, ir) + rho_set%drhob(dir)%array(ia, ir, 1)*dso(ia, ir, dir)
    2319             :             END DO !ia
    2320             :          END DO !ir
    2321             : !$OMP END DO NOWAIT
    2322             :       END DO !dir
    2323             : 
    2324             :       !Deal with f_aa
    2325             : 
    2326             :       !Vxc, first term
    2327             :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhoa, deriv_norm_drhoa])
    2328             :       IF (ASSOCIATED(deriv)) THEN
    2329             :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2330             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2331             :          DO ir = 1, nr
    2332             :             DO ia = 1, na
    2333             :                vxc(1)%array(ia, ir) = d2e(ia, ir, 1)*dot_proda(ia, ir)
    2334             :             END DO !ia
    2335             :          END DO !ir
    2336             : !$OMP END DO NOWAIT
    2337             :       END IF
    2338             : 
    2339             :       !Vxc, second term
    2340             :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhoa, deriv_norm_drho])
    2341             : 
    2342             :       IF (ASSOCIATED(deriv)) THEN
    2343             :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2344             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2345             :          DO ir = 1, nr
    2346             :             DO ia = 1, na
    2347             :                vxc(1)%array(ia, ir) = vxc(1)%array(ia, ir) + d2e(ia, ir, 1)*dot_prodb(ia, ir)
    2348             :             END DO !ia
    2349             :          END DO !ir
    2350             : !$OMP END DO NOWAIT
    2351             :       END IF
    2352             : 
    2353             :       !Vxc, take the grid weight into acocunt
    2354             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2355             :       DO ir = 1, nr
    2356             :          DO ia = 1, na
    2357             :             vxc(1)%array(ia, ir) = vxc(1)%array(ia, ir)*weight(ia, ir)
    2358             :          END DO !ia
    2359             :       END DO !ir
    2360             : !$OMP END DO NOWAIT
    2361             : 
    2362             :       !Vxg, first term (to be multiplied by drhoa)
    2363             :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhoa, deriv_norm_drhoa])
    2364             :       IF (ASSOCIATED(deriv)) THEN
    2365             :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2366             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2367             :          DO ir = 1, nr
    2368             :             DO ia = 1, na
    2369             :                tmp(ia, ir) = d2e(ia, ir, 1)*so(ia, ir)
    2370             :             END DO !ia
    2371             :          END DO !ir
    2372             : !$OMP END DO NOWAIT
    2373             :       END IF
    2374             : 
    2375             :       !Vxg, second term (to be multiplied by drhoa)
    2376             :       deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drhoa, deriv_norm_drho])
    2377             :       IF (ASSOCIATED(deriv)) THEN
    2378             :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2379             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2380             :          DO ir = 1, nr
    2381             :             DO ia = 1, na
    2382             :                tmp(ia, ir) = tmp(ia, ir) + d2e(ia, ir, 1)*dot_prodb(ia, ir)
    2383             :             END DO !ia
    2384             :          END DO !ir
    2385             : !$OMP END DO NOWAIT
    2386             :       END IF
    2387             : 
    2388             :       !Vxg, third term (to be multiplied by drhoa)
    2389             :       deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drhoa, deriv_norm_drhoa])
    2390             :       IF (ASSOCIATED(deriv)) THEN
    2391             :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2392             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2393             :          DO ir = 1, nr
    2394             :             DO ia = 1, na
    2395             :                tmp(ia, ir) = tmp(ia, ir) + d2e(ia, ir, 1)*dot_proda(ia, ir)
    2396             :             END DO !ia
    2397             :          END DO !ir
    2398             : !$OMP END DO NOWAIT
    2399             :       END IF
    2400             : 
    2401             :       !Vxg, fourth term (to be multiplied by drhoa)
    2402             :       deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drhoa])
    2403             :       IF (ASSOCIATED(deriv)) THEN
    2404             :          CALL xc_derivative_get(deriv, deriv_data=d1e)
    2405             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2406             :          DO ir = 1, nr
    2407             :             DO ia = 1, na
    2408             :                tmp(ia, ir) = tmp(ia, ir) - d1e(ia, ir, 1)*dot_proda(ia, ir) &
    2409             :                              /MAX(norm_drhoa(ia, ir, 1), rho_set%drho_cutoff)**2
    2410             :             END DO !ia
    2411             :          END DO !ir
    2412             : !$OMP END DO NOWAIT
    2413             :       END IF
    2414             : 
    2415             :       !put tmp*drhoa in Vxg (so that we can reuse it for drhob terms)
    2416             :       DO dir = 1, 3
    2417             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2418             :          DO ir = 1, nr
    2419             :             DO ia = 1, na
    2420             :                vxg(1)%array(ia, ir, dir) = tmp(ia, ir)*rho_set%drhoa(dir)%array(ia, ir, 1)
    2421             :             END DO !ia
    2422             :          END DO !ir
    2423             : !$OMP END DO NOWAIT
    2424             :       END DO !dir
    2425             : 
    2426             :       !Vxg, fifth term (to be multiplied by drhob)
    2427             :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhoa, deriv_norm_drho])
    2428             :       IF (ASSOCIATED(deriv)) THEN
    2429             :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2430             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2431             :          DO ir = 1, nr
    2432             :             DO ia = 1, na
    2433             :                tmp(ia, ir) = d2e(ia, ir, 1)*so(ia, ir)
    2434             :             END DO !ia
    2435             :          END DO !ir
    2436             : !$OMP END DO NOWAIT
    2437             :       END IF
    2438             : 
    2439             :       !Vxg, sixth term (to be multiplied by drhob)
    2440             :       deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drhoa, deriv_norm_drho])
    2441             :       IF (ASSOCIATED(deriv)) THEN
    2442             :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2443             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2444             :          DO ir = 1, nr
    2445             :             DO ia = 1, na
    2446             :                tmp(ia, ir) = tmp(ia, ir) + d2e(ia, ir, 1)*dot_proda(ia, ir)
    2447             :             END DO !ia
    2448             :          END DO !ir
    2449             : !$OMP END DO NOWAIT
    2450             :       END IF
    2451             : 
    2452             :       !Vxg, seventh term (to be multiplied by drhob)
    2453             :       deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drho, deriv_norm_drho])
    2454             :       IF (ASSOCIATED(deriv)) THEN
    2455             :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2456             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2457             :          DO ir = 1, nr
    2458             :             DO ia = 1, na
    2459             :                tmp(ia, ir) = tmp(ia, ir) + d2e(ia, ir, 1)*dot_prodb(ia, ir)
    2460             :             END DO !ia
    2461             :          END DO !ir
    2462             : !$OMP END DO NOWAIT
    2463             :       END IF
    2464             : 
    2465             :       !put tmp*drhob in Vxg
    2466             :       DO dir = 1, 3
    2467             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2468             :          DO ir = 1, nr
    2469             :             DO ia = 1, na
    2470             :                vxg(1)%array(ia, ir, dir) = vxg(1)%array(ia, ir, dir) + tmp(ia, ir)*rho_set%drhob(dir)%array(ia, ir, 1)
    2471             :             END DO !ia
    2472             :          END DO !ir
    2473             : !$OMP END DO NOWAIT
    2474             :       END DO !dir
    2475             : 
    2476             :       !Vxg, last term
    2477             :       deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drhoa])
    2478             :       IF (ASSOCIATED(deriv)) THEN
    2479             :          CALL xc_derivative_get(deriv, deriv_data=d1e)
    2480             :          DO dir = 1, 3
    2481             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2482             :             DO ir = 1, nr
    2483             :                DO ia = 1, na
    2484             :                   vxg(1)%array(ia, ir, dir) = vxg(1)%array(ia, ir, dir) + d1e(ia, ir, 1)*dso(ia, ir, dir)
    2485             :                END DO !ia
    2486             :             END DO !ir
    2487             : !$OMP END DO NOWAIT
    2488             :          END DO !dir
    2489             :       END IF
    2490             : 
    2491             :       !Vxg, take the grid weight into account
    2492             :       DO dir = 1, 3
    2493             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2494             :          DO ir = 1, nr
    2495             :             DO ia = 1, na
    2496             :                vxg(1)%array(ia, ir, dir) = vxg(1)%array(ia, ir, dir)*weight(ia, ir)
    2497             :             END DO !ia
    2498             :          END DO !ir
    2499             : !$OMP END DO NOWAIT
    2500             :       END DO !dir
    2501             : 
