Line data Source code
1 : !--------------------------------------------------------------------------------------------------!
2 : ! CP2K: A general program to perform molecular dynamics simulations !
3 : ! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
4 : ! !
5 : ! SPDX-License-Identifier: GPL-2.0-or-later !
6 : !--------------------------------------------------------------------------------------------------!
7 :
8 : ! **************************************************************************************************
9 : !> \brief Utilities for X-ray absorption spectroscopy using TDDFPT
10 : !> \author AB (01.2018)
11 : ! **************************************************************************************************
12 :
13 : MODULE xas_tdp_utils
14 : USE cp_blacs_env, ONLY: cp_blacs_env_type
15 : USE cp_cfm_diag, ONLY: cp_cfm_heevd
16 : USE cp_cfm_types, ONLY: cp_cfm_create,&
17 : cp_cfm_get_info,&
18 : cp_cfm_get_submatrix,&
19 : cp_cfm_release,&
20 : cp_cfm_type,&
21 : cp_fm_to_cfm
22 : USE cp_dbcsr_api, ONLY: &
23 : dbcsr_add, dbcsr_copy, dbcsr_create, dbcsr_distribution_get, dbcsr_distribution_new, &
24 : dbcsr_distribution_release, dbcsr_distribution_type, dbcsr_finalize, dbcsr_get_block_p, &
25 : dbcsr_get_info, dbcsr_iterator_blocks_left, dbcsr_iterator_next_block, &
26 : dbcsr_iterator_start, dbcsr_iterator_stop, dbcsr_iterator_type, dbcsr_multiply, &
27 : dbcsr_p_type, dbcsr_put_block, dbcsr_release, dbcsr_reserve_all_blocks, dbcsr_set, &
28 : dbcsr_type, dbcsr_type_no_symmetry, dbcsr_type_symmetric
29 : USE cp_dbcsr_cholesky, ONLY: cp_dbcsr_cholesky_decompose,&
30 : cp_dbcsr_cholesky_invert
31 : USE cp_dbcsr_diag, ONLY: cp_dbcsr_power
32 : USE cp_dbcsr_operations, ONLY: copy_dbcsr_to_fm,&
33 : copy_fm_to_dbcsr,&
34 : cp_dbcsr_sm_fm_multiply,&
35 : dbcsr_allocate_matrix_set,&
36 : dbcsr_deallocate_matrix_set
37 : USE cp_fm_basic_linalg, ONLY: cp_fm_column_scale,&
38 : cp_fm_scale,&
39 : cp_fm_transpose,&
40 : cp_fm_upper_to_full
41 : USE cp_fm_diag, ONLY: choose_eigv_solver,&
42 : cp_fm_geeig
43 : USE cp_fm_struct, ONLY: cp_fm_struct_create,&
44 : cp_fm_struct_release,&
45 : cp_fm_struct_type
46 : USE cp_fm_types, ONLY: cp_fm_create,&
47 : cp_fm_get_diag,&
48 : cp_fm_get_info,&
49 : cp_fm_get_submatrix,&
50 : cp_fm_release,&
51 : cp_fm_set_element,&
52 : cp_fm_to_fm_submat,&
53 : cp_fm_type
54 : USE cp_log_handling, ONLY: cp_logger_get_default_io_unit
55 : USE input_constants, ONLY: ot_precond_full_single,&
56 : tddfpt_singlet,&
57 : tddfpt_spin_cons,&
58 : tddfpt_spin_flip,&
59 : tddfpt_triplet,&
60 : xas_dip_len
61 : USE kinds, ONLY: dp
62 : USE mathlib, ONLY: get_diag
63 : USE message_passing, ONLY: mp_para_env_type
64 : USE parallel_gemm_api, ONLY: parallel_gemm
65 : USE physcon, ONLY: a_fine
66 : USE preconditioner_types, ONLY: destroy_preconditioner,&
67 : init_preconditioner,&
68 : preconditioner_type
69 : USE qs_environment_types, ONLY: get_qs_env,&
70 : qs_environment_type
71 : USE qs_mo_methods, ONLY: calculate_subspace_eigenvalues
72 : USE qs_mo_types, ONLY: get_mo_set,&
73 : mo_set_type
74 : USE qs_ot_eigensolver, ONLY: ot_eigensolver
75 : USE xas_tdp_kernel, ONLY: kernel_coulomb_xc,&
76 : kernel_exchange
77 : USE xas_tdp_types, ONLY: donor_state_type,&
78 : xas_tdp_control_type,&
79 : xas_tdp_env_type
80 :
81 : !$ USE OMP_LIB, ONLY: omp_get_max_threads, omp_get_thread_num
82 : #include "./base/base_uses.f90"
83 :
84 : IMPLICIT NONE
85 : PRIVATE
86 :
87 : CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'xas_tdp_utils'
88 :
89 : PUBLIC :: setup_xas_tdp_prob, solve_xas_tdp_prob, include_rcs_soc, &
90 : include_os_soc, rcs_amew_soc_elements
91 :
92 : !A helper type for SOC
93 : TYPE dbcsr_soc_package_type
94 : TYPE(dbcsr_type), POINTER :: dbcsr_sg => NULL()
95 : TYPE(dbcsr_type), POINTER :: dbcsr_tp => NULL()
96 : TYPE(dbcsr_type), POINTER :: dbcsr_sc => NULL()
97 : TYPE(dbcsr_type), POINTER :: dbcsr_sf => NULL()
98 : TYPE(dbcsr_type), POINTER :: dbcsr_prod => NULL()
99 : TYPE(dbcsr_type), POINTER :: dbcsr_ovlp => NULL()
100 : TYPE(dbcsr_type), POINTER :: dbcsr_tmp => NULL()
101 : TYPE(dbcsr_type), POINTER :: dbcsr_work => NULL()
102 : END TYPE dbcsr_soc_package_type
103 :
104 : CONTAINS
105 :
106 : ! **************************************************************************************************
107 : !> \brief Builds the matrix that defines the XAS TDDFPT generalized eigenvalue problem to be solved
108 : !> for excitation energies omega. The problem has the form omega*G*C = M*C, where C contains
109 : !> the response orbitals coefficients. The matrix M and the metric G are stored in the given
110 : !> donor_state
111 : !> \param donor_state the donor_state for which the problem is restricted
112 : !> \param qs_env ...
113 : !> \param xas_tdp_env ...
114 : !> \param xas_tdp_control ...
115 : !> \note the matrix M is symmetric and has the form | M_d M_o |
116 : !> | M_o M_d |,
117 : !> -In the SPIN-RESTRICTED case:
118 : !> depending on whether we consider singlet or triplet excitation, the diagonal (M_d) and
119 : !> off-diagonal (M_o) parts of M differ:
120 : !> - For singlet: M_d = A + 2B + C_aa + C_ab - D
121 : !> M_o = 2B + C_aa + C_ab - E
122 : !> - For triplet: M_d = A + C_aa - C_ab - D
123 : !> M_o = C_aa - C_ab - E
124 : !> where other subroutines computes the matrices A, B, E, D and G, which are:
125 : !> - A: the ground-state contribution: F_pq*delta_IJ - epsilon_IJ*S_pq
126 : !> - B: the Coulomb kernel ~(pI|Jq)
127 : !> - C: the xc kernel c_aa (double derivatibe wrt to n_alpha) and C_ab (wrt n_alpha and n_beta)
128 : !> - D: the on-digonal exact exchange kernel ~(pq|IJ)
129 : !> - E: the off-diagonal exact exchange kernel ~(pJ|Iq)
130 : !> - G: the metric S_pq*delta_IJ
131 : !> For the xc functionals, C_aa + C_ab or C_aa - C_ab are stored in the same matrix
132 : !> In the above definitions, I,J label the donnor MOs and p,q the sgfs of the basis
133 : !>
134 : !> -In the SPIN-UNRESTRICTED, spin-conserving case:
135 : !> the on- and off-diagonal elements of M are:
136 : !> M_d = A + B + C -D
137 : !> M_o = B + C - E
138 : !> where the submatrices A, B, C, D and E are:
139 : !> - A: the groun-state contribution: (F_pq*delta_IJ - epsilon_IJ*S_pq) * delta_ab
140 : !> - B: the Coulomb kernel: (pI_a|J_b q)
141 : !> - C: the xc kernel: (pI_a|fxc_ab|J_b q)
142 : !> - D: the on-diagonal exact-exchange kernel: (pq|I_a J_b) delta_ab
143 : !> - E: the off-diagonal exact-exchange kernel: (pJ_b|I_a q) delta_ab
144 : !> - G: the metric S_pq*delta_IJ*delta_ab
145 : !> p,q label the sgfs, I,J the donro MOs and a,b the spins
146 : !>
147 : !> -In both above cases, the matrix M is always projected onto the unperturbed unoccupied
148 : !> ground state: M <= Q * M * Q^T = (1 - SP) * M * (1 - PS)
149 : !>
150 : !> -In the SPIN-FLIP case:
151 : !> Only the TDA is implemented, that is, there are only on-diagonal elements:
152 : !> M_d = A + C - D
153 : !> where the submatrices A, C and D are:
154 : !> - A: the ground state-contribution: (F_pq*delta_IJ - epsilon_IJ*S_pq) * delta_ab, but here,
155 : !> the alph-alpha quadrant has the beta Fock matrix and
156 : !> the beta-beta quadrant has the alpha Fock matrix
157 : !> - C: the SF xc kernel: (pI_a|fxc|J_bq), fxc = 1/m * (vxc_a -vxc_b)
158 : !> - D: the on-diagonal exact-exchange kernel: (pq|I_a J_b) delta_ab
159 : !> To ensure that all excitation start from a given spin to the opposite, we then multiply
160 : !> by a Q projector where we swap the alpha-alpha and beta-beta spin-quadrants
161 : !>
162 : !> All possibilities: TDA or full-TDDFT, singlet or triplet, xc or hybrid, etc are treated
163 : !> in the same routine to avoid recomputing stuff
164 : !> Under TDA, only the on-diagonal elements of M are computed
165 : !> In the case of non-TDA, one turns the problem Hermitian
166 : ! **************************************************************************************************
167 56 : SUBROUTINE setup_xas_tdp_prob(donor_state, qs_env, xas_tdp_env, xas_tdp_control)
168 :
169 : TYPE(donor_state_type), POINTER :: donor_state
170 : TYPE(qs_environment_type), POINTER :: qs_env
171 : TYPE(xas_tdp_env_type), POINTER :: xas_tdp_env
172 : TYPE(xas_tdp_control_type), POINTER :: xas_tdp_control
173 :
174 : CHARACTER(len=*), PARAMETER :: routineN = 'setup_xas_tdp_prob'
175 :
176 : INTEGER :: handle
177 56 : INTEGER, DIMENSION(:), POINTER :: submat_blk_size
178 : LOGICAL :: do_coul, do_hfx, do_os, do_sc, do_sf, &
179 : do_sg, do_tda, do_tp, do_xc
180 : REAL(dp) :: eps_filter, sx
181 : TYPE(dbcsr_distribution_type), POINTER :: submat_dist
182 56 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: ex_ker, xc_ker
183 : TYPE(dbcsr_type) :: matrix_a, matrix_a_sf, matrix_b, proj_Q, &
184 : proj_Q_sf, work
185 : TYPE(dbcsr_type), POINTER :: matrix_c_sc, matrix_c_sf, matrix_c_sg, matrix_c_tp, matrix_d, &
186 : matrix_e_sc, sc_matrix_tdp, sf_matrix_tdp, sg_matrix_tdp, tp_matrix_tdp
187 :
188 56 : NULLIFY (sg_matrix_tdp, tp_matrix_tdp, submat_dist, submat_blk_size, matrix_c_sf)
189 56 : NULLIFY (matrix_c_sg, matrix_c_tp, matrix_c_sc, matrix_d, matrix_e_sc)
190 56 : NULLIFY (sc_matrix_tdp, sf_matrix_tdp, ex_ker, xc_ker)
191 :
192 56 : CALL timeset(routineN, handle)
193 :
194 : ! Initialization
195 56 : do_os = xas_tdp_control%do_uks .OR. xas_tdp_control%do_roks
196 56 : do_sc = xas_tdp_control%do_spin_cons
197 56 : do_sf = xas_tdp_control%do_spin_flip
198 56 : do_sg = xas_tdp_control%do_singlet
199 56 : do_tp = xas_tdp_control%do_triplet
200 56 : do_xc = xas_tdp_control%do_xc
201 56 : do_hfx = xas_tdp_control%do_hfx
202 56 : do_coul = xas_tdp_control%do_coulomb
203 56 : do_tda = xas_tdp_control%tamm_dancoff
204 56 : sx = xas_tdp_control%sx
205 56 : eps_filter = xas_tdp_control%eps_filter
206 56 : IF (do_sc) THEN
207 8 : ALLOCATE (donor_state%sc_matrix_tdp)
208 8 : sc_matrix_tdp => donor_state%sc_matrix_tdp
209 : END IF
210 56 : IF (do_sf) THEN
211 2 : ALLOCATE (donor_state%sf_matrix_tdp)
212 2 : sf_matrix_tdp => donor_state%sf_matrix_tdp
213 : END IF
214 56 : IF (do_sg) THEN
215 48 : ALLOCATE (donor_state%sg_matrix_tdp)
216 48 : sg_matrix_tdp => donor_state%sg_matrix_tdp
217 : END IF
218 56 : IF (do_tp) THEN
219 2 : ALLOCATE (donor_state%tp_matrix_tdp)
220 2 : tp_matrix_tdp => donor_state%tp_matrix_tdp
221 : END IF
222 :
223 : ! Get the dist and block size of all matrices A, B, C, etc
224 56 : CALL compute_submat_dist_and_blk_size(donor_state, do_os, qs_env)
225 56 : submat_dist => donor_state%dbcsr_dist
226 56 : submat_blk_size => donor_state%blk_size
227 :
228 : ! Allocate and compute all the matrices A, B, C, etc we will need
229 :
230 : ! The projector(s) on the unoccupied unperturbed ground state 1-SP and associated work matrix
231 56 : IF (do_sg .OR. do_tp .OR. do_sc) THEN !spin-conserving
232 56 : CALL get_q_projector(proj_Q, donor_state, do_os, xas_tdp_env)
233 : END IF
234 56 : IF (do_sf) THEN !spin-flip
235 2 : CALL get_q_projector(proj_Q_sf, donor_state, do_os, xas_tdp_env, do_sf=.TRUE.)
236 : END IF
237 : CALL dbcsr_create(matrix=work, matrix_type=dbcsr_type_no_symmetry, dist=submat_dist, &
238 56 : name="WORK", row_blk_size=submat_blk_size, col_blk_size=submat_blk_size)
239 :
240 : ! The ground state contribution(s)
241 56 : IF (do_sg .OR. do_tp .OR. do_sc) THEN !spin-conserving
242 56 : CALL build_gs_contribution(matrix_a, donor_state, do_os, qs_env)
243 : END IF
244 56 : IF (do_sf) THEN !spin-flip
245 2 : CALL build_gs_contribution(matrix_a_sf, donor_state, do_os, qs_env, do_sf=.TRUE.)
246 : END IF
247 :
248 : ! The Coulomb and XC kernels. Internal analysis to know which matrix to compute
249 56 : CALL dbcsr_allocate_matrix_set(xc_ker, 4)
250 56 : ALLOCATE (xc_ker(1)%matrix, xc_ker(2)%matrix, xc_ker(3)%matrix, xc_ker(4)%matrix)
251 56 : CALL kernel_coulomb_xc(matrix_b, xc_ker, donor_state, xas_tdp_env, xas_tdp_control, qs_env)
252 56 : matrix_c_sg => xc_ker(1)%matrix; matrix_c_tp => xc_ker(2)%matrix
253 56 : matrix_c_sc => xc_ker(3)%matrix; matrix_c_sf => xc_ker(4)%matrix
254 :
255 : ! The exact exchange. Internal analysis to know which matrices to compute
256 56 : CALL dbcsr_allocate_matrix_set(ex_ker, 2)
257 56 : ALLOCATE (ex_ker(1)%matrix, ex_ker(2)%matrix)
258 56 : CALL kernel_exchange(ex_ker, donor_state, xas_tdp_env, xas_tdp_control, qs_env)
259 56 : matrix_d => ex_ker(1)%matrix; matrix_e_sc => ex_ker(2)%matrix
260 :
261 : ! Build the metric G, also need its inverse in case of full-TDDFT
262 56 : IF (do_tda) THEN
263 100 : ALLOCATE (donor_state%metric(1))
264 50 : CALL build_metric(donor_state%metric, donor_state, qs_env, do_os)
265 : ELSE
266 18 : ALLOCATE (donor_state%metric(2))
267 6 : CALL build_metric(donor_state%metric, donor_state, qs_env, do_os, do_inv=.TRUE.)
268 : END IF
269 :
270 : ! Build the eigenvalue problem, depending on the case (TDA, singlet, triplet, hfx, etc ...)
271 56 : IF (do_tda) THEN
272 :
273 50 : IF (do_sc) THEN ! open-shell spin-conserving under TDA
274 :
275 : ! The final matrix is M = A + B + C - D
276 8 : CALL dbcsr_copy(sc_matrix_tdp, matrix_a, name="OS MATRIX TDP")
277 8 : IF (do_coul) CALL dbcsr_add(sc_matrix_tdp, matrix_b, 1.0_dp, 1.0_dp)
278 :
279 8 : IF (do_xc) CALL dbcsr_add(sc_matrix_tdp, matrix_c_sc, 1.0_dp, 1.0_dp) !xc kernel
280 8 : IF (do_hfx) CALL dbcsr_add(sc_matrix_tdp, matrix_d, 1.0_dp, -1.0_dp*sx) !scaled hfx
281 :
282 : ! The product with the Q projector
283 8 : CALL dbcsr_multiply('N', 'N', 1.0_dp, proj_Q, sc_matrix_tdp, 0.0_dp, work, filter_eps=eps_filter)
284 8 : CALL dbcsr_multiply('N', 'T', 1.0_dp, work, proj_Q, 0.0_dp, sc_matrix_tdp, filter_eps=eps_filter)
285 :
286 : END IF !do_sc
287 :
288 50 : IF (do_sf) THEN ! open-shell spin-flip under TDA
289 :
290 : ! The final matrix is M = A + C - D
291 2 : CALL dbcsr_copy(sf_matrix_tdp, matrix_a_sf, name="OS MATRIX TDP")
292 :
293 2 : IF (do_xc) CALL dbcsr_add(sf_matrix_tdp, matrix_c_sf, 1.0_dp, 1.0_dp) !xc kernel
294 2 : IF (do_hfx) CALL dbcsr_add(sf_matrix_tdp, matrix_d, 1.0_dp, -1.0_dp*sx) !scaled hfx
295 :
296 : ! Take the product with the (spin-flip) Q projector
297 2 : CALL dbcsr_multiply('N', 'N', 1.0_dp, proj_Q_sf, sf_matrix_tdp, 0.0_dp, work, filter_eps=eps_filter)
298 2 : CALL dbcsr_multiply('N', 'T', 1.0_dp, work, proj_Q_sf, 0.0_dp, sf_matrix_tdp, filter_eps=eps_filter)
299 :
300 : END IF !do_sf
301 :
302 50 : IF (do_sg) THEN ! singlets under TDA
303 :
304 : ! The final matrix is M = A + 2B + (C_aa + C_ab) - D
305 42 : CALL dbcsr_copy(sg_matrix_tdp, matrix_a, name="SINGLET MATRIX TDP")
306 42 : IF (do_coul) CALL dbcsr_add(sg_matrix_tdp, matrix_b, 1.0_dp, 2.0_dp)
307 :
308 42 : IF (do_xc) CALL dbcsr_add(sg_matrix_tdp, matrix_c_sg, 1.0_dp, 1.0_dp) ! xc kernel
309 42 : IF (do_hfx) CALL dbcsr_add(sg_matrix_tdp, matrix_d, 1.0_dp, -1.0_dp*sx) ! scaled hfx
310 :
311 : ! Take the product with the Q projector:
312 42 : CALL dbcsr_multiply('N', 'N', 1.0_dp, proj_Q, sg_matrix_tdp, 0.0_dp, work, filter_eps=eps_filter)
313 42 : CALL dbcsr_multiply('N', 'T', 1.0_dp, work, proj_Q, 0.0_dp, sg_matrix_tdp, filter_eps=eps_filter)
314 :
315 : END IF !do_sg (TDA)
316 :
317 50 : IF (do_tp) THEN ! triplets under TDA
318 :
319 : ! The final matrix is M = A + (C_aa - C_ab) - D
320 2 : CALL dbcsr_copy(tp_matrix_tdp, matrix_a, name="TRIPLET MATRIX TDP")
321 :
322 2 : IF (do_xc) CALL dbcsr_add(tp_matrix_tdp, matrix_c_tp, 1.0_dp, 1.0_dp) ! xc_kernel
323 2 : IF (do_hfx) CALL dbcsr_add(tp_matrix_tdp, matrix_d, 1.0_dp, -1.0_dp*sx) ! scaled hfx
324 :
325 : ! Take the product with the Q projector:
326 2 : CALL dbcsr_multiply('N', 'N', 1.0_dp, proj_Q, tp_matrix_tdp, 0.0_dp, work, filter_eps=eps_filter)
327 2 : CALL dbcsr_multiply('N', 'T', 1.0_dp, work, proj_Q, 0.0_dp, tp_matrix_tdp, filter_eps=eps_filter)
328 :
329 : END IF !do_tp (TDA)
330 :
331 : ELSE ! not TDA
332 :
333 : ! In the case of full-TDDFT, the problem is turned Hermitian with the help of auxiliary
334 : ! matrices AUX = (A-D+E)^(+-0.5) that are stored in donor_state
335 : CALL build_aux_matrix(1.0E-8_dp, sx, matrix_a, matrix_d, matrix_e_sc, do_hfx, proj_Q, &
336 6 : work, donor_state, eps_filter, qs_env)
337 :
338 6 : IF (do_sc) THEN !full-TDDFT open-shell spin-conserving
339 :
340 : ! The final matrix is the sum of the on- and off-diagonal elements as in the description
341 : ! M = A + 2B + 2C - D - E
342 0 : CALL dbcsr_copy(sc_matrix_tdp, matrix_a, name="OS MATRIX TDP")
343 0 : IF (do_coul) CALL dbcsr_add(sc_matrix_tdp, matrix_b, 1.0_dp, 2.0_dp)
344 :
345 0 : IF (do_hfx) THEN !scaled hfx
346 0 : CALL dbcsr_add(sc_matrix_tdp, matrix_d, 1.0_dp, -1.0_dp*sx)
347 0 : CALL dbcsr_add(sc_matrix_tdp, matrix_e_sc, 1.0_dp, -1.0_dp*sx)
348 : END IF
349 0 : IF (do_xc) THEN
350 0 : CALL dbcsr_add(sc_matrix_tdp, matrix_c_sc, 1.0_dp, 2.0_dp)
351 : END IF
352 :
353 : ! Take the product with the Q projector
354 0 : CALL dbcsr_multiply('N', 'N', 1.0_dp, proj_Q, sc_matrix_tdp, 0.0_dp, work, filter_eps=eps_filter)
355 0 : CALL dbcsr_multiply('N', 'T', 1.0_dp, work, proj_Q, 0.0_dp, sc_matrix_tdp, filter_eps=eps_filter)
356 :
357 : ! Take the product with the inverse metric
358 : ! M <= G^-1 * M * G^-1
359 : CALL dbcsr_multiply('N', 'N', 1.0_dp, donor_state%metric(2)%matrix, sc_matrix_tdp, &
360 0 : 0.0_dp, work, filter_eps=eps_filter)
361 : CALL dbcsr_multiply('N', 'N', 1.0_dp, work, donor_state%metric(2)%matrix, 0.0_dp, &
362 0 : sc_matrix_tdp, filter_eps=eps_filter)
363 :
364 : END IF
365 :
366 6 : IF (do_sg) THEN ! full-TDDFT singlets
367 :
368 : ! The final matrix is the sum of the on- and off-diagonal elements as in the description
369 : ! M = A + 4B + 2(C_aa + C_ab) - D - E
370 6 : CALL dbcsr_copy(sg_matrix_tdp, matrix_a, name="SINGLET MATRIX TDP")
371 6 : IF (do_coul) CALL dbcsr_add(sg_matrix_tdp, matrix_b, 1.0_dp, 4.0_dp)
372 :
373 6 : IF (do_hfx) THEN !scaled hfx
374 6 : CALL dbcsr_add(sg_matrix_tdp, matrix_d, 1.0_dp, -1.0_dp*sx)
375 6 : CALL dbcsr_add(sg_matrix_tdp, matrix_e_sc, 1.0_dp, -1.0_dp*sx)
376 : END IF
377 6 : IF (do_xc) THEN !xc kernel
378 6 : CALL dbcsr_add(sg_matrix_tdp, matrix_c_sg, 1.0_dp, 2.0_dp)
379 : END IF
380 :
381 : ! Take the product with the Q projector
382 6 : CALL dbcsr_multiply('N', 'N', 1.0_dp, proj_Q, sg_matrix_tdp, 0.0_dp, work, filter_eps=eps_filter)
383 6 : CALL dbcsr_multiply('N', 'T', 1.0_dp, work, proj_Q, 0.0_dp, sg_matrix_tdp, filter_eps=eps_filter)
384 :
385 : ! Take the product with the inverse metric
386 : ! M <= G^-1 * M * G^-1
387 : CALL dbcsr_multiply('N', 'N', 1.0_dp, donor_state%metric(2)%matrix, sg_matrix_tdp, &
388 6 : 0.0_dp, work, filter_eps=eps_filter)
389 : CALL dbcsr_multiply('N', 'N', 1.0_dp, work, donor_state%metric(2)%matrix, 0.0_dp, &
390 6 : sg_matrix_tdp, filter_eps=eps_filter)
391 :
392 : END IF ! singlets
393 :
394 6 : IF (do_tp) THEN ! full-TDDFT triplets
395 :
396 : ! The final matrix is the sum of the on- and off-diagonal elements as in the description
397 : ! M = A + 2(C_aa - C_ab) - D - E
398 0 : CALL dbcsr_copy(tp_matrix_tdp, matrix_a, name="TRIPLET MATRIX TDP")
399 :
400 0 : IF (do_hfx) THEN !scaled hfx
401 0 : CALL dbcsr_add(tp_matrix_tdp, matrix_d, 1.0_dp, -1.0_dp*sx)
402 0 : CALL dbcsr_add(tp_matrix_tdp, matrix_e_sc, 1.0_dp, -1.0_dp*sx)
403 : END IF
404 0 : IF (do_xc) THEN
405 0 : CALL dbcsr_add(tp_matrix_tdp, matrix_c_tp, 1.0_dp, 2.0_dp)
406 : END IF
407 :
408 : ! Take the product with the Q projector
409 0 : CALL dbcsr_multiply('N', 'N', 1.0_dp, proj_Q, tp_matrix_tdp, 0.0_dp, work, filter_eps=eps_filter)
410 0 : CALL dbcsr_multiply('N', 'T', 1.0_dp, work, proj_Q, 0.0_dp, tp_matrix_tdp, filter_eps=eps_filter)
411 :
412 : ! Take the product with the inverse metric
413 : ! M <= G^-1 * M * G^-1
414 : CALL dbcsr_multiply('N', 'N', 1.0_dp, donor_state%metric(2)%matrix, tp_matrix_tdp, &
415 0 : 0.0_dp, work, filter_eps=eps_filter)
416 : CALL dbcsr_multiply('N', 'N', 1.0_dp, work, donor_state%metric(2)%matrix, 0.0_dp, &
417 0 : tp_matrix_tdp, filter_eps=eps_filter)
418 :
419 : END IF ! triplets
420 :
421 : END IF ! test on TDA
422 :
423 : ! Clean-up
424 56 : CALL dbcsr_release(matrix_a)
425 56 : CALL dbcsr_release(matrix_a_sf)
426 56 : CALL dbcsr_release(matrix_b)
427 56 : CALL dbcsr_release(proj_Q)
428 56 : CALL dbcsr_release(proj_Q_sf)
429 56 : CALL dbcsr_release(work)
430 56 : CALL dbcsr_deallocate_matrix_set(ex_ker)
431 56 : CALL dbcsr_deallocate_matrix_set(xc_ker)
432 :
433 56 : CALL timestop(handle)
434 :
435 56 : END SUBROUTINE setup_xas_tdp_prob
436 :
437 : ! **************************************************************************************************
438 : !> \brief Solves the XAS TDP generalized eigenvalue problem omega*C = matrix_tdp*C using standard
439 : !> full diagonalization methods. The problem is Hermitian (made that way even if not TDA)
440 : !> \param donor_state ...