    2502             :       !Deal with fab
    2503             : 
    2504             :       !Vxc, first term
    2505             :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhoa, deriv_norm_drhob])
    2506             :       IF (ASSOCIATED(deriv)) THEN
    2507             :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2508             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2509             :          DO ir = 1, nr
    2510             :             DO ia = 1, na
    2511             :                vxc(2)%array(ia, ir) = d2e(ia, ir, 1)*dot_prodb(ia, ir)
    2512             :             END DO !ia
    2513             :          END DO !ir
    2514             : !$OMP END DO NOWAIT
    2515             :       END IF
    2516             : 
    2517             :       !Vxc, second term
    2518             :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhoa, deriv_norm_drho])
    2519             :       IF (ASSOCIATED(deriv)) THEN
    2520             :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2521             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2522             :          DO ir = 1, nr
    2523             :             DO ia = 1, na
    2524             :                vxc(2)%array(ia, ir) = vxc(2)%array(ia, ir) + d2e(ia, ir, 1)*dot_proda(ia, ir)
    2525             :             END DO !ia
    2526             :          END DO !ir
    2527             : !$OMP END DO NOWAIT
    2528             :       END IF
    2529             : 
    2530             :       !Vxc, take the grid weight into acocunt
    2531             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2532             :       DO ir = 1, nr
    2533             :          DO ia = 1, na
    2534             :             vxc(2)%array(ia, ir) = vxc(2)%array(ia, ir)*weight(ia, ir)
    2535             :          END DO !ia
    2536             :       END DO !ir
    2537             : !$OMP END DO NOWAIT
    2538             : 
    2539             :       !Vxg, first term (to be multiplied by drhoa)
    2540             :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhob, deriv_norm_drhoa])
    2541             :       IF (ASSOCIATED(deriv)) THEN
    2542             :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2543             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2544             :          DO ir = 1, nr
    2545             :             DO ia = 1, na
    2546             :                tmp(ia, ir) = d2e(ia, ir, 1)*so(ia, ir)
    2547             :             END DO !ia
    2548             :          END DO !ir
    2549             : !$OMP END DO NOWAIT
    2550             :       END IF
    2551             : 
    2552             :       !Vxg, second term (to be multiplied by drhoa)
    2553             :       deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drhoa, deriv_norm_drho])
    2554             :       IF (ASSOCIATED(deriv)) THEN
    2555             :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2556             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2557             :          DO ir = 1, nr
    2558             :             DO ia = 1, na
    2559             :                tmp(ia, ir) = tmp(ia, ir) + d2e(ia, ir, 1)*dot_proda(ia, ir)
    2560             :             END DO !ia
    2561             :          END DO !ir
    2562             : !$OMP END DO NOWAIT
    2563             :       END IF
    2564             : 
    2565             :       !Vxg, third term (to be multiplied by drhoa)
    2566             :       deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drhoa, deriv_norm_drhob])
    2567             :       IF (ASSOCIATED(deriv)) THEN
    2568             :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2569             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2570             :          DO ir = 1, nr
    2571             :             DO ia = 1, na
    2572             :                tmp(ia, ir) = tmp(ia, ir) + d2e(ia, ir, 1)*dot_prodb(ia, ir)
    2573             :             END DO !ia
    2574             :          END DO !ir
    2575             : !$OMP END DO NOWAIT
    2576             :       END IF
    2577             : 
    2578             :       !put tmp*drhoa in Vxg
    2579             :       DO dir = 1, 3
    2580             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2581             :          DO ir = 1, nr
    2582             :             DO ia = 1, na
    2583             :                vxg(2)%array(ia, ir, dir) = tmp(ia, ir)*rho_set%drhoa(dir)%array(ia, ir, 1)
    2584             :             END DO !ia
    2585             :          END DO !ir
    2586             : !$OMP END DO NOWAIT
    2587             :       END DO !dir
    2588             : 
    2589             :       !Vxg, fourth term (to be multiplied by drhob)
    2590             :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhob, deriv_norm_drho])
    2591             :       IF (ASSOCIATED(deriv)) THEN
    2592             :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2593             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2594             :          DO ir = 1, nr
    2595             :             DO ia = 1, na
    2596             :                tmp(ia, ir) = d2e(ia, ir, 1)*so(ia, ir)
    2597             :             END DO !ia
    2598             :          END DO !ir
    2599             : !$OMP END DO NOWAIT
    2600             :       END IF
    2601             : 
    2602             :       !Vxg, fifth term (to be multiplied by drhob)
    2603             :       deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drho, deriv_norm_drhob])
    2604             :       IF (ASSOCIATED(deriv)) THEN
    2605             :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2606             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2607             :          DO ir = 1, nr
    2608             :             DO ia = 1, na
    2609             :                tmp(ia, ir) = tmp(ia, ir) + d2e(ia, ir, 1)*dot_prodb(ia, ir)
    2610             :             END DO !ia
    2611             :          END DO !ir
    2612             : !$OMP END DO NOWAIT
    2613             :       END IF
    2614             : 
    2615             :       !Vxg, sixth term (to be multiplied by drhob)
    2616             :       deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drho, deriv_norm_drho])
    2617             :       IF (ASSOCIATED(deriv)) THEN
    2618             :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2619             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2620             :          DO ir = 1, nr
    2621             :             DO ia = 1, na
    2622             :                tmp(ia, ir) = tmp(ia, ir) + d2e(ia, ir, 1)*dot_proda(ia, ir)
    2623             :             END DO !ia
    2624             :          END DO !ir
    2625             : !$OMP END DO NOWAIT
    2626             :       END IF
    2627             : 
    2628             :       !put tmp*drhob in Vxg
    2629             :       DO dir = 1, 3
    2630             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2631             :          DO ir = 1, nr
    2632             :             DO ia = 1, na
    2633             :                vxg(2)%array(ia, ir, dir) = vxg(2)%array(ia, ir, dir) + tmp(ia, ir)*rho_set%drhob(dir)%array(ia, ir, 1)
    2634             :             END DO
    2635             :          END DO
    2636             : !$OMP END DO NOWAIT
    2637             :       END DO
    2638             : 
    2639             :       !Vxg, last term
    2640             :       deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drho])
    2641             :       IF (ASSOCIATED(deriv)) THEN
    2642             :          CALL xc_derivative_get(deriv, deriv_data=d1e)
    2643             :          DO dir = 1, 3
    2644             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2645             :             DO ir = 1, nr
    2646             :                DO ia = 1, na
    2647             :                   vxg(2)%array(ia, ir, dir) = vxg(2)%array(ia, ir, dir) + d1e(ia, ir, 1)*dso(ia, ir, dir)
    2648             :                END DO !ia
    2649             :             END DO !ir
    2650             : !$OMP END DO NOWAIT
    2651             :          END DO !dir
    2652             :       END IF
    2653             : 
    2654             :       !Vxg, take the grid weight into account
    2655             :       DO dir = 1, 3
    2656             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2657             :          DO ir = 1, nr
    2658             :             DO ia = 1, na
    2659             :                vxg(2)%array(ia, ir, dir) = vxg(2)%array(ia, ir, dir)*weight(ia, ir)
    2660             :             END DO !ia
    2661             :          END DO !ir
    2662             : !$OMP END DO NOWAIT
    2663             :       END DO !dir
    2664             : 
    2665             :       !Deal with f_bb, if so required
    2666             :       IF (ub == 3) THEN
    2667             : 
    2668             :          !Vxc, first term
    2669             :          deriv => xc_dset_get_derivative(deriv_set, [deriv_rhob, deriv_norm_drhob])
    2670             :          IF (ASSOCIATED(deriv)) THEN
    2671             :             CALL xc_derivative_get(deriv, deriv_data=d2e)
    2672             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2673             :             DO ir = 1, nr
    2674             :                DO ia = 1, na
    2675             :                   vxc(3)%array(ia, ir) = d2e(ia, ir, 1)*dot_prodb(ia, ir)
    2676             :                END DO !ia
    2677             :             END DO !ir
    2678             : !$OMP END DO NOWAIT
    2679             :          END IF
    2680             : 
    2681             :          !Vxc, second term
    2682             :          deriv => xc_dset_get_derivative(deriv_set, [deriv_rhob, deriv_norm_drho])
    2683             :          IF (ASSOCIATED(deriv)) THEN
    2684             :             CALL xc_derivative_get(deriv, deriv_data=d2e)
    2685             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2686             :             DO ir = 1, nr
    2687             :                DO ia = 1, na
    2688             :                   vxc(3)%array(ia, ir) = vxc(3)%array(ia, ir) + d2e(ia, ir, 1)*dot_proda(ia, ir)
    2689             :                END DO !i
    2690             :             END DO !ir
    2691             : !$OMP END DO NOWAIT
    2692             :          END IF
    2693             : 
    2694             :          !Vxc, take the grid weight into acocunt
    2695             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2696             :          DO ir = 1, nr
    2697             :             DO ia = 1, na
    2698             :                vxc(3)%array(ia, ir) = vxc(3)%array(ia, ir)*weight(ia, ir)
    2699             :             END DO !ia
    2700             :          END DO !ir
    2701             : !$OMP END DO NOWAIT
    2702             : 
    2703             :          !Vxg, first term (to be multiplied by drhob)
    2704             :          deriv => xc_dset_get_derivative(deriv_set, [deriv_rhob, deriv_norm_drhob])
    2705             :          IF (ASSOCIATED(deriv)) THEN
    2706             :             CALL xc_derivative_get(deriv, deriv_data=d2e)
    2707             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2708             :             DO ir = 1, nr
    2709             :                DO ia = 1, na
    2710             :                   tmp(ia, ir) = d2e(ia, ir, 1)*so(ia, ir)
    2711             :                END DO !ia
    2712             :             END DO !ir
    2713             : !$OMP END DO NOWAIT
    2714             :          END IF
    2715             : 
    2716             :          !Vxg, second term (to be multiplied by drhob)
    2717             :          deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drhob, deriv_norm_drho])
    2718             :          IF (ASSOCIATED(deriv)) THEN
    2719             :             CALL xc_derivative_get(deriv, deriv_data=d2e)
    2720             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2721             :             DO ir = 1, nr
    2722             :                DO ia = 1, na
    2723             :                   tmp(ia, ir) = tmp(ia, ir) + d2e(ia, ir, 1)*dot_proda(ia, ir)
    2724             :                END DO !ia
    2725             :             END DO !ir
    2726             : !$OMP END DO NOWAIT
    2727             :          END IF
    2728             : 
    2729             :          !Vxg, third term (to be multiplied by drhob)
    2730             :          deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drhob, deriv_norm_drhob])
    2731             :          IF (ASSOCIATED(deriv)) THEN
    2732             :             CALL xc_derivative_get(deriv, deriv_data=d2e)
    2733             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2734             :             DO ir = 1, nr
    2735             :                DO ia = 1, na
    2736             :                   tmp(ia, ir) = tmp(ia, ir) + d2e(ia, ir, 1)*dot_prodb(ia, ir)
    2737             :                END DO !ia
    2738             :             END DO !ir
    2739             : !$OMP END DO NOWAIT
    2740             :          END IF
    2741             : 
    2742             :          !Vxg, fourth term (to be multiplied by drhob)
    2743             :          deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drhob])
    2744             :          IF (ASSOCIATED(deriv)) THEN
    2745             :             CALL xc_derivative_get(deriv, deriv_data=d1e)
    2746             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2747             :             DO ir = 1, nr
    2748             :                DO ia = 1, na
    2749             :                   tmp(ia, ir) = tmp(ia, ir) - d1e(ia, ir, 1)*dot_prodb(ia, ir) &
    2750             :                                 /MAX(norm_drhob(ia, ir, 1), rho_set%drho_cutoff)**2
    2751             :                END DO !ia
    2752             :             END DO !ir
    2753             : !$OMP END DO NOWAIT
    2754             :          END IF
    2755             : 
    2756             :          !put tmp*drhob in Vxg (so that we can reuse it for drhoa terms)
    2757             :          DO dir = 1, 3
    2758             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2759             :             DO ir = 1, nr
    2760             :                DO ia = 1, na
    2761             :                   vxg(3)%array(ia, ir, dir) = tmp(ia, ir)*rho_set%drhob(dir)%array(ia, ir, 1)
    2762             :                END DO !ia
    2763             :             END DO !ir
    2764             : !$OMP END DO NOWAIT
    2765             :          END DO !dir
    2766             : 
    2767             :          !Vxg, fifth term (to be multiplied by drhoa)
    2768             :          deriv => xc_dset_get_derivative(deriv_set, [deriv_rhob, deriv_norm_drho])
    2769             :          IF (ASSOCIATED(deriv)) THEN
    2770             :             CALL xc_derivative_get(deriv, deriv_data=d2e)
    2771             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2772             :             DO ir = 1, nr
    2773             :                DO ia = 1, na
    2774             :                   tmp(ia, ir) = d2e(ia, ir, 1)*so(ia, ir)
    2775             :                END DO !ia
    2776             :             END DO !ir
    2777             : !$OMP END DO NOWAIT
    2778             :          END IF
    2779             : 
    2780             :          !Vxg, sixth term (to be multiplied by drhoa)
    2781             :          deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drhob, deriv_norm_drho])
    2782             :          IF (ASSOCIATED(deriv)) THEN
    2783             :             CALL xc_derivative_get(deriv, deriv_data=d2e)
    2784             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2785             :             DO ir = 1, nr
    2786             :                DO ia = 1, na
    2787             :                   tmp(ia, ir) = tmp(ia, ir) + d2e(ia, ir, 1)*dot_prodb(ia, ir)
    2788             :                END DO !ia
    2789             :             END DO !ir
    2790             : !$OMP END DO NOWAIT
    2791             :          END IF
    2792             : 
    2793             :          !Vxg, seventh term (to be multiplied by drhoa)
    2794             :          deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drho, deriv_norm_drho])
    2795             :          IF (ASSOCIATED(deriv)) THEN
    2796             :             CALL xc_derivative_get(deriv, deriv_data=d2e)
    2797             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2798             :             DO ir = 1, nr
    2799             :                DO ia = 1, na
    2800             :                   tmp(ia, ir) = tmp(ia, ir) + d2e(ia, ir, 1)*dot_proda(ia, ir)
    2801             :                END DO !ia
    2802             :             END DO !ir
    2803             : !$OMP END DO NOWAIT
    2804             :          END IF
    2805             : 
    2806             :          !put tmp*drhoa in Vxg
    2807             :          DO dir = 1, 3
    2808             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2809             :             DO ir = 1, nr
    2810             :                DO ia = 1, na
    2811             :                   vxg(3)%array(ia, ir, dir) = vxg(3)%array(ia, ir, dir) + &
    2812             :                                               tmp(ia, ir)*rho_set%drhoa(dir)%array(ia, ir, 1)
    2813             :                END DO !ia
    2814             :             END DO !ir
    2815             : !$OMP END DO NOWAIT
    2816             :          END DO !dir
    2817             : 
    2818             :          !Vxg, last term
    2819             :          deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drhob])
    2820             :          IF (ASSOCIATED(deriv)) THEN
    2821             :             CALL xc_derivative_get(deriv, deriv_data=d1e)
    2822             :             DO dir = 1, 3
    2823             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2824             :                DO ir = 1, nr
    2825             :                   DO ia = 1, na
    2826             :                      vxg(3)%array(ia, ir, dir) = vxg(3)%array(ia, ir, dir) + d1e(ia, ir, 1)*dso(ia, ir, dir)
    2827             :                   END DO !ia
    2828             :                END DO !ir
    2829             : !$OMP END DO NOWAIT
    2830             :             END DO !dir
    2831             :          END IF
    2832             : 
    2833             :          !Vxg, take the grid weight into account
    2834             :          DO dir = 1, 3
    2835             : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2836             :             DO ir = 1, nr
    2837             :                DO ia = 1, na
    2838             :                   vxg(3)%array(ia, ir, dir) = vxg(3)%array(ia, ir, dir)*weight(ia, ir)
    2839             :                END DO !ia
    2840             :             END DO !ir
    2841             : !$OMP END DO NOWAIT
    2842             :          END DO !dir
    2843             : 
    2844             :       END IF !f_bb
    2845             : 
    2846             : !$OMP END PARALLEL
    2847             : 
    2848        2006 :       CALL timestop(handle)
    2849             : 
    2850        4012 :    END SUBROUTINE get_vxc_vxg
    2851             : 
    2852             : ! **************************************************************************************************
    2853             : !> \brief Integrate the fxc kernel in the spin-conserving case, be it closed- or open-shell
    2854             : !> \param int_fxc the array containing the (P|fxc|Q) integrals
    2855             : !> \param iatom the index of the current excited atom
    2856             : !> \param ikind the index of the current excited kind
    2857             : !> \param deriv_set the set of functional derivatives
    2858             : !> \param xas_atom_env ...
    2859             : !> \param qs_env ...