441 : !> \param xas_tdp_control ...
442 : !> \param xas_tdp_env ...
443 : !> \param qs_env ...
444 : !> \param ex_type whether we deal with singlets, triplets, spin-conserving open-shell or spin-flip
445 : !> \note The computed eigenvalues and eigenvectors are stored in the donor_state
446 : !> The eigenvectors are the LR-coefficients. In case of TDA, c^- is stored. In the general
447 : !> case, the sum c^+ + c^- is stored.
448 : !> - Spin-restricted:
449 : !> In case both singlets and triplets are considered, this routine must be called twice. This
450 : !> is the choice that was made because the body of the routine is exactly the same in both cases
451 : !> Note that for singlet we solve for u = 1/sqrt(2)*(c_alpha + c_beta) = sqrt(2)*c
452 : !> and that for triplets we solve for v = 1/sqrt(2)*(c_alpha - c_beta) = sqrt(2)*c
453 : !> - Spin-unrestricted:
454 : !> The problem is solved for the LR coefficients c_pIa as they are (not linear combination)
455 : !> The routine might be called twice (once for spin-conservign, one for spin-flip)
456 : ! **************************************************************************************************
457 60 : SUBROUTINE solve_xas_tdp_prob(donor_state, xas_tdp_control, xas_tdp_env, qs_env, ex_type)
458 :
459 : TYPE(donor_state_type), POINTER :: donor_state
460 : TYPE(xas_tdp_control_type), POINTER :: xas_tdp_control
461 : TYPE(xas_tdp_env_type), POINTER :: xas_tdp_env
462 : TYPE(qs_environment_type), POINTER :: qs_env
463 : INTEGER, INTENT(IN) :: ex_type
464 :
465 : CHARACTER(len=*), PARAMETER :: routineN = 'solve_xas_tdp_prob'
466 :
467 : INTEGER :: first_ex, handle, i, imo, ispin, nao, &
468 : ndo_mo, nelectron, nevals, nocc, nrow, &
469 : nspins, ot_nevals
470 : LOGICAL :: do_os, do_range, do_sf
471 : REAL(dp) :: ot_elb
472 60 : REAL(dp), ALLOCATABLE, DIMENSION(:) :: scaling, tmp_evals
473 60 : REAL(dp), DIMENSION(:), POINTER :: lr_evals
474 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
475 : TYPE(cp_fm_struct_type), POINTER :: ex_struct, fm_struct, ot_fm_struct
476 : TYPE(cp_fm_type) :: c_diff, c_sum, lhs_matrix, rhs_matrix, &
477 : work
478 : TYPE(cp_fm_type), POINTER :: lr_coeffs
479 : TYPE(dbcsr_type) :: tmp_mat, tmp_mat2
480 : TYPE(dbcsr_type), POINTER :: matrix_tdp
481 : TYPE(mp_para_env_type), POINTER :: para_env
482 :
483 60 : CALL timeset(routineN, handle)
484 :
485 60 : NULLIFY (para_env, blacs_env, fm_struct, matrix_tdp)
486 60 : NULLIFY (ex_struct, lr_evals, lr_coeffs)
487 60 : CPASSERT(ASSOCIATED(xas_tdp_env))
488 :
489 60 : do_os = .FALSE.
490 60 : do_sf = .FALSE.
491 60 : IF (ex_type == tddfpt_spin_cons) THEN
492 8 : matrix_tdp => donor_state%sc_matrix_tdp
493 8 : do_os = .TRUE.
494 52 : ELSE IF (ex_type == tddfpt_spin_flip) THEN
495 2 : matrix_tdp => donor_state%sf_matrix_tdp
496 2 : do_os = .TRUE.
497 2 : do_sf = .TRUE.
498 50 : ELSE IF (ex_type == tddfpt_singlet) THEN
499 48 : matrix_tdp => donor_state%sg_matrix_tdp
500 2 : ELSE IF (ex_type == tddfpt_triplet) THEN
501 2 : matrix_tdp => donor_state%tp_matrix_tdp
502 : END IF
503 60 : CALL get_qs_env(qs_env=qs_env, para_env=para_env, blacs_env=blacs_env, nelectron_total=nelectron)
504 :
505 : ! Initialization
506 60 : nspins = 1; IF (do_os) nspins = 2
507 60 : CALL cp_fm_get_info(donor_state%gs_coeffs, nrow_global=nao)
508 60 : CALL dbcsr_get_info(matrix_tdp, nfullrows_total=nrow)
509 60 : ndo_mo = donor_state%ndo_mo
510 60 : nocc = nelectron/2; IF (do_os) nocc = nelectron
511 60 : nocc = ndo_mo*nocc
512 :
513 : !solve by energy_range or number of states ?
514 60 : do_range = .FALSE.
515 60 : IF (xas_tdp_control%e_range > 0.0_dp) do_range = .TRUE.
516 :
517 : ! create the fm infrastructure
518 : CALL cp_fm_struct_create(fm_struct, context=blacs_env, nrow_global=nrow, &
519 60 : para_env=para_env, ncol_global=nrow)
520 60 : CALL cp_fm_create(rhs_matrix, fm_struct)
521 60 : CALL cp_fm_create(work, fm_struct)
522 :
523 : ! Test on TDA
524 60 : IF (xas_tdp_control%tamm_dancoff) THEN
525 :
526 54 : IF (xas_tdp_control%do_ot) THEN
527 :
528 : !need to precompute the number of evals for OT
529 4 : IF (do_range) THEN
530 :
531 : !in case of energy range criterion, use LUMO eigenvalues as estimate
532 4 : ot_elb = xas_tdp_env%lumo_evals(1)%array(1)
533 4 : IF (do_os) ot_elb = MIN(ot_elb, xas_tdp_env%lumo_evals(2)%array(1))
534 :
535 1028 : ot_nevals = COUNT(xas_tdp_env%lumo_evals(1)%array - ot_elb .LE. xas_tdp_control%e_range)
536 4 : IF (do_os) ot_nevals = ot_nevals + &
537 0 : COUNT(xas_tdp_env%lumo_evals(2)%array - ot_elb .LE. xas_tdp_control%e_range)
538 :
539 : ELSE
540 :
541 0 : ot_nevals = nspins*nao - nocc/ndo_mo
542 0 : IF (xas_tdp_control%n_excited > 0 .AND. xas_tdp_control%n_excited < ot_nevals) THEN
543 0 : ot_nevals = xas_tdp_control%n_excited
544 : END IF
545 : END IF
546 4 : ot_nevals = ndo_mo*ot_nevals !as in input description, multiply by multiplicity of donor state
547 :
548 : ! Organize results data
549 4 : first_ex = 1
550 12 : ALLOCATE (tmp_evals(ot_nevals))
551 : CALL cp_fm_struct_create(ot_fm_struct, context=blacs_env, para_env=para_env, &
552 4 : nrow_global=nrow, ncol_global=ot_nevals)
553 4 : CALL cp_fm_create(c_sum, ot_fm_struct)
554 :
555 : CALL xas_ot_solver(matrix_tdp, donor_state%metric(1)%matrix, c_sum, tmp_evals, ot_nevals, &
556 4 : do_sf, donor_state, xas_tdp_env, xas_tdp_control, qs_env)
557 :
558 8 : CALL cp_fm_struct_release(ot_fm_struct)
559 :
560 : ELSE
561 :
562 : ! Organize results data
563 50 : first_ex = nocc + 1 !where to find the first proper eigenvalue
564 150 : ALLOCATE (tmp_evals(nrow))
565 50 : CALL cp_fm_create(c_sum, fm_struct)
566 :
567 : ! Get the main matrix_tdp as an fm
568 50 : CALL copy_dbcsr_to_fm(matrix_tdp, rhs_matrix)
569 :
570 : ! Get the metric as a fm
571 50 : CALL cp_fm_create(lhs_matrix, fm_struct)
572 50 : CALL copy_dbcsr_to_fm(donor_state%metric(1)%matrix, lhs_matrix)
573 :
574 : !Diagonalisation (Cholesky decomposition). In TDA, c_sum = c^-
575 50 : CALL cp_fm_geeig(rhs_matrix, lhs_matrix, c_sum, tmp_evals, work)
576 :
577 : ! TDA specific clean-up
578 150 : CALL cp_fm_release(lhs_matrix)
579 :
580 : END IF
581 :
582 : ELSE ! not TDA
583 :
584 : ! Organize results data
585 6 : first_ex = nocc + 1
586 18 : ALLOCATE (tmp_evals(nrow))
587 6 : CALL cp_fm_create(c_sum, fm_struct)
588 :
589 : ! Need to multiply the current matrix_tdp with the auxiliary matrix
590 : ! tmp_mat = (A-D+E)^0.5 * M * (A-D+E)^0.5
591 6 : CALL dbcsr_create(matrix=tmp_mat, template=matrix_tdp, matrix_type=dbcsr_type_no_symmetry)
592 6 : CALL dbcsr_create(matrix=tmp_mat2, template=matrix_tdp, matrix_type=dbcsr_type_no_symmetry)
593 : CALL dbcsr_multiply('N', 'N', 1.0_dp, donor_state%matrix_aux, matrix_tdp, &
594 6 : 0.0_dp, tmp_mat2, filter_eps=xas_tdp_control%eps_filter)
595 : CALL dbcsr_multiply('N', 'N', 1.0_dp, tmp_mat2, donor_state%matrix_aux, &
596 6 : 0.0_dp, tmp_mat, filter_eps=xas_tdp_control%eps_filter)
597 :
598 : ! Get the matrix as a fm
599 6 : CALL copy_dbcsr_to_fm(tmp_mat, rhs_matrix)
600 :
601 : ! Solve the "turned-Hermitian" eigenvalue problem
602 6 : CALL choose_eigv_solver(rhs_matrix, work, tmp_evals)
603 :
604 : ! Currently, work = (A-D+E)^0.5 (c^+ - c^-) and tmp_evals = omega^2
605 : ! Put tiny almost zero eigenvalues to zero (corresponding to occupied MOs)
606 150 : WHERE (tmp_evals < 1.0E-4_dp) tmp_evals = 0.0_dp
607 :
608 : ! Retrieve c_diff = (c^+ - c^-) for normalization
609 : ! (c^+ - c^-) = 1/omega^2 * M * (A-D+E)^0.5 * work
610 6 : CALL cp_fm_create(c_diff, fm_struct)
611 : CALL dbcsr_multiply('N', 'N', 1.0_dp, matrix_tdp, donor_state%matrix_aux, &
612 6 : 0.0_dp, tmp_mat, filter_eps=xas_tdp_control%eps_filter)
613 6 : CALL cp_dbcsr_sm_fm_multiply(tmp_mat, work, c_diff, ncol=nrow)
614 :
615 12 : ALLOCATE (scaling(nrow))
616 150 : scaling = 0.0_dp
617 150 : WHERE (ABS(tmp_evals) > 1.0E-8_dp) scaling = 1.0_dp/tmp_evals
618 6 : CALL cp_fm_column_scale(c_diff, scaling)
619 :
620 : ! Normalize with the metric: c_diff * G * c_diff = +- 1
621 150 : scaling = 0.0_dp
622 6 : CALL get_normal_scaling(scaling, c_diff, donor_state)
623 6 : CALL cp_fm_column_scale(c_diff, scaling)
624 :
625 : ! Get the actual eigenvalues
626 150 : tmp_evals = SQRT(tmp_evals)
627 :
628 : ! Get c_sum = (c^+ + c^-), which appears in all transition density related expressions
629 : ! c_sum = -1/omega G^-1 * (A-D+E) * (c^+ - c^-)
630 : CALL dbcsr_multiply('N', 'N', 1.0_dp, donor_state%matrix_aux, donor_state%matrix_aux, &
631 6 : 0.0_dp, tmp_mat2, filter_eps=xas_tdp_control%eps_filter)
632 : CALL dbcsr_multiply('N', 'N', 1.0_dp, donor_state%metric(2)%matrix, tmp_mat2, &
633 6 : 0.0_dp, tmp_mat, filter_eps=xas_tdp_control%eps_filter)
634 6 : CALL cp_dbcsr_sm_fm_multiply(tmp_mat, c_diff, c_sum, ncol=nrow)
635 150 : WHERE (tmp_evals .NE. 0) scaling = -1.0_dp/tmp_evals
636 6 : CALL cp_fm_column_scale(c_sum, scaling)
637 :
638 : ! Full TDDFT specific clean-up
639 6 : CALL cp_fm_release(c_diff)
640 6 : CALL dbcsr_release(tmp_mat)
641 6 : CALL dbcsr_release(tmp_mat2)
642 18 : DEALLOCATE (scaling)
643 :
644 : END IF ! TDA
645 :
646 : ! Full matrix clean-up
647 60 : CALL cp_fm_release(rhs_matrix)
648 60 : CALL cp_fm_release(work)
649 :
650 : ! Reorganize the eigenvalues, we want a lr_evals array with the proper dimension and where the
651 : ! first element is the first eval. Need a case study on do_range/ot
652 60 : IF (xas_tdp_control%do_ot) THEN
653 :
654 4 : nevals = ot_nevals
655 :
656 56 : ELSE IF (do_range) THEN
657 :
658 94 : WHERE (tmp_evals > tmp_evals(first_ex) + xas_tdp_control%e_range) tmp_evals = 0.0_dp
659 48 : nevals = MAXLOC(tmp_evals, 1) - nocc
660 :
661 : ELSE
662 :
663 : !Determine the number of evals to keep base on N_EXCITED
664 54 : nevals = nspins*nao - nocc/ndo_mo
665 54 : IF (xas_tdp_control%n_excited > 0 .AND. xas_tdp_control%n_excited < nevals) THEN
666 : nevals = xas_tdp_control%n_excited
667 : END IF
668 54 : nevals = ndo_mo*nevals !as in input description, multiply by # of donor MOs
669 :
670 : END IF
671 :
672 180 : ALLOCATE (lr_evals(nevals))
673 964 : lr_evals(:) = tmp_evals(first_ex:first_ex + nevals - 1)
674 :
675 : ! Reorganize the eigenvectors in array of cp_fm so that each ndo_mo columns corresponds to an
676 : ! excited state. Makes later calls to those easier and more efficient
677 : ! In case of open-shell, we store the coeffs in the same logic as the matrix => first block where
678 : ! the columns are the c_Ialpha and second block with columns as c_Ibeta
679 : CALL cp_fm_struct_create(ex_struct, nrow_global=nao, ncol_global=ndo_mo*nspins*nevals, &
680 60 : para_env=para_env, context=blacs_env)
681 60 : ALLOCATE (lr_coeffs)
682 60 : CALL cp_fm_create(lr_coeffs, ex_struct)
683 :
684 964 : DO i = 1, nevals
685 2100 : DO ispin = 1, nspins
686 3464 : DO imo = 1, ndo_mo
687 :
688 : CALL cp_fm_to_fm_submat(msource=c_sum, mtarget=lr_coeffs, &
689 : nrow=nao, ncol=1, s_firstrow=((ispin - 1)*ndo_mo + imo - 1)*nao + 1, &
690 : s_firstcol=first_ex + i - 1, t_firstrow=1, &
691 2560 : t_firstcol=(i - 1)*ndo_mo*nspins + (ispin - 1)*ndo_mo + imo)
692 : END DO !imo
693 : END DO !ispin
694 : END DO !istate
695 :
696 60 : IF (ex_type == tddfpt_spin_cons) THEN
697 8 : donor_state%sc_coeffs => lr_coeffs
698 8 : donor_state%sc_evals => lr_evals
699 52 : ELSE IF (ex_type == tddfpt_spin_flip) THEN
700 2 : donor_state%sf_coeffs => lr_coeffs
701 2 : donor_state%sf_evals => lr_evals
702 50 : ELSE IF (ex_type == tddfpt_singlet) THEN
703 48 : donor_state%sg_coeffs => lr_coeffs
704 48 : donor_State%sg_evals => lr_evals
705 2 : ELSE IF (ex_type == tddfpt_triplet) THEN
706 2 : donor_state%tp_coeffs => lr_coeffs
707 2 : donor_state%tp_evals => lr_evals
708 : END IF
709 :
710 : ! Clean-up
711 60 : CALL cp_fm_release(c_sum)
712 60 : CALL cp_fm_struct_release(fm_struct)
713 60 : CALL cp_fm_struct_release(ex_struct)
714 :
715 : ! Perform a partial clean-up of the donor_state
716 60 : CALL dbcsr_release(matrix_tdp)
717 :
718 60 : CALL timestop(handle)
719 :
720 300 : END SUBROUTINE solve_xas_tdp_prob
721 :
722 : ! **************************************************************************************************
723 : !> \brief An iterative solver based on OT for the TDA generalized eigV problem lambda Sx = Hx
724 : !> \param matrix_tdp the RHS matrix (dbcsr)
725 : !> \param metric the LHS matrix (dbcsr)
726 : !> \param evecs the corresponding eigenvectors (fm)
727 : !> \param evals the corresponding eigenvalues
728 : !> \param neig the number of wanted eigenvalues
729 : !> \param do_sf whther spin-flip TDDFT is on
730 : !> \param donor_state ...
731 : !> \param xas_tdp_env ...
732 : !> \param xas_tdp_control ...
733 : !> \param qs_env ...
734 : ! **************************************************************************************************
735 4 : SUBROUTINE xas_ot_solver(matrix_tdp, metric, evecs, evals, neig, do_sf, donor_state, xas_tdp_env, &
736 : xas_tdp_control, qs_env)
737 :
738 : TYPE(dbcsr_type), POINTER :: matrix_tdp, metric
739 : TYPE(cp_fm_type), INTENT(IN) :: evecs
740 : REAL(dp), DIMENSION(:) :: evals
741 : INTEGER, INTENT(IN) :: neig
742 : LOGICAL :: do_sf
743 : TYPE(donor_state_type), POINTER :: donor_state
744 : TYPE(xas_tdp_env_type), POINTER :: xas_tdp_env
745 : TYPE(xas_tdp_control_type), POINTER :: xas_tdp_control
746 : TYPE(qs_environment_type), POINTER :: qs_env
747 :
748 : CHARACTER(len=*), PARAMETER :: routineN = 'xas_ot_solver'
749 :
750 : INTEGER :: handle, max_iter, ndo_mo, nelec_spin(2), &
751 : nocc, nrow, output_unit
752 : LOGICAL :: do_os
753 : REAL(dp) :: eps_iter
754 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
755 : TYPE(cp_fm_struct_type), POINTER :: ortho_struct
756 : TYPE(cp_fm_type) :: ortho_space
757 : TYPE(dbcsr_type), POINTER :: ot_prec
758 : TYPE(mp_para_env_type), POINTER :: para_env
759 : TYPE(preconditioner_type), POINTER :: precond
760 :
761 4 : NULLIFY (para_env, blacs_env, ortho_struct, ot_prec)
762 :
763 4 : CALL timeset(routineN, handle)
764 :
765 4 : output_unit = cp_logger_get_default_io_unit()
766 4 : IF (output_unit > 0) THEN
767 : WRITE (output_unit, "(/,T5,A)") &
768 2 : "Using OT eigensolver for diagonalization: "
769 : END IF
770 :
771 4 : do_os = xas_tdp_control%do_uks .OR. xas_tdp_control%do_roks
772 4 : ndo_mo = donor_state%ndo_mo
773 4 : CALL get_qs_env(qs_env, para_env=para_env, blacs_env=blacs_env, nelectron_spin=nelec_spin)
774 4 : CALL cp_fm_get_info(evecs, nrow_global=nrow)
775 4 : max_iter = xas_tdp_control%ot_max_iter
776 4 : eps_iter = xas_tdp_control%ot_eps_iter
777 4 : nocc = nelec_spin(1)/2*ndo_mo
778 4 : IF (do_os) nocc = SUM(nelec_spin)*ndo_mo
779 :
780 : ! Initialize relevent matrices
781 4 : ALLOCATE (ot_prec)
782 4 : CALL dbcsr_create(ot_prec, template=matrix_tdp)
783 : CALL cp_fm_struct_create(ortho_struct, context=blacs_env, para_env=para_env, &
784 4 : nrow_global=nrow, ncol_global=nocc)
785 4 : CALL cp_fm_create(ortho_space, ortho_struct)
786 :
787 : CALL prep_for_ot(evecs, ortho_space, ot_prec, neig, do_sf, donor_state, xas_tdp_env, &
788 4 : xas_tdp_control, qs_env)
789 :
790 : ! Prepare the preconditioner
791 4 : ALLOCATE (precond)
792 4 : CALL init_preconditioner(precond, para_env, blacs_env)
793 4 : precond%in_use = ot_precond_full_single ! because applying this conditioner is only a mm
794 4 : precond%dbcsr_matrix => ot_prec
795 :
796 : ! Actually solving the eigenvalue problem
797 : CALL ot_eigensolver(matrix_h=matrix_tdp, matrix_s=metric, matrix_c_fm=evecs, &
798 : eps_gradient=eps_iter, iter_max=max_iter, silent=.FALSE., &
799 : ot_settings=xas_tdp_control%ot_settings, &
800 : matrix_orthogonal_space_fm=ortho_space, &
801 4 : preconditioner=precond)
802 4 : CALL calculate_subspace_eigenvalues(evecs, matrix_tdp, evals_arg=evals)
803 :
804 : ! Clean-up
805 4 : CALL cp_fm_struct_release(ortho_struct)
806 4 : CALL cp_fm_release(ortho_space)
807 4 : CALL dbcsr_release(ot_prec)
808 4 : CALL destroy_preconditioner(precond)
809 4 : DEALLOCATE (precond)
810 :
811 4 : CALL timestop(handle)
812 :
813 4 : END SUBROUTINE xas_ot_solver
814 :
815 : ! **************************************************************************************************
816 : !> \brief Prepares all required matrices for the OT eigensolver (precond, ortho space and guesses)
817 : !> \param guess the guess eigenvectors absed on LUMOs, in fm format
818 : !> \param ortho the orthogonal space in fm format (occupied MOs)
819 : !> \param precond the OT preconditioner in DBCSR format
820 : !> \param neig ...
821 : !> \param do_sf ...
822 : !> \param donor_state ...
823 : !> \param xas_tdp_env ...
824 : !> \param xas_tdp_control ...
825 : !> \param qs_env ...
826 : !> \note Matrices are allocate before entry
827 : ! **************************************************************************************************
828 8 : SUBROUTINE prep_for_ot(guess, ortho, precond, neig, do_sf, donor_state, xas_tdp_env, &
829 : xas_tdp_control, qs_env)
830 :
831 : TYPE(cp_fm_type), INTENT(IN) :: guess, ortho
832 : TYPE(dbcsr_type) :: precond
833 : INTEGER :: neig
834 : LOGICAL :: do_sf
835 : TYPE(donor_state_type), POINTER :: donor_state
836 : TYPE(xas_tdp_env_type), POINTER :: xas_tdp_env
837 : TYPE(xas_tdp_control_type), POINTER :: xas_tdp_control
838 : TYPE(qs_environment_type), POINTER :: qs_env
839 :
840 : CHARACTER(len=*), PARAMETER :: routineN = 'prep_for_ot'
841 :
842 : INTEGER :: blk, handle, i, iblk, ido_mo, ispin, jblk, maxel, minel, nao, natom, ndo_mo, &
843 : nelec_spin(2), nhomo(2), nlumo(2), nspins, start_block, start_col, start_row
844 : LOGICAL :: do_os, found
845 4 : REAL(dp), DIMENSION(:, :), POINTER :: pblock
846 : TYPE(cp_fm_type), POINTER :: mo_coeff
847 : TYPE(dbcsr_iterator_type) :: iter
848 4 : TYPE(mo_set_type), DIMENSION(:), POINTER :: mos
849 :
850 4 : NULLIFY (mos, mo_coeff, pblock)
851 :
852 : !REMINDER on the organization of the xas_tdp matrix. It is DBCSR format, with a super bock
853 : !structure. First block structure is spin quadrants: upper left is alpha-alpha spin and lower
854 : !right is beta-beta spin. Then each quadrants is divided in a ndo_mo x ndo_mo grid (1x1 for 1s,
855 : !2s, 3x3 for 2p). Each block in this grid has the normal DBCSR structure and dist, simply
856 : !replicated. The resulting eigenvectors follow the same logic.
857 :
858 4 : CALL timeset(routineN, handle)
859 :
860 4 : do_os = xas_tdp_control%do_uks .OR. xas_tdp_control%do_roks
861 0 : nspins = 1; IF (do_os) nspins = 2
862 4 : ndo_mo = donor_state%ndo_mo
863 4 : CALL cp_fm_get_info(xas_tdp_env%lumo_evecs(1), nrow_global=nao)
864 4 : CALL get_qs_env(qs_env, natom=natom, nelectron_spin=nelec_spin)
865 :
866 : !Compute the number of guesses for each spins
867 4 : IF (do_os) THEN
868 0 : minel = MINLOC(nelec_spin, 1)
869 0 : maxel = 3 - minel
870 0 : nlumo(minel) = (neig/ndo_mo + nelec_spin(maxel) - nelec_spin(minel))/2
871 0 : nlumo(maxel) = neig/ndo_mo - nlumo(minel)
872 : ELSE
873 4 : nlumo(1) = neig/ndo_mo
874 : END IF
875 :
876 : !Building the guess vectors based on the LUMOs. Copy LUMOs into approriate spin/do_mo
877 : !quadrant/block. Order within a block does not matter
878 : !Note: in spin-flip, the upper left quadrant is for beta-alpha transition, so guess are alpha LUMOs
879 : start_row = 0
880 : start_col = 0
881 8 : DO ispin = 1, nspins
882 12 : DO ido_mo = 1, ndo_mo
883 :
884 : CALL cp_fm_to_fm_submat(msource=xas_tdp_env%lumo_evecs(ispin), mtarget=guess, &
885 : nrow=nao, ncol=nlumo(ispin), s_firstrow=1, s_firstcol=1, &
886 4 : t_firstrow=start_row + 1, t_firstcol=start_col + 1)
887 :
888 4 : start_row = start_row + nao
889 8 : start_col = start_col + nlumo(ispin)
890 :
891 : END DO
892 : END DO
893 :
894 : !Build the orthogonal space according to the same principles, but based on occupied MOs
895 : !Note: in spin-flip, the upper left quadrant is for beta-alpha transition, so ortho space is beta HOMOs
896 4 : CALL get_qs_env(qs_env, mos=mos)
897 4 : nhomo = 0
898 8 : DO ispin = 1, nspins
899 8 : CALL get_mo_set(mos(ispin), homo=nhomo(ispin))
900 : END DO
901 :
902 : start_row = 0
903 : start_col = 0
904 8 : DO i = 1, nspins
905 4 : ispin = i; IF (do_sf) ispin = 3 - i
906 4 : CALL get_mo_set(mos(ispin), mo_coeff=mo_coeff)
907 :
908 12 : DO ido_mo = 1, ndo_mo
909 :
910 : CALL cp_fm_to_fm_submat(msource=mo_coeff, mtarget=ortho, nrow=nao, ncol=nhomo(ispin), &
911 : s_firstrow=1, s_firstcol=1, &
912 4 : t_firstrow=start_row + 1, t_firstcol=start_col + 1)
913 :
914 4 : start_row = start_row + nao
915 8 : start_col = start_col + nhomo(ispin)
916 :
917 : END DO
918 : END DO
919 :
920 : !Build the preconditioner. Copy the "canonical" pre-computed matrix into the proper spin/do_mo
921 : !quadrants/blocks. The end matrix is purely block diagonal
922 8 : DO ispin = 1, nspins
923 :
924 4 : CALL dbcsr_iterator_start(iter, xas_tdp_env%ot_prec(ispin)%matrix)
925 9316 : DO WHILE (dbcsr_iterator_blocks_left(iter))
926 :
927 9312 : CALL dbcsr_iterator_next_block(iter, row=iblk, column=jblk, blk=blk)
928 :
929 9312 : CALL dbcsr_get_block_p(xas_tdp_env%ot_prec(ispin)%matrix, iblk, jblk, pblock, found)
930 :
931 9316 : IF (found) THEN
932 :
933 9312 : start_block = (ispin - 1)*ndo_mo*natom
934 18624 : DO ido_mo = 1, ndo_mo
935 9312 : CALL dbcsr_put_block(precond, start_block + iblk, start_block + jblk, pblock)
936 :
937 18624 : start_block = start_block + natom
938 :
939 : END DO
940 : END IF
941 :
942 : END DO !dbcsr iter
943 12 : CALL dbcsr_iterator_stop(iter)
944 : END DO
945 :
946 4 : CALL dbcsr_finalize(precond)
947 :
948 4 : CALL timestop(handle)
949 :
950 4 : END SUBROUTINE prep_for_ot
951 :
952 : ! **************************************************************************************************
953 : !> \brief Returns the scaling to apply to normalize the LR eigenvectors.
954 : !> \param scaling the scaling array to apply
955 : !> \param lr_coeffs the linear response coefficients as a fm
956 : !> \param donor_state ...
957 : !> \note The LR coeffs are normalized when c^T G c = +- 1, G is the metric, c = c^- for TDA and
958 : !> c = c^+ - c^- for the full problem
959 : ! **************************************************************************************************
960 6 : SUBROUTINE get_normal_scaling(scaling, lr_coeffs, donor_state)
961 :
962 : REAL(dp), ALLOCATABLE, DIMENSION(:) :: scaling
963 : TYPE(cp_fm_type), INTENT(IN) :: lr_coeffs
964 : TYPE(donor_state_type), POINTER :: donor_state
965 :
966 : INTEGER :: nrow, nscal, nvals
967 : REAL(dp), ALLOCATABLE, DIMENSION(:) :: diag
968 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
969 : TYPE(cp_fm_struct_type), POINTER :: norm_struct, work_struct
970 : TYPE(cp_fm_type) :: fm_norm, work
971 : TYPE(mp_para_env_type), POINTER :: para_env
972 :
973 6 : NULLIFY (para_env, blacs_env, norm_struct, work_struct)
974 :
975 : ! Creating the matrix structures and initializing the work matrices
976 : CALL cp_fm_get_info(lr_coeffs, context=blacs_env, para_env=para_env, &
977 6 : matrix_struct=work_struct, ncol_global=nvals, nrow_global=nrow)
978 : CALL cp_fm_struct_create(norm_struct, para_env=para_env, context=blacs_env, &
979 6 : nrow_global=nvals, ncol_global=nvals)
980 :
981 6 : CALL cp_fm_create(work, work_struct)
982 6 : CALL cp_fm_create(fm_norm, norm_struct)
983 :
984 : ! Taking c^T * G * C
985 6 : CALL cp_dbcsr_sm_fm_multiply(donor_state%metric(1)%matrix, lr_coeffs, work, ncol=nvals)
986 6 : CALL parallel_gemm('T', 'N', nvals, nvals, nrow, 1.0_dp, lr_coeffs, work, 0.0_dp, fm_norm)
987 :
988 : ! Computing the needed scaling
989 18 : ALLOCATE (diag(nvals))
990 6 : CALL cp_fm_get_diag(fm_norm, diag)
991 150 : WHERE (ABS(diag) > 1.0E-8_dp) diag = 1.0_dp/SQRT(ABS(diag))
992 :
993 6 : nscal = SIZE(scaling)
994 150 : scaling(1:nscal) = diag(1:nscal)
995 :
996 : ! Clean-up
997 6 : CALL cp_fm_release(work)
998 6 : CALL cp_fm_release(fm_norm)
999 6 : CALL cp_fm_struct_release(norm_struct)
1000 :
1001 18 : END SUBROUTINE get_normal_scaling
1002 :
1003 : ! **************************************************************************************************
1004 : !> \brief This subroutine computes the row/column block structure as well as the dbcsr ditrinution
1005 : !> for the submatrices making up the generalized XAS TDP eigenvalue problem. They all share
1006 : !> the same properties, which are based on the replication of the KS matrix. Stored in the
1007 : !> donor_state_type
1008 : !> \param donor_state ...
1009 : !> \param do_os whether this is a open-shell calculation
1010 : !> \param qs_env ...
1011 : ! **************************************************************************************************
1012 56 : SUBROUTINE compute_submat_dist_and_blk_size(donor_state, do_os, qs_env)
1013 :
1014 : TYPE(donor_state_type), POINTER :: donor_state
1015 : LOGICAL, INTENT(IN) :: do_os
1016 : TYPE(qs_environment_type), POINTER :: qs_env
1017 :
1018 : INTEGER :: group, i, nao, nblk_row, ndo_mo, nspins, &
1019 : scol_dist, srow_dist
1020 56 : INTEGER, DIMENSION(:), POINTER :: col_dist, col_dist_sub, row_blk_size, &
1021 56 : row_dist, row_dist_sub, submat_blk_size
1022 56 : INTEGER, DIMENSION(:, :), POINTER :: pgrid
1023 : TYPE(dbcsr_distribution_type), POINTER :: dbcsr_dist, submat_dist
1024 56 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_ks
1025 :
1026 56 : NULLIFY (matrix_ks, dbcsr_dist, row_blk_size, row_dist, col_dist, pgrid, col_dist_sub)
1027 56 : NULLIFY (row_dist_sub, submat_dist, submat_blk_size)
1028 :
1029 : ! The submatrices are indexed by M_{pi sig,qj tau}, where p,q label basis functions and i,j donor
1030 : ! MOs and sig,tau the spins. For each spin and donor MOs combination, one has a submatrix of the
1031 : ! size of the KS matrix (nao x nao) with the same dbcsr block structure
1032 :
1033 : ! Initialization
1034 56 : ndo_mo = donor_state%ndo_mo
1035 56 : CALL get_qs_env(qs_env=qs_env, matrix_ks=matrix_ks, dbcsr_dist=dbcsr_dist)
1036 56 : CALL dbcsr_get_info(matrix_ks(1)%matrix, row_blk_size=row_blk_size)
1037 : CALL dbcsr_distribution_get(dbcsr_dist, row_dist=row_dist, col_dist=col_dist, group=group, &
1038 56 : pgrid=pgrid)
1039 658 : nao = SUM(row_blk_size)
1040 56 : nblk_row = SIZE(row_blk_size)
1041 56 : srow_dist = SIZE(row_dist)
1042 56 : scol_dist = SIZE(col_dist)
1043 56 : nspins = 1; IF (do_os) nspins = 2
1044 :
1045 : ! Creation if submatrix block size and col/row distribution
1046 168 : ALLOCATE (submat_blk_size(ndo_mo*nspins*nblk_row))
1047 168 : ALLOCATE (row_dist_sub(ndo_mo*nspins*srow_dist))
1048 168 : ALLOCATE (col_dist_sub(ndo_mo*nspins*scol_dist))
1049 :
1050 132 : DO i = 1, ndo_mo*nspins
1051 1416 : submat_blk_size((i - 1)*nblk_row + 1:i*nblk_row) = row_blk_size
1052 1416 : row_dist_sub((i - 1)*srow_dist + 1:i*srow_dist) = row_dist
1053 1472 : col_dist_sub((i - 1)*scol_dist + 1:i*scol_dist) = col_dist
1054 : END DO
1055 :
1056 : ! Create the submatrix dbcsr distribution
1057 56 : ALLOCATE (submat_dist)
1058 : CALL dbcsr_distribution_new(submat_dist, group=group, pgrid=pgrid, row_dist=row_dist_sub, &
1059 56 : col_dist=col_dist_sub)
1060 :
1061 56 : donor_state%dbcsr_dist => submat_dist
1062 56 : donor_state%blk_size => submat_blk_size
1063 :
1064 : ! Clean-up
1065 56 : DEALLOCATE (col_dist_sub, row_dist_sub)
1066 :
1067 168 : END SUBROUTINE compute_submat_dist_and_blk_size
1068 :
1069 : ! **************************************************************************************************
1070 : !> \brief Returns the projector on the unperturbed unoccupied ground state Q = 1 - SP on the block
1071 : !> diagonal of a matrix with the standard size and distribution.
1072 : !> \param proj_Q the matrix with the projector
1073 : !> \param donor_state ...
1074 : !> \param do_os whether it is open-shell calculation
1075 : !> \param xas_tdp_env ...
1076 : !> \param do_sf whether the projector should be prepared for spin-flip excitations
1077 : !> \note In the spin-flip case, the alpha spins are sent to beta and vice-versa. The structure of
1078 : !> the projector is changed by swapping the alpha-alpha with the beta-beta block, which
1079 : !> naturally take the spin change into account. Only for open-shell.
1080 : ! **************************************************************************************************
1081 58 : SUBROUTINE get_q_projector(proj_Q, donor_state, do_os, xas_tdp_env, do_sf)
1082 :
1083 : TYPE(dbcsr_type), INTENT(INOUT) :: proj_Q
1084 : TYPE(donor_state_type), POINTER :: donor_state
1085 : LOGICAL, INTENT(IN) :: do_os
1086 : TYPE(xas_tdp_env_type), POINTER :: xas_tdp_env
1087 : LOGICAL, INTENT(IN), OPTIONAL :: do_sf
1088 :
1089 : CHARACTER(len=*), PARAMETER :: routineN = 'get_q_projector'
1090 :
1091 : INTEGER :: blk, handle, iblk, imo, ispin, jblk, &
1092 : nblk_row, ndo_mo, nspins
1093 58 : INTEGER, DIMENSION(:), POINTER :: blk_size_q, row_blk_size
1094 : LOGICAL :: found_block, my_dosf
1095 58 : REAL(dp), DIMENSION(:), POINTER :: work_block
1096 : TYPE(dbcsr_distribution_type), POINTER :: dist_q
1097 : TYPE(dbcsr_iterator_type) :: iter
1098 : TYPE(dbcsr_type), POINTER :: one_sp
1099 :
1100 58 : NULLIFY (work_block, one_sp, row_blk_size, dist_q, blk_size_q)
1101 :
1102 58 : CALL timeset(routineN, handle)
1103 :
1104 : ! Initialization
1105 58 : nspins = 1; IF (do_os) nspins = 2
1106 58 : ndo_mo = donor_state%ndo_mo
1107 58 : one_sp => xas_tdp_env%q_projector(1)%matrix
1108 58 : CALL dbcsr_get_info(one_sp, row_blk_size=row_blk_size)
1109 58 : nblk_row = SIZE(row_blk_size)
1110 58 : my_dosf = .FALSE.
1111 58 : IF (PRESENT(do_sf)) my_dosf = do_sf
1112 58 : dist_q => donor_state%dbcsr_dist
1113 58 : blk_size_q => donor_state%blk_size
1114 :
1115 : ! the projector is not symmetric
1116 : CALL dbcsr_create(matrix=proj_Q, name="PROJ Q", matrix_type=dbcsr_type_no_symmetry, dist=dist_q, &
1117 58 : row_blk_size=blk_size_q, col_blk_size=blk_size_q)
1118 :
1119 : ! Fill the projector by looping over 1-SP and duplicating blocks. (all on the spin-MO block diagonal)
1120 126 : DO ispin = 1, nspins
1121 68 : one_sp => xas_tdp_env%q_projector(ispin)%matrix
1122 :
1123 : !if spin-flip, swap the alpha-alpha and beta-beta blocks
1124 68 : IF (my_dosf) one_sp => xas_tdp_env%q_projector(3 - ispin)%matrix
1125 :
1126 68 : CALL dbcsr_iterator_start(iter, one_sp)
1127 19154 : DO WHILE (dbcsr_iterator_blocks_left(iter))
1128 :
1129 19086 : CALL dbcsr_iterator_next_block(iter, row=iblk, column=jblk, blk=blk)
1130 :
1131 : ! get the block
1132 19086 : CALL dbcsr_get_block_p(one_sp, iblk, jblk, work_block, found_block)
1133 :
1134 19086 : IF (found_block) THEN
1135 :
1136 38182 : DO imo = 1, ndo_mo
1137 : CALL dbcsr_put_block(proj_Q, ((ispin - 1)*ndo_mo + imo - 1)*nblk_row + iblk, &
1138 38182 : ((ispin - 1)*ndo_mo + imo - 1)*nblk_row + jblk, work_block)
1139 : END DO
1140 :
1141 : END IF
1142 19086 : NULLIFY (work_block)
1143 :
1144 : END DO !iterator
1145 194 : CALL dbcsr_iterator_stop(iter)
1146 : END DO !ispin
1147 :
1148 58 : CALL dbcsr_finalize(proj_Q)
1149 :
1150 58 : CALL timestop(handle)
1151 :
1152 58 : END SUBROUTINE get_q_projector
1153 :
1154 : ! **************************************************************************************************
1155 : !> \brief Builds the matrix containing the ground state contribution to the matrix_tdp (aka matrix A)
1156 : !> => A_{pis,qjt} = (F_pq*delta_ij - epsilon_ij*S_pq) delta_st, where:
1157 : !> F is the KS matrix
1158 : !> S is the overlap matrix
1159 : !> epsilon_ij is the donor MO eigenvalue
1160 : !> i,j labels the MOs, p,q the AOs and s,t the spins
1161 : !> \param matrix_a pointer to a DBCSR matrix containing A
1162 : !> \param donor_state ...
1163 : !> \param do_os ...
1164 : !> \param qs_env ...
1165 : !> \param do_sf whether the ground state contribution should accommodate spin-flip
1166 : !> \note Even localized non-canonical MOs are diagonalized in their subsapce => eps_ij = eps_ii*delta_ij
1167 : !> Use GW2X corrected evals as eps_ii. If not GW2X correction, these are the default KS energies
1168 : ! **************************************************************************************************
1169 58 : SUBROUTINE build_gs_contribution(matrix_a, donor_state, do_os, qs_env, do_sf)
1170 :
1171 : TYPE(dbcsr_type), INTENT(INOUT) :: matrix_a
1172 : TYPE(donor_state_type), POINTER :: donor_state
1173 : LOGICAL, INTENT(IN) :: do_os
1174 : TYPE(qs_environment_type), POINTER :: qs_env
1175 : LOGICAL, INTENT(IN), OPTIONAL :: do_sf
1176 :
1177 : CHARACTER(len=*), PARAMETER :: routineN = 'build_gs_contribution'
1178 :
1179 : INTEGER :: blk, handle, iblk, imo, ispin, jblk, &
1180 : nblk_row, ndo_mo, nspins
1181 58 : INTEGER, DIMENSION(:), POINTER :: blk_size_a, row_blk_size
1182 : LOGICAL :: found_block, my_dosf
1183 58 : REAL(dp), DIMENSION(:), POINTER :: work_block
1184 : TYPE(dbcsr_distribution_type), POINTER :: dbcsr_dist, dist_a
1185 : TYPE(dbcsr_iterator_type) :: iter
1186 58 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: m_ks, matrix_ks, matrix_s
1187 : TYPE(dbcsr_type) :: work_matrix
1188 :
1189 58 : NULLIFY (matrix_ks, dbcsr_dist, row_blk_size, work_block, matrix_s, m_ks)
1190 58 : NULLIFY (dist_a, blk_size_a)
1191 :
1192 : ! Note: matrix A is symmetric and block diagonal. If ADMM, the ks matrix is the total one,
1193 : ! and it is corrected for eigenvalues (done at xas_tdp_init)
1194 :
1195 58 : CALL timeset(routineN, handle)
1196 :
1197 : ! Initialization
1198 58 : nspins = 1; IF (do_os) nspins = 2
1199 58 : ndo_mo = donor_state%ndo_mo
1200 58 : CALL get_qs_env(qs_env=qs_env, matrix_ks=matrix_ks, matrix_s=matrix_s, dbcsr_dist=dbcsr_dist)
1201 58 : CALL dbcsr_get_info(matrix_s(1)%matrix, row_blk_size=row_blk_size)
1202 58 : nblk_row = SIZE(row_blk_size)
1203 58 : dist_a => donor_state%dbcsr_dist
1204 58 : blk_size_a => donor_state%blk_size
1205 :
1206 : ! Prepare the KS matrix pointer
1207 184 : ALLOCATE (m_ks(nspins))
1208 58 : m_ks(1)%matrix => matrix_ks(1)%matrix
1209 58 : IF (do_os) m_ks(2)%matrix => matrix_ks(2)%matrix
1210 :
1211 : ! If spin-flip, swap the KS alpha-alpha and beta-beta quadrants.
1212 58 : my_dosf = .FALSE.
1213 58 : IF (PRESENT(do_sf)) my_dosf = do_sf
1214 2 : IF (my_dosf .AND. do_os) THEN
1215 2 : m_ks(1)%matrix => matrix_ks(2)%matrix
1216 2 : m_ks(2)%matrix => matrix_ks(1)%matrix
1217 : END IF
1218 :
1219 : ! Creating the symmetric matrix A (and work)
1220 : CALL dbcsr_create(matrix=matrix_a, name="MATRIX A", matrix_type=dbcsr_type_symmetric, &
1221 58 : dist=dist_a, row_blk_size=blk_size_a, col_blk_size=blk_size_a)
1222 : CALL dbcsr_create(matrix=work_matrix, name="WORK MAT", matrix_type=dbcsr_type_symmetric, &
1223 58 : dist=dist_a, row_blk_size=blk_size_a, col_blk_size=blk_size_a)
1224 :
1225 126 : DO ispin = 1, nspins
1226 :
1227 : ! Loop over the blocks of KS and put them on the spin-MO block diagonal of matrix A
1228 68 : CALL dbcsr_iterator_start(iter, m_ks(ispin)%matrix)
1229 9415 : DO WHILE (dbcsr_iterator_blocks_left(iter))
1230 :
1231 9347 : CALL dbcsr_iterator_next_block(iter, row=iblk, column=jblk, blk=blk)
1232 :
1233 : ! Get the block
1234 9347 : CALL dbcsr_get_block_p(m_ks(ispin)%matrix, iblk, jblk, work_block, found_block)
1235 :
1236 9347 : IF (found_block) THEN
1237 :
1238 : ! The KS matrix only appears on diagonal of matrix A => loop over II donor MOs
1239 18704 : DO imo = 1, ndo_mo
1240 :
1241 : ! Put the block as it is
1242 : CALL dbcsr_put_block(matrix_a, ((ispin - 1)*ndo_mo + imo - 1)*nblk_row + iblk, &
1243 18704 : ((ispin - 1)*ndo_mo + imo - 1)*nblk_row + jblk, work_block)
1244 :
1245 : END DO !imo
1246 : END IF !found_block
1247 9347 : NULLIFY (work_block)
1248 : END DO ! iteration on KS blocks
1249 68 : CALL dbcsr_iterator_stop(iter)
1250 :
1251 : ! Loop over the blocks of S and put them on the block diagonal of work
1252 :
1253 68 : CALL dbcsr_iterator_start(iter, matrix_s(1)%matrix)
1254 9415 : DO WHILE (dbcsr_iterator_blocks_left(iter))
1255 :
1256 9347 : CALL dbcsr_iterator_next_block(iter, row=iblk, column=jblk, blk=blk)
1257 :
1258 : ! Get the block
1259 9347 : CALL dbcsr_get_block_p(matrix_s(1)%matrix, iblk, jblk, work_block, found_block)
1260 :
1261 9347 : IF (found_block) THEN
1262 :
1263 : ! Add S matrix on block diagonal as epsilon_ii*S_pq
1264 18704 : DO imo = 1, ndo_mo
1265 :
1266 : CALL dbcsr_put_block(work_matrix, ((ispin - 1)*ndo_mo + imo - 1)*nblk_row + iblk, &
1267 : ((ispin - 1)*ndo_mo + imo - 1)*nblk_row + jblk, &
1268 210760 : donor_state%gw2x_evals(imo, ispin)*work_block)
1269 : END DO !imo
1270 : END IF !found block
1271 9347 : NULLIFY (work_block)
1272 : END DO ! iteration on S blocks
1273 262 : CALL dbcsr_iterator_stop(iter)
1274 :
1275 : END DO !ispin
1276 58 : CALL dbcsr_finalize(matrix_a)
1277 58 : CALL dbcsr_finalize(work_matrix)
1278 :
1279 : ! Take matrix_a = matrix_a - work
1280 58 : CALL dbcsr_add(matrix_a, work_matrix, 1.0_dp, -1.0_dp)
1281 58 : CALL dbcsr_finalize(matrix_a)
1282 :
1283 : ! Clean-up
1284 58 : CALL dbcsr_release(work_matrix)
1285 58 : DEALLOCATE (m_ks)
1286 :
1287 58 : CALL timestop(handle)
1288 :
1289 58 : END SUBROUTINE build_gs_contribution
1290 :
1291 : ! **************************************************************************************************
1292 : !> \brief Creates the metric (aka matrix G) needed for the generalized eigenvalue problem and inverse
1293 : !> => G_{pis,qjt} = S_pq*delta_ij*delta_st
1294 : !> \param matrix_g dbcsr matrix containing G
1295 : !> \param donor_state ...