    2860             : ! **************************************************************************************************
    2861          38 :    SUBROUTINE integrate_sc_fxc(int_fxc, iatom, ikind, deriv_set, xas_atom_env, qs_env)
    2862             : 
    2863             :       TYPE(cp_2d_r_p_type), DIMENSION(:, :), POINTER     :: int_fxc
    2864             :       INTEGER, INTENT(IN)                                :: iatom, ikind
    2865             :       TYPE(xc_derivative_set_type), INTENT(IN)           :: deriv_set
    2866             :       TYPE(xas_atom_env_type), POINTER                   :: xas_atom_env
    2867             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2868             : 
    2869             :       INTEGER                                            :: i, maxso, na, nr, nset, nsotot, nspins, &
    2870             :                                                             ri_nsgf, ub
    2871             :       REAL(dp), ALLOCATABLE, DIMENSION(:, :)             :: fxc, int_so
    2872             :       REAL(dp), DIMENSION(:, :), POINTER                 :: ri_sphi_so
    2873          38 :       TYPE(cp_3d_r_p_type), ALLOCATABLE, DIMENSION(:)    :: d2e
    2874             :       TYPE(dft_control_type), POINTER                    :: dft_control
    2875             :       TYPE(grid_atom_type), POINTER                      :: grid_atom
    2876             :       TYPE(gto_basis_set_type), POINTER                  :: ri_basis
    2877          38 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    2878             :       TYPE(xc_derivative_type), POINTER                  :: deriv
    2879             : 
    2880          38 :       NULLIFY (grid_atom, deriv, ri_basis, ri_sphi_so, qs_kind_set, dft_control)
    2881             : 
    2882             :       ! Initialization
    2883          38 :       CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set, dft_control=dft_control)
    2884          38 :       grid_atom => xas_atom_env%grid_atom_set(ikind)%grid_atom
    2885          38 :       na = grid_atom%ng_sphere
    2886          38 :       nr = grid_atom%nr
    2887          38 :       CALL get_qs_kind(qs_kind_set(ikind), basis_set=ri_basis, basis_type="RI_XAS")
    2888          38 :       CALL get_gto_basis_set(ri_basis, nset=nset, maxso=maxso, nsgf=ri_nsgf)
    2889          38 :       nsotot = nset*maxso
    2890          38 :       ri_sphi_so => xas_atom_env%ri_sphi_so(ikind)%array
    2891          38 :       nspins = dft_control%nspins
    2892             : 
    2893             :       ! Get the second derivatives
    2894         190 :       ALLOCATE (d2e(3))
    2895          38 :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhoa, deriv_rhoa])
    2896          38 :       CALL xc_derivative_get(deriv, deriv_data=d2e(1)%array)
    2897          38 :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhoa, deriv_rhob])
    2898          38 :       CALL xc_derivative_get(deriv, deriv_data=d2e(2)%array)
    2899          38 :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhob, deriv_rhob])
    2900          38 :       CALL xc_derivative_get(deriv, deriv_data=d2e(3)%array)
    2901             : 
    2902             :       ! Allocate some work arrays
    2903         152 :       ALLOCATE (fxc(na, nr))
    2904         152 :       ALLOCATE (int_so(nsotot, nsotot))
    2905             : 
    2906             :       ! Integrate for all three derivatives, taking the grid weight into account
    2907             :       ! If closed shell, do not need to integrate beta-beta as it is the same as alpha-alpha
    2908          38 :       ub = 2; IF (nspins == 2) ub = 3
    2909         116 :       DO i = 1, ub
    2910             : 
    2911     4393650 :          int_so = 0.0_dp
    2912     2058330 :          fxc(:, :) = d2e(i)%array(:, :, 1)*grid_atom%weight(:, :)
    2913          78 :          CALL integrate_so_prod(int_so, fxc, ikind, xas_atom_env, qs_env)
    2914             : 
    2915             :          !contract into sgf. Array allocated on current processor only
    2916         312 :          ALLOCATE (int_fxc(iatom, i)%array(ri_nsgf, ri_nsgf))
    2917      506066 :          int_fxc(iatom, i)%array = 0.0_dp
    2918         116 :          CALL contract_so2sgf(int_fxc(iatom, i)%array, int_so, ri_basis, ri_sphi_so)
    2919             : 
    2920             :       END DO
    2921             : 
    2922         114 :    END SUBROUTINE integrate_sc_fxc
    2923             : 
    2924             : ! **************************************************************************************************
    2925             : !> \brief Integrate the fxc kernel in the spin-flip case (open-shell assumed). The spin-flip LDA
    2926             : !>        kernel reads: fxc = 1/(rhoa - rhob) * (dE/drhoa - dE/drhob)
    2927             : !> \param int_fxc the array containing the (P|fxc|Q) integrals
    2928             : !> \param iatom the index of the current excited atom
    2929             : !> \param ikind the index of the current excited kind
    2930             : !> \param rho_set the density in the atomic grid
    2931             : !> \param deriv_set the set of functional derivatives
    2932             : !> \param xas_atom_env ...
    2933             : !> \param qs_env ...
    2934             : ! **************************************************************************************************
    2935           0 :    SUBROUTINE integrate_sf_fxc(int_fxc, iatom, ikind, rho_set, deriv_set, xas_atom_env, qs_env)
    2936             : 
    2937             :       TYPE(cp_2d_r_p_type), DIMENSION(:, :), POINTER     :: int_fxc
    2938             :       INTEGER, INTENT(IN)                                :: iatom, ikind
    2939             :       TYPE(xc_rho_set_type), INTENT(IN)                  :: rho_set
    2940             :       TYPE(xc_derivative_set_type), INTENT(IN)           :: deriv_set
    2941             :       TYPE(xas_atom_env_type), POINTER                   :: xas_atom_env
    2942             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2943             : 
    2944             :       INTEGER                                            :: ia, ir, maxso, na, nr, nset, nsotot, &
    2945             :                                                             ri_nsgf
    2946           0 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :)             :: fxc, int_so
    2947             :       REAL(dp), DIMENSION(:, :), POINTER                 :: ri_sphi_so
    2948           0 :       REAL(dp), DIMENSION(:, :, :), POINTER              :: rhoa, rhob
    2949           0 :       TYPE(cp_3d_r_p_type), ALLOCATABLE, DIMENSION(:)    :: d1e, d2e
    2950             :       TYPE(dft_control_type), POINTER                    :: dft_control
    2951             :       TYPE(grid_atom_type), POINTER                      :: grid_atom
    2952             :       TYPE(gto_basis_set_type), POINTER                  :: ri_basis
    2953           0 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    2954             :       TYPE(xc_derivative_type), POINTER                  :: deriv
    2955             : 
    2956           0 :       NULLIFY (grid_atom, deriv, ri_basis, ri_sphi_so, qs_kind_set, rhoa, rhob, dft_control)
    2957             : 
    2958             :       ! Initialization
    2959           0 :       CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set, dft_control=dft_control)
    2960           0 :       grid_atom => xas_atom_env%grid_atom_set(ikind)%grid_atom
    2961           0 :       na = grid_atom%ng_sphere
    2962           0 :       nr = grid_atom%nr
    2963           0 :       CALL get_qs_kind(qs_kind_set(ikind), basis_set=ri_basis, basis_type="RI_XAS")
    2964           0 :       CALL get_gto_basis_set(ri_basis, nset=nset, maxso=maxso, nsgf=ri_nsgf)
    2965           0 :       nsotot = nset*maxso
    2966           0 :       ri_sphi_so => xas_atom_env%ri_sphi_so(ikind)%array
    2967           0 :       rhoa => rho_set%rhoa
    2968           0 :       rhob => rho_set%rhob
    2969             : 