1296 : !> \param qs_env ...
1297 : !> \param do_os if open-shell calculation
1298 : !> \param do_inv if the inverse of G should be computed
1299 : ! **************************************************************************************************
1300 168 : SUBROUTINE build_metric(matrix_g, donor_state, qs_env, do_os, do_inv)
1301 :
1302 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_g
1303 : TYPE(donor_state_type), POINTER :: donor_state
1304 : TYPE(qs_environment_type), POINTER :: qs_env
1305 : LOGICAL, INTENT(IN) :: do_os
1306 : LOGICAL, INTENT(IN), OPTIONAL :: do_inv
1307 :
1308 : CHARACTER(len=*), PARAMETER :: routineN = 'build_metric'
1309 :
1310 : INTEGER :: blk, handle, i, iblk, jblk, nao, &
1311 : nblk_row, ndo_mo, nspins
1312 56 : INTEGER, DIMENSION(:), POINTER :: blk_size_g, row_blk_size
1313 : LOGICAL :: found_block, my_do_inv
1314 56 : REAL(dp), DIMENSION(:), POINTER :: work_block
1315 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
1316 : TYPE(dbcsr_distribution_type), POINTER :: dist_g
1317 : TYPE(dbcsr_iterator_type) :: iter
1318 56 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_s
1319 : TYPE(dbcsr_type) :: matrix_sinv
1320 : TYPE(mp_para_env_type), POINTER :: para_env
1321 :
1322 56 : NULLIFY (matrix_s, row_blk_size, work_block, para_env, blacs_env, dist_g, blk_size_g)
1323 :
1324 56 : CALL timeset(routineN, handle)
1325 :
1326 : ! Initialization
1327 56 : nspins = 1; IF (do_os) nspins = 2
1328 56 : ndo_mo = donor_state%ndo_mo
1329 56 : CALL get_qs_env(qs_env=qs_env, matrix_s=matrix_s)
1330 56 : CALL dbcsr_get_info(matrix_s(1)%matrix, row_blk_size=row_blk_size, nfullrows_total=nao)
1331 56 : nblk_row = SIZE(row_blk_size)
1332 56 : my_do_inv = .FALSE.
1333 56 : IF (PRESENT(do_inv)) my_do_inv = do_inv
1334 56 : dist_g => donor_state%dbcsr_dist
1335 56 : blk_size_g => donor_state%blk_size
1336 :
1337 : ! Creating the symmetric matrices G and G^-1 with the right size and distribution
1338 56 : ALLOCATE (matrix_g(1)%matrix)
1339 : CALL dbcsr_create(matrix=matrix_g(1)%matrix, name="MATRIX G", matrix_type=dbcsr_type_symmetric, &
1340 56 : dist=dist_g, row_blk_size=blk_size_g, col_blk_size=blk_size_g)
1341 :
1342 : ! Fill the matrices G by looping over the block of S and putting them on the diagonal
1343 56 : CALL dbcsr_iterator_start(iter, matrix_s(1)%matrix)
1344 9384 : DO WHILE (dbcsr_iterator_blocks_left(iter))
1345 :
1346 9328 : CALL dbcsr_iterator_next_block(iter, row=iblk, column=jblk, blk=blk)
1347 :
1348 : ! Get the block
1349 9328 : CALL dbcsr_get_block_p(matrix_s(1)%matrix, iblk, jblk, work_block, found_block)
1350 :
1351 9328 : IF (found_block) THEN
1352 :
1353 : ! Go over the diagonal of G => donor MOs ii, spin ss
1354 18679 : DO i = 1, ndo_mo*nspins
1355 18679 : CALL dbcsr_put_block(matrix_g(1)%matrix, (i - 1)*nblk_row + iblk, (i - 1)*nblk_row + jblk, work_block)
1356 : END DO
1357 :
1358 : END IF
1359 9328 : NULLIFY (work_block)
1360 :
1361 : END DO ! dbcsr_iterator
1362 56 : CALL dbcsr_iterator_stop(iter)
1363 :
1364 : ! Finalize
1365 56 : CALL dbcsr_finalize(matrix_g(1)%matrix)
1366 :
1367 : ! If the inverse of G is required, do the same as above with the inverse
1368 56 : IF (my_do_inv) THEN
1369 :
1370 6 : CPASSERT(SIZE(matrix_g) == 2)
1371 :
1372 : ! Create the matrix
1373 6 : ALLOCATE (matrix_g(2)%matrix)
1374 : CALL dbcsr_create(matrix=matrix_g(2)%matrix, name="MATRIX GINV", &
1375 : matrix_type=dbcsr_type_symmetric, dist=dist_g, &
1376 6 : row_blk_size=blk_size_g, col_blk_size=blk_size_g)
1377 :
1378 : ! Invert the overlap matrix
1379 6 : CALL get_qs_env(qs_env, para_env=para_env, blacs_env=blacs_env)
1380 6 : CALL dbcsr_copy(matrix_sinv, matrix_s(1)%matrix)
1381 6 : CALL cp_dbcsr_cholesky_decompose(matrix_sinv, para_env=para_env, blacs_env=blacs_env)
1382 6 : CALL cp_dbcsr_cholesky_invert(matrix_sinv, para_env=para_env, blacs_env=blacs_env, upper_to_full=.TRUE.)
1383 :
1384 : ! Fill the matrices G^-1 by looping over the block of S^-1 and putting them on the diagonal
1385 6 : CALL dbcsr_iterator_start(iter, matrix_sinv)
1386 24 : DO WHILE (dbcsr_iterator_blocks_left(iter))
1387 :
1388 18 : CALL dbcsr_iterator_next_block(iter, row=iblk, column=jblk, blk=blk)
1389 :
1390 : ! Get the block
1391 18 : CALL dbcsr_get_block_p(matrix_sinv, iblk, jblk, work_block, found_block)
1392 :
1393 18 : IF (found_block) THEN
1394 :
1395 : ! Go over the diagonal of G => donor MOs ii spin ss
1396 36 : DO i = 1, ndo_mo*nspins
1397 36 : CALL dbcsr_put_block(matrix_g(2)%matrix, (i - 1)*nblk_row + iblk, (i - 1)*nblk_row + jblk, work_block)
1398 : END DO
1399 :
1400 : END IF
1401 18 : NULLIFY (work_block)
1402 :
1403 : END DO ! dbcsr_iterator
1404 6 : CALL dbcsr_iterator_stop(iter)
1405 :
1406 : ! Finalize
1407 6 : CALL dbcsr_finalize(matrix_g(2)%matrix)
1408 :
1409 : ! Clean-up
1410 6 : CALL dbcsr_release(matrix_sinv)
1411 : END IF !do_inv
1412 :
1413 56 : CALL timestop(handle)
1414 :
1415 56 : END SUBROUTINE build_metric
1416 :
1417 : ! **************************************************************************************************
1418 : !> \brief Builds the auxiliary matrix (A-D+E)^+0.5 needed for the transofrmation of the
1419 : !> full-TDDFT problem into an Hermitian one
1420 : !> \param threshold a threshold for allowed negative eigenvalues
1421 : !> \param sx the amount of exact exchange
1422 : !> \param matrix_a the ground state contribution matrix A
1423 : !> \param matrix_d the on-diagonal exchange kernel matrix (ab|IJ)
1424 : !> \param matrix_e the off-diagonal exchange kernel matrix (aJ|Ib)
1425 : !> \param do_hfx if exact exchange is included
1426 : !> \param proj_Q ...
1427 : !> \param work ...
1428 : !> \param donor_state ...
1429 : !> \param eps_filter for the dbcsr multiplication
1430 : !> \param qs_env ...
1431 : ! **************************************************************************************************
1432 6 : SUBROUTINE build_aux_matrix(threshold, sx, matrix_a, matrix_d, matrix_e, do_hfx, proj_Q, &
1433 : work, donor_state, eps_filter, qs_env)
1434 :
1435 : REAL(dp), INTENT(IN) :: threshold, sx
1436 : TYPE(dbcsr_type), INTENT(INOUT) :: matrix_a, matrix_d, matrix_e
1437 : LOGICAL, INTENT(IN) :: do_hfx
1438 : TYPE(dbcsr_type), INTENT(INOUT) :: proj_Q, work
1439 : TYPE(donor_state_type), POINTER :: donor_state
1440 : REAL(dp), INTENT(IN) :: eps_filter
1441 : TYPE(qs_environment_type), POINTER :: qs_env
1442 :
1443 : CHARACTER(len=*), PARAMETER :: routineN = 'build_aux_matrix'
1444 :
1445 : INTEGER :: handle, ndep
1446 : REAL(dp) :: evals(2)
1447 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
1448 : TYPE(dbcsr_type) :: tmp_mat
1449 : TYPE(mp_para_env_type), POINTER :: para_env
1450 :
1451 6 : NULLIFY (blacs_env, para_env)
1452 :
1453 6 : CALL timeset(routineN, handle)
1454 :
1455 6 : CALL dbcsr_copy(tmp_mat, matrix_a)
1456 6 : IF (do_hfx) THEN
1457 6 : CALL dbcsr_add(tmp_mat, matrix_d, 1.0_dp, -1.0_dp*sx) !scaled hfx
1458 6 : CALL dbcsr_add(tmp_mat, matrix_e, 1.0_dp, 1.0_dp*sx)
1459 : END IF
1460 :
1461 : ! Take the product with the Q projector:
1462 6 : CALL dbcsr_multiply('N', 'N', 1.0_dp, proj_Q, tmp_mat, 0.0_dp, work, filter_eps=eps_filter)
1463 6 : CALL dbcsr_multiply('N', 'T', 1.0_dp, work, proj_Q, 0.0_dp, tmp_mat, filter_eps=eps_filter)
1464 :
1465 : ! Actually computing and storing the auxiliary matrix
1466 6 : ALLOCATE (donor_state%matrix_aux)
1467 6 : CALL dbcsr_create(matrix=donor_state%matrix_aux, template=matrix_a, name="MAT AUX")
1468 :
1469 6 : CALL get_qs_env(qs_env, para_env=para_env, blacs_env=blacs_env)
1470 :
1471 : ! good quality sqrt
1472 6 : CALL cp_dbcsr_power(tmp_mat, 0.5_dp, threshold, ndep, para_env, blacs_env, eigenvalues=evals)
1473 :
1474 6 : CALL dbcsr_copy(donor_state%matrix_aux, tmp_mat)
1475 :
1476 : ! Warn the user if matrix not positive semi-definite
1477 6 : IF (evals(1) < 0.0_dp .AND. ABS(evals(1)) > threshold) THEN
1478 0 : CPWARN("The full TDDFT problem might not have been soundly turned Hermitian. Try TDA.")
1479 : END IF
1480 :
1481 : ! clean-up
1482 6 : CALL dbcsr_release(tmp_mat)
1483 :
1484 6 : CALL timestop(handle)
1485 :
1486 6 : END SUBROUTINE build_aux_matrix
1487 :
1488 : ! **************************************************************************************************
1489 : !> \brief Includes the SOC effects on the precomputed spin-conserving and spin-flip excitations
1490 : !> from an open-shell calculation (UKS or ROKS). This is a perturbative treatment
1491 : !> \param donor_state ...
1492 : !> \param xas_tdp_env ...
1493 : !> \param xas_tdp_control ...
1494 : !> \param qs_env ...
1495 : !> \note Using AMEWs, build an hermitian matrix with all excited states SOC coupling + the
1496 : !> excitation energies on the diagonal. Then diagonalize it to get the new excitation
1497 : !> energies and corresponding linear combinations of lr_coeffs.
1498 : !> The AMEWs are normalized
1499 : !> Only for open-shell calculations
1500 : ! **************************************************************************************************
1501 2 : SUBROUTINE include_os_soc(donor_state, xas_tdp_env, xas_tdp_control, qs_env)
1502 :
1503 : TYPE(donor_state_type), POINTER :: donor_state
1504 : TYPE(xas_tdp_env_type), POINTER :: xas_tdp_env
1505 : TYPE(xas_tdp_control_type), POINTER :: xas_tdp_control
1506 : TYPE(qs_environment_type), POINTER :: qs_env
1507 :
1508 : CHARACTER(len=*), PARAMETER :: routineN = 'include_os_soc'
1509 :
1510 : INTEGER :: group, handle, homo, iex, isc, isf, nao, &
1511 : ndo_mo, ndo_so, nex, npcols, nprows, &
1512 : nsc, nsf, ntot, tas(2), tbs(2)
1513 2 : INTEGER, DIMENSION(:), POINTER :: col_blk_size, col_dist, row_blk_size, &
1514 2 : row_dist, row_dist_new
1515 2 : INTEGER, DIMENSION(:, :), POINTER :: pgrid
1516 : LOGICAL :: do_roks, do_uks
1517 : REAL(dp) :: eps_filter, gs_sum, soc
1518 2 : REAL(dp), ALLOCATABLE, DIMENSION(:) :: diag, tmp_evals
1519 2 : REAL(dp), ALLOCATABLE, DIMENSION(:, :) :: domo_soc_x, domo_soc_y, domo_soc_z, &
1520 2 : gsex_block
1521 2 : REAL(dp), DIMENSION(:), POINTER :: sc_evals, sf_evals
1522 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
1523 : TYPE(cp_cfm_type) :: evecs_cfm, pert_cfm
1524 : TYPE(cp_fm_struct_type), POINTER :: full_struct, gsex_struct, prod_struct, &
1525 : vec_struct, work_struct
1526 : TYPE(cp_fm_type) :: gsex_fm, img_fm, prod_work, real_fm, &
1527 : vec_soc_x, vec_soc_y, vec_soc_z, &
1528 : vec_work, work_fm
1529 : TYPE(cp_fm_type), POINTER :: gs_coeffs, mo_coeff, sc_coeffs, sf_coeffs
1530 : TYPE(dbcsr_distribution_type), POINTER :: coeffs_dist, dbcsr_dist, prod_dist
1531 2 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_s
1532 : TYPE(dbcsr_soc_package_type) :: dbcsr_soc_package
1533 : TYPE(dbcsr_type), POINTER :: dbcsr_ovlp, dbcsr_prod, dbcsr_sc, &
1534 : dbcsr_sf, dbcsr_tmp, dbcsr_work, &
1535 : orb_soc_x, orb_soc_y, orb_soc_z
1536 2 : TYPE(mo_set_type), DIMENSION(:), POINTER :: mos
1537 : TYPE(mp_para_env_type), POINTER :: para_env
1538 :
1539 2 : NULLIFY (gs_coeffs, sc_coeffs, sf_coeffs, matrix_s, orb_soc_x, orb_soc_y, orb_soc_z, mos)
1540 2 : NULLIFY (full_struct, para_env, blacs_env, mo_coeff, sc_evals, sf_evals, vec_struct, prod_struct)
1541 2 : NULLIFY (work_struct, gsex_struct, col_dist, row_dist)
1542 2 : NULLIFY (col_blk_size, row_blk_size, row_dist_new, pgrid, dbcsr_sc, dbcsr_sf, dbcsr_work)
1543 2 : NULLIFY (dbcsr_tmp, dbcsr_ovlp, dbcsr_prod)
1544 :
1545 2 : CALL timeset(routineN, handle)
1546 :
1547 : ! Initialization
1548 2 : sc_coeffs => donor_state%sc_coeffs
1549 2 : sf_coeffs => donor_state%sf_coeffs
1550 2 : sc_evals => donor_state%sc_evals
1551 2 : sf_evals => donor_state%sf_evals
1552 2 : nsc = SIZE(sc_evals)
1553 2 : nsf = SIZE(sf_evals)
1554 2 : ntot = 1 + nsc + nsf
1555 2 : nex = nsc !by contrutciotn nsc == nsf, but keep 2 counts for clarity
1556 2 : ndo_mo = donor_state%ndo_mo
1557 2 : ndo_so = 2*ndo_mo
1558 2 : CALL get_qs_env(qs_env, para_env=para_env, blacs_env=blacs_env, mos=mos, matrix_s=matrix_s)
1559 2 : CALL dbcsr_get_info(matrix_s(1)%matrix, nfullrows_total=nao)
1560 2 : orb_soc_x => xas_tdp_env%orb_soc(1)%matrix
1561 2 : orb_soc_y => xas_tdp_env%orb_soc(2)%matrix
1562 2 : orb_soc_z => xas_tdp_env%orb_soc(3)%matrix
1563 2 : do_roks = xas_tdp_control%do_roks
1564 2 : do_uks = xas_tdp_control%do_uks
1565 2 : eps_filter = xas_tdp_control%eps_filter
1566 :
1567 : ! For the GS coeffs, we use the same structure both for ROKS and UKS here => allows us to write
1568 : ! general code later on, and not use IF (do_roks) statements every second line
1569 2 : IF (do_uks) gs_coeffs => donor_state%gs_coeffs
1570 2 : IF (do_roks) THEN
1571 : CALL cp_fm_struct_create(vec_struct, context=blacs_env, para_env=para_env, &
1572 0 : nrow_global=nao, ncol_global=ndo_so)
1573 0 : ALLOCATE (gs_coeffs)
1574 0 : CALL cp_fm_create(gs_coeffs, vec_struct)
1575 :
1576 : ! only alpha donor MOs are stored, need to copy them intoboth the alpha and the beta slot
1577 : CALL cp_fm_to_fm_submat(msource=donor_state%gs_coeffs, mtarget=gs_coeffs, nrow=nao, &
1578 : ncol=ndo_mo, s_firstrow=1, s_firstcol=1, t_firstrow=1, &
1579 0 : t_firstcol=1)
1580 : CALL cp_fm_to_fm_submat(msource=donor_state%gs_coeffs, mtarget=gs_coeffs, nrow=nao, &
1581 : ncol=ndo_mo, s_firstrow=1, s_firstcol=1, t_firstrow=1, &
1582 0 : t_firstcol=ndo_mo + 1)
1583 :
1584 0 : CALL cp_fm_struct_release(vec_struct)
1585 : END IF
1586 :
1587 : ! Creating the real and the imaginary part of the SOC perturbation matrix
1588 : CALL cp_fm_struct_create(full_struct, context=blacs_env, para_env=para_env, &
1589 2 : nrow_global=ntot, ncol_global=ntot)
1590 2 : CALL cp_fm_create(real_fm, full_struct)
1591 2 : CALL cp_fm_create(img_fm, full_struct)
1592 :
1593 : ! Put the excitation energies on the diagonal of the real matrix. Element 1,1 is the ground state
1594 26 : DO isc = 1, nsc
1595 26 : CALL cp_fm_set_element(real_fm, 1 + isc, 1 + isc, sc_evals(isc))
1596 : END DO
1597 26 : DO isf = 1, nsf
1598 26 : CALL cp_fm_set_element(real_fm, 1 + nsc + isf, 1 + nsc + isf, sf_evals(isf))
1599 : END DO
1600 :
1601 : ! Create the bdcsr machinery
1602 2 : CALL get_qs_env(qs_env, dbcsr_dist=dbcsr_dist)
1603 : CALL dbcsr_distribution_get(dbcsr_dist, group=group, row_dist=row_dist, pgrid=pgrid, &
1604 2 : npcols=npcols, nprows=nprows)
1605 8 : ALLOCATE (col_dist(nex), row_dist_new(nex))
1606 26 : DO iex = 1, nex
1607 24 : col_dist(iex) = MODULO(npcols - iex, npcols)
1608 26 : row_dist_new(iex) = MODULO(nprows - iex, nprows)
1609 : END DO
1610 2 : ALLOCATE (coeffs_dist, prod_dist)
1611 : CALL dbcsr_distribution_new(coeffs_dist, group=group, pgrid=pgrid, row_dist=row_dist, &
1612 2 : col_dist=col_dist)
1613 : CALL dbcsr_distribution_new(prod_dist, group=group, pgrid=pgrid, row_dist=row_dist_new, &
1614 2 : col_dist=col_dist)
1615 :
1616 : !Create the matrices
1617 4 : ALLOCATE (col_blk_size(nex))
1618 26 : col_blk_size = ndo_so
1619 2 : CALL dbcsr_get_info(matrix_s(1)%matrix, row_blk_size=row_blk_size)
1620 :
1621 2 : ALLOCATE (dbcsr_sc, dbcsr_sf, dbcsr_work, dbcsr_ovlp, dbcsr_tmp, dbcsr_prod)
1622 : CALL dbcsr_create(matrix=dbcsr_sc, name="SPIN CONS", matrix_type=dbcsr_type_no_symmetry, &
1623 2 : dist=coeffs_dist, row_blk_size=row_blk_size, col_blk_size=col_blk_size)
1624 : CALL dbcsr_create(matrix=dbcsr_sf, name="SPIN FLIP", matrix_type=dbcsr_type_no_symmetry, &
1625 2 : dist=coeffs_dist, row_blk_size=row_blk_size, col_blk_size=col_blk_size)
1626 : CALL dbcsr_create(matrix=dbcsr_work, name="WORK", matrix_type=dbcsr_type_no_symmetry, &
1627 2 : dist=coeffs_dist, row_blk_size=row_blk_size, col_blk_size=col_blk_size)
1628 : CALL dbcsr_create(matrix=dbcsr_prod, name="PROD", matrix_type=dbcsr_type_no_symmetry, &
1629 2 : dist=prod_dist, row_blk_size=col_blk_size, col_blk_size=col_blk_size)
1630 : CALL dbcsr_create(matrix=dbcsr_ovlp, name="OVLP", matrix_type=dbcsr_type_no_symmetry, &
1631 2 : dist=prod_dist, row_blk_size=col_blk_size, col_blk_size=col_blk_size)
1632 :
1633 26 : col_blk_size = 1
1634 : CALL dbcsr_create(matrix=dbcsr_tmp, name="TMP", matrix_type=dbcsr_type_no_symmetry, &
1635 2 : dist=prod_dist, row_blk_size=col_blk_size, col_blk_size=col_blk_size)
1636 2 : CALL dbcsr_reserve_all_blocks(dbcsr_tmp)
1637 :
1638 2 : dbcsr_soc_package%dbcsr_sc => dbcsr_sc
1639 2 : dbcsr_soc_package%dbcsr_sf => dbcsr_sf
1640 2 : dbcsr_soc_package%dbcsr_work => dbcsr_work
1641 2 : dbcsr_soc_package%dbcsr_ovlp => dbcsr_ovlp
1642 2 : dbcsr_soc_package%dbcsr_prod => dbcsr_prod
1643 2 : dbcsr_soc_package%dbcsr_tmp => dbcsr_tmp
1644 :
1645 : !Filling the coeffs matrices by copying from the stored fms
1646 2 : CALL copy_fm_to_dbcsr(sc_coeffs, dbcsr_sc)
1647 2 : CALL copy_fm_to_dbcsr(sf_coeffs, dbcsr_sf)
1648 :
1649 : ! Precompute what we can before looping over excited states.
1650 : ! Need to compute the scalar: sum_i sum_sigma <phi^0_i,sigma|SOC|phi^0_i,sigma>, where all
1651 : ! occupied MOs are taken into account
1652 :
1653 : !start with the alpha MOs
1654 2 : CALL get_mo_set(mos(1), mo_coeff=mo_coeff, homo=homo)
1655 6 : ALLOCATE (diag(homo))
1656 2 : CALL cp_fm_get_info(mo_coeff, matrix_struct=vec_struct)
1657 : CALL cp_fm_struct_create(prod_struct, context=blacs_env, para_env=para_env, &
1658 2 : nrow_global=homo, ncol_global=homo)
1659 2 : CALL cp_fm_create(vec_work, vec_struct)
1660 2 : CALL cp_fm_create(prod_work, prod_struct)
1661 :
1662 : ! <alpha|SOC_z|alpha> => spin integration yields +1
1663 2 : CALL cp_dbcsr_sm_fm_multiply(orb_soc_z, mo_coeff, vec_work, ncol=homo)
1664 2 : CALL parallel_gemm('T', 'N', homo, homo, nao, 1.0_dp, mo_coeff, vec_work, 0.0_dp, prod_work)
1665 2 : CALL cp_fm_get_diag(prod_work, diag)
1666 20 : gs_sum = SUM(diag)
1667 :
1668 2 : CALL cp_fm_release(vec_work)
1669 2 : CALL cp_fm_release(prod_work)
1670 2 : CALL cp_fm_struct_release(prod_struct)
1671 2 : DEALLOCATE (diag)
1672 2 : NULLIFY (vec_struct)
1673 :
1674 : ! Now do the same with the beta gs coeffs
1675 2 : CALL get_mo_set(mos(2), mo_coeff=mo_coeff, homo=homo)
1676 6 : ALLOCATE (diag(homo))
1677 2 : CALL cp_fm_get_info(mo_coeff, matrix_struct=vec_struct)
1678 : CALL cp_fm_struct_create(prod_struct, context=blacs_env, para_env=para_env, &
1679 2 : nrow_global=homo, ncol_global=homo)
1680 2 : CALL cp_fm_create(vec_work, vec_struct)
1681 2 : CALL cp_fm_create(prod_work, prod_struct)
1682 :
1683 : ! <beta|SOC_z|beta> => spin integration yields -1
1684 2 : CALL cp_dbcsr_sm_fm_multiply(orb_soc_z, mo_coeff, vec_work, ncol=homo)
1685 2 : CALL parallel_gemm('T', 'N', homo, homo, nao, 1.0_dp, mo_coeff, vec_work, 0.0_dp, prod_work)
1686 2 : CALL cp_fm_get_diag(prod_work, diag)
1687 20 : gs_sum = gs_sum - SUM(diag) ! -1 because of spin integration
1688 :
1689 2 : CALL cp_fm_release(vec_work)
1690 2 : CALL cp_fm_release(prod_work)
1691 2 : CALL cp_fm_struct_release(prod_struct)
1692 2 : DEALLOCATE (diag)
1693 :
1694 : ! Need to compute: <phi^0_Isigma|SOC|phi^0_Jtau> for the donor MOs
1695 :
1696 : CALL cp_fm_struct_create(vec_struct, context=blacs_env, para_env=para_env, &
1697 2 : nrow_global=nao, ncol_global=ndo_so)
1698 : CALL cp_fm_struct_create(prod_struct, context=blacs_env, para_env=para_env, &
1699 2 : nrow_global=ndo_so, ncol_global=ndo_so)
1700 2 : CALL cp_fm_create(vec_soc_x, vec_struct) ! for SOC_x*gs_coeffs
1701 2 : CALL cp_fm_create(vec_soc_y, vec_struct) ! for SOC_y*gs_coeffs
1702 2 : CALL cp_fm_create(vec_soc_z, vec_struct) ! for SOC_z*gs_coeffs
1703 2 : CALL cp_fm_create(prod_work, prod_struct)
1704 6 : ALLOCATE (diag(ndo_so))
1705 :
1706 16 : ALLOCATE (domo_soc_x(ndo_so, ndo_so), domo_soc_y(ndo_so, ndo_so), domo_soc_z(ndo_so, ndo_so))
1707 :
1708 2 : CALL cp_dbcsr_sm_fm_multiply(orb_soc_x, gs_coeffs, vec_soc_x, ncol=ndo_so)
1709 2 : CALL parallel_gemm('T', 'N', ndo_so, ndo_so, nao, 1.0_dp, gs_coeffs, vec_soc_x, 0.0_dp, prod_work)
1710 2 : CALL cp_fm_get_submatrix(prod_work, domo_soc_x)
1711 :
1712 2 : CALL cp_dbcsr_sm_fm_multiply(orb_soc_y, gs_coeffs, vec_soc_y, ncol=ndo_so)
1713 2 : CALL parallel_gemm('T', 'N', ndo_so, ndo_so, nao, 1.0_dp, gs_coeffs, vec_soc_y, 0.0_dp, prod_work)
1714 2 : CALL cp_fm_get_submatrix(prod_work, domo_soc_y)
1715 :
1716 2 : CALL cp_dbcsr_sm_fm_multiply(orb_soc_z, gs_coeffs, vec_soc_z, ncol=ndo_so)
1717 2 : CALL parallel_gemm('T', 'N', ndo_so, ndo_so, nao, 1.0_dp, gs_coeffs, vec_soc_z, 0.0_dp, prod_work)
1718 2 : CALL cp_fm_get_submatrix(prod_work, domo_soc_z)
1719 :
1720 : ! some more useful work matrices
1721 : CALL cp_fm_struct_create(work_struct, context=blacs_env, para_env=para_env, &
1722 2 : nrow_global=nex, ncol_global=nex)
1723 2 : CALL cp_fm_create(work_fm, work_struct)
1724 :
1725 : ! Looping over the excited states, computing the SOC and filling the perturbation matrix
1726 : ! There are 3 loops to do: sc-sc, sc-sf and sf-sf
1727 : ! The final perturbation matrix is Hermitian, only the upper diagonal is needed
1728 :
1729 : !need some work matrices for the GS stuff
1730 : CALL cp_fm_struct_create(gsex_struct, context=blacs_env, para_env=para_env, &
1731 2 : nrow_global=nex*ndo_so, ncol_global=ndo_so)
1732 2 : CALL cp_fm_create(gsex_fm, gsex_struct)
1733 6 : ALLOCATE (gsex_block(ndo_so, ndo_so))
1734 :
1735 : ! Start with ground-state/spin-conserving SOC:
1736 : ! <Psi_0|SOC|Psi_Jsc> = sum_k,sigma <phi^0_k,sigma|SOC|phi^Jsc_k,sigma>
1737 :
1738 : !compute -sc_coeffs*SOC_Z*gs_coeffs, minus sign because SOC_z antisymmetric
1739 2 : CALL parallel_gemm('T', 'N', nex*ndo_so, ndo_so, nao, -1.0_dp, sc_coeffs, vec_soc_z, 0.0_dp, gsex_fm)
1740 :
1741 26 : DO isc = 1, nsc
1742 : CALL cp_fm_get_submatrix(fm=gsex_fm, target_m=gsex_block, start_row=(isc - 1)*ndo_so + 1, &
1743 24 : start_col=1, n_rows=ndo_so, n_cols=ndo_so)
1744 24 : diag(:) = get_diag(gsex_block)
1745 168 : soc = SUM(diag(1:ndo_mo)) - SUM(diag(ndo_mo + 1:ndo_so)) !minus sign because of spin integration
1746 :
1747 : !purely imaginary contribution
1748 26 : CALL cp_fm_set_element(img_fm, 1, 1 + isc, soc)
1749 : END DO !isc
1750 :
1751 : ! Then ground-state/spin-flip SOC:
1752 : !<Psi_0|SOC|Psi_Jsf> = sum_k,sigma <phi^0_k,sigma|SOC|phi^Jsc_k,tau> sigma != tau
1753 :
1754 : !compute -sc_coeffs*SOC_x*gs_coeffs, imaginary contribution
1755 2 : CALL parallel_gemm('T', 'N', nex*ndo_so, ndo_so, nao, -1.0_dp, sc_coeffs, vec_soc_x, 0.0_dp, gsex_fm)
1756 :
1757 26 : DO isf = 1, nsf
1758 : CALL cp_fm_get_submatrix(fm=gsex_fm, target_m=gsex_block, start_row=(isf - 1)*ndo_so + 1, &
1759 24 : start_col=1, n_rows=ndo_so, n_cols=ndo_so)
1760 24 : diag(:) = get_diag(gsex_block)
1761 168 : soc = SUM(diag) !alpha and beta parts are simply added due to spin integration
1762 26 : CALL cp_fm_set_element(img_fm, 1, 1 + nsc + isf, soc)
1763 : END DO !isf
1764 :
1765 : !compute -sc_coeffs*SOC_y*gs_coeffs, real contribution
1766 2 : CALL parallel_gemm('T', 'N', nex*ndo_so, ndo_so, nao, -1.0_dp, sc_coeffs, vec_soc_y, 0.0_dp, gsex_fm)
1767 :
1768 26 : DO isf = 1, nsf
1769 : CALL cp_fm_get_submatrix(fm=gsex_fm, target_m=gsex_block, start_row=(isf - 1)*ndo_so + 1, &
1770 24 : start_col=1, n_rows=ndo_so, n_cols=ndo_so)
1771 24 : diag(:) = get_diag(gsex_block)
1772 96 : soc = SUM(diag(1:ndo_mo)) ! alpha-beta
1773 96 : soc = soc - SUM(diag(ndo_mo + 1:ndo_so)) !beta-alpha
1774 26 : CALL cp_fm_set_element(real_fm, 1, 1 + nsc + isf, soc)
1775 : END DO !isf
1776 :
1777 : !ground-state cleanup
1778 2 : CALL cp_fm_release(gsex_fm)
1779 2 : CALL cp_fm_release(vec_soc_x)
1780 2 : CALL cp_fm_release(vec_soc_y)
1781 2 : CALL cp_fm_release(vec_soc_z)
1782 2 : CALL cp_fm_release(prod_work)
1783 2 : CALL cp_fm_struct_release(gsex_struct)
1784 2 : CALL cp_fm_struct_release(prod_struct)
1785 2 : CALL cp_fm_struct_release(vec_struct)
1786 2 : DEALLOCATE (gsex_block)
1787 :
1788 : ! Then spin-conserving/spin-conserving SOC
1789 : ! <Psi_Isc|SOC|Psi_Jsc> =
1790 : ! sum_k,sigma [<psi^Isc_k,sigma|SOC|psi^Jsc_k,sigma> + <psi^Isc_k,sigma|psi^Jsc_k,sigma> * gs_sum]
1791 : ! - sum_k,l,sigma <psi^0_k,sigma|SOC|psi^0_l,sigma> * <psi^Isc_l,sigma|psi^Jsc_k,sigma>
1792 :
1793 : !Same spin integration => only SOC_z matters, and the contribution is purely imaginary
1794 2 : CALL dbcsr_multiply('N', 'N', 1.0_dp, orb_soc_z, dbcsr_sc, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
1795 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sc, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
1796 :
1797 : !the overlap as well
1798 : CALL dbcsr_multiply('N', 'N', 1.0_dp, matrix_s(1)%matrix, dbcsr_sc, 0.0_dp, dbcsr_work, &
1799 2 : filter_eps=eps_filter)
1800 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sc, dbcsr_work, 0.0_dp, dbcsr_ovlp, filter_eps=eps_filter)
1801 :
1802 : CALL os_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, domo_soc_z, pref_diaga=1.0_dp, &
1803 : pref_diagb=-1.0_dp, pref_tracea=-1.0_dp, pref_traceb=1.0_dp, &
1804 2 : pref_diags=gs_sum, symmetric=.TRUE.)
1805 :
1806 2 : CALL copy_dbcsr_to_fm(dbcsr_tmp, work_fm)
1807 : CALL cp_fm_to_fm_submat(msource=work_fm, mtarget=img_fm, nrow=nex, ncol=nex, s_firstrow=1, &
1808 2 : s_firstcol=1, t_firstrow=2, t_firstcol=2)
1809 :
1810 : ! Then spin-flip/spin-flip SOC
1811 : ! <Psi_Isf|SOC|Psi_Jsf> =
1812 : ! sum_k,sigma [<psi^Isf_k,tau|SOC|psi^Jsf_k,tau> + <psi^Isf_k,tau|psi^Jsf_k,tau> * gs_sum]
1813 : ! - sum_k,l,sigma <psi^0_k,sigma|SOC|psi^0_l,sigma> * <psi^Isf_l,tau|psi^Jsf_k,tau> , tau != sigma
1814 :
1815 : !Same spin integration => only SOC_z matters, and the contribution is purely imaginary
1816 2 : CALL dbcsr_multiply('N', 'N', 1.0_dp, orb_soc_z, dbcsr_sf, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
1817 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sf, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
1818 :
1819 : !the overlap as well
1820 : CALL dbcsr_multiply('N', 'N', 1.0_dp, matrix_s(1)%matrix, dbcsr_sf, 0.0_dp, &
1821 2 : dbcsr_work, filter_eps=eps_filter)
1822 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sf, dbcsr_work, 0.0_dp, dbcsr_ovlp, filter_eps=eps_filter)
1823 :
1824 : !note: the different prefactors are derived from the fact that because of spin-flip, we have
1825 : !alpha-gs and beta-lr interaction
1826 : CALL os_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, domo_soc_z, pref_diaga=-1.0_dp, &
1827 : pref_diagb=1.0_dp, pref_tracea=-1.0_dp, pref_traceb=1.0_dp, &
1828 2 : pref_diags=gs_sum, symmetric=.TRUE.)
1829 :
1830 2 : CALL copy_dbcsr_to_fm(dbcsr_tmp, work_fm)
1831 : CALL cp_fm_to_fm_submat(msource=work_fm, mtarget=img_fm, nrow=nex, ncol=nex, s_firstrow=1, &
1832 2 : s_firstcol=1, t_firstrow=1 + nsc + 1, t_firstcol=1 + nsc + 1)
1833 :
1834 : ! Finally the spin-conserving/spin-flip interaction
1835 : ! <Psi_Isc|SOC|Psi_Jsf> = sum_k,sigma <psi^Isc_k,sigma|SOC|psi^Isf_k,tau>
1836 : ! - sum_k,l,sigma <psi^0_k,tau|SOC|psi^0_l,sigma
1837 :
1838 2 : tas(1) = ndo_mo + 1; tbs(1) = 1
1839 2 : tas(2) = 1; tbs(2) = ndo_mo + 1
1840 :
1841 : !the overlap
1842 : CALL dbcsr_multiply('N', 'N', 1.0_dp, matrix_s(1)%matrix, dbcsr_sf, 0.0_dp, &
1843 2 : dbcsr_work, filter_eps=eps_filter)
1844 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sc, dbcsr_work, 0.0_dp, dbcsr_ovlp, filter_eps=eps_filter)
1845 :
1846 : !start with the imaginary contribution
1847 2 : CALL dbcsr_multiply('N', 'N', 1.0_dp, orb_soc_x, dbcsr_sc, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
1848 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sf, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
1849 :
1850 : CALL os_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, domo_soc_x, pref_diaga=1.0_dp, &
1851 : pref_diagb=1.0_dp, pref_tracea=-1.0_dp, pref_traceb=-1.0_dp, &
1852 2 : tracea_start=tas, traceb_start=tbs)
1853 :
1854 2 : CALL copy_dbcsr_to_fm(dbcsr_tmp, work_fm)
1855 : CALL cp_fm_to_fm_submat(msource=work_fm, mtarget=img_fm, nrow=nex, ncol=nex, s_firstrow=1, &
1856 2 : s_firstcol=1, t_firstrow=2, t_firstcol=1 + nsc + 1)
1857 :
1858 : !follow up with the real contribution
1859 2 : CALL dbcsr_multiply('N', 'N', 1.0_dp, orb_soc_y, dbcsr_sf, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
1860 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sc, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
1861 :
1862 : CALL os_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, domo_soc_y, pref_diaga=1.0_dp, &
1863 : pref_diagb=-1.0_dp, pref_tracea=1.0_dp, pref_traceb=-1.0_dp, &
1864 2 : tracea_start=tas, traceb_start=tbs)
1865 :
1866 2 : CALL copy_dbcsr_to_fm(dbcsr_tmp, work_fm)
1867 : CALL cp_fm_to_fm_submat(msource=work_fm, mtarget=real_fm, nrow=nex, ncol=nex, s_firstrow=1, &
1868 2 : s_firstcol=1, t_firstrow=2, t_firstcol=1 + nsc + 1)
1869 :
1870 : ! Setting up the complex Hermitian perturbed matrix
1871 2 : CALL cp_cfm_create(pert_cfm, full_struct)
1872 2 : CALL cp_fm_to_cfm(real_fm, img_fm, pert_cfm)
1873 :
1874 2 : CALL cp_fm_release(real_fm)
1875 2 : CALL cp_fm_release(img_fm)
1876 :
1877 : ! Diagonalize the perturbed matrix
1878 6 : ALLOCATE (tmp_evals(ntot))
1879 2 : CALL cp_cfm_create(evecs_cfm, full_struct)
1880 2 : CALL cp_cfm_heevd(pert_cfm, evecs_cfm, tmp_evals)
1881 :
1882 : !shift the energies such that the GS has zero and store all that in soc_evals (\wo the GS)
1883 6 : ALLOCATE (donor_state%soc_evals(ntot - 1))
1884 50 : donor_state%soc_evals(:) = tmp_evals(2:ntot) - tmp_evals(1)
1885 :
1886 : ! The SOC dipole oscillator strengths
1887 : CALL compute_soc_dipole_fosc(evecs_cfm, dbcsr_soc_package, donor_state, xas_tdp_env, &
1888 2 : xas_tdp_control, qs_env, gs_coeffs=gs_coeffs)
1889 :
1890 : ! And quadrupole
1891 2 : IF (xas_tdp_control%do_quad) THEN
1892 : CALL compute_soc_quadrupole_fosc(evecs_cfm, dbcsr_soc_package, donor_state, xas_tdp_env, &
1893 0 : xas_tdp_control, qs_env, gs_coeffs=gs_coeffs)
1894 : END IF
1895 :
1896 : ! Clean-up
1897 2 : CALL cp_cfm_release(pert_cfm)
1898 2 : CALL cp_cfm_release(evecs_cfm)
1899 2 : CALL cp_fm_struct_release(full_struct)
1900 2 : IF (do_roks) THEN
1901 0 : CALL cp_fm_release(gs_coeffs)
1902 0 : DEALLOCATE (gs_coeffs)
1903 : END IF
1904 2 : CALL dbcsr_distribution_release(coeffs_dist)
1905 2 : CALL dbcsr_distribution_release(prod_dist)
1906 2 : CALL dbcsr_release(dbcsr_sc)
1907 2 : CALL dbcsr_release(dbcsr_sf)
1908 2 : CALL dbcsr_release(dbcsr_prod)
1909 2 : CALL dbcsr_release(dbcsr_ovlp)
1910 2 : CALL dbcsr_release(dbcsr_tmp)
1911 2 : CALL dbcsr_release(dbcsr_work)
1912 2 : CALL cp_fm_release(work_fm)
1913 2 : CALL cp_fm_struct_release(work_struct)
1914 2 : DEALLOCATE (coeffs_dist, prod_dist, col_dist, col_blk_size, row_dist_new)
1915 2 : DEALLOCATE (dbcsr_sc, dbcsr_sf, dbcsr_work, dbcsr_prod, dbcsr_ovlp, dbcsr_tmp)
1916 :
1917 2 : CALL timestop(handle)
1918 :
1919 30 : END SUBROUTINE include_os_soc
1920 :
1921 : ! **************************************************************************************************
1922 : !> \brief Includes the SOC effects on the precomputed restricted closed-shell singlet and triplet
1923 : !> excitations. This is a perturbative treatmnent
1924 : !> \param donor_state ...
1925 : !> \param xas_tdp_env ...
1926 : !> \param xas_tdp_control ...
1927 : !> \param qs_env ...
1928 : !> \note Using AMEWs, build an hermitian matrix with all excited states SOC coupling + the
1929 : !> excitation energies on the diagonal. Then diagonalize it to get the new excitation
1930 : !> energies and corresponding linear combinations of lr_coeffs.