    2970           0 :       ALLOCATE (d1e(2))
    2971           0 :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhoa])
    2972           0 :       CALL xc_derivative_get(deriv, deriv_data=d1e(1)%array)
    2973           0 :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhob])
    2974           0 :       CALL xc_derivative_get(deriv, deriv_data=d1e(2)%array)
    2975             : 
    2976             :       ! In case rhoa -> rhob, take the limit, which involves the (already computed) second derivatives
    2977           0 :       ALLOCATE (d2e(3))
    2978           0 :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhoa, deriv_rhoa])
    2979           0 :       CALL xc_derivative_get(deriv, deriv_data=d2e(1)%array)
    2980           0 :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhoa, deriv_rhob])
    2981           0 :       CALL xc_derivative_get(deriv, deriv_data=d2e(2)%array)
    2982           0 :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhob, deriv_rhob])
    2983           0 :       CALL xc_derivative_get(deriv, deriv_data=d2e(3)%array)
    2984             : 
    2985             :       !Compute the kernel on the grid. Already take weight into acocunt there
    2986           0 :       ALLOCATE (fxc(na, nr))
    2987             : !$OMP PARALLEL DO COLLAPSE(2) SCHEDULE(STATIC) DEFAULT(NONE), &
    2988             : !$OMP SHARED(grid_atom,fxc,d1e,d2e,dft_control,na,nr,rhoa,rhob), &
    2989           0 : !$OMP PRIVATE(ia,ir)
    2990             :       DO ir = 1, nr
    2991             :          DO ia = 1, na
    2992             : 
    2993             :             !Need to be careful not to divide by zero. Assume that if rhoa == rhob, then
    2994             :             !take the limit fxc = 0.5* (f_aa + f_bb - 2f_ab)
    2995             :             IF (ABS(rhoa(ia, ir, 1) - rhob(ia, ir, 1)) > dft_control%qs_control%eps_rho_rspace) THEN
    2996             :                fxc(ia, ir) = grid_atom%weight(ia, ir)/(rhoa(ia, ir, 1) - rhob(ia, ir, 1)) &
    2997             :                              *(d1e(1)%array(ia, ir, 1) - d1e(2)%array(ia, ir, 1))
    2998             :             ELSE
    2999             :                fxc(ia, ir) = 0.5_dp*grid_atom%weight(ia, ir)* &
    3000             :                              (d2e(1)%array(ia, ir, 1) + d2e(3)%array(ia, ir, 1) - 2._dp*d2e(2)%array(ia, ir, 1))
    3001             :             END IF
    3002             : 
    3003             :          END DO
    3004             :       END DO
    3005             : !$OMP END PARALLEL DO
    3006             : 
    3007             :       ! Integrate wrt to so
    3008           0 :       ALLOCATE (int_so(nsotot, nsotot))
    3009           0 :       int_so = 0.0_dp
    3010           0 :       CALL integrate_so_prod(int_so, fxc, ikind, xas_atom_env, qs_env)
    3011             : 
    3012             :       ! Contract into sgf. Array located on current processor only
    3013           0 :       ALLOCATE (int_fxc(iatom, 4)%array(ri_nsgf, ri_nsgf))
    3014           0 :       int_fxc(iatom, 4)%array = 0.0_dp
    3015           0 :       CALL contract_so2sgf(int_fxc(iatom, 4)%array, int_so, ri_basis, ri_sphi_so)
    3016             : 
    3017           0 :    END SUBROUTINE integrate_sf_fxc
    3018             : 
    3019             : ! **************************************************************************************************
    3020             : !> \brief Contract spherical orbitals to spherical Gaussians (so to sgf)
    3021             : !> \param int_sgf the array with the sgf integrals
    3022             : !> \param int_so the array with the so integrals (to contract)
    3023             : !> \param basis the corresponding gto basis set
    3024             : !> \param sphi_so the contraction coefficients for the s:
    3025             : ! **************************************************************************************************
    3026         248 :    SUBROUTINE contract_so2sgf(int_sgf, int_so, basis, sphi_so)
    3027             : 
    3028             :       REAL(dp), DIMENSION(:, :)                          :: int_sgf, int_so
    3029             :       TYPE(gto_basis_set_type), POINTER                  :: basis
    3030             :       REAL(dp), DIMENSION(:, :)                          :: sphi_so
    3031             : 
    3032             :       INTEGER                                            :: iset, jset, maxso, nset, nsoi, nsoj, &
    3033             :                                                             sgfi, sgfj, starti, startj
    3034         248 :       INTEGER, DIMENSION(:), POINTER                     :: lmax, npgf, nsgf_set
    3035         248 :       INTEGER, DIMENSION(:, :), POINTER                  :: first_sgf
    3036             : 
    3037         248 :       NULLIFY (nsgf_set, npgf, lmax, first_sgf)
    3038             : 
    3039             :       CALL get_gto_basis_set(basis, nset=nset, maxso=maxso, nsgf_set=nsgf_set, first_sgf=first_sgf, &
    3040         248 :                              npgf=npgf, lmax=lmax)
    3041             : 
    3042        1156 :       DO iset = 1, nset
    3043         908 :          starti = (iset - 1)*maxso + 1
    3044         908 :          nsoi = npgf(iset)*nsoset(lmax(iset))
    3045         908 :          sgfi = first_sgf(1, iset)
    3046             : 
    3047        7268 :          DO jset = 1, nset
    3048        6112 :             startj = (jset - 1)*maxso + 1
    3049        6112 :             nsoj = npgf(jset)*nsoset(lmax(jset))
    3050        6112 :             sgfj = first_sgf(1, jset)
    3051             : 
    3052             :             CALL ab_contract(int_sgf(sgfi:sgfi + nsgf_set(iset) - 1, sgfj:sgfj + nsgf_set(jset) - 1), &
    3053             :                              int_so(starti:starti + nsoi - 1, startj:startj + nsoj - 1), &
    3054             :                              sphi_so(:, sgfi:), sphi_so(:, sgfj:), nsoi, nsoj, &
    3055        7020 :                              nsgf_set(iset), nsgf_set(jset))
    3056             :          END DO !jset
    3057             :       END DO !iset
    3058             : 
    3059         248 :    END SUBROUTINE contract_so2sgf
    3060             : 
    3061             : ! **************************************************************************************************
    3062             : !> \brief Integrate the product of spherical gaussian orbitals with the xc kernel on the atomic grid
    3063             : !> \param intso the integral in terms of spherical orbitals
    3064             : !> \param fxc the xc kernel at each grid point
    3065             : !> \param ikind the kind of the atom we integrate for
    3066             : !> \param xas_atom_env ...
    3067             : !> \param qs_env ...
    3068             : !> \note Largely copied from gaVxcgb_noGC. Rewritten here because we need our own atomic grid,
    3069             : !>       harmonics, basis set and we do not need the soft vxc. Could have tweaked the original, but
    3070             : !>       it would have been messy. Also we do not need rho_atom (too big and fancy for us)
    3071             : !>       We also go over the whole range of angular momentum l
    3072             : ! **************************************************************************************************
    3073          78 :    SUBROUTINE integrate_so_prod(intso, fxc, ikind, xas_atom_env, qs_env)
    3074             : 
    3075             :       REAL(dp), DIMENSION(:, :), INTENT(INOUT)           :: intso
    3076             :       REAL(dp), DIMENSION(:, :), INTENT(IN)              :: fxc
    3077             :       INTEGER, INTENT(IN)                                :: ikind
    3078             :       TYPE(xas_atom_env_type), POINTER                   :: xas_atom_env
    3079             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    3080             : 
    3081             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'integrate_so_prod'
    3082             : 