1931 : !> The AMEWs are normalized
1932 : !> Only for spin-restricted calculations
1933 : !> The ms=-1,+1 triplets are not explicitely computed in the first place. Assume they have
1934 : !> the same energy as the ms=0 triplets and apply the spin raising and lowering operators
1935 : !> on the latter to get their AMEWs => this is the qusi-degenerate perturbation theory
1936 : !> approach by Neese (QDPT)
1937 : ! **************************************************************************************************
1938 2 : SUBROUTINE include_rcs_soc(donor_state, xas_tdp_env, xas_tdp_control, qs_env)
1939 :
1940 : TYPE(donor_state_type), POINTER :: donor_state
1941 : TYPE(xas_tdp_env_type), POINTER :: xas_tdp_env
1942 : TYPE(xas_tdp_control_type), POINTER :: xas_tdp_control
1943 : TYPE(qs_environment_type), POINTER :: qs_env
1944 :
1945 : CHARACTER(len=*), PARAMETER :: routineN = 'include_rcs_soc'
1946 :
1947 : INTEGER :: group, handle, iex, isg, itp, nao, &
1948 : ndo_mo, nex, npcols, nprows, nsg, &
1949 : ntot, ntp
1950 2 : INTEGER, DIMENSION(:), POINTER :: col_blk_size, col_dist, row_blk_size, &
1951 2 : row_dist, row_dist_new
1952 2 : INTEGER, DIMENSION(:, :), POINTER :: pgrid
1953 : REAL(dp) :: eps_filter, soc_gst, sqrt2
1954 2 : REAL(dp), ALLOCATABLE, DIMENSION(:) :: diag, tmp_evals
1955 2 : REAL(dp), ALLOCATABLE, DIMENSION(:, :) :: domo_soc_x, domo_soc_y, domo_soc_z, &
1956 2 : gstp_block
1957 2 : REAL(dp), DIMENSION(:), POINTER :: sg_evals, tp_evals
1958 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
1959 : TYPE(cp_cfm_type) :: evecs_cfm, hami_cfm
1960 : TYPE(cp_fm_struct_type), POINTER :: full_struct, gstp_struct, prod_struct, &
1961 : vec_struct, work_struct
1962 : TYPE(cp_fm_type) :: gstp_fm, img_fm, prod_fm, real_fm, &
1963 : tmp_fm, vec_soc_x, vec_soc_y, &
1964 : vec_soc_z, work_fm
1965 : TYPE(cp_fm_type), POINTER :: gs_coeffs, sg_coeffs, tp_coeffs
1966 : TYPE(dbcsr_distribution_type), POINTER :: coeffs_dist, dbcsr_dist, prod_dist
1967 2 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_s
1968 : TYPE(dbcsr_soc_package_type) :: dbcsr_soc_package
1969 : TYPE(dbcsr_type), POINTER :: dbcsr_ovlp, dbcsr_prod, dbcsr_sg, &
1970 : dbcsr_tmp, dbcsr_tp, dbcsr_work, &
1971 : orb_soc_x, orb_soc_y, orb_soc_z
1972 : TYPE(mp_para_env_type), POINTER :: para_env
1973 :
1974 2 : NULLIFY (sg_coeffs, tp_coeffs, gs_coeffs, sg_evals, tp_evals, full_struct)
1975 2 : NULLIFY (para_env, blacs_env, prod_struct, vec_struct, orb_soc_y, orb_soc_z)
1976 2 : NULLIFY (matrix_s, orb_soc_x)
1977 2 : NULLIFY (work_struct, dbcsr_dist, coeffs_dist, prod_dist, pgrid)
1978 2 : NULLIFY (col_dist, row_dist, col_blk_size, row_blk_size, row_dist_new, gstp_struct)
1979 2 : NULLIFY (dbcsr_tp, dbcsr_sg, dbcsr_prod, dbcsr_work, dbcsr_ovlp, dbcsr_tmp)
1980 :
1981 2 : CALL timeset(routineN, handle)
1982 :
1983 : ! Initialization
1984 2 : CPASSERT(ASSOCIATED(xas_tdp_control))
1985 2 : gs_coeffs => donor_state%gs_coeffs
1986 2 : sg_coeffs => donor_state%sg_coeffs
1987 2 : tp_coeffs => donor_state%tp_coeffs
1988 2 : sg_evals => donor_state%sg_evals
1989 2 : tp_evals => donor_state%tp_evals
1990 2 : nsg = SIZE(sg_evals)
1991 2 : ntp = SIZE(tp_evals)
1992 2 : ntot = 1 + nsg + 3*ntp
1993 2 : ndo_mo = donor_state%ndo_mo
1994 2 : CALL get_qs_env(qs_env, matrix_s=matrix_s)
1995 2 : CALL dbcsr_get_info(matrix_s(1)%matrix, nfullrows_total=nao)
1996 2 : orb_soc_x => xas_tdp_env%orb_soc(1)%matrix
1997 2 : orb_soc_y => xas_tdp_env%orb_soc(2)%matrix
1998 2 : orb_soc_z => xas_tdp_env%orb_soc(3)%matrix
1999 : !by construction nsg == ntp, keep those separate for more code clarity though
2000 2 : CPASSERT(nsg == ntp)
2001 2 : nex = nsg
2002 2 : eps_filter = xas_tdp_control%eps_filter
2003 :
2004 : ! Creating the real part and imaginary part of the final SOC fm
2005 2 : CALL get_qs_env(qs_env, para_env=para_env, blacs_env=blacs_env)
2006 : CALL cp_fm_struct_create(full_struct, context=blacs_env, para_env=para_env, &
2007 2 : nrow_global=ntot, ncol_global=ntot)
2008 2 : CALL cp_fm_create(real_fm, full_struct)
2009 2 : CALL cp_fm_create(img_fm, full_struct)
2010 :
2011 : ! Put the excitation energies on the diagonal of the real matrix
2012 26 : DO isg = 1, nsg
2013 26 : CALL cp_fm_set_element(real_fm, 1 + isg, 1 + isg, sg_evals(isg))
2014 : END DO
2015 26 : DO itp = 1, ntp
2016 : ! first T^-1, then T^0, then T^+1
2017 24 : CALL cp_fm_set_element(real_fm, 1 + itp + nsg, 1 + itp + nsg, tp_evals(itp))
2018 24 : CALL cp_fm_set_element(real_fm, 1 + itp + ntp + nsg, 1 + itp + ntp + nsg, tp_evals(itp))
2019 26 : CALL cp_fm_set_element(real_fm, 1 + itp + 2*ntp + nsg, 1 + itp + 2*ntp + nsg, tp_evals(itp))
2020 : END DO
2021 :
2022 : ! Create the dbcsr machinery (for fast MM, the core of this routine)
2023 2 : CALL get_qs_env(qs_env, dbcsr_dist=dbcsr_dist)
2024 : CALL dbcsr_distribution_get(dbcsr_dist, group=group, row_dist=row_dist, pgrid=pgrid, &
2025 2 : npcols=npcols, nprows=nprows)
2026 8 : ALLOCATE (col_dist(nex), row_dist_new(nex))
2027 26 : DO iex = 1, nex
2028 24 : col_dist(iex) = MODULO(npcols - iex, npcols)
2029 26 : row_dist_new(iex) = MODULO(nprows - iex, nprows)
2030 : END DO
2031 2 : ALLOCATE (coeffs_dist, prod_dist)
2032 : CALL dbcsr_distribution_new(coeffs_dist, group=group, pgrid=pgrid, row_dist=row_dist, &
2033 2 : col_dist=col_dist)
2034 : CALL dbcsr_distribution_new(prod_dist, group=group, pgrid=pgrid, row_dist=row_dist_new, &
2035 2 : col_dist=col_dist)
2036 :
2037 : !Create the matrices
2038 4 : ALLOCATE (col_blk_size(nex))
2039 26 : col_blk_size = ndo_mo
2040 2 : CALL dbcsr_get_info(matrix_s(1)%matrix, row_blk_size=row_blk_size)
2041 :
2042 2 : ALLOCATE (dbcsr_sg, dbcsr_tp, dbcsr_work, dbcsr_ovlp, dbcsr_tmp, dbcsr_prod)
2043 : CALL dbcsr_create(matrix=dbcsr_sg, name="SINGLETS", matrix_type=dbcsr_type_no_symmetry, &
2044 2 : dist=coeffs_dist, row_blk_size=row_blk_size, col_blk_size=col_blk_size)
2045 : CALL dbcsr_create(matrix=dbcsr_tp, name="TRIPLETS", matrix_type=dbcsr_type_no_symmetry, &
2046 2 : dist=coeffs_dist, row_blk_size=row_blk_size, col_blk_size=col_blk_size)
2047 : CALL dbcsr_create(matrix=dbcsr_work, name="WORK", matrix_type=dbcsr_type_no_symmetry, &
2048 2 : dist=coeffs_dist, row_blk_size=row_blk_size, col_blk_size=col_blk_size)
2049 : CALL dbcsr_create(matrix=dbcsr_prod, name="PROD", matrix_type=dbcsr_type_no_symmetry, &
2050 2 : dist=prod_dist, row_blk_size=col_blk_size, col_blk_size=col_blk_size)
2051 : CALL dbcsr_create(matrix=dbcsr_ovlp, name="OVLP", matrix_type=dbcsr_type_no_symmetry, &
2052 2 : dist=prod_dist, row_blk_size=col_blk_size, col_blk_size=col_blk_size)
2053 :
2054 26 : col_blk_size = 1
2055 : CALL dbcsr_create(matrix=dbcsr_tmp, name="TMP", matrix_type=dbcsr_type_no_symmetry, &
2056 2 : dist=prod_dist, row_blk_size=col_blk_size, col_blk_size=col_blk_size)
2057 2 : CALL dbcsr_reserve_all_blocks(dbcsr_tmp)
2058 :
2059 2 : dbcsr_soc_package%dbcsr_sg => dbcsr_sg
2060 2 : dbcsr_soc_package%dbcsr_tp => dbcsr_tp
2061 2 : dbcsr_soc_package%dbcsr_work => dbcsr_work
2062 2 : dbcsr_soc_package%dbcsr_ovlp => dbcsr_ovlp
2063 2 : dbcsr_soc_package%dbcsr_prod => dbcsr_prod
2064 2 : dbcsr_soc_package%dbcsr_tmp => dbcsr_tmp
2065 :
2066 : !Filling the coeffs matrices by copying from the stored fms
2067 2 : CALL copy_fm_to_dbcsr(sg_coeffs, dbcsr_sg)
2068 2 : CALL copy_fm_to_dbcsr(tp_coeffs, dbcsr_tp)
2069 :
2070 : ! Create the work and helper fms
2071 2 : CALL cp_fm_get_info(gs_coeffs, matrix_struct=vec_struct)
2072 : CALL cp_fm_struct_create(prod_struct, context=blacs_env, para_env=para_env, &
2073 2 : nrow_global=ndo_mo, ncol_global=ndo_mo)
2074 2 : CALL cp_fm_create(prod_fm, prod_struct)
2075 2 : CALL cp_fm_create(vec_soc_x, vec_struct)
2076 2 : CALL cp_fm_create(vec_soc_y, vec_struct)
2077 2 : CALL cp_fm_create(vec_soc_z, vec_struct)
2078 : CALL cp_fm_struct_create(work_struct, context=blacs_env, para_env=para_env, &
2079 2 : nrow_global=nex, ncol_global=nex)
2080 2 : CALL cp_fm_create(work_fm, work_struct)
2081 2 : CALL cp_fm_create(tmp_fm, work_struct)
2082 6 : ALLOCATE (diag(ndo_mo))
2083 :
2084 : ! Precompute everything we can before looping over excited states
2085 2 : sqrt2 = SQRT(2.0_dp)
2086 :
2087 : ! The subset of the donor MOs matrix elements: <phi_I^0|Hsoc|phi_J^0> (kept as global array, small)
2088 16 : ALLOCATE (domo_soc_x(ndo_mo, ndo_mo), domo_soc_y(ndo_mo, ndo_mo), domo_soc_z(ndo_mo, ndo_mo))
2089 :
2090 2 : CALL cp_dbcsr_sm_fm_multiply(orb_soc_x, gs_coeffs, vec_soc_x, ncol=ndo_mo)
2091 2 : CALL parallel_gemm('T', 'N', ndo_mo, ndo_mo, nao, 1.0_dp, gs_coeffs, vec_soc_x, 0.0_dp, prod_fm)
2092 2 : CALL cp_fm_get_submatrix(prod_fm, domo_soc_x)
2093 :
2094 2 : CALL cp_dbcsr_sm_fm_multiply(orb_soc_y, gs_coeffs, vec_soc_y, ncol=ndo_mo)
2095 2 : CALL parallel_gemm('T', 'N', ndo_mo, ndo_mo, nao, 1.0_dp, gs_coeffs, vec_soc_y, 0.0_dp, prod_fm)
2096 2 : CALL cp_fm_get_submatrix(prod_fm, domo_soc_y)
2097 :
2098 2 : CALL cp_dbcsr_sm_fm_multiply(orb_soc_z, gs_coeffs, vec_soc_z, ncol=ndo_mo)
2099 2 : CALL parallel_gemm('T', 'N', ndo_mo, ndo_mo, nao, 1.0_dp, gs_coeffs, vec_soc_z, 0.0_dp, prod_fm)
2100 2 : CALL cp_fm_get_submatrix(prod_fm, domo_soc_z)
2101 :
2102 : ! Only have SOC between singlet-triplet triplet-triplet and ground_state-triplet, the resulting
2103 : ! matrix is Hermitian i.e. the real part is symmetric and the imaginary part is anti-symmetric.
2104 : ! Can only fill upper half
2105 :
2106 : !Start with the ground state/triplet SOC, SOC*gs_coeffs already computed above
2107 : !note: we are computing <0|H|T>, but have SOC*gs_coeffs instead of gs_coeffs*SOC in store. Since
2108 : ! the SOC Hamiltonian is anti-symmetric, a - signs pops up in the gemms below
2109 :
2110 : CALL cp_fm_struct_create(gstp_struct, context=blacs_env, para_env=para_env, &
2111 2 : nrow_global=ntp*ndo_mo, ncol_global=ndo_mo)
2112 2 : CALL cp_fm_create(gstp_fm, gstp_struct)
2113 6 : ALLOCATE (gstp_block(ndo_mo, ndo_mo))
2114 :
2115 : !gs-triplet with Ms=+-1, imaginary part
2116 2 : CALL parallel_gemm('T', 'N', ndo_mo*ntp, ndo_mo, nao, -1.0_dp, tp_coeffs, vec_soc_x, 0.0_dp, gstp_fm)
2117 :
2118 26 : DO itp = 1, ntp
2119 : CALL cp_fm_get_submatrix(fm=gstp_fm, target_m=gstp_block, start_row=(itp - 1)*ndo_mo + 1, &
2120 24 : start_col=1, n_rows=ndo_mo, n_cols=ndo_mo)
2121 24 : diag(:) = get_diag(gstp_block)
2122 96 : soc_gst = SUM(diag)
2123 24 : CALL cp_fm_set_element(img_fm, 1, 1 + nsg + itp, -1.0_dp*soc_gst) ! <0|H_x|T^-1>
2124 26 : CALL cp_fm_set_element(img_fm, 1, 1 + nsg + 2*ntp + itp, soc_gst) ! <0|H_x|T^+1>
2125 : END DO
2126 :
2127 : !gs-triplet with Ms=+-1, real part
2128 2 : CALL parallel_gemm('T', 'N', ndo_mo*ntp, ndo_mo, nao, -1.0_dp, tp_coeffs, vec_soc_y, 0.0_dp, gstp_fm)
2129 :
2130 26 : DO itp = 1, ntp
2131 : CALL cp_fm_get_submatrix(fm=gstp_fm, target_m=gstp_block, start_row=(itp - 1)*ndo_mo + 1, &
2132 24 : start_col=1, n_rows=ndo_mo, n_cols=ndo_mo)
2133 24 : diag(:) = get_diag(gstp_block)
2134 96 : soc_gst = SUM(diag)
2135 24 : CALL cp_fm_set_element(real_fm, 1, 1 + nsg + itp, -1.0_dp*soc_gst) ! <0|H_y|T^-1>
2136 26 : CALL cp_fm_set_element(real_fm, 1, 1 + nsg + 2*ntp + itp, -1.0_dp*soc_gst) ! <0|H_y|T^+1>
2137 : END DO
2138 :
2139 : !gs-triplet with Ms=0, purely imaginary
2140 2 : CALL parallel_gemm('T', 'N', ndo_mo*ntp, ndo_mo, nao, -1.0_dp, tp_coeffs, vec_soc_z, 0.0_dp, gstp_fm)
2141 :
2142 26 : DO itp = 1, ntp
2143 : CALL cp_fm_get_submatrix(fm=gstp_fm, target_m=gstp_block, start_row=(itp - 1)*ndo_mo + 1, &
2144 24 : start_col=1, n_rows=ndo_mo, n_cols=ndo_mo)
2145 24 : diag(:) = get_diag(gstp_block)
2146 96 : soc_gst = sqrt2*SUM(diag)
2147 26 : CALL cp_fm_set_element(img_fm, 1, 1 + nsg + ntp + itp, soc_gst)
2148 : END DO
2149 :
2150 : !gs clean-up
2151 2 : CALL cp_fm_release(prod_fm)
2152 2 : CALL cp_fm_release(vec_soc_x)
2153 2 : CALL cp_fm_release(vec_soc_y)
2154 2 : CALL cp_fm_release(vec_soc_z)
2155 2 : CALL cp_fm_release(gstp_fm)
2156 2 : CALL cp_fm_struct_release(gstp_struct)
2157 2 : CALL cp_fm_struct_release(prod_struct)
2158 2 : DEALLOCATE (gstp_block)
2159 :
2160 : !Now do the singlet-triplet SOC
2161 : !start by computing the singlet-triplet overlap
2162 : CALL dbcsr_multiply('N', 'N', 1.0_dp, matrix_s(1)%matrix, dbcsr_tp, 0.0_dp, &
2163 2 : dbcsr_work, filter_eps=eps_filter)
2164 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sg, dbcsr_work, 0.0_dp, dbcsr_ovlp, filter_eps=eps_filter)
2165 :
2166 : !singlet-triplet with Ms=+-1, imaginary part
2167 2 : CALL dbcsr_multiply('N', 'N', 1.0_dp, orb_soc_x, dbcsr_tp, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
2168 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sg, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
2169 :
2170 : CALL rcs_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, domo_soc_x, &
2171 2 : pref_trace=-1.0_dp, pref_overall=-0.5_dp*sqrt2)
2172 :
2173 : !<S|H_x|T^-1>
2174 2 : CALL copy_dbcsr_to_fm(dbcsr_tmp, tmp_fm)
2175 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=img_fm, nrow=nex, ncol=nex, &
2176 : s_firstrow=1, s_firstcol=1, t_firstrow=2, &
2177 2 : t_firstcol=1 + nsg + 1)
2178 :
2179 : !<S|H_x|T^+1> takes a minus sign
2180 2 : CALL cp_fm_scale(-1.0_dp, tmp_fm)
2181 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=img_fm, nrow=nex, ncol=nex, &
2182 : s_firstrow=1, s_firstcol=1, t_firstrow=2, &
2183 2 : t_firstcol=1 + nsg + 2*ntp + 1)
2184 :
2185 : !singlet-triplet with Ms=+-1, real part
2186 2 : CALL dbcsr_multiply('N', 'N', 1.0_dp, orb_soc_y, dbcsr_tp, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
2187 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sg, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
2188 :
2189 : CALL rcs_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, domo_soc_y, &
2190 2 : pref_trace=-1.0_dp, pref_overall=-0.5_dp*sqrt2)
2191 :
2192 : !<S|H_y|T^-1>
2193 2 : CALL copy_dbcsr_to_fm(dbcsr_tmp, tmp_fm)
2194 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=real_fm, nrow=nex, ncol=nex, &
2195 : s_firstrow=1, s_firstcol=1, t_firstrow=2, &
2196 2 : t_firstcol=1 + nsg + 1)
2197 :
2198 : !<S|H_y|T^+1>
2199 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=real_fm, nrow=nex, ncol=nex, &
2200 : s_firstrow=1, s_firstcol=1, t_firstrow=2, &
2201 2 : t_firstcol=1 + nsg + 2*ntp + 1)
2202 :
2203 : !singlet-triplet with Ms=0, purely imaginary
2204 2 : CALL dbcsr_multiply('N', 'N', 1.0_dp, orb_soc_z, dbcsr_tp, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
2205 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sg, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
2206 :
2207 : CALL rcs_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, domo_soc_z, &
2208 2 : pref_trace=-1.0_dp, pref_overall=1.0_dp)
2209 :
2210 : !<S|H_z|T^0>
2211 2 : CALL copy_dbcsr_to_fm(dbcsr_tmp, tmp_fm)
2212 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=img_fm, nrow=nex, ncol=nex, &
2213 : s_firstrow=1, s_firstcol=1, t_firstrow=2, &
2214 2 : t_firstcol=1 + nsg + ntp + 1)
2215 :
2216 : !Now the triplet-triplet SOC
2217 : !start by computing the overlap
2218 : CALL dbcsr_multiply('N', 'N', 1.0_dp, matrix_s(1)%matrix, dbcsr_tp, 0.0_dp, &
2219 2 : dbcsr_work, filter_eps=eps_filter)
2220 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_tp, dbcsr_work, 0.0_dp, dbcsr_ovlp, filter_eps=eps_filter)
2221 :
2222 : !Ms=0 to Ms=+-1 SOC, imaginary part
2223 2 : CALL dbcsr_multiply('N', 'N', 1.0_dp, orb_soc_x, dbcsr_tp, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
2224 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_tp, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
2225 :
2226 : CALL rcs_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, domo_soc_x, &
2227 2 : pref_trace=1.0_dp, pref_overall=-0.5_dp*sqrt2)
2228 :
2229 : !<T^0|H_x|T^+1>
2230 2 : CALL copy_dbcsr_to_fm(dbcsr_tmp, tmp_fm)
2231 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=img_fm, nrow=nex, ncol=nex, &
2232 : s_firstrow=1, s_firstcol=1, t_firstrow=1 + nsg + ntp + 1, &
2233 2 : t_firstcol=1 + nsg + 2*ntp + 1)
2234 :
2235 : !<T^-1|H_x|T^0>, takes a minus sign and a transpose (because computed <T^0|H_x|T^-1>)
2236 2 : CALL cp_fm_transpose(tmp_fm, work_fm)
2237 2 : CALL cp_fm_scale(-1.0_dp, work_fm)
2238 : CALL cp_fm_to_fm_submat(msource=work_fm, mtarget=img_fm, nrow=nex, ncol=nex, &
2239 : s_firstrow=1, s_firstcol=1, t_firstrow=1 + nsg + 1, &
2240 2 : t_firstcol=1 + nsg + ntp + 1)
2241 :
2242 : !Ms=0 to Ms=+-1 SOC, real part
2243 2 : CALL dbcsr_multiply('N', 'N', 1.0_dp, orb_soc_y, dbcsr_tp, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
2244 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_tp, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
2245 :
2246 : CALL rcs_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, domo_soc_y, &
2247 2 : pref_trace=1.0_dp, pref_overall=0.5_dp*sqrt2)
2248 :
2249 : !<T^0|H_y|T^+1>
2250 2 : CALL copy_dbcsr_to_fm(dbcsr_tmp, tmp_fm)
2251 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=real_fm, nrow=nex, ncol=nex, &
2252 : s_firstrow=1, s_firstcol=1, t_firstrow=1 + nsg + ntp + 1, &
2253 2 : t_firstcol=1 + nsg + 2*ntp + 1)
2254 :
2255 : !<T^-1|H_y|T^0>, takes a minus sign and a transpose
2256 2 : CALL cp_fm_transpose(tmp_fm, work_fm)
2257 2 : CALL cp_fm_scale(-1.0_dp, work_fm)
2258 : CALL cp_fm_to_fm_submat(msource=work_fm, mtarget=real_fm, nrow=nex, ncol=nex, &
2259 : s_firstrow=1, s_firstcol=1, t_firstrow=1 + nsg + 1, &
2260 2 : t_firstcol=1 + nsg + ntp + 1)
2261 :
2262 : !Ms=1 to Ms=1 and Ms=-1 to Ms=-1 SOC, purely imaginary
2263 2 : CALL dbcsr_multiply('N', 'N', 1.0_dp, orb_soc_z, dbcsr_tp, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
2264 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_tp, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
2265 :
2266 : CALL rcs_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, domo_soc_z, &
2267 2 : pref_trace=1.0_dp, pref_overall=1.0_dp)
2268 :
2269 : !<T^+1|H_z|T^+1>
2270 2 : CALL copy_dbcsr_to_fm(dbcsr_tmp, tmp_fm)
2271 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=img_fm, nrow=nex, ncol=nex, &
2272 : s_firstrow=1, s_firstcol=1, t_firstrow=1 + nsg + 2*ntp + 1, &
2273 2 : t_firstcol=1 + nsg + 2*ntp + 1)
2274 :
2275 : !<T^-1|H_z|T^-1>, takes a minus sign
2276 2 : CALL cp_fm_scale(-1.0_dp, tmp_fm)
2277 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=img_fm, nrow=nex, ncol=nex, &
2278 : s_firstrow=1, s_firstcol=1, t_firstrow=1 + nsg + 1, &
2279 2 : t_firstcol=1 + nsg + 1)
2280 :
2281 : ! Intermediate clean-up
2282 2 : CALL cp_fm_struct_release(work_struct)
2283 2 : CALL cp_fm_release(work_fm)
2284 2 : CALL cp_fm_release(tmp_fm)
2285 2 : DEALLOCATE (diag, domo_soc_x, domo_soc_y, domo_soc_z)
2286 :
2287 : ! Set-up the complex hermitian perturbation matrix
2288 2 : CALL cp_cfm_create(hami_cfm, full_struct)
2289 2 : CALL cp_fm_to_cfm(real_fm, img_fm, hami_cfm)
2290 :
2291 2 : CALL cp_fm_release(real_fm)
2292 2 : CALL cp_fm_release(img_fm)
2293 :
2294 : ! Diagonalize the Hamiltonian
2295 6 : ALLOCATE (tmp_evals(ntot))
2296 2 : CALL cp_cfm_create(evecs_cfm, full_struct)
2297 2 : CALL cp_cfm_heevd(hami_cfm, evecs_cfm, tmp_evals)
2298 :
2299 : ! Adjust the energies so the GS has zero, and store in the donor_state (without the GS)
2300 6 : ALLOCATE (donor_state%soc_evals(ntot - 1))
2301 98 : donor_state%soc_evals(:) = tmp_evals(2:ntot) - tmp_evals(1)
2302 :
2303 : ! Compute the dipole oscillator strengths
2304 : CALL compute_soc_dipole_fosc(evecs_cfm, dbcsr_soc_package, donor_state, xas_tdp_env, &
2305 2 : xas_tdp_control, qs_env)
2306 :
2307 : ! And the quadrupole (if needed)
2308 2 : IF (xas_tdp_control%do_quad) THEN
2309 : CALL compute_soc_quadrupole_fosc(evecs_cfm, dbcsr_soc_package, donor_state, xas_tdp_env, &
2310 0 : xas_tdp_control, qs_env)
2311 : END IF
2312 :
2313 : ! Clean-up
2314 2 : CALL cp_fm_struct_release(full_struct)
2315 2 : CALL cp_cfm_release(hami_cfm)
2316 2 : CALL cp_cfm_release(evecs_cfm)
2317 2 : CALL dbcsr_distribution_release(coeffs_dist)
2318 2 : CALL dbcsr_distribution_release(prod_dist)
2319 2 : CALL dbcsr_release(dbcsr_sg)
2320 2 : CALL dbcsr_release(dbcsr_tp)
2321 2 : CALL dbcsr_release(dbcsr_prod)
2322 2 : CALL dbcsr_release(dbcsr_ovlp)
2323 2 : CALL dbcsr_release(dbcsr_tmp)
2324 2 : CALL dbcsr_release(dbcsr_work)
2325 2 : DEALLOCATE (coeffs_dist, prod_dist, col_dist, col_blk_size, row_dist_new)
2326 2 : DEALLOCATE (dbcsr_sg, dbcsr_tp, dbcsr_work, dbcsr_prod, dbcsr_ovlp, dbcsr_tmp)
2327 :
2328 2 : CALL timestop(handle)
2329 :
2330 22 : END SUBROUTINE include_rcs_soc
2331 :
2332 : ! **************************************************************************************************
2333 : !> \brief Computes the matrix elements of a one-body operator (given wrt AOs) in the basis of the
2334 : !> excited state AMEWs with ground state, for the open-shell case
2335 : !> \param amew_op the operator in the basis of the AMEWs (array because could have x,y,z components)
2336 : !> \param ao_op the operator in the basis of the atomic orbitals
2337 : !> \param gs_coeffs the coefficient of the GS donor MOs. Ecplicitely passed because of special
2338 : !> format in the ROKS case (see include_os_soc routine)
2339 : !> \param dbcsr_soc_package inhertited from the main SOC routine
2340 : !> \param donor_state ...
2341 : !> \param eps_filter ...
2342 : !> \param qs_env ...