    3083             :       INTEGER :: handle, ia, ic, icg, ipgf1, ipgf2, iset1, iset2, iso, iso1, iso2, l, ld, lmax12, &
    3084             :          lmin12, m1, m2, max_iso_not0, max_iso_not0_local, max_s_harm, maxl, maxso, n1, n2, na, &
    3085             :          ngau1, ngau2, nngau1, nr, nset, size1
    3086             :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: cg_n_list
    3087             :       INTEGER, ALLOCATABLE, DIMENSION(:, :, :)           :: cg_list
    3088          78 :       INTEGER, DIMENSION(:), POINTER                     :: lmax, lmin, npgf
    3089          78 :       REAL(dp), ALLOCATABLE, DIMENSION(:)                :: g1, g2
    3090          78 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :)             :: gfxcg, gg, matso
    3091          78 :       REAL(dp), DIMENSION(:, :), POINTER                 :: zet
    3092             :       REAL(dp), DIMENSION(:, :, :), POINTER              :: my_CG
    3093             :       TYPE(grid_atom_type), POINTER                      :: grid_atom
    3094             :       TYPE(gto_basis_set_type), POINTER                  :: ri_basis
    3095             :       TYPE(harmonics_atom_type), POINTER                 :: harmonics
    3096          78 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    3097             : 
    3098          78 :       CALL timeset(routineN, handle)
    3099             : 
    3100          78 :       NULLIFY (grid_atom, harmonics, ri_basis, qs_kind_set, lmax, lmin, npgf, zet, my_CG)
    3101             : 
    3102             : !  Initialization
    3103          78 :       CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set)
    3104          78 :       CALL get_qs_kind(qs_kind_set(ikind), basis_set=ri_basis, basis_type="RI_XAS")
    3105          78 :       grid_atom => xas_atom_env%grid_atom_set(ikind)%grid_atom
    3106          78 :       harmonics => xas_atom_env%harmonics_atom_set(ikind)%harmonics_atom
    3107             : 
    3108             :       CALL get_gto_basis_set(ri_basis, lmax=lmax, lmin=lmin, maxso=maxso, maxl=maxl, npgf=npgf, &
    3109          78 :                              nset=nset, zet=zet)
    3110             : 
    3111          78 :       na = grid_atom%ng_sphere
    3112          78 :       nr = grid_atom%nr
    3113          78 :       my_CG => harmonics%my_CG
    3114          78 :       max_iso_not0 = harmonics%max_iso_not0
    3115          78 :       max_s_harm = harmonics%max_s_harm
    3116          78 :       CPASSERT(2*maxl .LE. indso(1, max_iso_not0))
    3117             : 
    3118         546 :       ALLOCATE (g1(nr), g2(nr), gg(nr, 0:2*maxl))
    3119         312 :       ALLOCATE (gfxcg(na, 0:2*maxl))
    3120         312 :       ALLOCATE (matso(nsoset(maxl), nsoset(maxl)))
    3121         468 :       ALLOCATE (cg_list(2, nsoset(maxl)**2, max_s_harm), cg_n_list(max_s_harm))
    3122             : 
    3123       10466 :       g1 = 0.0_dp
    3124       10466 :       g2 = 0.0_dp
    3125          78 :       m1 = 0
    3126             : !  Loop over the product of so
    3127         310 :       DO iset1 = 1, nset
    3128         232 :          n1 = nsoset(lmax(iset1))
    3129         232 :          m2 = 0
    3130        2292 :          DO iset2 = 1, nset
    3131             :             CALL get_none0_cg_list(my_CG, lmin(iset1), lmax(iset1), lmin(iset2), lmax(iset2), &
    3132             :                                    max_s_harm, lmax(iset1) + lmax(iset2), cg_list, cg_n_list, &
    3133        2060 :                                    max_iso_not0_local)
    3134        2060 :             CPASSERT(max_iso_not0_local .LE. max_iso_not0)
    3135             : 
    3136        2060 :             n2 = nsoset(lmax(iset2))
    3137        6128 :             DO ipgf1 = 1, npgf(iset1)
    3138        4068 :                ngau1 = n1*(ipgf1 - 1) + m1
    3139        4068 :                size1 = nsoset(lmax(iset1)) - nsoset(lmin(iset1) - 1)
    3140        4068 :                nngau1 = nsoset(lmin(iset1) - 1) + ngau1
    3141             : 
    3142      635428 :                g1(:) = EXP(-zet(ipgf1, iset1)*grid_atom%rad2(1:nr))
    3143       26196 :                DO ipgf2 = 1, npgf(iset2)
    3144       20068 :                   ngau2 = n2*(ipgf2 - 1) + m2
    3145             : 
    3146     2615870 :                   g2(:) = EXP(-zet(ipgf2, iset2)*grid_atom%rad2(1:nr))
    3147       20068 :                   lmin12 = lmin(iset1) + lmin(iset2)
    3148       20068 :                   lmax12 = lmax(iset1) + lmax(iset2)
    3149             : 
    3150             :                   !get the gaussian product
    3151    18015114 :                   gg = 0.0_dp
    3152       20068 :                   IF (lmin12 == 0) THEN
    3153     1461044 :                      gg(:, lmin12) = g1(:)*g2(:)
    3154             :                   ELSE
    3155     1154826 :                      gg(:, lmin12) = grid_atom%rad2l(1:nr, lmin12)*g1(:)*g2(:)
    3156             :                   END IF
    3157             : 
    3158       60612 :                   DO l = lmin12 + 1, lmax12
    3159     5473172 :                      gg(:, l) = grid_atom%rad(1:nr)*gg(:, l - 1)
    3160             :                   END DO
    3161             : 
    3162       20068 :                   ld = lmax12 + 1
    3163             :                   CALL dgemm('N', 'N', na, ld, nr, 1.0_dp, fxc(1:na, 1:nr), na, gg(:, 0:lmax12), &
    3164       20068 :                              nr, 0.0_dp, gfxcg(1:na, 0:lmax12), na)
    3165             : 
    3166             :                   !integrate
    3167     6160324 :                   matso = 0.0_dp
    3168      404316 :                   DO iso = 1, max_iso_not0_local
    3169     2092858 :                      DO icg = 1, cg_n_list(iso)
    3170     1688542 :                         iso1 = cg_list(1, icg, iso)
    3171     1688542 :                         iso2 = cg_list(2, icg, iso)
    3172     1688542 :                         l = indso(1, iso1) + indso(1, iso2)
    3173             : 
    3174   345611978 :                         DO ia = 1, na
    3175             :                            matso(iso1, iso2) = matso(iso1, iso2) + gfxcg(ia, l)* &
    3176   345227730 :                                                my_CG(iso1, iso2, iso)*harmonics%slm(ia, iso)
    3177             :                         END DO !ia
    3178             :                      END DO !icg
    3179             :                   END DO !iso
    3180             : 
    3181             :                   !write in integral matrix
    3182      142036 :                   DO ic = nsoset(lmin(iset2) - 1) + 1, nsoset(lmax(iset2))
    3183      117900 :                      iso1 = nsoset(lmin(iset1) - 1) + 1
    3184      117900 :                      iso2 = ngau2 + ic
    3185      137968 :                      CALL daxpy(size1, 1.0_dp, matso(iso1:, ic), 1, intso(nngau1 + 1:, iso2), 1)
    3186             :                   END DO !ic
    3187             : 
    3188             :                END DO !ipgf2
    3189             :             END DO ! ipgf1
    3190        2292 :             m2 = m2 + maxso
    3191             :          END DO !iset2
    3192         310 :          m1 = m1 + maxso
    3193             :       END DO !iset1
    3194             : 
    3195          78 :       CALL timestop(handle)
    3196             : 
    3197         234 :    END SUBROUTINE integrate_so_prod
    3198             : 
    3199             : ! **************************************************************************************************
    3200             : !> \brief This routine computes the integral of a potential V wrt the derivative of the spherical
    3201             : !>        orbitals, that is <df/dx|V|dg/dy> on the atomic grid.
    3202             : !> \param intso the integral in terms of the spherical orbitals (well, their derivative)
    3203             : !> \param V the potential (put on the grid and weighted) to integrate
    3204             : !> \param ikind the atomic kind for which we integrate
    3205             : !> \param qs_env ...
    3206             : !> \param soc_atom_env ...