2343 : !> \note The ordering of the AMEWs is consistent with SOC and is gs, sc, sf
2344 : !> We assume that the operator is spin-independent => only <0|0>, <0|sc>, <sc|sc> and <sf|sf>
2345 : !> yield non-zero matrix elements
2346 : !> Only for open-shell calculations
2347 : ! **************************************************************************************************
2348 2 : SUBROUTINE get_os_amew_op(amew_op, ao_op, gs_coeffs, dbcsr_soc_package, donor_state, &
2349 : eps_filter, qs_env)
2350 :
2351 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:), &
2352 : INTENT(OUT) :: amew_op
2353 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: ao_op
2354 : TYPE(cp_fm_type), INTENT(IN) :: gs_coeffs
2355 : TYPE(dbcsr_soc_package_type) :: dbcsr_soc_package
2356 : TYPE(donor_state_type), POINTER :: donor_state
2357 : REAL(dp), INTENT(IN) :: eps_filter
2358 : TYPE(qs_environment_type), POINTER :: qs_env
2359 :
2360 : INTEGER :: dim_op, homo, i, isc, nao, ndo_mo, &
2361 : ndo_so, nex, nsc, nsf, ntot
2362 : REAL(dp) :: op
2363 2 : REAL(dp), ALLOCATABLE, DIMENSION(:) :: diag, gsgs_op
2364 2 : REAL(dp), ALLOCATABLE, DIMENSION(:, :) :: domo_op, gsex_block, tmp
2365 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
2366 : TYPE(cp_fm_struct_type), POINTER :: full_struct, gsex_struct, prod_struct, &
2367 : tmp_struct, vec_struct
2368 : TYPE(cp_fm_type) :: gsex_fm, prod_work, tmp_fm, vec_work, &
2369 : work_fm
2370 : TYPE(cp_fm_type), POINTER :: mo_coeff, sc_coeffs, sf_coeffs
2371 2 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_s
2372 : TYPE(dbcsr_type), POINTER :: ao_op_i, dbcsr_ovlp, dbcsr_prod, &
2373 : dbcsr_sc, dbcsr_sf, dbcsr_tmp, &
2374 : dbcsr_work
2375 2 : TYPE(mo_set_type), DIMENSION(:), POINTER :: mos
2376 : TYPE(mp_para_env_type), POINTER :: para_env
2377 :
2378 2 : NULLIFY (matrix_s, para_env, blacs_env, full_struct, vec_struct, prod_struct, mos)
2379 2 : NULLIFY (mo_coeff, ao_op_i, tmp_struct)
2380 2 : NULLIFY (dbcsr_sc, dbcsr_sf, dbcsr_ovlp, dbcsr_work, dbcsr_tmp, dbcsr_prod)
2381 :
2382 : ! Iinitialization
2383 2 : dim_op = SIZE(ao_op)
2384 2 : sc_coeffs => donor_state%sc_coeffs
2385 2 : sf_coeffs => donor_state%sf_coeffs
2386 2 : nsc = SIZE(donor_state%sc_evals)
2387 2 : nsf = SIZE(donor_state%sf_evals)
2388 2 : nex = nsc
2389 2 : ntot = 1 + nsc + nsf
2390 2 : ndo_mo = donor_state%ndo_mo
2391 2 : ndo_so = 2*donor_state%ndo_mo !open-shell => nspins = 2
2392 2 : CALL get_qs_env(qs_env, matrix_s=matrix_s, para_env=para_env, blacs_env=blacs_env, mos=mos)
2393 2 : CALL dbcsr_get_info(matrix_s(1)%matrix, nfullrows_total=nao)
2394 :
2395 2 : dbcsr_sc => dbcsr_soc_package%dbcsr_sc
2396 2 : dbcsr_sf => dbcsr_soc_package%dbcsr_sf
2397 2 : dbcsr_work => dbcsr_soc_package%dbcsr_work
2398 2 : dbcsr_tmp => dbcsr_soc_package%dbcsr_tmp
2399 2 : dbcsr_prod => dbcsr_soc_package%dbcsr_prod
2400 2 : dbcsr_ovlp => dbcsr_soc_package%dbcsr_ovlp
2401 :
2402 : ! Create the amew_op matrix set
2403 : CALL cp_fm_struct_create(full_struct, context=blacs_env, para_env=para_env, &
2404 2 : nrow_global=ntot, ncol_global=ntot)
2405 12 : ALLOCATE (amew_op(dim_op))
2406 8 : DO i = 1, dim_op
2407 8 : CALL cp_fm_create(amew_op(i), full_struct)
2408 : END DO
2409 :
2410 : ! Before looping, need to evaluate sum_j,sigma <phi^0_j,sgima|op|phi^0_j,sigma>, for each dimension
2411 : ! of the operator
2412 6 : ALLOCATE (gsgs_op(dim_op))
2413 :
2414 : !start with the alpha MOs
2415 2 : CALL get_mo_set(mos(1), mo_coeff=mo_coeff, homo=homo)
2416 6 : ALLOCATE (diag(homo))
2417 2 : CALL cp_fm_get_info(mo_coeff, matrix_struct=vec_struct)
2418 : CALL cp_fm_struct_create(prod_struct, context=blacs_env, para_env=para_env, &
2419 2 : nrow_global=homo, ncol_global=homo)
2420 2 : CALL cp_fm_create(vec_work, vec_struct)
2421 2 : CALL cp_fm_create(prod_work, prod_struct)
2422 :
2423 8 : DO i = 1, dim_op
2424 :
2425 6 : ao_op_i => ao_op(i)%matrix
2426 :
2427 6 : CALL cp_dbcsr_sm_fm_multiply(ao_op_i, mo_coeff, vec_work, ncol=homo)
2428 6 : CALL parallel_gemm('T', 'N', homo, homo, nao, 1.0_dp, mo_coeff, vec_work, 0.0_dp, prod_work)
2429 6 : CALL cp_fm_get_diag(prod_work, diag)
2430 62 : gsgs_op(i) = SUM(diag)
2431 :
2432 : END DO !i
2433 :
2434 2 : CALL cp_fm_release(vec_work)
2435 2 : CALL cp_fm_release(prod_work)
2436 2 : CALL cp_fm_struct_release(prod_struct)
2437 2 : DEALLOCATE (diag)
2438 2 : NULLIFY (vec_struct)
2439 :
2440 : !then beta orbitals
2441 2 : CALL get_mo_set(mos(2), mo_coeff=mo_coeff, homo=homo)
2442 6 : ALLOCATE (diag(homo))
2443 2 : CALL cp_fm_get_info(mo_coeff, matrix_struct=vec_struct)
2444 : CALL cp_fm_struct_create(prod_struct, context=blacs_env, para_env=para_env, &
2445 2 : nrow_global=homo, ncol_global=homo)
2446 2 : CALL cp_fm_create(vec_work, vec_struct)
2447 2 : CALL cp_fm_create(prod_work, prod_struct)
2448 :
2449 8 : DO i = 1, dim_op
2450 :
2451 6 : ao_op_i => ao_op(i)%matrix
2452 :
2453 6 : CALL cp_dbcsr_sm_fm_multiply(ao_op_i, mo_coeff, vec_work, ncol=homo)
2454 6 : CALL parallel_gemm('T', 'N', homo, homo, nao, 1.0_dp, mo_coeff, vec_work, 0.0_dp, prod_work)
2455 6 : CALL cp_fm_get_diag(prod_work, diag)
2456 62 : gsgs_op(i) = gsgs_op(i) + SUM(diag)
2457 :
2458 : END DO !i
2459 :
2460 2 : CALL cp_fm_release(vec_work)
2461 2 : CALL cp_fm_release(prod_work)
2462 2 : CALL cp_fm_struct_release(prod_struct)
2463 2 : DEALLOCATE (diag)
2464 2 : NULLIFY (vec_struct)
2465 :
2466 : ! Before looping over excited AMEWs, define some work matrices and structures
2467 : CALL cp_fm_struct_create(vec_struct, context=blacs_env, para_env=para_env, &
2468 2 : nrow_global=nao, ncol_global=ndo_so)
2469 : CALL cp_fm_struct_create(prod_struct, context=blacs_env, para_env=para_env, &
2470 2 : nrow_global=ndo_so, ncol_global=ndo_so)
2471 : CALL cp_fm_struct_create(gsex_struct, context=blacs_env, para_env=para_env, &
2472 2 : nrow_global=ndo_so*nex, ncol_global=ndo_so)
2473 : CALL cp_fm_struct_create(tmp_struct, context=blacs_env, para_env=para_env, &
2474 2 : nrow_global=nex, ncol_global=nex)
2475 2 : CALL cp_fm_create(vec_work, vec_struct) !for op*|phi>
2476 2 : CALL cp_fm_create(prod_work, prod_struct) !for any <phi|op|phi>
2477 2 : CALL cp_fm_create(work_fm, full_struct)
2478 2 : CALL cp_fm_create(gsex_fm, gsex_struct)
2479 2 : CALL cp_fm_create(tmp_fm, tmp_struct)
2480 6 : ALLOCATE (diag(ndo_so))
2481 8 : ALLOCATE (domo_op(ndo_so, ndo_so))
2482 6 : ALLOCATE (tmp(ndo_so, ndo_so))
2483 6 : ALLOCATE (gsex_block(ndo_so, ndo_so))
2484 :
2485 : ! Loop over the dimensions of the operator
2486 8 : DO i = 1, dim_op
2487 :
2488 6 : ao_op_i => ao_op(i)%matrix
2489 :
2490 : !put the gs-gs contribution
2491 6 : CALL cp_fm_set_element(amew_op(i), 1, 1, gsgs_op(i))
2492 :
2493 : ! Precompute what we can before looping over excited states
2494 : ! Need the operator in the donor MOs basis <phi^0_I,sigma|op_i|phi^0_J,tau>
2495 6 : CALL cp_dbcsr_sm_fm_multiply(ao_op_i, gs_coeffs, vec_work, ncol=ndo_so)
2496 6 : CALL parallel_gemm('T', 'N', ndo_so, ndo_so, nao, 1.0_dp, gs_coeffs, vec_work, 0.0_dp, prod_work)
2497 6 : CALL cp_fm_get_submatrix(prod_work, domo_op)
2498 :
2499 : ! Do the ground-state/spin-conserving operator
2500 6 : CALL parallel_gemm('T', 'N', ndo_so*nsc, ndo_so, nao, 1.0_dp, sc_coeffs, vec_work, 0.0_dp, gsex_fm)
2501 78 : DO isc = 1, nsc
2502 : CALL cp_fm_get_submatrix(fm=gsex_fm, target_m=gsex_block, start_row=(isc - 1)*ndo_so + 1, &
2503 72 : start_col=1, n_rows=ndo_so, n_cols=ndo_so)
2504 72 : diag(:) = get_diag(gsex_block)
2505 504 : op = SUM(diag)
2506 78 : CALL cp_fm_set_element(amew_op(i), 1, 1 + isc, op)
2507 : END DO !isc
2508 :
2509 : ! The spin-conserving/spin-conserving operator
2510 : !overlap
2511 : CALL dbcsr_multiply('N', 'N', 1.0_dp, matrix_s(1)%matrix, dbcsr_sc, 0.0_dp, &
2512 6 : dbcsr_work, filter_eps=eps_filter)
2513 6 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sc, dbcsr_work, 0.0_dp, dbcsr_ovlp, filter_eps=eps_filter)
2514 :
2515 : !operator in SC LR-orbital basis
2516 6 : CALL dbcsr_multiply('N', 'N', 1.0_dp, ao_op_i, dbcsr_sc, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
2517 6 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sc, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
2518 :
2519 : CALL os_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, domo_op, pref_diaga=1.0_dp, &
2520 : pref_diagb=1.0_dp, pref_tracea=-1.0_dp, pref_traceb=-1.0_dp, &
2521 6 : pref_diags=gsgs_op(i), symmetric=.TRUE.)
2522 :
2523 6 : CALL copy_dbcsr_to_fm(dbcsr_tmp, tmp_fm)
2524 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=amew_op(i), nrow=nex, ncol=nex, &
2525 6 : s_firstrow=1, s_firstcol=1, t_firstrow=2, t_firstcol=2)
2526 :
2527 : ! The spin-flip/spin-flip operator
2528 : !overlap
2529 : CALL dbcsr_multiply('N', 'N', 1.0_dp, matrix_s(1)%matrix, dbcsr_sf, 0.0_dp, &
2530 6 : dbcsr_work, filter_eps=eps_filter)
2531 6 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sf, dbcsr_work, 0.0_dp, dbcsr_ovlp, filter_eps=eps_filter)
2532 :
2533 : !operator in SF LR-orbital basis
2534 6 : CALL dbcsr_multiply('N', 'N', 1.0_dp, ao_op_i, dbcsr_sf, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
2535 6 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sf, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
2536 :
2537 : !need to reorganize the domo_op array by swapping the alpha-alpha and the beta-beta quarter
2538 78 : tmp(1:ndo_mo, 1:ndo_mo) = domo_op(ndo_mo + 1:ndo_so, ndo_mo + 1:ndo_so)
2539 78 : tmp(ndo_mo + 1:ndo_so, ndo_mo + 1:ndo_so) = domo_op(1:ndo_mo, 1:ndo_mo)
2540 :
2541 : CALL os_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, tmp, pref_diaga=1.0_dp, &
2542 : pref_diagb=1.0_dp, pref_tracea=-1.0_dp, pref_traceb=-1.0_dp, &
2543 6 : pref_diags=gsgs_op(i), symmetric=.TRUE.)
2544 :
2545 6 : CALL copy_dbcsr_to_fm(dbcsr_tmp, tmp_fm)
2546 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=amew_op(i), nrow=nex, ncol=nex, &
2547 6 : s_firstrow=1, s_firstcol=1, t_firstrow=1 + nsc + 1, t_firstcol=1 + nsc + 1)
2548 :
2549 : !Symmetry => only upper diag explicitly built
2550 8 : CALL cp_fm_upper_to_full(amew_op(i), work_fm)
2551 :
2552 : END DO !i
2553 :
2554 : ! Clean-up
2555 2 : CALL cp_fm_struct_release(full_struct)
2556 2 : CALL cp_fm_struct_release(prod_struct)
2557 2 : CALL cp_fm_struct_release(vec_struct)
2558 2 : CALL cp_fm_struct_release(tmp_struct)
2559 2 : CALL cp_fm_struct_release(gsex_struct)
2560 2 : CALL cp_fm_release(work_fm)
2561 2 : CALL cp_fm_release(tmp_fm)
2562 2 : CALL cp_fm_release(vec_work)
2563 2 : CALL cp_fm_release(prod_work)
2564 2 : CALL cp_fm_release(gsex_fm)
2565 :
2566 14 : END SUBROUTINE get_os_amew_op
2567 :
2568 : ! **************************************************************************************************
2569 : !> \brief Computes the matrix elements of a one-body operator (given wrt AOs) in the basis of the
2570 : !> excited state AMEWs with ground state, singlet and triplet with Ms = -1,0,+1
2571 : !> \param amew_op the operator in the basis of the AMEWs (array because could have x,y,z components)
2572 : !> \param ao_op the operator in the basis of the atomic orbitals
2573 : !> \param dbcsr_soc_package inherited from the main SOC routine
2574 : !> \param donor_state ...
2575 : !> \param eps_filter for dbcsr multiplication
2576 : !> \param qs_env ...
2577 : !> \note The ordering of the AMEWs is consistent with SOC and is gs, sg, tp(-1), tp(0). tp(+1)
2578 : !> We assume that the operator is spin-independent => only <0|0>, <0|S>, <S|S> and <T|T>
2579 : !> yield non-zero matrix elements
2580 : !> Only for spin-restricted calculations
2581 : ! **************************************************************************************************
2582 2 : SUBROUTINE get_rcs_amew_op(amew_op, ao_op, dbcsr_soc_package, donor_state, eps_filter, qs_env)
2583 :
2584 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:), &
2585 : INTENT(OUT) :: amew_op
2586 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: ao_op
2587 : TYPE(dbcsr_soc_package_type) :: dbcsr_soc_package
2588 : TYPE(donor_state_type), POINTER :: donor_state
2589 : REAL(dp), INTENT(IN) :: eps_filter
2590 : TYPE(qs_environment_type), POINTER :: qs_env
2591 :
2592 : INTEGER :: dim_op, homo, i, isg, nao, ndo_mo, nex, &
2593 : nsg, ntot, ntp
2594 : REAL(dp) :: op, sqrt2
2595 2 : REAL(dp), ALLOCATABLE, DIMENSION(:) :: diag, gs_diag, gsgs_op
2596 2 : REAL(dp), ALLOCATABLE, DIMENSION(:, :) :: domo_op, sggs_block
2597 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
2598 : TYPE(cp_fm_struct_type), POINTER :: full_struct, gsgs_struct, prod_struct, &
2599 : sggs_struct, std_struct, tmp_struct, &
2600 : vec_struct
2601 : TYPE(cp_fm_type) :: gs_fm, prod_fm, sggs_fm, tmp_fm, vec_op, &
2602 : work_fm
2603 : TYPE(cp_fm_type), POINTER :: gs_coeffs, mo_coeff, sg_coeffs
2604 2 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_s
2605 : TYPE(dbcsr_type), POINTER :: ao_op_i, dbcsr_ovlp, dbcsr_prod, &
2606 : dbcsr_sg, dbcsr_tmp, dbcsr_tp, &
2607 : dbcsr_work
2608 2 : TYPE(mo_set_type), DIMENSION(:), POINTER :: mos
2609 : TYPE(mp_para_env_type), POINTER :: para_env
2610 :
2611 2 : NULLIFY (gs_coeffs, sg_coeffs, matrix_s, full_struct, prod_struct, vec_struct, blacs_env)
2612 2 : NULLIFY (para_env, mo_coeff, mos, gsgs_struct, std_struct, tmp_struct, sggs_struct)
2613 2 : NULLIFY (ao_op_i, dbcsr_tp, dbcsr_sg, dbcsr_ovlp, dbcsr_work, dbcsr_tmp, dbcsr_prod)
2614 :
2615 : ! Initialization
2616 2 : gs_coeffs => donor_state%gs_coeffs
2617 2 : sg_coeffs => donor_state%sg_coeffs
2618 2 : nsg = SIZE(donor_state%sg_evals)
2619 2 : ntp = nsg; nex = nsg !all the same by construction, keep them separate for clarity
2620 2 : ntot = 1 + nsg + 3*ntp
2621 2 : ndo_mo = donor_state%ndo_mo
2622 2 : CALL get_qs_env(qs_env, matrix_s=matrix_s, para_env=para_env, blacs_env=blacs_env, mos=mos)
2623 2 : sqrt2 = SQRT(2.0_dp)
2624 2 : dim_op = SIZE(ao_op)
2625 :
2626 2 : dbcsr_sg => dbcsr_soc_package%dbcsr_sg
2627 2 : dbcsr_tp => dbcsr_soc_package%dbcsr_tp
2628 2 : dbcsr_work => dbcsr_soc_package%dbcsr_work
2629 2 : dbcsr_prod => dbcsr_soc_package%dbcsr_prod
2630 2 : dbcsr_ovlp => dbcsr_soc_package%dbcsr_ovlp
2631 2 : dbcsr_tmp => dbcsr_soc_package%dbcsr_tmp
2632 :
2633 : ! Create the amew_op matrix
2634 : CALL cp_fm_struct_create(full_struct, context=blacs_env, para_env=para_env, &
2635 2 : nrow_global=ntot, ncol_global=ntot)
2636 12 : ALLOCATE (amew_op(dim_op))
2637 8 : DO i = 1, dim_op
2638 8 : CALL cp_fm_create(amew_op(i), full_struct)
2639 : END DO !i
2640 :
2641 : ! Deal with the GS-GS contribution <0|0> = 2*sum_j <phi_j|op|phi_j>
2642 2 : CALL get_mo_set(mos(1), mo_coeff=mo_coeff, nao=nao, homo=homo)
2643 : CALL cp_fm_struct_create(gsgs_struct, context=blacs_env, para_env=para_env, &
2644 2 : nrow_global=homo, ncol_global=homo)
2645 2 : CALL cp_fm_get_info(mo_coeff, matrix_struct=std_struct)
2646 2 : CALL cp_fm_create(gs_fm, gsgs_struct)
2647 2 : CALL cp_fm_create(work_fm, std_struct)
2648 6 : ALLOCATE (gsgs_op(dim_op))
2649 6 : ALLOCATE (gs_diag(homo))
2650 :
2651 8 : DO i = 1, dim_op
2652 :
2653 6 : ao_op_i => ao_op(i)%matrix
2654 :
2655 6 : CALL cp_dbcsr_sm_fm_multiply(ao_op_i, mo_coeff, work_fm, ncol=homo)
2656 6 : CALL parallel_gemm('T', 'N', homo, homo, nao, 1.0_dp, mo_coeff, work_fm, 0.0_dp, gs_fm)
2657 6 : CALL cp_fm_get_diag(gs_fm, gs_diag)
2658 62 : gsgs_op(i) = 2.0_dp*SUM(gs_diag)
2659 :
2660 : END DO !i
2661 :
2662 2 : CALL cp_fm_release(gs_fm)
2663 2 : CALL cp_fm_release(work_fm)
2664 2 : CALL cp_fm_struct_release(gsgs_struct)
2665 2 : DEALLOCATE (gs_diag)
2666 :
2667 : ! Create the work and helper fms
2668 2 : CALL cp_fm_get_info(gs_coeffs, matrix_struct=vec_struct)
2669 : CALL cp_fm_struct_create(prod_struct, context=blacs_env, para_env=para_env, &
2670 2 : nrow_global=ndo_mo, ncol_global=ndo_mo)
2671 2 : CALL cp_fm_create(prod_fm, prod_struct)
2672 2 : CALL cp_fm_create(vec_op, vec_struct)
2673 : CALL cp_fm_struct_create(tmp_struct, context=blacs_env, para_env=para_env, &
2674 2 : nrow_global=nex, ncol_global=nex)
2675 : CALL cp_fm_struct_create(sggs_struct, context=blacs_env, para_env=para_env, &
2676 2 : nrow_global=ndo_mo*nsg, ncol_global=ndo_mo)
2677 2 : CALL cp_fm_create(tmp_fm, tmp_struct)
2678 2 : CALL cp_fm_create(work_fm, full_struct)
2679 2 : CALL cp_fm_create(sggs_fm, sggs_struct)
2680 6 : ALLOCATE (diag(ndo_mo))
2681 8 : ALLOCATE (domo_op(ndo_mo, ndo_mo))
2682 6 : ALLOCATE (sggs_block(ndo_mo, ndo_mo))
2683 :
2684 : ! Iterate over the dimensions of the operator
2685 : ! Note: operator matrices are asusmed symmetric, can only do upper half
2686 8 : DO i = 1, dim_op
2687 :
2688 6 : ao_op_i => ao_op(i)%matrix
2689 :
2690 : ! The GS-GS contribution
2691 6 : CALL cp_fm_set_element(amew_op(i), 1, 1, gsgs_op(i))
2692 :
2693 : ! Compute the operator in the donor MOs basis
2694 6 : CALL cp_dbcsr_sm_fm_multiply(ao_op_i, gs_coeffs, vec_op, ncol=ndo_mo)
2695 6 : CALL parallel_gemm('T', 'N', ndo_mo, ndo_mo, nao, 1.0_dp, gs_coeffs, vec_op, 0.0_dp, prod_fm)
2696 6 : CALL cp_fm_get_submatrix(prod_fm, domo_op)
2697 :
2698 : ! Compute the ground-state/singlet components. ao_op*gs_coeffs already stored in vec_op
2699 6 : CALL parallel_gemm('T', 'N', ndo_mo*nsg, ndo_mo, nao, 1.0_dp, sg_coeffs, vec_op, 0.0_dp, sggs_fm)
2700 78 : DO isg = 1, nsg
2701 : CALL cp_fm_get_submatrix(fm=sggs_fm, target_m=sggs_block, start_row=(isg - 1)*ndo_mo + 1, &
2702 72 : start_col=1, n_rows=ndo_mo, n_cols=ndo_mo)
2703 72 : diag(:) = get_diag(sggs_block)
2704 288 : op = sqrt2*SUM(diag)
2705 78 : CALL cp_fm_set_element(amew_op(i), 1, 1 + isg, op)
2706 : END DO
2707 :
2708 : ! do the singlet-singlet components
2709 : !start with the overlap
2710 : CALL dbcsr_multiply('N', 'N', 1.0_dp, matrix_s(1)%matrix, dbcsr_sg, 0.0_dp, &
2711 6 : dbcsr_work, filter_eps=eps_filter)
2712 6 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sg, dbcsr_work, 0.0_dp, dbcsr_ovlp, filter_eps=eps_filter)
2713 :
2714 : !then the operator in the LR orbital basis
2715 6 : CALL dbcsr_multiply('N', 'N', 1.0_dp, ao_op_i, dbcsr_sg, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
2716 6 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sg, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
2717 :
2718 : !use the soc routine, it is compatible
2719 : CALL rcs_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, domo_op, pref_trace=-1.0_dp, &
2720 6 : pref_overall=1.0_dp, pref_diags=gsgs_op(i), symmetric=.TRUE.)
2721 :
2722 6 : CALL copy_dbcsr_to_fm(dbcsr_tmp, tmp_fm)
2723 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=amew_op(i), nrow=nex, ncol=nex, &
2724 6 : s_firstrow=1, s_firstcol=1, t_firstrow=2, t_firstcol=2)
2725 :
2726 : ! compute the triplet-triplet components
2727 : !the overlap
2728 : CALL dbcsr_multiply('N', 'N', 1.0_dp, matrix_s(1)%matrix, dbcsr_tp, 0.0_dp, &
2729 6 : dbcsr_work, filter_eps=eps_filter)
2730 6 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_tp, dbcsr_work, 0.0_dp, dbcsr_ovlp, filter_eps=eps_filter)
2731 :
2732 : !the operator in the LR orbital basis
2733 6 : CALL dbcsr_multiply('N', 'N', 1.0_dp, ao_op_i, dbcsr_sg, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
2734 6 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sg, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
2735 :
2736 : CALL rcs_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, domo_op, pref_trace=-1.0_dp, &
2737 6 : pref_overall=1.0_dp, pref_diags=gsgs_op(i), symmetric=.TRUE.)
2738 :
2739 6 : CALL copy_dbcsr_to_fm(dbcsr_tmp, tmp_fm)
2740 : !<T^-1|op|T^-1>
2741 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=amew_op(i), nrow=nex, ncol=nex, &
2742 6 : s_firstrow=1, s_firstcol=1, t_firstrow=1 + nsg + 1, t_firstcol=1 + nsg + 1)
2743 : !<T^0|op|T^0>
2744 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=amew_op(i), nrow=nex, ncol=nex, &
2745 : s_firstrow=1, s_firstcol=1, t_firstrow=1 + nsg + ntp + 1, &
2746 6 : t_firstcol=1 + nsg + ntp + 1)
2747 : !<T^-1|op|T^-1>
2748 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=amew_op(i), nrow=nex, ncol=nex, &
2749 : s_firstrow=1, s_firstcol=1, t_firstrow=1 + nsg + 2*ntp + 1, &
2750 6 : t_firstcol=1 + nsg + 2*ntp + 1)
2751 :
2752 : ! Symmetrize the matrix (only upper triangle built)
2753 8 : CALL cp_fm_upper_to_full(amew_op(i), work_fm)
2754 :
2755 : END DO !i
2756 :
2757 : ! Clean-up
2758 2 : CALL cp_fm_release(prod_fm)
2759 2 : CALL cp_fm_release(work_fm)
2760 2 : CALL cp_fm_release(tmp_fm)
2761 2 : CALL cp_fm_release(vec_op)
2762 2 : CALL cp_fm_release(sggs_fm)
2763 2 : CALL cp_fm_struct_release(prod_struct)
2764 2 : CALL cp_fm_struct_release(full_struct)
2765 2 : CALL cp_fm_struct_release(tmp_struct)
2766 2 : CALL cp_fm_struct_release(sggs_struct)
2767 :
2768 12 : END SUBROUTINE get_rcs_amew_op
2769 :
2770 : ! **************************************************************************************************
2771 : !> \brief Computes the os SOC matrix elements between excited states AMEWs based on the LR orbitals
2772 : !> \param amew_soc output dbcsr matrix with the SOC in the AMEW basis (needs to be fully resereved)
2773 : !> \param lr_soc dbcsr matrix with the SOC wrt the LR orbitals
2774 : !> \param lr_overlap dbcsr matrix with the excited states LR orbital overlap
2775 : !> \param domo_soc the SOC in the basis of the donor MOs
2776 : !> \param pref_diaga ...
2777 : !> \param pref_diagb ...
2778 : !> \param pref_tracea ...
2779 : !> \param pref_traceb ...
2780 : !> \param pref_diags see notes
2781 : !> \param symmetric if the outcome is known to be symmetric, only elements with iex <= jex are done
2782 : !> \param tracea_start the indices where to start in the trace part for alpha
2783 : !> \param traceb_start the indices where to start in the trace part for beta
2784 : !> \note For an excited states pair i,j, the AMEW SOC matrix element is:
2785 : !> soc_ij = pref_diaga*SUM(alpha part of diag of lr_soc_ij)
2786 : !> + pref_diagb*SUM(beta part of diag of lr_soc_ij)
2787 : !> + pref_tracea*SUM(alpha part of lr_ovlp_ij*TRANSPOSE(domo_soc))
2788 : !> + pref_traceb*SUM(beta part of lr_ovlp_ij*TRANSPOSE(domo_soc))
2789 : !> optinally, one can add pref_diags*SUM(diag lr_ovlp_ij)
2790 : ! **************************************************************************************************
2791 20 : SUBROUTINE os_amew_soc_elements(amew_soc, lr_soc, lr_overlap, domo_soc, pref_diaga, &
2792 : pref_diagb, pref_tracea, pref_traceb, pref_diags, &
2793 : symmetric, tracea_start, traceb_start)
2794 :
2795 : TYPE(dbcsr_type) :: amew_soc, lr_soc, lr_overlap
2796 : REAL(dp), DIMENSION(:, :) :: domo_soc
2797 : REAL(dp) :: pref_diaga, pref_diagb, pref_tracea, &
2798 : pref_traceb
2799 : REAL(dp), OPTIONAL :: pref_diags
2800 : LOGICAL, OPTIONAL :: symmetric
2801 : INTEGER, DIMENSION(2), OPTIONAL :: tracea_start, traceb_start
2802 :
2803 : INTEGER :: blk, iex, jex, ndo_mo, ndo_so
2804 : INTEGER, DIMENSION(2) :: tas, tbs
2805 : LOGICAL :: do_diags, found, my_symm
2806 : REAL(dp) :: soc_elem
2807 20 : REAL(dp), ALLOCATABLE, DIMENSION(:) :: diag
2808 20 : REAL(dp), DIMENSION(:, :), POINTER :: pblock
2809 : TYPE(dbcsr_iterator_type) :: iter
2810 :
2811 20 : ndo_so = SIZE(domo_soc, 1)
2812 20 : ndo_mo = ndo_so/2
2813 60 : ALLOCATE (diag(ndo_so))
2814 20 : my_symm = .FALSE.
2815 20 : IF (PRESENT(symmetric)) my_symm = symmetric
2816 20 : do_diags = .FALSE.
2817 20 : IF (PRESENT(pref_diags)) do_diags = .TRUE.
2818 :
2819 : !by default, alpha part is (1:ndo_mo,1:ndo_mo) and beta is (ndo_mo+1:ndo_so,ndo_mo+1:ndo_so)
2820 : !note: in some SF cases, that might change, mainly because the spin-flip LR-coeffs have
2821 : !inverse order, that is: the beta-coeffs in the alpha spot and the alpha coeffs in the
2822 : !beta spot
2823 60 : tas = 1
2824 60 : tbs = ndo_mo + 1
2825 20 : IF (PRESENT(tracea_start)) tas = tracea_start
2826 20 : IF (PRESENT(traceb_start)) tbs = traceb_start
2827 :
2828 20 : CALL dbcsr_set(amew_soc, 0.0_dp)
2829 : !loop over the excited states pairs as the block of amew_soc (which are all reserved)
2830 20 : CALL dbcsr_iterator_start(iter, amew_soc)
2831 1460 : DO WHILE (dbcsr_iterator_blocks_left(iter))
2832 :
2833 1440 : CALL dbcsr_iterator_next_block(iter, row=iex, column=jex, blk=blk)
2834 :
2835 1440 : IF (my_symm .AND. iex > jex) CYCLE
2836 :
2837 : !compute the soc matrix element
2838 912 : soc_elem = 0.0_dp
2839 912 : CALL dbcsr_get_block_p(lr_soc, iex, jex, pblock, found)
2840 912 : IF (found) THEN
2841 444 : diag(:) = get_diag(pblock)
2842 3108 : soc_elem = soc_elem + pref_diaga*SUM(diag(1:ndo_mo)) + pref_diagb*(SUM(diag(ndo_mo + 1:ndo_so)))
2843 : END IF
2844 :
2845 912 : CALL dbcsr_get_block_p(lr_overlap, iex, jex, pblock, found)
2846 912 : IF (found) THEN
2847 : soc_elem = soc_elem &
2848 : + pref_tracea*SUM(pblock(tas(1):tas(1) + ndo_mo - 1, tas(2):tas(2) + ndo_mo - 1)* &
2849 : domo_soc(tas(1):tas(1) + ndo_mo - 1, tas(2):tas(2) + ndo_mo - 1)) &
2850 : + pref_traceb*SUM(pblock(tbs(1):tbs(1) + ndo_mo - 1, tbs(2):tbs(2) + ndo_mo - 1)* &
2851 12000 : domo_soc(tbs(1):tbs(1) + ndo_mo - 1, tbs(2):tbs(2) + ndo_mo - 1))
2852 :
2853 480 : IF (do_diags) THEN
2854 336 : diag(:) = get_diag(pblock)
2855 2352 : soc_elem = soc_elem + pref_diags*SUM(diag)
2856 : END IF
2857 : END IF
2858 :
2859 912 : CALL dbcsr_get_block_p(amew_soc, iex, jex, pblock, found)
2860 3284 : pblock = soc_elem
2861 :
2862 : END DO
2863 20 : CALL dbcsr_iterator_stop(iter)
2864 :
2865 60 : END SUBROUTINE os_amew_soc_elements
2866 :
2867 : ! **************************************************************************************************
2868 : !> \brief Computes the rcs SOC matrix elements between excited states AMEWs based on the LR orbitals
2869 : !> \param amew_soc output dbcsr matrix with the SOC in the AMEW basis (needs to be fully resereved)
2870 : !> \param lr_soc dbcsr matrix with the SOC wrt the LR orbitals
2871 : !> \param lr_overlap dbcsr matrix with the excited states LR orbital overlap
2872 : !> \param domo_soc the SOC in the basis of the donor MOs
2873 : !> \param pref_trace see notes
2874 : !> \param pref_overall see notes
2875 : !> \param pref_diags see notes
2876 : !> \param symmetric if the outcome is known to be symmetric, only elements with iex <= jex are done
2877 : !> \note For an excited states pair i,j, the AMEW SOC matrix element is:
2878 : !> soc_ij = pref_overall*(SUM(diag(lr_soc_ij)) + pref_trace*SUM(lr_overlap_ij*TRANSPOSE(domo_soc)))
2879 : !> optionally, the value pref_diags*SUM(diag(lr_overlap_ij)) can be added (before pref_overall)
2880 : ! **************************************************************************************************
2881 120 : SUBROUTINE rcs_amew_soc_elements(amew_soc, lr_soc, lr_overlap, domo_soc, pref_trace, &
2882 : pref_overall, pref_diags, symmetric)
2883 :
2884 : TYPE(dbcsr_type) :: amew_soc, lr_soc, lr_overlap
2885 : REAL(dp), DIMENSION(:, :) :: domo_soc
2886 : REAL(dp) :: pref_trace, pref_overall
2887 : REAL(dp), OPTIONAL :: pref_diags
2888 : LOGICAL, OPTIONAL :: symmetric
2889 :
2890 : INTEGER :: blk, iex, jex
2891 : LOGICAL :: do_diags, found, my_symm
2892 : REAL(dp) :: soc_elem
2893 120 : REAL(dp), ALLOCATABLE, DIMENSION(:) :: diag
2894 120 : REAL(dp), DIMENSION(:, :), POINTER :: pblock
2895 : TYPE(dbcsr_iterator_type) :: iter
2896 :
2897 360 : ALLOCATE (diag(SIZE(domo_soc, 1)))
2898 120 : my_symm = .FALSE.
2899 120 : IF (PRESENT(symmetric)) my_symm = symmetric
2900 120 : do_diags = .FALSE.
2901 120 : IF (PRESENT(pref_diags)) do_diags = .TRUE.
2902 :
2903 120 : CALL dbcsr_set(amew_soc, 0.0_dp)
2904 : !loop over the excited states pairs as the block of amew_soc (which are all reserved)
2905 120 : CALL dbcsr_iterator_start(iter, amew_soc)
2906 2220 : DO WHILE (dbcsr_iterator_blocks_left(iter))
2907 :
2908 2100 : CALL dbcsr_iterator_next_block(iter, row=iex, column=jex, blk=blk)
2909 :
2910 2100 : IF (my_symm .AND. iex > jex) CYCLE
2911 :
2912 : !compute the soc matrix element
2913 1644 : soc_elem = 0.0_dp
2914 1644 : CALL dbcsr_get_block_p(lr_soc, iex, jex, pblock, found)
2915 1644 : IF (found) THEN
2916 1008 : diag(:) = get_diag(pblock)
2917 5328 : soc_elem = soc_elem + SUM(diag)
2918 : END IF
2919 :
2920 1644 : CALL dbcsr_get_block_p(lr_overlap, iex, jex, pblock, found)
2921 1644 : IF (found) THEN
2922 31050 : soc_elem = soc_elem + pref_trace*SUM(pblock*TRANSPOSE(domo_soc))
2923 :
2924 1158 : IF (do_diags) THEN
2925 432 : diag(:) = get_diag(pblock)
2926 2250 : soc_elem = soc_elem + pref_diags*SUM(diag)
2927 : END IF
2928 : END IF
2929 :
2930 1644 : CALL dbcsr_get_block_p(amew_soc, iex, jex, pblock, found)
2931 5508 : pblock = pref_overall*soc_elem
2932 :
2933 : END DO
2934 120 : CALL dbcsr_iterator_stop(iter)
2935 :
2936 360 : END SUBROUTINE rcs_amew_soc_elements
2937 :
2938 : ! **************************************************************************************************
2939 : !> \brief Computes the dipole oscillator strengths in the AMEWs basis for SOC
2940 : !> \param soc_evecs_cfm the complex AMEWs coefficients
2941 : !> \param dbcsr_soc_package ...
2942 : !> \param donor_state ...
2943 : !> \param xas_tdp_env ...
2944 : !> \param xas_tdp_control ...
2945 : !> \param qs_env ...
2946 : !> \param gs_coeffs the ground state coefficients, given for open-shell because in ROKS, the gs_coeffs
2947 : !> are stored slightly differently within SOC for efficiency and code uniquness
2948 : ! **************************************************************************************************
2949 4 : SUBROUTINE compute_soc_dipole_fosc(soc_evecs_cfm, dbcsr_soc_package, donor_state, xas_tdp_env, &
2950 : xas_tdp_control, qs_env, gs_coeffs)
2951 :
2952 : TYPE(cp_cfm_type), INTENT(IN) :: soc_evecs_cfm
2953 : TYPE(dbcsr_soc_package_type) :: dbcsr_soc_package
2954 : TYPE(donor_state_type), POINTER :: donor_state
2955 : TYPE(xas_tdp_env_type), POINTER :: xas_tdp_env
2956 : TYPE(xas_tdp_control_type), POINTER :: xas_tdp_control
2957 : TYPE(qs_environment_type), POINTER :: qs_env
2958 : TYPE(cp_fm_type), INTENT(IN), OPTIONAL :: gs_coeffs
2959 :
2960 : CHARACTER(len=*), PARAMETER :: routineN = 'compute_soc_dipole_fosc'
2961 :
2962 4 : COMPLEX(dp), ALLOCATABLE, DIMENSION(:, :) :: transdip
2963 : INTEGER :: handle, i, nosc, ntot
2964 : LOGICAL :: do_os, do_rcs
2965 4 : REAL(dp), ALLOCATABLE, DIMENSION(:) :: osc_xyz
2966 4 : REAL(dp), DIMENSION(:), POINTER :: soc_evals
2967 4 : REAL(dp), DIMENSION(:, :), POINTER :: osc_str
2968 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
2969 : TYPE(cp_cfm_type) :: dip_cfm, work1_cfm, work2_cfm
2970 : TYPE(cp_fm_struct_type), POINTER :: dip_struct, full_struct
2971 4 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:) :: amew_dip
2972 : TYPE(mp_para_env_type), POINTER :: para_env
2973 :
2974 4 : NULLIFY (para_env, blacs_env, dip_struct, full_struct, osc_str)
2975 4 : NULLIFY (soc_evals)
2976 :
2977 4 : CALL timeset(routineN, handle)
2978 :
2979 : !init
2980 4 : CALL get_qs_env(qs_env, para_env=para_env, blacs_env=blacs_env)
2981 4 : do_os = xas_tdp_control%do_spin_cons
2982 4 : do_rcs = xas_tdp_control%do_singlet
2983 4 : soc_evals => donor_state%soc_evals
2984 4 : nosc = SIZE(soc_evals)
2985 4 : ntot = nosc + 1 !because GS AMEW is in there
2986 12 : ALLOCATE (donor_state%soc_osc_str(nosc, 4))
2987 4 : osc_str => donor_state%soc_osc_str
2988 596 : osc_str(:, :) = 0.0_dp
2989 4 : IF (do_os .AND. .NOT. PRESENT(gs_coeffs)) CPABORT("Need to pass gs_coeffs for open-shell")
2990 :
2991 : !get some work arrays/matrix
2992 : CALL cp_fm_struct_create(dip_struct, context=blacs_env, para_env=para_env, &
2993 4 : nrow_global=ntot, ncol_global=1)
2994 4 : CALL cp_cfm_get_info(soc_evecs_cfm, matrix_struct=full_struct)
2995 4 : CALL cp_cfm_create(dip_cfm, dip_struct)
2996 4 : CALL cp_cfm_create(work1_cfm, full_struct)
2997 4 : CALL cp_cfm_create(work2_cfm, full_struct)
2998 12 : ALLOCATE (transdip(ntot, 1))
2999 :
3000 : !get the dipole in the AMEW basis
3001 4 : IF (do_os) THEN
3002 : CALL get_os_amew_op(amew_dip, xas_tdp_env%dipmat, gs_coeffs, dbcsr_soc_package, &
3003 2 : donor_state, xas_tdp_control%eps_filter, qs_env)
3004 : ELSE
3005 : CALL get_rcs_amew_op(amew_dip, xas_tdp_env%dipmat, dbcsr_soc_package, donor_state, &
3006 2 : xas_tdp_control%eps_filter, qs_env)
3007 : END IF
3008 :
3009 12 : ALLOCATE (osc_xyz(nosc))
3010 16 : DO i = 1, 3 !cartesian coord x, y, z
3011 :
3012 : !Convert the real dipole into the cfm format for calculations
3013 12 : CALL cp_fm_to_cfm(msourcer=amew_dip(i), mtarget=work1_cfm)
3014 :
3015 : !compute amew_coeffs^dagger * amew_dip * amew_gs to get the transition moments
3016 : CALL parallel_gemm('C', 'N', ntot, ntot, ntot, (1.0_dp, 0.0_dp), soc_evecs_cfm, work1_cfm, &
3017 12 : (0.0_dp, 0.0_dp), work2_cfm)
3018 : CALL parallel_gemm('N', 'N', ntot, 1, ntot, (1.0_dp, 0.0_dp), work2_cfm, soc_evecs_cfm, &
3019 12 : (0.0_dp, 0.0_dp), dip_cfm)
3020 :
3021 12 : CALL cp_cfm_get_submatrix(dip_cfm, transdip)
3022 :
3023 : !transition dipoles are real numbers
3024 444 : osc_xyz(:) = REAL(transdip(2:ntot, 1))**2 + AIMAG(transdip(2:ntot, 1))**2
3025 444 : osc_str(:, 4) = osc_str(:, 4) + osc_xyz(:)
3026 448 : osc_str(:, i) = osc_xyz(:)
3027 :
3028 : END DO !i
3029 :
3030 : !multiply with appropriate prefac depending in the rep
3031 20 : DO i = 1, 4
3032 20 : IF (xas_tdp_control%dipole_form == xas_dip_len) THEN
3033 0 : osc_str(:, i) = 2.0_dp/3.0_dp*soc_evals(:)*osc_str(:, i)
3034 : ELSE
3035 1184 : osc_str(:, i) = 2.0_dp/3.0_dp/soc_evals(:)*osc_str(:, i)
3036 : END IF
3037 : END DO
3038 :
3039 : !clean-up
3040 4 : CALL cp_fm_struct_release(dip_struct)
3041 4 : CALL cp_cfm_release(work1_cfm)
3042 4 : CALL cp_cfm_release(work2_cfm)
3043 4 : CALL cp_cfm_release(dip_cfm)
3044 16 : DO i = 1, 3
3045 16 : CALL cp_fm_release(amew_dip(i))
3046 : END DO
3047 4 : DEALLOCATE (amew_dip, transdip)
3048 :
3049 4 : CALL timestop(handle)
3050 :
3051 12 : END SUBROUTINE compute_soc_dipole_fosc
3052 :
3053 : ! **************************************************************************************************
3054 : !> \brief Computes the quadrupole oscillator strengths in the AMEWs basis for SOC
3055 : !> \param soc_evecs_cfm the complex AMEWs coefficients
3056 : !> \param dbcsr_soc_package inherited from the main SOC routine
3057 : !> \param donor_state ...
3058 : !> \param xas_tdp_env ...
3059 : !> \param xas_tdp_control ...
3060 : !> \param qs_env ...
3061 : !> \param gs_coeffs the ground state coefficients, given for open-shell because in ROKS, the gs_coeffs
3062 : !> are stored slightly differently within SOC for efficiency and code uniquness
3063 : ! **************************************************************************************************
3064 0 : SUBROUTINE compute_soc_quadrupole_fosc(soc_evecs_cfm, dbcsr_soc_package, donor_state, &
3065 : xas_tdp_env, xas_tdp_control, qs_env, gs_coeffs)
3066 :
3067 : TYPE(cp_cfm_type), INTENT(IN) :: soc_evecs_cfm
3068 : TYPE(dbcsr_soc_package_type) :: dbcsr_soc_package
3069 : TYPE(donor_state_type), POINTER :: donor_state
3070 : TYPE(xas_tdp_env_type), POINTER :: xas_tdp_env
3071 : TYPE(xas_tdp_control_type), POINTER :: xas_tdp_control
3072 : TYPE(qs_environment_type), POINTER :: qs_env
3073 : TYPE(cp_fm_type), INTENT(IN), OPTIONAL :: gs_coeffs
3074 :
3075 : CHARACTER(len=*), PARAMETER :: routineN = 'compute_soc_quadrupole_fosc'
3076 :
3077 0 : COMPLEX(dp), ALLOCATABLE, DIMENSION(:) :: trace
3078 : COMPLEX(dp), ALLOCATABLE, DIMENSION(:, :) :: transquad
3079 : INTEGER :: handle, i, nosc, ntot
3080 : LOGICAL :: do_os, do_rcs
3081 0 : REAL(dp), DIMENSION(:), POINTER :: osc_str, soc_evals
3082 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
3083 : TYPE(cp_cfm_type) :: quad_cfm, work1_cfm, work2_cfm
3084 : TYPE(cp_fm_struct_type), POINTER :: full_struct, quad_struct
3085 0 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:) :: amew_quad
3086 : TYPE(mp_para_env_type), POINTER :: para_env
3087 :
3088 0 : NULLIFY (para_env, blacs_env, quad_struct, full_struct, osc_str)
3089 0 : NULLIFY (soc_evals)
3090 :
3091 0 : CALL timeset(routineN, handle)
3092 :
3093 : !init
3094 0 : CALL get_qs_env(qs_env, para_env=para_env, blacs_env=blacs_env)
3095 0 : do_os = xas_tdp_control%do_spin_cons
3096 0 : do_rcs = xas_tdp_control%do_singlet
3097 0 : soc_evals => donor_state%soc_evals
3098 0 : nosc = SIZE(soc_evals)
3099 0 : ntot = nosc + 1 !because GS AMEW is in there
3100 0 : ALLOCATE (donor_state%soc_quad_osc_str(nosc))
3101 0 : osc_str => donor_state%soc_quad_osc_str
3102 0 : osc_str(:) = 0.0_dp
3103 0 : IF (do_os .AND. .NOT. PRESENT(gs_coeffs)) CPABORT("Need to pass gs_coeffs for open-shell")
3104 :
3105 : !get some work arrays/matrix
3106 : CALL cp_fm_struct_create(quad_struct, context=blacs_env, para_env=para_env, &
3107 0 : nrow_global=ntot, ncol_global=1)
3108 0 : CALL cp_cfm_get_info(soc_evecs_cfm, matrix_struct=full_struct)
3109 0 : CALL cp_cfm_create(quad_cfm, quad_struct)
3110 0 : CALL cp_cfm_create(work1_cfm, full_struct)
3111 0 : CALL cp_cfm_create(work2_cfm, full_struct)
3112 0 : ALLOCATE (transquad(ntot, 1))
3113 0 : ALLOCATE (trace(nosc))
3114 0 : trace = (0.0_dp, 0.0_dp)
3115 :
3116 : !get the quadrupole in the AMEWs basis
3117 0 : IF (do_os) THEN
3118 : CALL get_os_amew_op(amew_quad, xas_tdp_env%quadmat, gs_coeffs, dbcsr_soc_package, &
3119 0 : donor_state, xas_tdp_control%eps_filter, qs_env)
3120 : ELSE
3121 : CALL get_rcs_amew_op(amew_quad, xas_tdp_env%quadmat, dbcsr_soc_package, donor_state, &
3122 0 : xas_tdp_control%eps_filter, qs_env)
3123 : END IF
3124 :
3125 0 : DO i = 1, 6 ! x2, xy, xz, y2, yz, z2
3126 :
3127 : !Convert the real quadrupole into a cfm for further calculation
3128 0 : CALL cp_fm_to_cfm(msourcer=amew_quad(i), mtarget=work1_cfm)
3129 :
3130 : !compute amew_coeffs^dagger * amew_quad * amew_gs to get the transition moments
3131 : CALL parallel_gemm('C', 'N', ntot, ntot, ntot, (1.0_dp, 0.0_dp), soc_evecs_cfm, work1_cfm, &
3132 0 : (0.0_dp, 0.0_dp), work2_cfm)
3133 : CALL parallel_gemm('N', 'N', ntot, 1, ntot, (1.0_dp, 0.0_dp), work2_cfm, soc_evecs_cfm, &
3134 0 : (0.0_dp, 0.0_dp), quad_cfm)
3135 :
3136 0 : CALL cp_cfm_get_submatrix(quad_cfm, transquad)
3137 :
3138 : !if x2, y2 or z2, need to keep track of trace
3139 0 : IF (i == 1 .OR. i == 4 .OR. i == 6) THEN
3140 0 : osc_str(:) = osc_str(:) + REAL(transquad(2:ntot, 1))**2 + AIMAG(transquad(2:ntot, 1))**2
3141 0 : trace(:) = trace(:) + transquad(2:ntot, 1)
3142 :
3143 : !if xy, xz, or yz, need to count twice (for yx, zx and zy)
3144 : ELSE
3145 0 : osc_str(:) = osc_str(:) + 2.0_dp*(REAL(transquad(2:ntot, 1))**2 + AIMAG(transquad(2:ntot, 1))**2)
3146 : END IF
3147 :
3148 : END DO !i
3149 :
3150 : !remove a third of the trace
3151 0 : osc_str(:) = osc_str(:) - 1._dp/3._dp*(REAL(trace(:))**2 + AIMAG(trace(:))**2)
3152 :
3153 : !multiply by the prefactor
3154 0 : osc_str(:) = osc_str(:)*1._dp/20._dp*a_fine**2*soc_evals(:)**3
3155 :
3156 : !clean-up
3157 0 : CALL cp_fm_struct_release(quad_struct)
3158 0 : CALL cp_cfm_release(work1_cfm)
3159 0 : CALL cp_cfm_release(work2_cfm)
3160 0 : CALL cp_cfm_release(quad_cfm)
3161 0 : CALL cp_fm_release(amew_quad)
3162 0 : DEALLOCATE (transquad, trace)
3163 :
3164 0 : CALL timestop(handle)
3165 :
3166 0 : END SUBROUTINE compute_soc_quadrupole_fosc
3167 :
3168 0 : END MODULE xas_tdp_utils
3169 :
|