    3207             : ! **************************************************************************************************
    3208          44 :    SUBROUTINE integrate_so_dxdy_prod(intso, V, ikind, qs_env, soc_atom_env)
    3209             : 
    3210             :       REAL(dp), DIMENSION(:, :, :), INTENT(INOUT)        :: intso
    3211             :       REAL(dp), DIMENSION(:, :), INTENT(IN)              :: V
    3212             :       INTEGER, INTENT(IN)                                :: ikind
    3213             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    3214             :       TYPE(soc_atom_env_type), OPTIONAL, POINTER         :: soc_atom_env
    3215             : 
    3216             :       INTEGER                                            :: i, ipgf, iset, iso, j, jpgf, jset, jso, &
    3217             :                                                             k, l, maxso, na, nr, nset, starti, &
    3218             :                                                             startj
    3219          44 :       INTEGER, DIMENSION(:), POINTER                     :: lmax, lmin, npgf
    3220          44 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :)             :: fga, fgr, r1, r2, work
    3221          44 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :, :)          :: a1, a2
    3222          44 :       REAL(dp), DIMENSION(:, :), POINTER                 :: slm, zet
    3223          44 :       REAL(dp), DIMENSION(:, :, :), POINTER              :: dslm_dxyz
    3224             :       TYPE(grid_atom_type), POINTER                      :: grid_atom
    3225             :       TYPE(gto_basis_set_type), POINTER                  :: basis
    3226             :       TYPE(harmonics_atom_type), POINTER                 :: harmonics
    3227          44 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    3228             : 
    3229          44 :       NULLIFY (grid_atom, harmonics, basis, qs_kind_set, dslm_dxyz, slm, lmin, lmax, npgf, zet)
    3230             : 
    3231          44 :       CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set)
    3232          44 :       CALL get_qs_kind(qs_kind_set(ikind), basis_set=basis, basis_type="ORB")
    3233          44 :       IF (PRESENT(soc_atom_env)) THEN
    3234           8 :          grid_atom => soc_atom_env%grid_atom_set(ikind)%grid_atom
    3235           8 :          harmonics => soc_atom_env%harmonics_atom_set(ikind)%harmonics_atom
    3236             :       ELSE
    3237             :          CALL get_qs_kind(qs_kind_set(ikind), basis_set=basis, basis_type="ORB", harmonics=harmonics, &
    3238          36 :                           grid_atom=grid_atom)
    3239             :       END IF
    3240             : 
    3241          44 :       na = grid_atom%ng_sphere
    3242          44 :       nr = grid_atom%nr
    3243             : 
    3244          44 :       slm => harmonics%slm
    3245          44 :       dslm_dxyz => harmonics%dslm_dxyz
    3246             : 
    3247             : !  Getting what we need from the orbital basis
    3248             :       CALL get_gto_basis_set(gto_basis_set=basis, lmax=lmax, lmin=lmin, &
    3249          44 :                              maxso=maxso, npgf=npgf, nset=nset, zet=zet)
    3250             : 
    3251             : !  Separate the functions into purely r and purely angular parts, compute them all
    3252             : !  and use matrix mutliplication for the integral. We use f for x derivative and g for y
    3253             : 
    3254             :       ! Separating the functions. Note that the radial part is the same for x and y derivatives
    3255         308 :       ALLOCATE (a1(na, nset*maxso, 3), a2(na, nset*maxso, 3))
    3256         264 :       ALLOCATE (r1(nr, nset*maxso), r2(nr, nset*maxso))
    3257      929324 :       a1 = 0.0_dp; a2 = 0.0_dp
    3258      299588 :       r1 = 0.0_dp; r2 = 0.0_dp
    3259             : 
    3260         244 :       DO iset = 1, nset
    3261         722 :          DO ipgf = 1, npgf(iset)
    3262         478 :             starti = (iset - 1)*maxso + (ipgf - 1)*nsoset(lmax(iset))
    3263        1930 :             DO iso = nsoset(lmin(iset) - 1) + 1, nsoset(lmax(iset))
    3264        1252 :                l = indso(1, iso)
    3265             : 
    3266             :                ! The x derivative of the spherical orbital, divided in angular and radial parts
    3267             :                ! Two of each are needed because d/dx(r^l Y_lm) * exp(-al*r^2) + r^l Y_lm * ! d/dx(exp-al*r^2)
    3268             : 
    3269             :                ! the purely radial part of d/dx(r^l Y_lm) * exp(-al*r^2) (same for y)
    3270       61182 :                r1(1:nr, starti + iso) = grid_atom%rad(1:nr)**(l - 1)*EXP(-zet(ipgf, iset)*grid_atom%rad2(1:nr))
    3271             : 
    3272             :                ! the purely radial part of r^l Y_lm * d/dx(exp-al*r^2) (same for y)
    3273             :                r2(1:nr, starti + iso) = -2.0_dp*zet(ipgf, iset)*grid_atom%rad(1:nr)**(l + 1) &
    3274       61182 :                                         *EXP(-zet(ipgf, iset)*grid_atom%rad2(1:nr))
    3275             : 
    3276        5486 :                DO i = 1, 3
    3277             :                   ! the purely angular part of d/dx(r^l Y_lm) * exp(-al*r^2)
    3278      191556 :                   a1(1:na, starti + iso, i) = dslm_dxyz(i, 1:na, iso)
    3279             : 
    3280             :                   ! the purely angular part of r^l Y_lm * d/dx(exp-al*r^2)
    3281      192808 :                   a2(1:na, starti + iso, i) = harmonics%a(i, 1:na)*slm(1:na, iso)
    3282             :                END DO
    3283             : 
    3284             :             END DO !iso
    3285             :          END DO !ipgf
    3286             :       END DO !iset
    3287             : 
    3288             :       ! Do the integration in terms of so using matrix products
    3289     1308380 :       intso = 0.0_dp
    3290         132 :       ALLOCATE (fga(na, 1))
    3291         132 :       ALLOCATE (fgr(nr, 1))
    3292          88 :       ALLOCATE (work(na, 1))
    3293        6714 :       fga = 0.0_dp; fgr = 0.0_dp; work = 0.0_dp
    3294             : 
    3295         244 :       DO iset = 1, nset
    3296        1544 :          DO jset = 1, nset
    3297        4470 :             DO ipgf = 1, npgf(iset)
    3298        2970 :                starti = (iset - 1)*maxso + (ipgf - 1)*nsoset(lmax(iset))
    3299       11472 :                DO jpgf = 1, npgf(jset)
    3300        7202 :                   startj = (jset - 1)*maxso + (jpgf - 1)*nsoset(lmax(jset))
    3301             : 
    3302       31778 :                   DO i = 1, 3
    3303       21606 :                      j = MOD(i, 3) + 1
    3304       21606 :                      k = MOD(i + 1, 3) + 1
    3305             : 
    3306       84584 :                      DO iso = nsoset(lmin(iset) - 1) + 1, nsoset(lmax(iset))
    3307      234174 :                         DO jso = nsoset(lmin(jset) - 1) + 1, nsoset(lmax(jset))
    3308             : 
    3309             :                            !Two component per function => 4 terms in total
    3310             : 
    3311             :                            ! take r1*a1(j) * V * r1*a1(k)
    3312     7624818 :                            fgr(1:nr, 1) = r1(1:nr, starti + iso)*r1(1:nr, startj + jso)
    3313     7996392 :                            fga(1:na, 1) = a1(1:na, starti + iso, j)*a1(1:na, startj + jso, k)
    3314             : 
    3315      156792 :                            CALL dgemm('N', 'N', na, 1, nr, 1.0_dp, V, na, fgr, nr, 0.0_dp, work, na)
    3316             :                            CALL dgemm('T', 'N', 1, 1, na, 1.0_dp, work, na, fga, na, 0.0_dp, &
    3317      156792 :                                       intso(starti + iso:, startj + jso, i), 1)
    3318             : 
    3319             :                            ! add r1*a1(j) * V * r2*a2(k)
    3320     7624818 :                            fgr(1:nr, 1) = r1(1:nr, starti + iso)*r2(1:nr, startj + jso)
    3321     7996392 :                            fga(1:na, 1) = a1(1:na, starti + iso, j)*a2(1:na, startj + jso, k)
    3322             : 
    3323      156792 :                            CALL dgemm('N', 'N', na, 1, nr, 1.0_dp, V, na, fgr, nr, 0.0_dp, work, na)
    3324             :                            CALL dgemm('T', 'N', 1, 1, na, 1.0_dp, work, na, fga, na, 1.0_dp, &
    3325      156792 :                                       intso(starti + iso:, startj + jso, i), 1)
    3326             : 
    3327             :                            ! add r2*a2(j) * V * r1*a1(k)
    3328     7624818 :                            fgr(1:nr, 1) = r2(1:nr, starti + iso)*r1(1:nr, startj + jso)
    3329     7996392 :                            fga(1:na, 1) = a2(1:na, starti + iso, j)*a1(1:na, startj + jso, k)
    3330             : 
    3331      156792 :                            CALL dgemm('N', 'N', na, 1, nr, 1.0_dp, V, na, fgr, nr, 0.0_dp, work, na)
    3332             :                            CALL dgemm('T', 'N', 1, 1, na, 1.0_dp, work, na, fga, na, 1.0_dp, &
    3333      156792 :                                       intso(starti + iso:, startj + jso, i), 1)
    3334             : 
    3335             :                            ! add the last term: r2*a2(j) * V * r2*a2(k)
    3336     7624818 :                            fgr(1:nr, 1) = r2(1:nr, starti + iso)*r2(1:nr, startj + jso)
    3337     7996392 :                            fga(1:na, 1) = a2(1:na, starti + iso, j)*a2(1:na, startj + jso, k)
    3338             : 
    3339      156792 :                            CALL dgemm('N', 'N', na, 1, nr, 1.0_dp, V, na, fgr, nr, 0.0_dp, work, na)
    3340             :                            CALL dgemm('T', 'N', 1, 1, na, 1.0_dp, work, na, fga, na, 1.0_dp, &
    3341      212568 :                                       intso(starti + iso:, startj + jso, i), 1)
    3342             : 
    3343             :                         END DO !jso
    3344             :                      END DO !iso
    3345             : 
    3346             :                   END DO !i
    3347             :                END DO !jpgf
    3348             :             END DO !ipgf
    3349             :          END DO !jset
    3350             :       END DO !iset
    3351             : 
    3352         176 :       DO i = 1, 3
    3353     2616584 :          intso(:, :, i) = intso(:, :, i) - TRANSPOSE(intso(:, :, i))
    3354             :       END DO
    3355             : 
    3356         132 :    END SUBROUTINE integrate_so_dxdy_prod
    3357             : 
    3358             : ! **************************************************************************************************
    3359             : !> \brief Computes the SOC matrix elements with respect to the ORB basis set for each atomic kind
    3360             : !>        and put them as the block diagonal of dbcsr_matrix
    3361             : !> \param matrix_soc the matrix where the SOC is stored
    3362             : !> \param xas_atom_env ...
    3363             : !> \param qs_env ...
    3364             : !> \param soc_atom_env ...
    3365             : !> \note We compute: <da_dx|V\(4c^2-2V)|db_dy> - <da_dy|V\(4c^2-2V)|db_dx>, where V is a model
    3366             : !>       potential on the atomic grid. What we get is purely imaginary
    3367             : ! **************************************************************************************************
    3368          30 :    SUBROUTINE integrate_soc_atoms(matrix_soc, xas_atom_env, qs_env, soc_atom_env)
    3369             : 
    3370             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_soc
    3371             :       TYPE(xas_atom_env_type), OPTIONAL, POINTER         :: xas_atom_env
    3372             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    3373             :       TYPE(soc_atom_env_type), OPTIONAL, POINTER         :: soc_atom_env
    3374             : 
    3375             :       CHARACTER(len=*), PARAMETER :: routineN = 'integrate_soc_atoms'
    3376             : 
    3377             :       INTEGER                                            :: blk, handle, i, iat, ikind, ir, jat, &
    3378             :                                                             maxso, na, nkind, nr, nset, nsgf
    3379             :       LOGICAL                                            :: all_potential_present
    3380             :       REAL(dp)                                           :: zeff
    3381          30 :       REAL(dp), ALLOCATABLE, DIMENSION(:)                :: Vr
    3382          30 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :)             :: V
    3383          30 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :, :)          :: intso
    3384          30 :       REAL(dp), DIMENSION(:, :), POINTER                 :: sphi_so
    3385          30 :       REAL(dp), DIMENSION(:, :, :), POINTER              :: intsgf
    3386          30 :       TYPE(cp_3d_r_p_type), DIMENSION(:), POINTER        :: int_soc
    3387             :       TYPE(dbcsr_iterator_type)                          :: iter
    3388          30 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_s
    3389             :       TYPE(grid_atom_type), POINTER                      :: grid
    3390             :       TYPE(gto_basis_set_type), POINTER                  :: basis
    3391          30 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    3392          30 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    3393             : 
    3394             : !!DEBUG
    3395          30 :       CALL timeset(routineN, handle)
    3396             : 
    3397          30 :       NULLIFY (int_soc, basis, qs_kind_set, sphi_so, matrix_s, grid)
    3398          30 :       NULLIFY (particle_set)
    3399             : 
    3400             :       !  Initialization
    3401             :       CALL get_qs_env(qs_env, nkind=nkind, qs_kind_set=qs_kind_set, matrix_s=matrix_s, &
    3402          30 :                       particle_set=particle_set)
    3403             : 
    3404             :       ! all_potential_present
    3405          30 :       CALL get_qs_kind_set(qs_kind_set, all_potential_present=all_potential_present)
    3406             : 
    3407             :       ! Loop over the kinds to compute the integrals
    3408         134 :       ALLOCATE (int_soc(nkind))
    3409          74 :       DO ikind = 1, nkind
    3410          44 :          CALL get_qs_kind(qs_kind_set(ikind), basis_set=basis, basis_type="ORB", zeff=zeff)
    3411          44 :          IF (PRESENT(soc_atom_env)) THEN
    3412           8 :             grid => soc_atom_env%grid_atom_set(ikind)%grid_atom
    3413             :          ELSE
    3414          36 :             CALL get_qs_kind(qs_kind_set(ikind), grid_atom=grid)
    3415             :          END IF
    3416          44 :          CALL get_gto_basis_set(basis, nset=nset, maxso=maxso)
    3417         220 :          ALLOCATE (intso(nset*maxso, nset*maxso, 3))
    3418             : 
    3419             :          ! compute the model potential on the grid
    3420          44 :          nr = grid%nr
    3421          44 :          na = grid%ng_sphere
    3422             : 
    3423         132 :          ALLOCATE (Vr(nr))
    3424          44 :          CALL calculate_model_potential(Vr, grid, zeff)
    3425             : 
    3426             :          ! Compute V/(4c^2-2V) and weight it
    3427         176 :          ALLOCATE (V(na, nr))
    3428      109082 :          V = 0.0_dp
    3429        2182 :          DO ir = 1, nr
    3430             :             CALL daxpy(na, Vr(ir)/(4.0_dp*c_light_au**2 - 2.0_dp*Vr(ir)), grid%weight(:, ir), 1, &
    3431        2182 :                        V(:, ir), 1)
    3432             :          END DO
    3433          44 :          DEALLOCATE (Vr)
    3434             : 
    3435             :          ! compute the integral <da_dx|...|db_dy> in terms of so
    3436          44 :          IF (PRESENT(xas_atom_env)) THEN
    3437          36 :             CALL integrate_so_dxdy_prod(intso, V, ikind, qs_env)
    3438             :          ELSE
    3439           8 :             CALL integrate_so_dxdy_prod(intso, V, ikind, qs_env, soc_atom_env)
    3440             :          END IF
    3441          44 :          DEALLOCATE (V)
    3442             : 
    3443             :          ! contract in terms of sgf
    3444          44 :          CALL get_gto_basis_set(basis, nsgf=nsgf)
    3445         220 :          ALLOCATE (int_soc(ikind)%array(nsgf, nsgf, 3))
    3446          44 :          intsgf => int_soc(ikind)%array
    3447          44 :          IF (PRESENT(xas_atom_env)) THEN
    3448          36 :             sphi_so => xas_atom_env%orb_sphi_so(ikind)%array
    3449             :          ELSE
    3450           8 :             sphi_so => soc_atom_env%orb_sphi_so(ikind)%array
    3451             :          END IF
    3452       35888 :          intsgf = 0.0_dp
    3453             : 
    3454         176 :          DO i = 1, 3
    3455         176 :             CALL contract_so2sgf(intsgf(:, :, i), intso(:, :, i), basis, sphi_so)
    3456             :          END DO
    3457             : 
    3458         206 :          DEALLOCATE (intso)
    3459             :       END DO !ikind
    3460             : 
    3461             :       ! Build the matrix_soc based on the matrix_s (but anti-symmetric)
    3462          30 :       IF ((PRESENT(xas_atom_env)) .OR. all_potential_present) THEN
    3463         112 :          DO i = 1, 3
    3464             :             CALL dbcsr_create(matrix_soc(i)%matrix, name="SOC MATRIX", template=matrix_s(1)%matrix, &
    3465         112 :                               matrix_type=dbcsr_type_antisymmetric)
    3466             :          END DO
    3467             :          !  Iterate over its diagonal blocks and fill=it
    3468          28 :          CALL dbcsr_iterator_start(iter, matrix_s(1)%matrix)
    3469         158 :          DO WHILE (dbcsr_iterator_blocks_left(iter))
    3470             : 
    3471         130 :             CALL dbcsr_iterator_next_block(iter, row=iat, column=jat, blk=blk)
    3472         130 :             IF (.NOT. iat == jat) CYCLE
    3473          46 :             ikind = particle_set(iat)%atomic_kind%kind_number
    3474             : 
    3475         212 :             DO i = 1, 3
    3476         268 :                CALL dbcsr_put_block(matrix_soc(i)%matrix, iat, iat, int_soc(ikind)%array(:, :, i))
    3477             :             END DO
    3478             : 
    3479             :          END DO !iat
    3480          28 :          CALL dbcsr_iterator_stop(iter)
    3481             :       ELSE  ! pseudopotentials here
    3482           8 :          DO i = 1, 3
    3483             :             CALL dbcsr_create(matrix_soc(i)%matrix, name="SOC MATRIX", template=matrix_s(1)%matrix, &
    3484           6 :                               matrix_type=dbcsr_type_no_symmetry)
    3485           6 :             CALL dbcsr_set(matrix_soc(i)%matrix, 0.0_dp)
    3486           8 :             CALL dbcsr_copy(matrix_soc(i)%matrix, soc_atom_env%soc_pp(i, 1)%matrix)
    3487             :          END DO
    3488             :       END IF
    3489             : 
    3490         120 :       DO i = 1, 3
    3491         120 :          CALL dbcsr_finalize(matrix_soc(i)%matrix)
    3492             :       END DO
    3493             : 
    3494             :       ! Clean-up
    3495          74 :       DO ikind = 1, nkind
    3496          74 :          DEALLOCATE (int_soc(ikind)%array)
    3497             :       END DO
    3498          30 :       DEALLOCATE (int_soc)
    3499             : 
    3500          30 :       CALL timestop(handle)
    3501             : 
    3502          90 :    END SUBROUTINE integrate_soc_atoms
    3503             : 
    3504             : END MODULE xas_tdp_atom

Generated by: LCOV version 1.15